151
|
KIS, a kinase associated with microtubule regulators, enhances translation of AMPA receptors and stimulates dendritic spine remodeling. J Neurosci 2015; 34:13988-97. [PMID: 25319695 DOI: 10.1523/jneurosci.1573-14.2014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local regulation of protein synthesis allows a neuron to rapidly alter the proteome in response to synaptic signals, an essential mechanism in synaptic plasticity that is altered in many neurological diseases. Synthesis of many synaptic proteins is under local control and much of this regulation occurs through structures termed RNA granules. KIS is a protein kinase that associates with stathmin, a modulator of the tubulin cytoskeleton. Furthermore, KIS is found in RNA granules and stimulates translation driven by the β-actin 3'UTR in neurites. Here we explore the physiological and molecular mechanisms underlying the action of KIS on hippocampal synaptic plasticity in mice. KIS downregulation compromises spine development, alters actin dynamics, and reduces postsynaptic responsiveness. The absence of KIS results in a significant decrease of protein levels of PSD-95, a postsynaptic scaffolding protein, and the AMPAR subunits GluR1 and GluR2 in a CPEB3-dependent manner. Underlying its role in spine maturation, KIS is able to suppress the spine developmental defects caused by CPEB3 overexpression. Moreover, either by direct or indirect mechanisms, KIS counteracts the inhibitory activity of CPEB3 on the GluR2 3'UTR at both mRNA translation and polyadenylation levels. Our study provides insights into the mechanisms that mediate dendritic spine morphogenesis and functional synaptic maturation, and suggests KIS as a link regulating spine cytoskeleton and postsynaptic activity in memory formation.
Collapse
|
152
|
Dupuis N, Fafouri A, Bayot A, Kumar M, Lecharpentier T, Ball G, Edwards D, Bernard V, Dournaud P, Drunat S, Vermelle-Andrzejewski M, Vilain C, Abramowicz M, Désir J, Bonaventure J, Gareil N, Boncompain G, Csaba Z, Perez F, Passemard S, Gressens P, El Ghouzzi V. Dymeclin deficiency causes postnatal microcephaly, hypomyelination and reticulum-to-Golgi trafficking defects in mice and humans. Hum Mol Genet 2015; 24:2771-83. [PMID: 25652408 DOI: 10.1093/hmg/ddv038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 01/31/2015] [Indexed: 01/02/2023] Open
Abstract
Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.
Collapse
Affiliation(s)
- Nina Dupuis
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Assia Fafouri
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Aurélien Bayot
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Manoj Kumar
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Tifenn Lecharpentier
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - David Edwards
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Véronique Bernard
- CNRS UMR7224, Inserm, U952, Paris, France, Univ Pierre et Marie Curie, Paris, France
| | - Pascal Dournaud
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Séverine Drunat
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, Paris, France
| | | | - Catheline Vilain
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Abramowicz
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Désir
- Medical Genetics Department, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Jacky Bonaventure
- CNRS UMR3347, Orsay, France, Institut Curie, Centre de Recherche, Paris, France
| | - Nelly Gareil
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Gaelle Boncompain
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Zsolt Csaba
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France
| | - Franck Perez
- CNRS UMR144, Paris, France and Institut Curie, Centre de Recherche, Paris, France
| | - Sandrine Passemard
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, Paris, France
| | - Pierre Gressens
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France, Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| | - Vincent El Ghouzzi
- Inserm, U1141, Paris, France, Sorbonne Paris Cité, Univ Paris Diderot, UMRS 1141, Paris, France,
| |
Collapse
|
153
|
Li H, Park HA, Jonas EA. Fluorescent Measurement of Synaptic Activity Using SynaptopHluorin in Isolated Hippocampal Neurons. Bio Protoc 2014; 4:e1304. [PMID: 27446978 DOI: 10.21769/bioprotoc.1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This protocol comprises the entire process of fluorescent measurement of vesicle recycling using the probe SynaptopHluorin, a pH-dependent GFP variant whose fluorescence increases at the synapse upon vesicle release due to fluorescence quenching in acidic vesicles. This technique provides a genetic tool to monitor synaptic vesicle recycling in real time in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Internal Medicine (Endocrinology), School of Medicine, Yale University, New Haven, USA
| | - Han-A Park
- Department of Internal Medicine (Endocrinology), School of Medicine, Yale University, New Haven, USA
| | - Elizabeth A Jonas
- Department of Internal Medicine (Endocrinology), School of Medicine, Yale University, New Haven, USA; Department of Neurobiology, School of Medicine, Yale University, New Haven, USA
| |
Collapse
|
154
|
Yoon DH, Yoon S, Kim D, Kim H, Baik JH. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 2014; 586:24-30. [PMID: 25483619 DOI: 10.1016/j.neulet.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability.
Collapse
Affiliation(s)
- Dong-Hoon Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Donghoon Kim
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, South Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
155
|
Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML, Trümbach D, Wurst W, Cazalla D, Stein V, Deussing JM, Refojo D. MicroRNA-9 controls dendritic development by targeting REST. eLife 2014; 3. [PMID: 25406064 PMCID: PMC4235007 DOI: 10.7554/elife.02755] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth. DOI:http://dx.doi.org/10.7554/eLife.02755.001 Messages are sent back and forth in our brains by cells called neurons that connect to each other in complex networks. Neurons develop from stem cells in a complicated process that involves a number of different stages. In one of the final stages, tree-like structures called dendrites emerge from the neurons and connect with neighboring neurons via special junctions called synapses. A group of small RNA molecules called microRNAs have roles in controlling the development of neurons. One microRNA, called miR-9, is abundant in the brain and is known to be involved in the early stages of neuron development. However, its role in the formation of dendrites and synapses remains unclear. Giusti et al. studied this microRNA in mice. A length of DNA, coding for an RNA molecule that binds to miR-9 molecules and stops them performing their normal function, was inserted into the mice. These experiments showed that miR-9 is involved in controlling dendrite growth and synaptic function. To enable a neuron to produce dendrites, miR-9 binds to and interferes with the RNA molecules that are needed to make a protein called REST. This protein is a transcription factor that switches off the expression of other genes so, in effect, miR-9 allows a set of genes that are needed for dendrite growth to be switched on. The methodology developed by Giusti et al. could be used to study the functions of other microRNAs. DOI:http://dx.doi.org/10.7554/eLife.02755.002
Collapse
Affiliation(s)
- Sebastian A Giusti
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Annette M Vogl
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Marisa M Brockmann
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Claudia A Vercelli
- Department of Molecular Neurobiology, Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Martin L Rein
- Department of Neurobiology of Stress and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Dietrich Trümbach
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Demian Cazalla
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Valentin Stein
- Institute of Physiology, University of Bonn, Bonn, Germany
| | - Jan M Deussing
- Department of Neurobiology of Stress and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Damian Refojo
- Department of Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
156
|
Neuritin can normalize neural deficits of Alzheimer's disease. Cell Death Dis 2014; 5:e1523. [PMID: 25393479 PMCID: PMC4260736 DOI: 10.1038/cddis.2014.478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/05/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
Reductions in hippocampal neurite complexity and synaptic plasticity are believed to contribute to the progressive impairment in episodic memory and the mild cognitive decline that occur particularly in the early stages of Alzheimer's disease (AD). Despite the functional and therapeutic importance for patients with AD, intervention to rescue or normalize dendritic elaboration and synaptic plasticity is scarcely provided. Here we show that overexpression of neuritin, an activity-dependent protein, promoted neurite outgrowth and maturation of synapses in parallel with enhanced basal synaptic transmission in cultured hippocampal neurons. Importantly, exogenous application of recombinant neuritin fully restored dendritic complexity as well as spine density in hippocampal neurons prepared from Tg2576 mice, whereas it did not affect neurite branching of neurons from their wild-type littermates. We also showed that soluble recombinant neuritin, when chronically infused into the brains of Tg2576 mice, normalized synaptic plasticity in acute hippocampal slices, leading to intact long-term potentiation. By revealing the protective actions of soluble neuritin against AD-related neural defects, we provide a potential therapeutic approach for patients with AD.
Collapse
|
157
|
Tsetsenis T, Boucard AA, Araç D, Brunger AT, Südhof TC. Direct visualization of trans-synaptic neurexin-neuroligin interactions during synapse formation. J Neurosci 2014; 34:15083-96. [PMID: 25378172 PMCID: PMC4220035 DOI: 10.1523/jneurosci.0348-14.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/25/2014] [Accepted: 10/03/2014] [Indexed: 11/21/2022] Open
Abstract
Neurexins and neuroligins are synaptic cell-adhesion molecules that are essential for normal synapse specification and function and are thought to bind to each other trans-synaptically, but such interactions have not been demonstrated directly. Here, we generated neurexin-1β and neuroligin-1 and neuroligin-2 fusion proteins containing complementary "split" GFP fragments positioned such that binding of neurexin-1β to neuroligin-1 or neuroligin-2 allowed GFP reconstitution without dramatically changing their binding affinities. GFP fluorescence was only reconstituted from split-GFP-modified neurexin-1β and neuroligin-1 if and after neurexin-1β bound to its neuroligin partner; reassociation of the split-GFP components with each other did not mediate binding. Using trans-cellular reconstitution of GFP fluorescence from split-GFP-modified neurexin-1β and neuroligins as an assay, we demonstrate that trans-synaptic neurexin/neuroligin binding indeed occurred when mouse hippocampal neurons formed synapses onto non-neuronal COS-7 cells expressing neuroligins or when mouse hippocampal neurons formed synapses with each other. This visualization of synapses by neurexin/neuroligin binding prompted us to refer to this approach as "SynView." Our data demonstrate that neurexin-1β forms a trans-synaptic complex with neuroligin-1 and neuroligin-2 and that this interaction can be used to label synapses in a specific fashion in vivo.
Collapse
Affiliation(s)
| | | | - Demet Araç
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| |
Collapse
|
158
|
Addition of exogenous α-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous α-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc 2014; 9:2135-46. [PMID: 25122523 DOI: 10.1038/nprot.2014.143] [Citation(s) in RCA: 517] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This protocol describes a primary neuronal model of formation of α-synuclein (α-syn) aggregates that recapitulate features of the Lewy bodies and Lewy neurites found in Parkinson's disease brains and other synucleinopathies. This model allows investigation of aggregate formation, their impact on neuron function, and development of therapeutics. Addition of preformed fibrils (PFFs) synthesized from recombinant α-syn to neurons seeds the recruitment of endogenous α-syn into aggregates characterized by detergent insolubility and hyperphosphorylation. Aggregate formation follows a lag phase of 2-3 d, followed by formation in axons by days 4-7, spread to somatodendritic compartments by days 7-10 and neuron death ~14 d after PFF addition. Here we provide methods and highlight the crucial steps for PFF formation, PFF addition to cultured hippocampal neurons and confirmation of aggregate formation. Neurons derived from various brain regions from nontransgenic and genetically engineered mice and rats can be used, allowing interrogation of the effect of specific genes on aggregate formation.
Collapse
|
159
|
Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GKS, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods 2014; 11:825-33. [PMID: 24952910 PMCID: PMC4117813 DOI: 10.1038/nmeth.3000] [Citation(s) in RCA: 540] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 05/17/2014] [Indexed: 01/27/2023]
Abstract
All-optical electrophysiology-spatially resolved simultaneous optical perturbation and measurement of membrane voltage-would open new vistas in neuroscience research. We evolved two archaerhodopsin-based voltage indicators, QuasAr1 and QuasAr2, which show improved brightness and voltage sensitivity, have microsecond response times and produce no photocurrent. We engineered a channelrhodopsin actuator, CheRiff, which shows high light sensitivity and rapid kinetics and is spectrally orthogonal to the QuasArs. A coexpression vector, Optopatch, enabled cross-talk-free genetically targeted all-optical electrophysiology. In cultured rat neurons, we combined Optopatch with patterned optical excitation to probe back-propagating action potentials (APs) in dendritic spines, synaptic transmission, subcellular microsecond-timescale details of AP propagation, and simultaneous firing of many neurons in a network. Optopatch measurements revealed homeostatic tuning of intrinsic excitability in human stem cell-derived neurons. In rat brain slices, Optopatch induced and reported APs and subthreshold events with high signal-to-noise ratios. The Optopatch platform enables high-throughput, spatially resolved electrophysiology without the use of conventional electrodes.
Collapse
Affiliation(s)
- Daniel R Hochbaum
- 1] Applied Physics Program, School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts, USA. [2]
| | - Yongxin Zhao
- 1] Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. [2]
| | - Samouil L Farhi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nathan Klapoetke
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Christopher A Werley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Vikrant Kapoor
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Peng Zou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Joel M Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Dougal Maclaurin
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | - Jessica L Saulnier
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Christoph Straub
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yong Ku Cho
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Gane Ka-Shu Wong
- 1] Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. [2] Department of Medicine, University of Alberta, Edmonton, Alberta, Canada. [3] Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - D Jed Harrison
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Venkatesh N Murthy
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Bernardo L Sabatini
- 1] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA. [2] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Edward S Boyden
- 1] The MIT Media Laboratory, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA. [2] Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research, MIT, Cambridge, Massachusetts, USA. [5]
| | - Robert E Campbell
- 1] Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada. [2]
| | - Adam E Cohen
- 1] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA. [2] Department of Physics, Harvard University, Cambridge, Massachusetts, USA. [3] Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
160
|
Soykan T, Schneeberger D, Tria G, Buechner C, Bader N, Svergun D, Tessmer I, Poulopoulos A, Papadopoulos T, Varoqueaux F, Schindelin H, Brose N. A conformational switch in collybistin determines the differentiation of inhibitory postsynapses. EMBO J 2014; 33:2113-33. [PMID: 25082542 DOI: 10.15252/embj.201488143] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The formation of neuronal synapses and the dynamic regulation of their efficacy depend on the assembly of the postsynaptic neurotransmitter receptor apparatus. Receptor recruitment to inhibitory GABAergic and glycinergic synapses is controlled by the scaffold protein gephyrin and the adaptor protein collybistin. We derived new insights into the structure of collybistin and used these to design biochemical, cell biological, and genetic analyses of collybistin function. Our data define a collybistin-based protein interaction network that controls the gephyrin content of inhibitory postsynapses. Within this network, collybistin can adopt open/active and closed/inactive conformations to act as a switchable adaptor that links gephyrin to plasma membrane phosphoinositides. This function of collybistin is regulated by binding of the adhesion protein neuroligin-2, which stabilizes the open/active conformation of collybistin at the postsynaptic plasma membrane by competing with an intramolecular interaction in collybistin that favors the closed/inactive conformation. By linking trans-synaptic neuroligin-dependent adhesion and phosphoinositide signaling with gephyrin recruitment, the collybistin-based regulatory switch mechanism represents an integrating regulatory node in the formation and function of inhibitory postsynapses.
Collapse
Affiliation(s)
- Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniela Schneeberger
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Giancarlo Tria
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany Centre for Bioinformatics, University of Hamburg, Hamburg, Germany
| | - Claudia Buechner
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Nicole Bader
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Ingrid Tessmer
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Alexandros Poulopoulos
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Theofilos Papadopoulos
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Frédérique Varoqueaux
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
161
|
Ilie A, Weinstein E, Boucher A, McKinney RA, Orlowski J. Impaired posttranslational processing and trafficking of an endosomal Na+/H+ exchanger NHE6 mutant (Δ370WST372) associated with X-linked intellectual disability and autism. Neurochem Int 2014; 73:192-203. [DOI: 10.1016/j.neuint.2013.09.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/23/2023]
|
162
|
Valenzuela JI, Jaureguiberry-Bravo M, Salas DA, Ramírez OA, Cornejo VH, Lu HE, Blanpied TA, Couve A. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J Cell Sci 2014; 127:3382-95. [PMID: 24895402 DOI: 10.1242/jcs.151092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles.
Collapse
Affiliation(s)
- José I Valenzuela
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Matías Jaureguiberry-Bravo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Daniela A Salas
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Omar A Ramírez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Program of Anatomy and Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Víctor H Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Hsiangmin E Lu
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| |
Collapse
|
163
|
Blasier KR, Humsi MK, Ha J, Ross MW, Smiley WR, Inamdar NA, Mitchell DJ, Lo KWH, Pfister KK. Live cell imaging reveals differential modifications to cytoplasmic dynein properties by phospho- and dephosphomimic mutations of the intermediate chain 2C S84. J Neurosci Res 2014; 92:1143-54. [PMID: 24798412 DOI: 10.1002/jnr.23388] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/28/2023]
Abstract
Cytoplasmic dynein is a multisubunit motor protein responsible for intracellular cargo transport toward microtubule minus ends. There are multiple isoforms of the dynein intermediate chain (DYNC1I, IC), which is encoded by two genes. One way to regulate cytoplasmic dynein is by IC phosphorylation. The IC-2C isoform is expressed in all cells, and the functional significance of phosphorylation on IC-2C serine 84 was investigated by using live cell imaging of fluorescent protein-tagged IC-2C wild type (WT) and phospho- and dephosphomimic mutant isoforms in axonal transport model systems. Both mutations modulated dynein functional properties. The dephosphomimic mutant IC-2C S84A had greater colocalization with mitochondria than the IC-2C WT or the phosphomimic mutant IC-2C S84D. The dephosphomimic mutant IC-2C S84A was also more likely to be motile than the phosphomimic mutant IC-2C S84D or the IC-2C WT. In contrast, the phosphomimic mutant IC-2C S84D mutant was more likely to move in the retrograde direction than was the IC-2C S84A mutant. The phosphomimic IC-2C S84D was also as likely as the IC-2C WT to colocalize with mitochondria. Both the S84D phospho- and the S84A dephosphomimic mutants were found to be capable of microtubule minus-end-directed (retrograde) movement in axons. They were also observed to be passively transported in the anterograde direction. These data suggest that the IC-2C S84 has a role in modulating dynein properties.
Collapse
Affiliation(s)
- Kiev R Blasier
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
St-Pierre F, Marshall JD, Yang Y, Gong Y, Schnitzer MJ, Lin MZ. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci 2014; 17:884-9. [PMID: 24755780 PMCID: PMC4494739 DOI: 10.1038/nn.3709] [Citation(s) in RCA: 310] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/28/2014] [Indexed: 02/06/2023]
Abstract
Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. Here we describe Accelerated Sensor of Action Potentials 1 (ASAP1), a novel voltage sensor design in which a circularly permuted green fluorescent protein is inserted within an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrates on- and off- kinetics of 2.1 and 2.0 ms, reliably detects single action potentials and subthreshold potential changes, and tracks trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range, and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at KHz frame rates using standard epifluorescence microscopy.
Collapse
Affiliation(s)
- François St-Pierre
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Jesse D Marshall
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA
| | - Ying Yang
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Yiyang Gong
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA
| | - Mark J Schnitzer
- 1] James H. Clark Center, Stanford University, Stanford, California, USA. [2] CNC Program, Stanford University, Palo Alto, California, USA. [3] Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Michael Z Lin
- 1] Department of Bioengineering, Stanford University, Stanford, California, USA. [2] Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
165
|
Bustos FJ, Varela-Nallar L, Campos M, Henriquez B, Phillips M, Opazo C, Aguayo LG, Montecino M, Constantine-Paton M, Inestrosa NC, van Zundert B. PSD95 suppresses dendritic arbor development in mature hippocampal neurons by occluding the clustering of NR2B-NMDA receptors. PLoS One 2014; 9:e94037. [PMID: 24705401 PMCID: PMC3976375 DOI: 10.1371/journal.pone.0094037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Considerable evidence indicates that the NMDA receptor (NMDAR) subunits NR2A and NR2B are critical mediators of synaptic plasticity and dendritogenesis; however, how they differentially regulate these processes is unclear. Here we investigate the roles of the NR2A and NR2B subunits, and of their scaffolding proteins PSD-95 and SAP102, in remodeling the dendritic architecture of developing hippocampal neurons (2–25 DIV). Analysis of the dendritic architecture and the temporal and spatial expression patterns of the NMDARs and anchoring proteins in immature cultures revealed a strong positive correlation between synaptic expression of the NR2B subunit and dendritogenesis. With maturation, the pruning of dendritic branches was paralleled by a strong reduction in overall and synaptic expression of NR2B, and a significant elevation in synaptic expression of NR2A and PSD95. Using constructs that alter the synaptic composition, we found that either over-expression of NR2B or knock-down of PSD95 by shRNA-PSD95 augmented dendritogenesis in immature neurons. Reactivation of dendritogenesis could also be achieved in mature cultured neurons, but required both manipulations simultaneously, and was accompanied by increased dendritic clustering of NR2B. Our results indicate that the developmental increase in synaptic expression of PSD95 obstructs the synaptic clustering of NR2B-NMDARs, and thereby restricts reactivation of dendritic branching. Experiments with shRNA-PSD95 and chimeric NR2A/NR2B constructs further revealed that C-terminus of the NR2B subunit (tail) was sufficient to induce robust dendritic branching in mature hippocampal neurons, and suggest that the NR2B tail is important in recruiting calcium-dependent signaling proteins and scaffolding proteins necessary for dendritogenesis.
Collapse
Affiliation(s)
- Fernando J. Bustos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matias Campos
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Berta Henriquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Marnie Phillips
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Carlos Opazo
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Luis G. Aguayo
- Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Martin Montecino
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Nibaldo C. Inestrosa
- Department of Molecular and Cellular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
166
|
Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GKS, Boyden ES. Independent optical excitation of distinct neural populations. Nat Methods 2014; 11:338-46. [PMID: 24509633 PMCID: PMC3943671 DOI: 10.1038/nmeth.2836] [Citation(s) in RCA: 1508] [Impact Index Per Article: 137.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/10/2014] [Indexed: 11/08/2022]
Abstract
Optogenetic tools enable examination of how specific cell types contribute to brain circuit functions. A long-standing question is whether it is possible to independently activate two distinct neural populations in mammalian brain tissue. Such a capability would enable the study of how different synapses or pathways interact to encode information in the brain. Here we describe two channelrhodopsins, Chronos and Chrimson, discovered through sequencing and physiological characterization of opsins from over 100 species of alga. Chrimson's excitation spectrum is red shifted by 45 nm relative to previous channelrhodopsins and can enable experiments in which red light is preferred. We show minimal visual system-mediated behavioral interference when using Chrimson in neurobehavioral studies in Drosophila melanogaster. Chronos has faster kinetics than previous channelrhodopsins yet is effectively more light sensitive. Together these two reagents enable two-color activation of neural spiking and downstream synaptic transmission in independent neural populations without detectable cross-talk in mouse brain slice.
Collapse
Affiliation(s)
- Nathan C Klapoetke
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yasunobu Murata
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sung Soo Kim
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Stefan R. Pulver
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Amanda Birdsey-Benson
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yong Ku Cho
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania K Morimoto
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amy S Chuong
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eric J Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Zhijian Tian
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Jun Wang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Yinlong Xie
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Zhixiang Yan
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Yong Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Barbara Surek
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Michael Melkonian
- Institute of Botany, Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Vivek Jayaraman
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Martha Constantine-Paton
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Beijing Genomics Institute-Shenzhen, Shenzhen, China
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Edward S Boyden
- The MIT Media Laboratory, Synthetic Neurobiology Group, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- MIT McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
167
|
Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 2014; 111:2626-31. [PMID: 24510904 DOI: 10.1073/pnas.1318306111] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause inherited Parkinson disease (PD), and common variants around LRRK2 are a risk factor for sporadic PD. Using protein-protein interaction arrays, we identified BCL2-associated athanogene 5, Rab7L1 (RAB7, member RAS oncogene family-like 1), and Cyclin-G-associated kinase as binding partners of LRRK2. The latter two genes are candidate genes for risk for sporadic PD identified by genome-wide association studies. These proteins form a complex that promotes clearance of Golgi-derived vesicles through the autophagy-lysosome system both in vitro and in vivo. We propose that three different genes for PD have a common biological function. More generally, data integration from multiple unbiased screens can provide insight into human disease mechanisms.
Collapse
|
168
|
LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat Neurosci 2014; 17:367-76. [PMID: 24464040 DOI: 10.1038/nn.3636] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/24/2013] [Indexed: 11/08/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is enriched in the striatal projection neurons (SPNs). We found that LRRK2 negatively regulates protein kinase A (PKA) activity in the SPNs during synaptogenesis and in response to dopamine receptor Drd1 activation. LRRK2 interacted with PKA regulatory subunit IIβ (PKARIIβ). A lack of LRRK2 promoted the synaptic translocation of PKA and increased PKA-mediated phosphorylation of actin-disassembling enzyme cofilin and glutamate receptor GluR1, resulting in abnormal synaptogenesis and transmission in the developing SPNs. Furthermore, PKA-dependent phosphorylation of GluR1 was also aberrantly enhanced in the striatum of young and aged Lrrk2(-/-) mice after treatment with a Drd1 agonist. Notably, a Parkinson's disease-related Lrrk2 R1441C missense mutation that impaired the interaction of LRRK2 with PKARIIβ also induced excessive PKA activity in the SPNs. Our findings reveal a previously unknown regulatory role for LRRK2 in PKA signaling and suggest a pathogenic mechanism of SPN dysfunction in Parkinson's disease.
Collapse
|
169
|
Abstract
Mitochondria are cellular power plants that supply ATP to power various biological activities essential for neuronal growth, survival, and function. Due to extremely varied morphological features, neurons face exceptional challenges to maintain energy homeostasis. Neurons require specialized mechanisms distributing mitochondria to distal synapses where energy is in high demand. Axons and synapses undergo activity-dependent remodeling, thereby altering mitochondrial distribution. The uniform microtubule polarity has made axons particularly useful for exploring mechanisms regulating mitochondrial transport. Mitochondria alter their motility under stress conditions or when their integrity is impaired. Therefore, research into the mechanisms regulating mitochondrial motility in healthy and diseased neurons is an important emerging frontier in neurobiology. In this chapter, we discuss the current protocols in the characterization of axonal mitochondrial transport in primary neuron cultures isolated from embryonic rats and adult mice. We also briefly discuss new procedures developed in our lab in analyzing mitochondrial motility patterns at presynaptic terminals and evaluate their impact on synaptic vesicle release.
Collapse
Affiliation(s)
- Bing Zhou
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Tao Sun
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam L Knight
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
170
|
Abstract
Membrane voltage (Vm) is a fundamental biological parameter that is essential for neuronal communication, cardiac activity, transmembrane transport, regulation of signaling, and bacterial motility. Optical measurements of Vm promise new insights into how voltage propagates within and between cells, but effective optical contrast agents have been lacking. Microbial rhodopsin-based fluorescent voltage indicators are exquisitely sensitive and fast, but very dim, necessitating careful attention to experimental procedures. This chapter describes how to make optical voltage measurements with microbial rhodopsins.
Collapse
|
171
|
Aoshima Y, Hokama R, Sou K, Sarker SR, Iida K, Nakamura H, Inoue T, Takeoka S. Cationic amino acid based lipids as effective nonviral gene delivery vectors for primary cultured neurons. ACS Chem Neurosci 2013; 4:1514-9. [PMID: 24087930 PMCID: PMC3867963 DOI: 10.1021/cn400036j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The delivery of specific genes into neurons offers a potent approach for treatment of diseases as well as for the study of neuronal cell biology. Here we investigated the capabilities of cationic amino acid based lipid assemblies to act as nonviral gene delivery vectors in primary cultured neurons. An arginine-based lipid, Arg-C3-Glu2C14, and a lysine-based lipid, Lys-C3-Glu2C14, with two different types of counterion, chloride ion (Cl-) and trifluoroacetic acid (TFA-), were shown to successfully mediate transfection of primary cultured neurons with plasmid DNA encoding green fluorescent protein. Among four types of lipids, we optimized their conditions such as the lipid-to-DNA ratio and the amount of pDNA and conducted a cytotoxicity assay at the same time. Overall, Arg-C3-Glu2C14 with TFA- induced a rate of transfection in primary cultured neurons higher than that of Lys-C3-Glu2C14 using an optimal weight ratio of lipid-to-plasmid DNA of 1. Moreover, it was suggested that Arg-C3-Glu2C14 with TFA- showed the optimized value higher than that of Lipofectamine2000 in experimental conditions. Thus, Arg-C3-Glu2C14 with TFA- is a promising candidate as a reliable transfection reagent for primary cultured neurons with a relatively low cytotoxicity.
Collapse
Affiliation(s)
- Yumiko Aoshima
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Ryosuke Hokama
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Keitaro Sou
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Satya Ranjan Sarker
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kabuto Iida
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Hideki Nakamura
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takafumi Inoue
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinji Takeoka
- Department of Life Science
and Medical Bioscience, Graduate School of
Advanced Science and Engineering, Waseda
University (TWIns), 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
172
|
Abstract
The powerful optogenetic pharmacology method allows the optical control of neuronal activity by photoswitchable ligands tethered to channels and receptors. However, this approach is technically demanding, as it requires the design of pharmacologically active ligands. The development of versatile technologies therefore represents a challenging issue. Here, we present optogating, a method in which the gating machinery of an ATP-activated P2X channel was reprogrammed to respond to light. We found that channels covalently modified by azobenzene-containing reagents at the transmembrane segments could be reversibly turned on and off by light, without the need of ATP, thus revealing an agonist-independent, light-induced gating mechanism. We demonstrate photocontrol of neuronal activity by a light-gated, ATP-insensitive P2X receptor, providing an original tool devoid of endogenous sensitivity to delineate P2X signaling in normal and pathological states. These findings open new avenues to specifically activate other ion channels independently of their natural stimulus.
Collapse
|
173
|
Sun M, Bernard LP, Dibona VL, Wu Q, Zhang H. Calcium phosphate transfection of primary hippocampal neurons. J Vis Exp 2013:e50808. [PMID: 24300106 DOI: 10.3791/50808] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University
| | | | | | | | | |
Collapse
|
174
|
McCoy MK, Kaganovich A, Rudenko IN, Ding J, Cookson MR. Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. Hum Mol Genet 2013; 23:145-56. [PMID: 23962723 DOI: 10.1093/hmg/ddt407] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autosomal recessive parkinsonism genes contribute to maintenance of mitochondrial function. Two of these, PINK1 and parkin, act in a pathway promoting autophagic removal of depolarized mitochondria. Although recruitment of parkin to mitochondria is PINK1-dependent, additional components necessary for signaling are unclear. We performed a screen for endogenous modifiers of parkin recruitment to depolarized mitochondria and identified hexokinase 2 (HK2) as a novel modifier of depolarization-induced parkin recruitment. Hexose kinase activity was required for parkin relocalization, suggesting the effects are shared among hexokinases including the brain-expressed hexokinase 1 (HK1). Knockdown of both HK1 and HK2 led to a stronger block in parkin relocalization than either isoform alone, and expression of HK2 in primary neurons promoted YFP-parkin recruitment to depolarized mitochondria. Mitochondrial parkin recruitment was attenuated with AKT inhibition, which is known to modulate HK2 activity and mitochondrial localization. We, therefore, propose that Akt-dependent recruitment of hexokinases is a required step in the recruitment of parkin prior to mitophagy.
Collapse
|
175
|
Henriquez B, Bustos FJ, Aguilar R, Becerra A, Simon F, Montecino M, van Zundert B. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol Cell Neurosci 2013; 57:130-43. [PMID: 23932971 DOI: 10.1016/j.mcn.2013.07.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/12/2013] [Accepted: 07/30/2013] [Indexed: 01/04/2023] Open
Abstract
Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription.
Collapse
Affiliation(s)
- Berta Henriquez
- Center for Biomedical Research, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile; Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Avenida Republica 239, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
176
|
Mameza MG, Dvoretskova E, Bamann M, Hönck HH, Güler T, Boeckers TM, Schoen M, Verpelli C, Sala C, Barsukov I, Dityatev A, Kreienkamp HJ. SHANK3 gene mutations associated with autism facilitate ligand binding to the Shank3 ankyrin repeat region. J Biol Chem 2013; 288:26697-708. [PMID: 23897824 DOI: 10.1074/jbc.m112.424747] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Shank/ProSAP proteins are major scaffold proteins of the postsynaptic density; mutations in the human SHANK3 gene are associated with intellectual disability or autism spectrum disorders. We have analyzed the functional relevance of several SHANK3 missense mutations affecting the N-terminal portion of the protein by expression of wild-type and mutant Shank3 in cultured neurons and by binding assays in heterologous cells. Postsynaptic targeting of recombinant Shank3 was unaltered. In electrophysiological experiments, both wild-type and L68P mutant forms of Shank3 were equally effective in restoring synaptic function after knockdown of endogenous Shank3. We observed that several mutations affected binding to interaction partners of the Shank3 ankyrin repeat region. One of these mutations, L68P, improved binding to both ligands. Leu-68 is located N-terminal to the ankyrin repeats, in a highly conserved region that we identify here as a novel domain termed the Shank/ProSAP N-terminal (SPN) domain. We show that the SPN domain interacts with the ankyrin repeats in an intramolecular manner, thereby restricting access of either Sharpin or α-fodrin. The L68P mutation disrupts this blockade, thus exposing the Shank3 ankyrin repeat region to its ligands. Our data identify a new type of regulation of Shank proteins and suggest that mutations in the SHANK3 gene do not necessarily induce a loss of function, but may represent a gain of function with respect to specific interaction partners.
Collapse
Affiliation(s)
- Marie Germaine Mameza
- From the Institut für Humangenetik, Universitätskrankenhaus Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Chen Y, Sheng ZH. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. ACTA ACUST UNITED AC 2013; 202:351-64. [PMID: 23857772 PMCID: PMC3718985 DOI: 10.1083/jcb.201302040] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Syntaphilin mediates the activity-dependent immobilization of axonal mitochondria by physically displacing KIF5 from the Miro–Trak transport complex. Axonal mitochondria are recruited to synaptic terminals in response to neuronal activity, but the mechanisms underlying activity-dependent regulation of mitochondrial transport are largely unknown. In this paper, using genetic mouse model combined with live imaging, we demonstrate that syntaphilin (SNPH) mediates the activity-dependent immobilization of axonal mitochondria through binding to KIF5. In vitro analysis showed that the KIF5–SNPH coupling inhibited the motor adenosine triphosphatase. Neuronal activity further recruited SNPH to axonal mitochondria. This motor-docking interplay was induced by Ca2+ and synaptic activity and was necessary to establish an appropriate balance between motile and stationary axonal mitochondria. Deleting snph abolished the activity-dependent immobilization of axonal mitochondria. We propose an “Engine-Switch and Brake” model, in which SNPH acts both as an engine off switch by sensing mitochondrial Rho guanosine triphosphatase-Ca2+ and as a brake by anchoring mitochondria to the microtubule track. Altogether, our study provides new mechanistic insight into the molecular interplay between motor and docking proteins, which arrests axonal mitochondrial transport in response to changes in neuronal activity.
Collapse
Affiliation(s)
- Yanmin Chen
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
178
|
Wu X, Huang L, Wu Z, Zhang C, Jiang D, Bai Y, Wang Y, Chen G. Homeostatic competition between phasic and tonic inhibition. J Biol Chem 2013; 288:25053-25065. [PMID: 23839941 DOI: 10.1074/jbc.m113.491464] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GABAA receptors are the major inhibitory receptors in the brain and are localized at both synaptic and extrasynaptic membranes. Synaptic GABAA receptors mediate phasic inhibition, whereas extrasynaptic GABAA receptors mediate tonic inhibition. Both phasic and tonic inhibitions regulate neuronal activity, but whether they regulate each other is not very clear. Here, we investigated the functional interaction between synaptic and extrasynaptic GABAA receptors through various molecular manipulations. Overexpression of extrasynaptic α6β3δ-GABAA receptors in mouse hippocampal pyramidal neurons significantly increased tonic currents. Surprisingly, the increase of tonic inhibition was accompanied by a dramatic reduction of the phasic inhibition, suggesting a possible homeostatic regulation of the total inhibition. Overexpressing the α6 subunit alone induced an up-regulation of δ subunit expression and suppressed phasic inhibition similar to overexpressing the α6β3δ subunits. Interestingly, blocking all GABAA receptors after overexpressing α6β3δ receptors could not restore the synaptic GABAergic transmission, suggesting that receptor activation is not required for the homeostatic interplay. Furthermore, insertion of a gephyrin-binding-site (GBS) into the α6 and δ subunits recruited α6(GBS)β3δ(GBS) receptors to postsynaptic sites but failed to rescue synaptic GABAergic transmission. Thus, it is not the positional effect of extrasynaptic α6β3δ receptors that causes the down-regulation of phasic inhibition. Overexpressing α5β3γ2 subunits similarly reduced synaptic GABAergic transmission. We propose a working model that both synaptic and extrasynaptic GABAA receptors may compete for limited receptor slots on the plasma membrane to maintain a homeostatic range of the total inhibition.
Collapse
Affiliation(s)
- Xia Wu
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Lanting Huang
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and; the Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zheng Wu
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Ce Zhang
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Dongyun Jiang
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Yuting Bai
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Yun Wang
- the Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Gong Chen
- From the Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802 and.
| |
Collapse
|
179
|
Obashi K, Okabe S. Regulation of mitochondrial dynamics and distribution by synapse position and neuronal activity in the axon. Eur J Neurosci 2013; 38:2350-63. [DOI: 10.1111/ejn.12263] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Kazuki Obashi
- Department of Cellular Neurobiology; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology; Graduate School of Medicine; University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
180
|
Sun C, Zhang L, Chen G. An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch. Mol Brain 2013; 6:23. [PMID: 23663753 PMCID: PMC3661362 DOI: 10.1186/1756-6606-6-23] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND GABAA receptors are ligand-gated Cl- channels, and the intracellular Cl- concentration governs whether GABA function is excitatory or inhibitory. During early brain development, GABA undergoes functional switch from excitation to inhibition: GABA depolarizes immature neurons but hyperpolarizes mature neurons due to a developmental decrease of intracellular Cl- concentration. This GABA functional switch is mainly mediated by the up-regulation of KCC2, a potassium-chloride cotransporter that pumps Cl- outside neurons. However, the upstream factor that regulates KCC2 expression is unclear. RESULTS We report here that KCC2 is unexpectedly regulated by neuroligin-2 (NL2), a cell adhesion molecule specifically localized at GABAergic synapses. The expression of NL2 precedes that of KCC2 in early postnatal development. Upon knockdown of NL2, the expression level of KCC2 is significantly decreased, and GABA functional switch is significantly delayed during early development. Overexpression of shRNA-proof NL2 rescues both KCC2 reduction and delayed GABA functional switch induced by NL2 shRNAs. Moreover, NL2 appears to be required to maintain GABA inhibitory function even in mature neurons, because knockdown NL2 reverses GABA action to excitatory. Gramicidin-perforated patch clamp recordings confirm that NL2 directly regulates the GABA equilibrium potential. We further demonstrate that knockdown of NL2 decreases dendritic spines through down-regulating KCC2. CONCLUSIONS Our data suggest that in addition to its conventional role as a cell adhesion molecule to regulate GABAergic synaptogenesis, NL2 also regulates KCC2 to modulate GABA functional switch and even glutamatergic synapses. Therefore, NL2 may serve as a master regulator in balancing excitation and inhibition in the brain.
Collapse
Affiliation(s)
- Chicheng Sun
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lei Zhang
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gong Chen
- Department of Biology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
181
|
Sun Y, Wu Z, Kong S, Jiang D, Pitre A, Wang Y, Chen G. Regulation of epileptiform activity by two distinct subtypes of extrasynaptic GABAA receptors. Mol Brain 2013; 6:21. [PMID: 23634821 PMCID: PMC3652748 DOI: 10.1186/1756-6606-6-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/20/2013] [Indexed: 11/13/2022] Open
Abstract
Background GABAergic deficit is one of the major mechanisms underlying epileptic seizures. Previous studies have mainly focused on alterations of synaptic GABAergic inhibition during epileptogenesis. Recent work suggested that tonic inhibition may also play a role in regulating epileptogenesis, but the underlying mechanism is not well understood. Results We employed molecular and pharmacological tools to investigate the role of tonic inhibition during epileptogenesis both in vitro and in vivo. We overexpressed two distinct subtypes of extrasynaptic GABAA receptors, α5β3γ2 and α6β3δ receptors, in cultured hippocampal neurons. We demonstrated that overexpression of both α5β3γ2 and α6β3δ receptors enhanced tonic inhibition and reduced epileptiform activity in vitro. We then showed that injection of THIP (5 μM), a selective agonist for extrasynaptic GABAA receptors at low concentration, into rat brain also suppressed epileptiform burst activity and behavioral seizures in vivo. Mechanistically, we discovered that low concentration of THIP had no effect on GABAergic synaptic transmission and did not affect the basal level of action potentials, but significantly inhibited high frequency neuronal activity induced by epileptogenic agents. Conclusions Our studies suggest that extrasynaptic GABAA receptors play an important role in controlling hyperexcitatory activity, such as that during epileptogenesis, but a less prominent role in modulating a low level of basal activity. We propose that tonic inhibition may play a greater role under pathological conditions than in physiological conditions in terms of modulating neural network activity.
Collapse
Affiliation(s)
- Yajie Sun
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
182
|
Liston C, Cichon JM, Jeanneteau F, Jia Z, Chao MV, Gan WB. Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat Neurosci 2013; 16:698-705. [PMID: 23624512 DOI: 10.1038/nn.3387] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 02/06/2023]
Abstract
Excessive glucocorticoid exposure during chronic stress causes synapse loss and learning impairment. Under normal physiological conditions, glucocorticoid activity oscillates in synchrony with the circadian rhythm. Whether and how endogenous glucocorticoid oscillations modulate synaptic plasticity and learning is unknown. Here we show that circadian glucocorticoid peaks promote postsynaptic dendritic spine formation in the mouse cortex after motor skill learning, whereas troughs are required for stabilizing newly formed spines that are important for long-term memory retention. Conversely, chronic and excessive exposure to glucocorticoids eliminates learning-associated new spines and disrupts previously acquired memories. Furthermore, we show that glucocorticoids promote rapid spine formation through a non-transcriptional mechanism by means of the LIM kinase-cofilin pathway and increase spine elimination through transcriptional mechanisms involving mineralocorticoid receptor activation. Together, these findings indicate that tightly regulated circadian glucocorticoid oscillations are important for learning-dependent synaptic formation and maintenance. They also delineate a new signaling mechanism underlying these effects.
Collapse
Affiliation(s)
- Conor Liston
- Molecular Neurobiology Program, Skirball Institute, Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Hong WC, Amara SG. Differential targeting of the dopamine transporter to recycling or degradative pathways during amphetamine- or PKC-regulated endocytosis in dopamine neurons. FASEB J 2013; 27:2995-3007. [PMID: 23612789 DOI: 10.1096/fj.12-218727] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dopamine transporter (DAT) clears the extracellular dopamine released during neurotransmission and is a major target for both therapeutic and addictive psychostimulant amphetamines. Amphetamine exposure or activation of protein kinase C (PKC) by the phorbol ester PMA has been shown to down-regulate cell surface DAT. However, in dopamine neurons, the trafficking itinerary and fate of internalized DAT has not been elucidated. By monitoring surface-labeled DAT in transfected dopamine neurons from embryonic rat mesencephalic cultures, we find distinct sorting and fates of internalized DAT after amphetamine or PMA treatment. Although both drugs promote DAT internalization above constitutive endocytosis in dopamine neurons, PMA induces ubiquitination of DAT and leads to accumulation of DAT on LAMP1-positive endosomes. In contrast, after amphetamine exposure DAT is sorted to recycling endosomes positive for Rab11 and the transferrin receptor. Furthermore, quantitative assessment of DAT recycling using an antibody-feeding assay reveals that significantly less DAT returns to the surface of dopamine neurons after internalization by PMA, compared with vehicle or amphetamine treatment. These results demonstrate that, in neurons, the DAT is sorted differentially to recycling and degradative pathways after psychostimulant exposure or PKC activation, which may allow for either the transient or sustained inhibition of DAT during dopamine neurotransmission.
Collapse
Affiliation(s)
- Weimin C Hong
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
184
|
Niwa S, Takahashi H, Hirokawa N. β-Tubulin mutations that cause severe neuropathies disrupt axonal transport. EMBO J 2013; 32:1352-64. [PMID: 23503589 DOI: 10.1038/emboj.2013.59] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/22/2013] [Indexed: 12/30/2022] Open
Abstract
Microtubules are fundamental to neuronal morphogenesis and function. Mutations in tubulin, the major constituent of microtubules, result in neuronal diseases. Here, we have analysed β-tubulin mutations that cause neuronal diseases and we have identified mutations that strongly inhibit axonal transport of vesicles and mitochondria. These mutations are in the H12 helix of β-tubulin and change the negative charge on the surface of the microtubule. This surface is the interface between microtubules and kinesin superfamily motor proteins (KIF). The binding of axonal transport KIFs to microtubules is dominant negatively disrupted by these mutations, which alters the localization of KIFs in neurons and inhibits axon elongation in vivo. In humans, these mutations induce broad neurological symptoms, such as loss of axons in the central nervous system and peripheral neuropathy. Thus, our data identified the critical region of β-tubulin required for axonal transport and suggest a molecular mechanism for human neuronal diseases caused by tubulin mutations.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Department of Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
185
|
Enhanced recruitment of endosomal Na+/H+ exchanger NHE6 into Dendritic spines of hippocampal pyramidal neurons during NMDA receptor-dependent long-term potentiation. J Neurosci 2013; 33:595-610. [PMID: 23303939 DOI: 10.1523/jneurosci.2583-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic endosomal trafficking has emerged as a principal regulatory mechanism of structural and functional plasticity of glutamatergic synapses. Recycling endosomes perform activity-dependent transport of AMPA receptors (AMPARs) and lipids to the postsynaptic membrane, activities that are known to contribute to long-term synaptic potentiation and hypothesized to subserve learning and memory processes in the brain. Recently, genetic defects in a widely expressed vesicular pH-regulating transporter, the Na(+)/H(+) exchanger NHE6 isoform, have been implicated in neurodevelopmental disorders including severe X-linked mental retardation and autism. However, little information is available regarding the cellular properties of this transporter in the CNS. Here, we show by quantitative light microscopy that the protein abundance of NHE6 is developmentally regulated in area CA1 of the mouse hippocampus. Within pyramidal neurons, NHE6 was found to localize to discrete puncta throughout the soma and neurites, with noticeable accumulation at dendritic spines and presynaptic terminals. Dual immunolabeling of dendritic spines revealed that NHE6 partially colocalizes with typical markers of early and recycling endosomes as well as with the AMPAR subunit GluA1. Significantly, NHE6-containing vesicles exhibited enhanced translocation to dendritic spine heads during NMDA receptor (NMDAR)-dependent long-term potentiation. These data suggest that NHE6 may play a unique, previously unrecognized, role at glutamatergic synapses that are important for learning and memory.
Collapse
|
186
|
Zhou R, Niwa S, Guillaud L, Tong Y, Hirokawa N. A Molecular Motor, KIF13A, Controls Anxiety by Transporting the Serotonin Type 1A Receptor. Cell Rep 2013; 3:509-19. [DOI: 10.1016/j.celrep.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 11/09/2012] [Accepted: 01/14/2013] [Indexed: 01/05/2023] Open
|
187
|
Xu B, Hsu PK, Stark KL, Karayiorgou M, Gogos JA. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 2013; 152:262-75. [PMID: 23332760 PMCID: PMC3556818 DOI: 10.1016/j.cell.2012.11.052] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/23/2012] [Accepted: 11/26/2012] [Indexed: 02/04/2023]
Abstract
22q11.2 microdeletions result in specific cognitive deficits and schizophrenia. Analysis of Df(16)A(+/-) mice, which model this microdeletion, revealed abnormalities in the formation of neuronal dendrites and spines, as well as altered brain microRNAs. Here, we show a drastic reduction of miR-185, which resides within the 22q11.2 locus, to levels more than expected by a hemizygous deletion, and we demonstrate that this reduction alters dendritic and spine development. miR-185 represses, through an evolutionarily conserved target site, a previously unknown inhibitor of these processes that resides in the Golgi apparatus and shows higher prenatal brain expression. Sustained derepression of this inhibitor after birth represents the most robust transcriptional disturbance in the brains of Df(16)A(+/-) mice and results in structural alterations in the hippocampus. Reduction of miR-185 also has milder age- and region-specific effects on the expression of some Golgi-related genes. Our findings illuminate the contribution of microRNAs in psychiatric disorders and cognitive dysfunction.
Collapse
Affiliation(s)
- Bin Xu
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
188
|
Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J Neurosci 2013; 32:15495-510. [PMID: 23115187 DOI: 10.1523/jneurosci.5599-11.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The retrograde transport of Trk-containing endosomes from the axon to the cell body by cytoplasmic dynein is necessary for axonal and neuronal survival. We investigated the recruitment of dynein to signaling endosomes in rat embryonic neurons and PC12 cells. We identified a novel phosphoserine on the dynein intermediate chains (ICs), and we observed a time-dependent neurotrophin-stimulated increase in intermediate chain phosphorylation on this site in both cell types. Pharmacological studies, overexpression of constitutively active MAP kinase kinase, and an in vitro assay with recombinant proteins demonstrated that the intermediate chains are phosphorylated by the MAP kinase ERK1/2, extracellular signal-regulated kinase, a major downstream effector of Trk. Live cell imaging with fluorescently tagged IC mutants demonstrated that the dephosphomimic mutants had significantly reduced colocalization with Trk and Rab7, but not a mitochondrial marker. The phosphorylated intermediate chains were enriched on immunoaffinity-purified Trk-containing organelles. Inhibition of ERK reduced the amount of phospho-IC and the total amount of dynein that copurified with the signaling endosomes. In addition, inhibition of ERK1/2 reduced the motility of Rab7- and TrkB-containing endosomes and the extent of their colocalization with dynein in axons. NGF-dependent survival of sympathetic neurons was significantly reduced by the overexpression of the dephosphomimic mutant IC-1B-S80A, but not WT IC-1B, further demonstrating the functional significance of phosphorylation on this site. These results demonstrate that neurotrophin binding to Trk initiates the recruitment of cytoplasmic dynein to signaling endosomes through ERK1/2 phosphorylation of intermediate chains for their subsequent retrograde transport in axons.
Collapse
|
189
|
Glucocorticoid suppresses dendritic spine development mediated by down-regulation of caldesmon expression. J Neurosci 2013; 32:14583-91. [PMID: 23077044 DOI: 10.1523/jneurosci.2380-12.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glucocorticoids (GCs) mediate the effects of stress to cause structural plasticity in brain regions such as the hippocampus, including simplification of dendrites and shrinkage of dendritic spines. However, the molecular mechanics linking stress and GCs to these effects remain largely unclear. Here, we demonstrated that corticosterone (CORT) reduces the expression levels of caldesmon (CaD), causing dendritic spines to become vulnerable. CaD regulates cell motility by modulating the actin-myosin system and actin filament stability. In cultured rat hippocampal neurons, CaD localized to dendritic spines by binding to filamentous actin (F-actin), and CaD expression levels increased during spine development. CaD stabilized the F-actin dynamics in spines, thereby enlarging the spine heads, whereas CaD knockdown decreased the spine-head size via destabilization of the F-actin dynamics. CaD was also required for chemical LTP-induced actin stabilization. The CaD expression levels were markedly decreased by exposure to CORT mediated by suppression of serum response factor-dependent transcription. High CORT levels reduced both the spine-head size and F-actin stability similarly to CaD knockdown, and overexpressing CaD abolished the detrimental effect of CORT on dendritic spine development. These results indicate that CaD enlarges the spine-head size by stabilizing F-actin dynamics, and that CaD is a critical target in the GC-induced detrimental effects on dendritic spine development.
Collapse
|
190
|
Okada M, Furuzono T. Hydroxylapatite nanoparticles: fabrication methods and medical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064103. [PMID: 27877527 PMCID: PMC5099760 DOI: 10.1088/1468-6996/13/6/064103] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/19/2012] [Indexed: 05/30/2023]
Abstract
Hydroxylapatite (or hydroxyapatite, HAp) exhibits excellent biocompatibility with various kinds of cells and tissues, making it an ideal candidate for tissue engineering, orthopedic and dental applications. Nanosized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. This review summarizes existing knowledge and recent progress in fabrication methods of nanosized (or nanostructured) HAp particles, as well as their recent applications in medical and dental fields. In section 1, we provide a brief overview of HAp and nanoparticles. In section 2, fabrication methods of HAp nanoparticles are described based on the particle formation mechanisms. Recent applications of HAp nanoparticles are summarized in section 3. The future perspectives in this active research area are given in section 4.
Collapse
Affiliation(s)
- Masahiro Okada
- Department of Biomaterials, Osaka Dental University, 8-1 Kuzuha-Hanazono, Hirakata, Osaka, 573-1121, Japan
| | - Tsutomu Furuzono
- Department of Biomedical Engineering, School of Biology-Oriented Science and Technology, Kinki University, 930 Nishi-Mitani, Kinokawa, Wakayama, 649-6493, Japan
| |
Collapse
|
191
|
Chen B, Jiang M, Zhou M, Chen L, Liu X, Wang X, Wang Y. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons. Brain Res 2012; 1486:1-13. [DOI: 10.1016/j.brainres.2012.08.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 08/20/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
|
192
|
Li H, Huang J, Du W, Jia C, Yao H, Wang Y. TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 2012; 123:1010-8. [DOI: 10.1111/jnc.12045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Hongyu Li
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
- The Graduate School, Chinese Academy of Science; Shanghai China
| | - Junbo Huang
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
- The Graduate School, Chinese Academy of Science; Shanghai China
| | - Wanlu Du
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
| | - Caixia Jia
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
| | - Hailan Yao
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction; Institute of Neuroscience, SIBS, State Key Laboratory of Neuroscience; Shanghai China
| |
Collapse
|
193
|
Gil JE, Kim E, Kim IS, Ku B, Park WS, Oh BH, Ryu SH, Cho W, Heo WD. Phosphoinositides differentially regulate protrudin localization through the FYVE domain. J Biol Chem 2012; 287:41268-76. [PMID: 23043110 DOI: 10.1074/jbc.m112.419127] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P(2)), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.
Collapse
Affiliation(s)
- Jung-Eun Gil
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Ch'ng TH, Uzgil B, Lin P, Avliyakulov NK, O'Dell TJ, Martin KC. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell 2012; 150:207-21. [PMID: 22770221 DOI: 10.1016/j.cell.2012.05.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 04/05/2012] [Accepted: 05/02/2012] [Indexed: 12/30/2022]
Abstract
Long-lasting changes in synaptic efficacy, such as those underlying long-term memory, require transcription. Activity-dependent transport of synaptically localized transcriptional regulators provides a direct means of coupling synaptic stimulation with changes in transcription. The CREB-regulated transcriptional coactivator (CRTC1), which is required for long-term hippocampal plasticity, binds CREB to potently promote transcription. We show that CRTC1 localizes to synapses in silenced hippocampal neurons but translocates to the nucleus in response to localized synaptic stimulation. Regulated nuclear translocation occurs only in excitatory neurons and requires calcium influx and calcineurin activation. CRTC1 is controlled in a dual fashion with activity regulating CRTC1 nuclear translocation and cAMP modulating its persistence in the nucleus. Neuronal activity triggers a complex change in CRTC1 phosphorylation, suggesting that CRTC1 may link specific types of stimuli to specific changes in gene expression. Together, our results indicate that synapse-to-nuclear transport of CRTC1 dynamically informs the nucleus about synaptic activity.
Collapse
Affiliation(s)
- Toh Hean Ch'ng
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | | | | | |
Collapse
|
195
|
Ojea-Jiménez I, Tort O, Lorenzo J, Puntes VF. Engineered nonviral nanocarriers for intracellular gene delivery applications. Biomed Mater 2012; 7:054106. [PMID: 22972254 DOI: 10.1088/1748-6041/7/5/054106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The efficient delivery of nucleic acids into mammalian cells is a central aspect of cell biology and of medical applications, including cancer therapy and tissue engineering. Non-viral chemical methods have been received with great interest for transfecting cells. However, further development of nanocarriers that are biocompatible, efficient and suitable for clinical applications is still required. In this paper, the different material platforms for gene delivery are comparatively addressed, and the mechanisms of interaction with biological systems are discussed carefully.
Collapse
Affiliation(s)
- Isaac Ojea-Jiménez
- Institut Català de Nanotecnologia, UAB Campus, 08193 Cerdanyola del Vallés, Barcelona, Spain.
| | | | | | | |
Collapse
|
196
|
Abstract
Axons of various hippocampal neurons are myelinated mainly postnatally, which is important for the proper function of neural circuits. Demyelination in the hippocampus has been observed in patients with multiple sclerosis, Alzheimer's disease or temporal lobe epilepsy. However, very little is known about the mechanisms and exact functions of the interaction between the myelin-making oligodendrocytes and the axons within the hippocampus. This is mainly attributable to the lack of a system suitable for molecular studies. We recently established a new myelin coculture from embryonic day (E) 18 rat embryos consisting of hippocampal neurons and oligodendrocytes, with which we identified a novel intra-axonal signaling pathway regulating the juxtaparanodal clustering of Kv1.2 channels. Here we describe the detailed protocol for this new coculture. It takes about 5 weeks to set up and use the system. This coculture is particularly useful for studying myelin-mediated regulation of ion channel trafficking and for understanding how neuronal excitability and synaptic transmission are regulated by myelination.
Collapse
|
197
|
Valdés V, Valenzuela JI, Salas DA, Jaureguiberry-Bravo M, Otero C, Thiede C, Schmidt CF, Couve A. Endoplasmic reticulum sorting and kinesin-1 command the targeting of axonal GABAB receptors. PLoS One 2012; 7:e44168. [PMID: 22952914 PMCID: PMC3428321 DOI: 10.1371/journal.pone.0044168] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/30/2012] [Indexed: 12/17/2022] Open
Abstract
In neuronal cells the intracellular trafficking machinery controls the availability of neurotransmitter receptors at the plasma membrane, which is a critical determinant of synaptic strength. Metabotropic γ amino-butyric acid (GABA) type B receptors (GABABRs) are neurotransmitter receptors that modulate synaptic transmission by mediating the slow and prolonged responses to GABA. GABABRs are obligatory heteromers constituted by two subunits, GABABR1 and GABABR2. GABABR1a and GABABR1b are the most abundant subunit variants. GABABR1b is located in the somatodendritic domain whereas GABABR1a is additionally targeted to the axon. Sushi domains located at the N-terminus of GABABR1a constitute the only difference between both variants and are necessary and sufficient for axonal targeting. The precise targeting machinery and the organelles involved in sorting and transport have not been described. Here we demonstrate that GABABRs require the Golgi apparatus for plasma membrane delivery but that axonal sorting and targeting of GABABR1a operate in a pre-Golgi compartment. In the axon GABABR1a subunits are enriched in the endoplasmic reticulum (ER), and their dynamic behavior and colocalization with other secretory organelles like the ER-to-Golgi intermediate compartment (ERGIC) suggest that they employ a local secretory route. The transport of axonal GABABR1a is microtubule-dependent and kinesin-1, a molecular motor of the kinesin family, determines axonal localization. Considering that progression of GABABRs through the secretory pathway is regulated by an ER retention motif our data contribute to understand the role of the axonal ER in non-canonical sorting and targeting of neurotransmitter receptors.
Collapse
Affiliation(s)
- Viviana Valdés
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - José Ignacio Valenzuela
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniela A. Salas
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Matías Jaureguiberry-Bravo
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- School of Biochemistry, Faculty of Biological Science, Universidad Andrés Bello, Santiago, Chile
| | - Carolina Otero
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina Thiede
- Georg-August-Universität, Fakultät für Physik, Drittes Physikalisches Institut-Biophysik, Göttingen, Germany
| | - Christoph F. Schmidt
- Georg-August-Universität, Fakultät für Physik, Drittes Physikalisches Institut-Biophysik, Göttingen, Germany
| | - Andrés Couve
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Program of Physiology and Biophysics, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
198
|
Kwon SE, Chapman ER. Glycosylation is dispensable for sorting of synaptotagmin 1 but is critical for targeting of SV2 and synaptophysin to recycling synaptic vesicles. J Biol Chem 2012; 287:35658-35668. [PMID: 22908222 PMCID: PMC3471705 DOI: 10.1074/jbc.m112.398883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycosylation is a major form of post-translational modification of synaptic vesicle membrane proteins. For example, the three major synaptic vesicle glycoproteins, synaptotagmin 1, synaptophysin, and SV2, represent ∼30% of the total copy number of vesicle proteins. Previous studies suggested that glycosylation is required for the vesicular targeting of synaptotagmin 1, but the role of glycosylation of synaptophysin and SV2 has not been explored in detail. In this study, we analyzed all glycosylation sites on synaptotagmin 1, synaptophysin, and SV2A via mutagenesis and optical imaging of pHluorin-tagged proteins in cultured neurons from knock-out mice lacking each protein. Surprisingly, these experiments revealed that glycosylation is completely dispensable for the sorting of synaptotagmin 1 to SVs whereas the N-glycans on SV2A are only partially dispensable. In contrast, N-glycan addition is essential for the synaptic localization and function of synaptophysin. Thus, glycosylation plays distinct roles in the trafficking of each of the three major synaptic vesicle glycoproteins.
Collapse
Affiliation(s)
- Sung E Kwon
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
199
|
Involvement of calpain/p35-p25/Cdk5/NMDAR signaling pathway in glutamate-induced neurotoxicity in cultured rat retinal neurons. PLoS One 2012; 7:e42318. [PMID: 22870316 PMCID: PMC3411656 DOI: 10.1371/journal.pone.0042318] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/03/2012] [Indexed: 11/19/2022] Open
Abstract
We investigated possible involvement of a calpain/p35-p25/cyclin-dependent kinase 5 (Cdk5) signaling pathway in modifying NMDA receptors (NMDARs) in glutamate-induced injury of cultured rat retinal neurons. Glutamate treatment decreased cell viability and induced cell apoptosis, which was accompanied by an increase in Cdk5 and p-Cdk5T15 protein levels. The Cdk5 inhibitor roscovitine rescued the cell viability and inhibited the cell apoptosis. In addition, the protein levels of both calpain 2 and calpain-specific alpha-spectrin breakdown products (SBDPs), which are both Ca2+-dependent, were elevated in glutamate-induced cell injury. The protein levels of Cdk5, p-Cdk5T15, calpain 2 and SBDPs tended to decline with glutamate treatments of more than 9 h. Furthermore, the elevation of SBDPs was attenuated by either D-APV, a NMDAR antagonist, or CNQX, a non-NMDAR antagonist, but was hardly changed by the inhibitors of intracellular calcium stores dantrolene and xestospongin. Moreover, the Cdk5 co-activator p35 was significantly up-regulated, whereas its cleaved product p25 expression showed a transient increase. Glutamate treatment for less than 9 h also considerably enhanced the ratio of the Cdk5-phosphorylated NMDAR subunit NR2A at Ser1232 site (p-NR2AS1232) and NR2A (p-NR2AS1232/NR2A), and caused a translocation of p-NR2AS1232 from the cytosol to the plasma membrane. The enhanced p-NR2AS1232 was inhibited by roscovitine, but augmented by over-expression of Cdk5. Calcium imaging experiments further showed that intracellular Ca2+ concentrations ([Ca2+]i) of retinal cells were steadily increased following glutamate treatments of 2 h, 6 h and 9 h. All these results suggest that the activation of the calpain/p35-p25/Cdk5 signaling pathway may contribute to glutamate neurotoxicity in the retina by up-regulating p-NR2AS1232 expression.
Collapse
|
200
|
Chao HW, Lai YT, Lu YL, Lin CL, Mai W, Huang YS. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res 2012; 40:8484-98. [PMID: 22730302 PMCID: PMC3458550 DOI: 10.1093/nar/gks598] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cytoplasmic polyadenylation element-binding protein (CPEB)3 is a nucleocytoplasm-shuttling RNA-binding protein and predominantly resides in the cytoplasm where it represses target RNA translation. When translocated into the nucleus, CPEB3 binds to Stat5b and downregulates Stat5b-dependent transcription. In neurons, the activation of N-methyl-d-aspartate receptors (NMDARs) accumulates CPEB3 in the nucleus and redistributes CPEB3 in the nucleocytoplasmic compartments to control gene expression. Nonetheless, it is unclear which karyopherin drives the nuclear import of CPEB3 and which transport direction is most affected by NMDA stimulation to increase the nuclear pool of CPEB3. Here, we have identified that the karyopherins, IPO5 and CRM1, facilitate CPEB3 translocation by binding to RRM1 and a leucine-containing motif of CPEB3, respectively. NMDAR signaling increases RanBP1 expression and reduces the level of cytoplasmic GTP-bound Ran. These changes enhance CPEB3-IPO5 interaction, which consequently accelerates the nuclear import of CPEB3. This study uncovers a novel NMDA-regulated import pathway to facilitate the nuclear translocation of CPEB3.
Collapse
Affiliation(s)
- Hsu-Wen Chao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | |
Collapse
|