151
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
152
|
Guo Y, Zhang K, Cheng C, Ji Z, Wang X, Wang M, Chu M, Tang DG, Zhu HH, Gao WQ. Numb -/low Enriches a Castration-Resistant Prostate Cancer Cell Subpopulation Associated with Enhanced Notch and Hedgehog Signaling. Clin Cancer Res 2017; 23:6744-6756. [PMID: 28751447 DOI: 10.1158/1078-0432.ccr-17-0913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/09/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: To elucidate the role and molecular mechanism of Numb in prostate cancer and the functional contribution of Numb-/low prostate cancer cells in castration resistance.Experimental Design: The expression of Numb was assessed using multiple Oncomine datasets and prostate cancer tissues from both humans and mice. The biological effects of the overexpression and knockdown of Numb in human prostate cancer cell lines were investigated in vitro and in vivo In addition, we developed a reliable approach to distinguish between prostate cancer cell populations with a high or low endogenous expression of Numb protein using a Numb promoter-based lentiviral reporter system. The difference between Numb-/low and Numbhigh prostate cancer cells in the response to androgen-deprivation therapy (ADT) was then tested. The likely downstream factors of Numb were analyzed using luciferase reporter assays, immunoblotting, and quantitative real-time PCR.Results: We show here that Numb was downregulated and negatively correlated with prostate cancer advancement. Functionally, Numb played an inhibitory role in xenograft prostate tumor growth and castration-resistant prostate cancer development by suppressing Notch and Hedgehog signaling. Using a Numb promoter-based lentiviral reporter system, we were able to distinguish Numb-/low prostate cancer cells from Numbhigh cells. Numb-/low prostate cancer cells were smaller and quiescent, preferentially expressed Notch and Hedgehog downstream and stem-cell-associated genes, and associated with a greater resistance to ADT. The inhibition of the Notch and Hedgehog signaling pathways significantly increased apoptosis in Numb-/low cells in response to ADT.Conclusions: Numb-/low enriches a castration-resistant prostate cancer cell subpopulation that is associated with unregulated Notch and Hedgehog signaling. Clin Cancer Res; 23(21); 6744-56. ©2017 AACR.
Collapse
Affiliation(s)
- Yanjing Guo
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Minglei Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingliang Chu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Carlton and Elm Streets, Buffalo, New York
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
153
|
Pan C, Xiong Y, Lv X, Xia Y, Zhang S, Chen H, Fan J, Wu W, Liu F, Wu H, Zhou Z, Zhang L, Zhao Y. UbcD1 regulates Hedgehog signaling by directly modulating Ci ubiquitination and processing. EMBO Rep 2017; 18:1922-1934. [PMID: 28887318 PMCID: PMC5666607 DOI: 10.15252/embr.201643289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 07/31/2017] [Accepted: 08/10/2017] [Indexed: 01/20/2023] Open
Abstract
The Hh pathway controls many morphogenetic processes in metazoans and plays important roles in numerous pathologies and in cancer. Hh signaling is mediated by the activity of the Gli/Ci family of transcription factors. Several studies in Drosophila have shown that ubiquitination by the ubiquitin E3 ligases Slimb and Rdx(Hib) plays a crucial role in controlling Ci stability dependent on the levels of Hh signals. If Hh levels are low, Slimb adds K11- and K48-linked poly-ubiquitin chains on Ci resulting in partial degradation. Ubiquitin E2 enzymes are pivotal in determining the topologies of ubiquitin chains. However, which E2 enzymes participate in the selective ubiquitination-degradation of Ci remains elusive. Here, we find that the E2 enzyme UbcD1 negatively regulates Hh signaling activity in Drosophila wing disks. Genetic and biochemical analyses in wing disks and in cultured cells reveal that UbcD1 directly controls Ci stability. Interestingly, UbcD1 is found to be selectively involved in Slimb-mediated Ci degradation. Finally, we show that the homologs of UbcD1 play a conserved role in modulating Hh signaling in vertebrates.
Collapse
Affiliation(s)
- Chenyu Pan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yue Xiong
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangdong Lv
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanxin Xia
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuo Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hao Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialin Fan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hailong Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
154
|
Yang H, Hu L, Liu Z, Qin Y, Li R, Zhang G, Zhao B, Bi C, Lei Y, Bai Y. Inhibition of Gli1-mediated prostate cancer cell proliferation by inhibiting the mTOR/S6K1 signaling pathway. Oncol Lett 2017; 14:7970-7976. [PMID: 29250185 DOI: 10.3892/ol.2017.7254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 06/02/2017] [Indexed: 11/06/2022] Open
Abstract
Ectopic activation of the canonical Hedgehog signaling pathway is involved in the development and progression of prostate cancer, which is one of the leading causes of cancer-associated mortality in males worldwide. However, the role of the non-canonical Hedgehog signaling pathway in prostate cancer remains generally unexplored. In the present study, it was identified that Gli (glioma-associated oncogene)1 and Gli2 were highly expressed at the protein level in the androgen-independent prostate cancer cell lines PC3 and DU145, but not in the androgen-dependent cancer cell line LNCaP. Silencing of Gli1 using small interfering RNA markedly decreased PC3 cell viability and liquid colony formation in vitro. The Gli1/2-specific inhibitor GANT61 markedly decreased cell viability by inducing cell apoptosis in PC3 and DU145 cells. GANT61 also alleviated liquid colony formation efficiency in PC3 and DU145 cells, suggesting that the activity of Gli1 is required for prostate cancer cell survival. To explore further the upstream signaling pathway involved in the regulation of Gli1 expression, it was identified that tumor necrosis factor α-triggered mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase 1 (S6K1) activation was required for Gli1 expression. Pharmacological and genetic inhibition of S6K1 activation markedly decreased Gli1 and its downstream target gene mRNA expression. In addition, the phosphoinositide 3-kinase/mTOR inhibitor BEZ235 markedly decreased in vitro PC3 cell proliferation. The results of the present study indicate that the non-canonical Hedgehog pathway (mTOR/S6K1/Gli1) contributes to the development and progression of prostate cancer and that Gli1 is a potential therapeutic target in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Hong Yang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Libing Hu
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Zhimin Liu
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yang Qin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Ruiqian Li
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Guoying Zhang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Bin Zhao
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Chengwei Bi
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yonghong Lei
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Yu Bai
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| |
Collapse
|
155
|
Montagna E, Lopes OS. Molecular basis of basal cell carcinoma. An Bras Dermatol 2017; 92:517-520. [PMID: 28954101 PMCID: PMC5595599 DOI: 10.1590/abd1806-4841.20176544] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/22/2017] [Indexed: 12/11/2022] Open
Abstract
Basal cell carcinoma is the most common cancer, presenting low mortality but high
morbidity, and it has as risk factor exposure to sunlight, especially UVB
spectrum. The most important constitutional risk factors for basal cell
carcinoma development are clear phototypes (I and II, Fitzpatrick
classification), family history of basal cell carcinoma (30-60%), freckles in
childhood, eyes and light hair. The environmental risk factor better established
is exposure to ultraviolet radiation. However, different solar exposure
scenarios probably are independent risk factors for certain clinical and
histological types, topographies and prognosis of this tumor, and focus of
controversy among researchers. Studies confirm that changes in cellular genes
Hedgehog signaling pathway are associated with the development of basal cell
carcinoma. The cellular Hedgehog signaling pathway is activated in
organogenesis, but is altered in various types of tumors.
Collapse
Affiliation(s)
- Erik Montagna
- Postgraduate, Research and Innovation Center, Faculdade de Medicina do ABC (FMABC) - Santo André (SP), Brazil
| | - Otávio Sérgio Lopes
- Research Center of the Clínica Dermatológica Santa Catarina - João Pessoa (PB), Brazil.,Departament of Dermatology of Faculty of Medical Sciences of Santa Casa de São Paulo (FCMSCSP) - São Paulo (SP), Brazil
| |
Collapse
|
156
|
Li W, Sun Q, Song L, Gao C, Liu F, Chen Y, Jiang Y. Discovery of 1-(3-aryl-4-chlorophenyl)-3-(p-aryl)urea derivatives against breast cancer by inhibiting PI3K/Akt/mTOR and Hedgehog signalings. Eur J Med Chem 2017; 141:721-733. [PMID: 29107429 DOI: 10.1016/j.ejmech.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/31/2017] [Accepted: 09/02/2017] [Indexed: 12/19/2022]
Abstract
PI3K/Akt/mTOR and hedgehog (Hh) signalings are two important pathways in breast cancer, which are usually connected with the drug resistance and cancer migration. Many studies indicated that PI3K/Akt/mTOR inhibitors and Hh inhibitors displayed synergistic effects, and the combination of the two signaling drugs could delay drug resistance and inhibit cancer migration in breast cancer. Therefore, the development of molecules simultaneously inhibiting these two pathways is urgent needed. Based on the structures of PI3K inhibitor buparlisib and Hh inhibitor vismodegib, a series of hybrid structures were designed and synthesized utilizing rational drug design and computer-based drug design. Several compounds displayed excellent antiproliferative activities against several breast cancer cell lines, including triple-negative breast cancer (TNBC) MDA-MB-231 cell. Further mechanistic studies demonstrated that the representative compound 9i could inhibit both PI3K/Akt/mTOR and hedgehog (Hh) signalings by inhibiting the phosphorylation of S6K and Akt as well as decreasing the SAG elevated expression of Gli1. Compound 9i could also induce apoptosis remarkably in T47D and MDA-MB-231 cells. In the transwell assay, 9i showed significant inhibition on the migration of MDA-MB-231.
Collapse
Affiliation(s)
- Wenlu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Qinsheng Sun
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Lu Song
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Chunmei Gao
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Feng Liu
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| | - Yuzong Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Bioinformatics and Drug Design Group, Department of Pharmacy, Centre for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Yuyang Jiang
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
157
|
Pharmacological targeting of GLI1 inhibits proliferation, tumor emboli formation and in vivo tumor growth of inflammatory breast cancer cells. Cancer Lett 2017; 411:136-149. [PMID: 28965853 DOI: 10.1016/j.canlet.2017.09.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/01/2023]
Abstract
Activation of the Hedgehog (Hh) pathway effector GLI1 is linked to tumorigenesis and invasiveness in a number of cancers, with targeting of GLI1 by small molecule antagonists shown to be effective. We profiled a collection of GLI antagonists possessing distinct mechanisms of action for efficacy in phenotypic models of inflammatory and non-inflammatory breast cancer (IBC and non-IBC) that we showed expressed varying levels of Hh pathway mediators. Compounds GANT61, HPI-1, and JK184 decreased cell proliferation, inhibited GLI1 mRNA expression and decreased the number of colonies formed in TN-IBC (SUM149) and TNBC (MDA-MB-231 and SUM159) cell lines. In addition, GANT61 and JK184 significantly down-regulated GLI1 targets that regulate cell cycle (cyclin D and E) and apoptosis (Bcl2). GANT61 reduced SUM149 spheroid growth and emboli formation, and in orthotopic SUM149 tumor models significantly decreased tumor growth. We successfully utilized phenotypic profiling to identify a subset of GLI1 antagonists that were prioritized for testing in in vivo models. Our results indicated that GLI1 activation in TN-IBC as in TNBC, plays a vital role in promoting cell proliferation, motility, tumor growth, and formation of tumor emboli.
Collapse
|
158
|
Neumann JE, Wefers AK, Lambo S, Bianchi E, Bockstaller M, Dorostkar MM, Meister V, Schindler P, Korshunov A, von Hoff K, Nowak J, Warmuth-Metz M, Schneider MR, Renner-Müller I, Merk DJ, Shakarami M, Sharma T, Chavez L, Glass R, Chan JA, Taketo MM, Neumann P, Kool M, Schüller U. A mouse model for embryonal tumors with multilayered rosettes uncovers the therapeutic potential of Sonic-hedgehog inhibitors. Nat Med 2017; 23:1191-1202. [DOI: 10.1038/nm.4402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2017] [Indexed: 12/24/2022]
|
159
|
Zhang X, Liu Y, Lu L, Huang S, Ding Y, Zhang Y, Guo Q, Li Z, Zhao L. Oroxyloside A Overcomes Bone Marrow Microenvironment-Mediated Chronic Myelogenous Leukemia Resistance to Imatinib via Suppressing Hedgehog Pathway. Front Pharmacol 2017; 8:526. [PMID: 28848440 PMCID: PMC5554535 DOI: 10.3389/fphar.2017.00526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022] Open
Abstract
Imatinib (IM), as first inhibitor of the oncogenic tyrosine kinase BCR-ABL, has been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. However, resistance to IM usually occurs in CML patients. The bone marrow (BM), as the predominant microenvironment of CML, secretes an abundant amount of cytokines, which may contribute to drug resistance. In current study, we utilized in vitro K562 co-culture model with BM stroma to investigate IM resistance. As a result, co-culturing of K562 with BM stroma was sufficient to cause resistance to IM, which was accompanied with the activation of hedgehog (Hh) signaling pathway and upregulation of BCR-ABL as well as its downstream proteins like phosphorylated Akt, Bcl-xL and survivin, etc. On the other hand, oroxyloside A (OAG), a metabolite of oroxylin A from the root of Scutellaria baicalensis Georgi, which had low toxic effect on K562 cells, was able to sensitize K562 cells co-cultured with BM stroma to IM treatment in vitro and in vivo. We observed that OAG suppressed Hh pathway and subsequently nuclear translocation of GLI1, followed by downregulation of BCR-ABL and its downstream effectors, thus facilitating IM to induce apoptosis of K562 cells. Together, BM microenvironment rendered K562 cells drug resistance through activating Hh signaling, however, OAG could overcome IM resistance of CML cells through inhibiting Hh-BCR-ABL axis in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaobo Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Yicheng Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Lu Lu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Shaoliang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Youxiang Ding
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Qinglong Guo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical UniversityNanjing, China
| | - Li Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
160
|
Mikami Y, Fujii S, Nagata K, Wada H, Hasegawa K, Abe M, Yoshimoto RU, Kawano S, Nakamura S, Kiyoshima T. GLI-mediated Keratin 17 expression promotes tumor cell growth through the anti-apoptotic function in oral squamous cell carcinomas. J Cancer Res Clin Oncol 2017; 143:1381-1393. [PMID: 28342001 DOI: 10.1007/s00432-017-2398-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/14/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Keratin 17 (KRT17) has been suggested as a potential diagnostic marker of squamous cell carcinoma including oral squamous cell carcinoma (OSCC). The current study was conducted to clarify the function of KRT17 and its expression mechanism in OSCC. METHODS Immunohistochemical analyses were carried out to examine the expression of KRT17, GLI family zinc finger (GLI)-1, GLI-2, or cleaved caspase-3 in OSCCs. The expression of KRT17, GLI-1, or GLI-2 was investigated among OSCC cell lines, and the effects of loss-of-function of KRT17 or GLI, using siRNA or inhibitor, on the cell growth of the OSCC cell line HSC-2 particularly with respect to apoptosis were examined. RESULTS Immunohistochemical analyses of tissue specimens obtained from 78 OSCC patients revealed that KRT17 was not observed in non-tumor regions but was strongly expressed at high frequencies in tumor regions. Knockdown of KRT17 increased the number of cleaved caspase-3-positive cells, leading to the reduction of cell number. Loss-of-function of GLI-1 or GLI-2 also increased the cell numbers of apoptotic cells positive for staining of Annexin-V and propidium iodide (PI) and the terminal deoxynucleotidyl transferase dUTP-biotin nick-end labeling (TUNEL) method, and induced DNA fragmentation. This inhibitory effect on cell growth was partially rescued by exogenous KRT17 expression. In the KRT17-positive regions in OSCCs, GLI-1 or GLI-2 was frequently detected, and the number of cells with cleaved caspase-3 positive was decreased. CONCLUSIONS KRT17 promotes tumor cell growth, at least partially, through its anti-apoptotic effect as a result of the KRT17 overexpression by GLIs in OSCC.
Collapse
Affiliation(s)
- Yurie Mikami
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinsuke Fujii
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kengo Nagata
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroko Wada
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kana Hasegawa
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Misaki Abe
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Reiko U Yoshimoto
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shintaro Kawano
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiji Nakamura
- Section of Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
161
|
Tajima Y, Murakami T, Saito T, Hiromoto T, Akazawa Y, Sasahara N, Mitomi H, Yao T, Watanabe S. Distinct Involvement of the Sonic Hedgehog Signaling Pathway in Gastric Adenocarcinoma of Fundic Gland Type and Conventional Gastric Adenocarcinoma. Digestion 2017; 96:81-91. [PMID: 28738329 DOI: 10.1159/000478999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/26/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Gastric adenocarcinoma of fundic gland type (GAFG), which is a rare variant of gastric cancer, is reportedly associated with both Wnt/β-catenin signaling activation and guanine nucleotide binding protein, alpha stimulating complex (GNAS) mutations. This study aimed to elucidate potential roles of the Sonic hedgehog (Shh) signaling pathway in GAFG. METHODS We performed immunostaining for β-catenin and Shh signal-associated proteins, including Patched (Ptch), Smoothened (Smo), and Glioma-associated oncogene-1 (Gli1), and the direct sequencing of GNAS/BRAF/KRAS in 27 GAFGs, and compared them with 30 conventional gastric adenocarcinomas (CGAs). RESULTS GAFGs exhibited significantly lower immunoreactivity scores for Ptch, Smo, and Gli1 than CGAs. Moreover, while the Ptch score was significantly lower in the GAFG tumor areas than in the non-neoplastic areas adjacent to GAFG, the score was significantly higher in the CGA tumor areas than in the non-neoplastic areas. Similar trends were observed in the scores for Smo and Gli1. β-Catenin expression and GNAS mutations were found in 22 (81%) and 8 (30%) of the 27 GAFGs respectively. Gli1 expression was significantly associated with mutations in GNAS. CONCLUSION GAFG and CGA exhibited distinct Ptch, Smo, and Gli1 expression patterns. Downregulation of the Shh signaling pathway, as well as activation of the Wnt/β-catenin signaling pathway, may therefore be associated with tumorigenesis in GAFG.
Collapse
Affiliation(s)
- Yuzuru Tajima
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Wadhwa R, Wang X, Baladandayuthapani V, Liu B, Shiozaki H, Shimodaira Y, Lin Q, Elimova E, Hofstetter WL, Swisher SG, Rice DC, Maru DM, Kalhor N, Bhutani MS, Weston B, Lee JH, Skinner HD, Scott AW, Kaya DM, Harada K, Berry D, Song S, Ajani JA. Nuclear expression of Gli-1 is predictive of pathologic complete response to chemoradiation in trimodality treated oesophageal cancer patients. Br J Cancer 2017; 117:648-655. [PMID: 28728163 PMCID: PMC5572179 DOI: 10.1038/bjc.2017.225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Predictive biomarkers or signature(s) for oesophageal cancer (OC) patients undergoing preoperative therapy could help administration of effective therapy, avoidance of ineffective ones, and establishment new strategies. Since the hedgehog pathway is often upregulated in OC, we examined its transcriptional factor, Gli-1, which confers therapy resistance, we wanted to assess Gli-1 as a predictive biomarker for chemoradiation response and validate it. Methods: Untreated OC tissues from patients who underwent chemoradiation and surgery were assessed for nuclear Gli-1 by immunohistochemistry and labelling indices (LIs) were correlated with pathologic complete response (pathCR) or <pathCR (resistance) and validated in a unique cohort. Results: Initial 60 patients formed the discovery set (TDS) and then unique 167 patients formed the validation set (TVS). 16 (27%) patients in TDS and 40 (24%) patients in TVS achieved a pathCR. Nuclear Gli-1 LIs were highly associated with pathCR based on the fitted logistic regression models (P<0.0001) in TDS and TVS. The areas under the curve (AUCs) for receiver-operating characteristics (ROCs) based on a fitted model were 0.813 (fivefold cross validation (0.813) and bootstrap resampling (0.816) for TDS and 0.902 (fivefold cross validation (0.901) and bootstrap resampling (0.902)) for TVS. Our preclinical (including genetic knockdown) studies with FU or radiation resistant cell lines demonstrated that Gli-1 indeed mediates therapy resistance in OC. Conclusions: Our validated data in OC show that nuclear Gli-1 LIs are predictive of pathCR after chemoradiation with desirable sensitivity and specificity.
Collapse
Affiliation(s)
- Roopma Wadhwa
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Xuemei Wang
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | | | - Bin Liu
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Hironori Shiozaki
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Yusuke Shimodaira
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Quan Lin
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Elena Elimova
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Wayne L Hofstetter
- Department of Thoracic Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Stephen G Swisher
- Department of Thoracic Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - David C Rice
- Department of Thoracic Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dipen M Maru
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Neda Kalhor
- Department of Pathology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Manoop S Bhutani
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Brian Weston
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jeffrey H Lee
- Department of Gastroenterology, Hepatology, and Nutrition, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Heath D Skinner
- Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Donald Berry
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| |
Collapse
|
163
|
Ramos MC, Boulaiz H, Griñan-Lison C, Marchal JA, Vicente F. What’s new in treatment of pancreatic cancer: a patent review (2010–2017). Expert Opin Ther Pat 2017; 27:1251-1266. [DOI: 10.1080/13543776.2017.1349106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Maria C. Ramos
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Carmen Griñan-Lison
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| |
Collapse
|
164
|
Pounds R, Leonard S, Dawson C, Kehoe S. Repurposing itraconazole for the treatment of cancer. Oncol Lett 2017; 14:2587-2597. [PMID: 28927025 DOI: 10.3892/ol.2017.6569] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
The repurposing of drugs is becoming increasingly attractive as it avoids the lengthy process and cost implications associated with bringing a novel drug to market. Itraconazole is a broad-spectrum anti-fungal agent. An emerging body of in vivo, in vitro and clinical evidence have confirmed that it also possesses antineoplastic activities and has a synergistic action when combined with other chemotherapeutic agents. It acts via several mechanisms to prevent tumour growth, including inhibition of the Hedgehog pathway, prevention of angiogenesis, decreased endothelial cell proliferation, cell cycle arrest and induction of auto-phagocytosis. These allow itraconazole, either alone or in combination with other cytotoxic agents, to increase drug efficacy and overcome drug resistance. This study reviews the reported literature on the use of itraconazole in a variety of malignancies and highlights the recent insights into the critical pathways acted upon to prevent tumour growth.
Collapse
Affiliation(s)
- Rachel Pounds
- Obstetrics and Gynaecology Department, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, United Kingdom
| | - Sarah Leonard
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Christopher Dawson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sean Kehoe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
165
|
Katic J, Loers G, Tosic J, Schachner M, Kleene R. The cell adhesion molecule CHL1 interacts with patched-1 to regulate apoptosis during postnatal cerebellar development. J Cell Sci 2017. [PMID: 28630165 DOI: 10.1242/jcs.194563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The immunoglobulin superfamily adhesion molecule close homolog of L1 (CHL1) plays important roles during nervous system development. Here, we identified the hedgehog receptor patched-1 (PTCH1) as a novel CHL1-binding protein and showed that CHL1 interacts with the first extracellular loop of PTCH1 via its extracellular domain. Colocalization and co-immunoprecipitation of CHL1 with PTCH1 suggest an association of CHL1 with this major component of the hedgehog signaling pathway. The trans-interaction of CHL1 with PTCH1 promotes neuronal survival in cultures of dissociated cerebellar granule cells and of organotypic cerebellar slices. An inhibitor of the PTCH1-regulated hedgehog signal transducer, smoothened (SMO), and inhibitors of RhoA and Rho-associated kinase (ROCK) 1 and 2 prevent CHL1-dependent survival of cultured cerebellar granule cells and survival of cerebellar granule and Purkinje cells in organotypic cultures. In histological sections from 10- and 14-day-old CHL1-deficient mice, enhanced apoptosis of granule, but not Purkinje, cells was observed. The results of the present study indicate that CHL1 triggers PTCH1-, SMO-, RhoA- and ROCK-dependent signal transduction pathways to promote neuronal survival after cessation of the major morphogenetic events during mouse cerebellar development.
Collapse
Affiliation(s)
- Jelena Katic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Jelena Tosic
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA .,Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA.,Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong 515041, China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
166
|
Chen P, Zhou Z, Yao X, Pang S, Liu M, Jiang W, Jiang J, Zhang Q. Capping Enzyme mRNA-cap/RNGTT Regulates Hedgehog Pathway Activity by Antagonizing Protein Kinase A. Sci Rep 2017; 7:2891. [PMID: 28588207 PMCID: PMC5460166 DOI: 10.1038/s41598-017-03165-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/21/2017] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling plays a pivotal role in animal development and its deregulation in humans causes birth defects and several types of cancer. Protein Kinase A (PKA) modulates Hh signaling activity through phosphorylating the transcription factor Cubitus interruptus (Ci) and G protein coupled receptor (GPCR) family protein Smoothened (Smo) in Drosophila, but how PKA activity is regulated remains elusive. Here, we identify a novel regulator of the Hh pathway, the capping-enzyme mRNA-cap, which positively regulates Hh signaling activity through modulating PKA activity. We provide genetic and biochemical evidence that mRNA-cap inhibits PKA kinase activity to promote Hh signaling. Interestingly, regulation of Hh signaling by mRNA-cap depends on its cytoplasmic capping-enzyme activity. In addition, we show that the mammalian homolog of mRNA-cap, RNGTT, can replace mRNA-cap to play the same function in the Drosophila Hh pathway and that knockdown of Rngtt in cultured mammalian cells compromised Shh pathway activity, suggesting that RNGTT is functionally conserved. Our study makes an unexpected link between the mRNA capping machinery and the Hh signaling pathway, unveils a new facet of Hh signaling regulation, and reveals a potential drug target for modulating Hh signaling activity.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Zizhang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Xia Yao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Shu Pang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Meijing Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Weirong Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA. .,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| | - Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, 210061, China.
| |
Collapse
|
167
|
Marwarha G, Raza S, Hammer K, Ghribi O. 27-hydroxycholesterol: A novel player in molecular carcinogenesis of breast and prostate cancer. Chem Phys Lipids 2017; 207:108-126. [PMID: 28583434 DOI: 10.1016/j.chemphyslip.2017.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Several studies have suggested an etiological role for hypercholesterolemia in the pathogenesis of breast cancer and prostate cancer (PCa). However, the molecular mechanisms that underlie and mediate the hypercholesterolemia-fostered increased risk for breast cancer and PCa are yet to be determined. The discovery that the most abundant cholesterol oxidized metabolite in the plasma, 27 hydroxycholesterol (27-OHC), is a selective estrogen receptor modulator (SERM) and an agonist of Liver X receptors (LXR) partially fills the void in our understanding and knowledge of the mechanisms that may link hypercholesterolemia to development and progression of breast cancer and PCa. The wide spectrum and repertoire of SERM and LXR-dependent effects of 27-OHC in the context of all facets and aspects of breast cancer and prostate cancer biology are reviewed in this manuscript in a very comprehensive manner. This review highlights recent findings pertaining to the role of 27-OHC in breast cancer and PCa and delineates the signaling mechanisms involved in the governing of different facets of tumor biology, that include tumor cell proliferation, epithelial-mesenchymal transition (EMT), as well as tumor cell invasion, migration, and metastasis. We also discuss the limitations of contemporary studies and lack of our comprehension of the entire gamut of effects exerted by 27-OHC that may be relevant to the pathogenesis of breast cancer and PCa. We unveil and propose potential future directions of research that may further our understanding of the role of 27-OHC in breast cancer and PCa and help design therapeutic interventions against endocrine therapy-resistant breast cancer and PCa.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Shaneabbas Raza
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA
| | - Kimberly Hammer
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA; Department of Veteran Affairs, Fargo VA Health Care System, Fargo, North Dakota 58102, USA
| | - Othman Ghribi
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, 58202, USA.
| |
Collapse
|
168
|
Ye L, Ding K, Zhao F, Liu X, Wu Y, Liu Y, Xue D, Zhou F, Zhang X, Stevens RC, Xu F, Zhao S, Tao H. A structurally guided dissection-then-evolution strategy for ligand optimization of smoothened receptor. MEDCHEMCOMM 2017; 8:1332-1336. [PMID: 30108845 PMCID: PMC6072208 DOI: 10.1039/c7md00104e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 01/18/2023]
Abstract
We present herein a novel dissection-then-evolution strategy for ligand optimization. Using the co-crystal structure of the smoothened receptor (SMO) as a guide, we studied the modular contribution of LY2940680 by systematically "silencing" the specific interaction between the individual residue(s) and the fragment in the ligand. Following evolution by focusing on the benzoyl part finally yielded an improved ligand 21.
Collapse
Affiliation(s)
- Lintao Ye
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road, Building 3, Room 426 , Shanghai , 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Kang Ding
- Key Laboratory of Computational Biology , CAS-MPG Partner Institute for Computational Biology , Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , 200031 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Fei Zhao
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
| | - Xiaoyan Liu
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
| | - Yiran Wu
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
| | - Yang Liu
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
| | - Dongxiang Xue
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road, Building 3, Room 426 , Shanghai , 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Fang Zhou
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- Shanghai Institute of Materia Medica , Chinese Academy of Sciences , 555 Zuchongzhi Road, Building 3, Room 426 , Shanghai , 201203 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Xianjun Zhang
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- Institute of Biochemistry and Cell Biology , Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai , 200031 , China
- University of Chinese Academy of Sciences , No. 19A, Yuquan Road , Beijing 100049 , China
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Raymond C Stevens
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Fei Xu
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Suwen Zhao
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
- School of Life Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Houchao Tao
- iHuman Institute , ShanghaiTech University , 2F Building 6, 99 Haike Road, Pudong New District , Shanghai 201210 , China . ;
| |
Collapse
|
169
|
Bai Y, Wu C, Hong W, Zhang X, Liu L, Chen B. Anti‑fibrotic effect of Sedum sarmentosum Bunge extract in kidneys via the hedgehog signaling pathway. Mol Med Rep 2017; 16:737-745. [PMID: 28560403 PMCID: PMC5482200 DOI: 10.3892/mmr.2017.6628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 03/10/2017] [Indexed: 12/26/2022] Open
Abstract
Sedum sarmentosum Bunge (SSBE) is a perennial plant widely distributed in Asian countries, and its extract is traditionally used for the treatment of certain inflammatory diseases. Our previous studies demonstrated that SSBE has marked renal anti-fibrotic effects. However, the underlying molecular mechanisms remain to be fully elucidated. The present study identified that SSBE exerts its inhibitory effect on the myofibroblast phenotype and renal fibrosis via the hedgehog signaling pathway in vivo and in vitro. In rats with unilateral ureteral obstruction (UUO), SSBE administration reduced kidney injury and alleviated interstitial fibrosis by decreasing the levels of transforming growth factor (TGF)-β1 and its receptor, and inhibiting excessive accumulation of extracellular matrix (ECM) components, including type I and III collagens. In addition, SSBE suppressed the expression of proliferating cell nuclear antigen, and this anti-proliferative activity was associated with downregulation of hedgehog signaling activity in SSBE-treated UUO kidneys. In cultured renal tubular epithelial cells (RTECs), recombinant TGF-β1 activated hedgehog signaling, and resulted in induction of the myofibroblast phenotype. SSBE treatment inhibited the activation of hedgehog signaling and partially reversed the fibrotic phenotype in TGF-β1-treated RTECs. Similarly, aristolochic acid-mediated upregulated activity of hedgehog signaling was reduced by SSBE treatment, and thereby led to the abolishment of excessive ECM accumulation. Therefore, these findings suggested that SSBE attenuates the myofibroblast phenotype and renal fibrosis via suppressing the hedgehog signaling pathway, and may facilitate the development of treatments for kidney fibrosis.
Collapse
Affiliation(s)
- Yongheng Bai
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Cunzao Wu
- Department of Transplantation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Weilong Hong
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xing Zhang
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Leping Liu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Bicheng Chen
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
170
|
Abou-Alfa GK, Lewis LD, LoRusso P, Maitland M, Chandra P, Cheeti S, Colburn D, Williams S, Simmons B, Graham RA. Pharmacokinetics and safety of vismodegib in patients with advanced solid malignancies and hepatic impairment. Cancer Chemother Pharmacol 2017; 80:29-36. [PMID: 28523596 DOI: 10.1007/s00280-017-3315-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE Vismodegib is a Hedgehog pathway inhibitor approved for the treatment of advanced basal cell carcinoma. Currently, the pharmacokinetics (PK) and safety of vismodegib in patients with hepatic dysfunction are unknown and are the objective of this study. METHODS Patients with advanced solid malignancies and hepatic impairment were enrolled into one of four cohorts: normal [bilirubin (bili) < upper limit of normal (ULN)], mild (ULN < bili ≤ 1.5 × ULN), moderate (1.5 × ULN < bili ≤ 3×ULN), and severe (3 × ULN < bili < 10 × ULN) dysfunction. Patients received oral vismodegib 150 mg daily. Plasma PK samples on days 1, 3, 5, and 8 were collected. Vismodegib therapy was continued until disease progression, intolerable toxicity, or withdrawal of consent. RESULTS Thirty-one patients were accrued: nine normal, eight mild, eight moderate, and six severe. Four patients experienced dose-limiting toxicity of hyperbilirubinemia on study: one in the moderate cohort and three in the severe cohort. Six patients died within 30 days after the last dose of vismodegib. All deaths were attributed to disease progression. Observed maximal and average steady-state concentrations and AUC of vismodegib at steady state (day 8) were similar across cohorts. Average AAG concentrations in patients with hepatic impairment were comparable to those of patients with normal hepatic function. CONCLUSIONS Hepatic impairment does not appear to impact vismodegib PK, and therefore, dose adjustment is not necessary in this special population. The study was influenced by the high number of patients with hepatocellular carcinoma with advanced cirrhosis; rendering it difficult to draw any causal relationships between vismodegib exposure and the serious adverse events.
Collapse
Affiliation(s)
- Ghassan K Abou-Alfa
- Memorial Sloan Kettering Cancer Center, 300 East 66th Street, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| | - Lionel D Lewis
- The Norris Cotton Cancer Center and The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | | | | | | | | | | | | | - Richard A Graham
- Genentech, Inc., South San Francisco, CA, USA.,Theravance Biopharma, South San Francisco, CA, USA
| |
Collapse
|
171
|
Zhang X, Zhao F, Wu Y, Yang J, Han GW, Zhao S, Ishchenko A, Ye L, Lin X, Ding K, Dharmarajan V, Griffin PR, Gati C, Nelson G, Hunter MS, Hanson MA, Cherezov V, Stevens RC, Tan W, Tao H, Xu F. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand. Nat Commun 2017; 8:15383. [PMID: 28513578 PMCID: PMC5442369 DOI: 10.1038/ncomms15383] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs. Smoothened receptors (SMO) play a key role in the Hedgehog signalling pathway. Here the authors present the structure of a multi-domain human SMO with a rationally designed stabilizing ligand bound in the transmembrane domain of the receptor, and propose a model for SMO activation.
Collapse
Affiliation(s)
- Xianjun Zhang
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gye Won Han
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Andrii Ishchenko
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Lintao Ye
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 555 Zuchongzhi Lu, Building 3, Room 426, Shanghai 201203, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Ding
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Patrick R Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Cornelius Gati
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Biomedical Campus, Francis Crick Avenue, Cambridge CB2 OQH, UK
| | - Garrett Nelson
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Vadim Cherezov
- Departments of Chemistry, Biological Sciences and Physics &Astronomy, Bridge Institute, University of Southern California, Los Angeles, California 90089, USA
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, 2F Building 6, 99 Haike Road, Pudong New District, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
172
|
Effect of estrogen receptor β agonists on proliferation and gene expression of ovarian cancer cells. BMC Cancer 2017; 17:319. [PMID: 28482871 PMCID: PMC5422944 DOI: 10.1186/s12885-017-3246-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/30/2017] [Indexed: 01/25/2023] Open
Abstract
Background Estrogen receptor (ER) β has been suggested to affect ovarian carcinogenesis. We examined the effects of four ERβ agonists on proliferation and gene expression of two ovarian cancer cell lines. Methods OVCAR-3 and OAW-42 ovarian cancer cells were treated with the ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol and cell growth was measured by means of the Cell Titer Blue Assay (Promega). ERβ expression was knocked down by transfection with specific siRNA. Additionally, transcriptome analyses were performed by means of Affymetrix GeneChip arrays. To confirm the results of DNA microarray analysis, Western blot experiments were performed. Results All ERβ agonists tested significantly decreased proliferation of OVCAR-3 and OAW-42 cells at a concentration of 10 nM. Maximum antiproliferative effects were induced by flavonoid Liquiritigenin, which inhibited growth of OVCAR-3 cells by 31.2% after 5 days of treatment, and ERB-041 suppressing proliferation of the same cell line by 29.1%. In OAW-42 cells, maximum effects were observed after treatment with the ERβ agonist WAY200070, inhibiting cell growth by 26.8%, whereas ERB-041 decreased proliferation by 24.4%. In turn, knockdown of ERβ with specific siRNA increased cell growth of OAW-42 cells about 1.9-fold. Transcriptome analyses revealed a set of genes regulated by ERβ agonists including ND6, LCN1 and PTCH2, providing possible molecular mechanisms underlying the observed antiproliferative effects. Conclusion In conclusion, the observed growth-inhibitory effects of all ERβ agonists on ovarian cancer cell lines in vitro encourage further studies to test their possible use in the clinical setting.
Collapse
|
173
|
Gu Y, Pei X, Ren Y, Cai K, Guo K, Chen J, Qin W, Lin M, Wang Q, Tang N, Cheng Z, Ding Y, Lin J. Oncogenic function of TUSC3 in non-small cell lung cancer is associated with Hedgehog signalling pathway. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1749-1760. [PMID: 28487226 DOI: 10.1016/j.bbadis.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) represents 75-80% of all lung carcinomas, which is the most common cause of death from cancer. Tumour suppressor candidate 3 (TUSC3) is pivotal in many biochemical functions and cytological processes. Dis-regulation of TUSC3 is frequently observed in epithelial cancers. In this study, we observed up-regulated TUSC3 expression at the mRNA and protein levels in clinical NSCLC samples compared with adjacent non-tumorous lung tissues. The expression level of TUSC3 is significantly correlated with tumour metastasis and patient survival. Overexpression of TUSC3 in NSCLC cells led to increased proliferation, migration, and invasion in vitro and accelerated xenograft tumour growth in vivo, while the opposite effects were achieved in TUSC3-silenced cells. Increased GLI1, SMO, PTCH1, and PTCH2 abundance were observed in TUSC3 overexpressed cells using western blotting. Co-immunoprecipitation and immunofluorescence analyses further revealed interaction between TUSC3 and GLI1. In conclusion, our study demonstrated an oncogenic role of TUSC3 in NSCLC and showed that dis-regulation of TUSC3 may affect tumour cell invasion and migration through possible involvement in the Hedgehog (Hh) signalling pathway.
Collapse
Affiliation(s)
- Ye Gu
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Xiaojuan Pei
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Department of Pathology, Huizhou Central People's Hospital, Huizhou, Guangdong 516001, PR China
| | - Yansong Ren
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Kang Guo
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Jiaye Chen
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Weizhao Qin
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Mingdao Lin
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Qian Wang
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital, Shenzhen 510820, PR China
| | - Zhiqiang Cheng
- Department of Pathology, Shenzhen People's Hospital, Shenzhen 510820, PR China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China
| | - Jie Lin
- Department of Pathology, Nanfang Hospital & School of Basic Medicine, Southern Medical University, 1838 Guangzhou Avenue, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, 1838 Guangzhou Avenue, Guangzhou 510515, PR China.
| |
Collapse
|
174
|
Girardi DM, Silva ACB, Rêgo JFM, Coudry RA, Riechelmann RP. Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: A systematic review. Cancer Treat Rev 2017; 56:28-35. [PMID: 28456055 DOI: 10.1016/j.ctrv.2017.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poorly differentiated neuroendocrine carcinomas (NECs) are rare and aggressive tumors. Their molecular pathogenesis is still largely unknown, and consequently, the best therapeutic management also remains to be determined. We conducted a systematic review on molecular alterations found in gastroenteropancreatic NECs (GEP-NECs) and discuss potential applications of targeted therapies in setting. MATERIALS AND METHODS Systematic review of studies about molecular features in tumor tissues of patients with GEP-NECs. The Medline, Lilacs, Embase, Cochrane, Scopus and Opengrey databases were sought, without time, study design or language restrictions. RESULTS Of the 1.564 studies retrieved, 41 were eligible: 33 were retrospective studies and eight were case reports. The studies spanned the years 1997-2017 and involved mostly colorectal, stomach and pancreas primary tumors. Molecular alterations in the TP53 gene and the p53 protein expression were the most commonly observed, regardless of the primary site. Other consistently found molecular alterations were microsatellite instability (MSI) in approximately 10% of gastric and colorectal NEC, and altered signaling cascades of p16/Rb/cyclin D1, Hedgehog and Notch pathways, and somatic mutations in KRAS, BRAF, RB1 and Bcl2. In studies of mixed adeno-neuroendocrine carcinomas (MANECs) the molecular features of GEP-NEC largely resemble their carcinoma/adenocarcinomas tumor counterparts. CONCLUSIONS Despite the paucity of data about the molecular drivers associated with GEP-NEC, some alterations may be potentially targeted with new cancer-directed therapies. Collaborative clinical trials for patients with advanced GEP-NEC are urgently needed.
Collapse
Affiliation(s)
- Daniel M Girardi
- Discipline of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil.
| | - Andrea C B Silva
- Discipline of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil.
| | - Juliana Florinda M Rêgo
- Unit of Oncology and Hematology, Hospital Universitário Onofre Lopes, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| | | | - Rachel P Riechelmann
- Discipline of Radiology and Oncology, Instituto do Câncer do Estado de São Paulo, Universidade de São Paulo, São Paulo, Brazil; Oncology Center, Hospital Sírio Libanês, São Paulo, Brazil.
| |
Collapse
|
175
|
Khan MAA, Azim S, Zubair H, Bhardwaj A, Patel GK, Khushman M, Singh S, Singh AP. Molecular Drivers of Pancreatic Cancer Pathogenesis: Looking Inward to Move Forward. Int J Mol Sci 2017; 18:ijms18040779. [PMID: 28383487 PMCID: PMC5412363 DOI: 10.3390/ijms18040779] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to rank among the most lethal cancers. The consistent increase in incidence and mortality has made it the seventh leading cause of cancer-associated deaths globally and the third in the United States. The biggest challenge in combating PC is our insufficient understanding of the molecular mechanism(s) underlying its complex biology. Studies during the last several years have helped identify several putative factors and events, both genetic and epigenetic, as well as some deregulated signaling pathways, with implications in PC onset and progression. In this review article, we make an effort to summarize our current understanding of molecular and cellular events involved in the pathogenesis of pancreatic malignancy. Specifically, we provide up-to-date information on the genetic and epigenetic changes that occur during the initiation and progression of PC and their functional involvement in the pathogenic processes. We also discuss the impact of the tumor microenvironment on the molecular landscape of PC and its role in aggressive disease progression. It is envisioned that a better understanding of these molecular factors and the mechanisms of their actions can help unravel novel diagnostic and prognostic biomarkers and can also be exploited for future targeted therapies.
Collapse
Affiliation(s)
- Mohammad Aslam Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Moh'd Khushman
- Departments of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36604, USA.
| |
Collapse
|
176
|
Phase I trial of the oral smoothened inhibitor sonidegib in combination with paclitaxel in patients with advanced solid tumors. Invest New Drugs 2017; 35:766-772. [PMID: 28317088 DOI: 10.1007/s10637-017-0454-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023]
Abstract
Purpose To establish a recommended phase II dose (RP2D) for the oral smoothened inhibitor sonidegib in combination with paclitaxel; secondary objectives include evaluation of safety, tolerability, markers of Hedgehog (Hh) signaling and preliminary antitumor activity. Methods Patients with advanced solid tumors were enrolled in cohorts of escalating sonidegib dose levels (400mg, 600mg and 800mg orally, once daily on days 1-28) in combination with paclitaxel 80 mg/m2 on days 1, 8 and 15 in 4-weekly cycles. Dose-limiting toxicities (DLTs) were assessed using CTCAE v4. Once the RP2D was defined, patients with advanced ovarian carcinoma were treated at this dose level in an expansion phase. Biomarkers of Hh signaling were assessed by immunohistochemistry in archival tissue and antitumor activity evaluated using RECIST 1.1. Results 18 patients were treated: 3 at 400 mg, 3 at 600 mg and 12 at 800 mg sonidegib. Only one patient treated at 800 mg presented a DLT (prolonged neutropenia resulting in failure to receive 75% of the planned sonidegib dose). However, 4 of 12 patients treated at 800 mg had their sonidegib dose reduced for toxicity after cycle 1. Hh biomarker (SHH, Patched, SMO and GLI1) staining did not correlate with clinical activity. Best response was partial response in 3 patients (2 ovarian, 1 breast cancer) and stable disease >4 cycles in 3 patients (2 ovarian, 1 anal cancer). Conclusions The combination of sonidegib and paclitaxel is tolerable and evidence of antitumor activity was identified. The RP2D of sonidegib was 800 mg in combination with paclitaxel 80mg/m2.
Collapse
|
177
|
Dixit R, Pandey M, Tripathi SK, Dwivedi AND, Shukla VK. Comparative Analysis of Mutational Profile of Sonic hedgehog Gene in Gallbladder Cancer. Dig Dis Sci 2017; 62:708-714. [PMID: 28058596 DOI: 10.1007/s10620-016-4438-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Gallbladder cancer has high incidence in northeastern India; mortality too is high as the disease is often diagnosed late. Numerous studies have shown the role of sonic hedgehog (shh) in different cancers, an important ligand of the hedgehog signaling pathway. AIM This study was carried out to evaluate the shh gene mutations in gallbladder cancer patients. METHODS PCR-SSCP was performed for shh gene in 50 samples each of gallbladder cancer, cholelithiasis, and control. The samples showing aberration in banding pattern were sequenced. RESULTS Variation in banding pattern was observed in 20% gallbladder cancer cases, 10% in cholelithiasis, and none of the control (χ 2 = 11.111; p < 0.05). Sequencing results revealed seven novel point mutations in GBC cases. These novel mutations were found to be associated with histopathology (p < 0.05) and stage (p < 0.05) of gallbladder cancer. CONCLUSION This study reveals several novel individual and repetitive mutations of shh gene in GBC and cholelithiasis samples that may be used as diagnostic markers for gallbladder carcinogenesis.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Sunil Kumar Tripathi
- Department of Forensic Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Amit Nandan Dhar Dwivedi
- Department of Radio Diagnosis, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
178
|
Zou Q, Yang Z, Li D, Liu Z, Yuan Y. Association of chloride intracellular channel 4 and Indian hedgehog proteins with survival of patients with pancreatic ductal adenocarcinoma. Int J Exp Pathol 2017; 97:422-429. [PMID: 28205343 DOI: 10.1111/iep.12213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related mortality. Novel molecular biomarkers need to be identified for personalized medicine and to improve survival. The aim of this study was to examine chloride intracellular channel 4 (CLIC4) and Indian Hedgehog (Ihh) expression in benign and malignant lesions of the pancreas and to examine the eventual association between CLIC4 and Ihh expression, with clinicopathological features and prognosis of pancreatic cancer. A retrospective study of specimens collected from January 2000 to December 2011 at the Department of Pathology of the Second and Third Xiangya Hospitals, Central South University was undertaken to explore this question. Immunohistochemistry of CLIC4 and Ihh was performed with EnVision™ in 106 pancreatic ductal adenocarcinoma specimens, 35 paracancer samples (2 cm away from the tumour, when possible or available), 55 benign lesions and 13 normal tissue samples. CLIC4 and Ihh expression in pancreatic ductal adenocarcinoma were significantly higher than in paracancer tissue and benign lesions (CLIC4: P = 0.009 and Ihh: P < 0.0001; CLIC4: P = 0.0004 and Ihh: P = 0.0001 respectively). CLIC4 and Ihh expression was negative in normal pancreatic tissues. The expression of CLIC4 and Ihh was associated significantly with tumour grade, lymph node metastasis, tumour invasion and poor overall survival. Thus CLIC4 and Ihh could serve as biological markers for the progression, metastasis and/or invasiveness of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Qiong Zou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhulin Yang
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daiqiang Li
- Department of Pathology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziru Liu
- Research Laboratory of Hepatobiliary Diseases, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Yuan
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
179
|
Song Z, Wei B, Lu C, Huang X, Li P, Chen L. Metformin suppresses the expression of Sonic hedgehog in gastric cancer cells. Mol Med Rep 2017; 15:1909-1915. [PMID: 28260041 DOI: 10.3892/mmr.2017.6205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
The traditional anti-diabetic drug, metformin, has been found to have anticancer effects. The Sonic hedgehog (Shh) signaling pathway is involved in the on cogenesis of gastric cancer. The aim of the present study was to investigate whether metformin has an effect on the Shh signaling pathway in gastric cancer cells. HGC‑27 and MKN‑45 human gastric cancer cells were treated with metformin at different concentrations and for different durations. Subsequently the mRNA and protein levels of Shh, Smoothened (SMO), and Glioma‑associated oncogene (Gli)‑1, Gli‑2 and Gli‑3 were examined using western blot and reverse transcription‑quantitative polymerase chain reaction analyses. RNA interference was used to detect whether the effects of metformin treatment on the Shh signaling pathway were dependent on AMP‑activated protein kinase (AMPK). The results revealed that the protein and mRNA levels of Shh and Gli‑1 were decreased by metformin treatment in the two cell lines in a dose‑ and time‑dependent manner. Metformin also significantly inhibited the gene and protein expression levels of SMO, Gli‑2 and Gli‑3. The small interfering RNA‑induced depletion of AMPK reversed the suppressive effect of metformin on recombinant human Shh‑induced expression of Gli‑1 in HGC‑27 gastric cancer cells. Therefore, metformin inhibited the Shh signaling pathway in the gastric cancer cell lines and the inhibitory effect of metformin on the Shh pathway was AMPK-dependent.
Collapse
Affiliation(s)
- Zhou Song
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Bo Wei
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Canrong Lu
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xiaohui Huang
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Peiyu Li
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Lin Chen
- Department of General Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| |
Collapse
|
180
|
SUMO regulates the activity of Smoothened and Costal-2 in Drosophila Hedgehog signaling. Sci Rep 2017; 7:42749. [PMID: 28195188 PMCID: PMC5307382 DOI: 10.1038/srep42749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022] Open
Abstract
In Hedgehog (Hh) signaling, the GPCR-family protein Smoothened (Smo) acts as a signal transducer that is regulated by phosphorylation and ubiquitination, which ultimately change the cell surface accumulation of Smo. However, it is not clear whether Smo is regulated by other post-translational modifications, such as sumoylation. Here, we demonstrate that knockdown of the small ubiquitin-related modifier (SUMO) pathway components Ubc9 (a SUMO-conjugating enzyme E2), PIAS (a SUMO-protein ligase E3), and Smt3 (the SUMO isoform in Drosophila) by RNAi prevents Smo accumulation and alters Smo activity in the wing. We further show that Hh-induced-sumoylation stabilizes Smo, whereas desumoylation by Ulp1 destabilizes Smo in a phosphorylation independent manner. Mechanistically, we discover that excessive Krz, the Drosophila β-arrestin 2, inhibits Smo sumoylation and prevents Smo accumulation through Krz regulatory domain. Krz likely facilitates the interaction between Smo and Ulp1 because knockdown of Krz by RNAi attenuates Smo-Ulp1 interaction. Finally, we provide evidence that Cos2 is also sumoylated, which counteracts its inhibitory role on Smo accumulation in the wing. Taken together, we have uncovered a novel mechanism for Smo activation by sumoylation that is regulated by Hh and Smo interacting proteins.
Collapse
|
181
|
Farahmand L, Darvishi B, Majidzadeh‐A K, Madjid Ansari A. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways. Cell Prolif 2017; 50:e12299. [PMID: 27669681 PMCID: PMC6529111 DOI: 10.1111/cpr.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.
Collapse
Affiliation(s)
- L. Farahmand
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
| | - B. Darvishi
- Recombinant Proteins DepartmentBreast Cancer Research CenterACECRTehranIran
| | - K. Majidzadeh‐A
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
- Tasnim Biotechnology Research Center (TBRC)school of medicineAJA University of Medical SciencesTehranIran
| | - A. Madjid Ansari
- Cancer Alternative and Complementary Medicine DepartmentBreast Cancer Research CenterACECRTehranIran
| |
Collapse
|
182
|
Dai X, Dong M, Yu H, Xie Y, Yu Y, Cao Y, Kong Z, Zhou B, Xu Y, Yang T, Li K. Knockdown of TCTN1 Strongly Decreases Growth of Human Colon Cancer Cells. Med Sci Monit 2017; 23:452-461. [PMID: 28123172 PMCID: PMC5291083 DOI: 10.12659/msm.899595] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Tectonic family member 1 (TCTN1), a member of the tectonic family, is involved in several developmental processes and is aberrantly expressed in multiple solid tumors. However, the expression and regulation of TCTN1 in human colorectal cancer (CRC) is still not clear. Material/Methods The expression of TCTN1 mRNA was first explored by using Oncomine microarray datasets. TCTN1 expression was silenced in human CRC cell lines HCT116 and SW1116 via RNA interference (RNAi). Furthermore, we investigated the effect of TCTN1 depletion on CRC cell growth by MTT, colony formation, and flow cytometry in vitro. Results In this study, meta-analysis showed that the expressions of TCTN1 mRNA in CRC specimens were significantly higher than that in normal specimens. Knockdown of TCTN1 expression potently inhibited the abilities of cell proliferation and colony formation as determined. Flow cytometry analysis showed that depletion of TCTN1 could cause cell cycle arrest at the G2/M phase. In addition, Annexin V/7-AAD double-staining indicated that TCTN1 silencing promoted cell apoptosis through down-regulation of caspase 3 and Bcl-2 and upregulation of cleaved caspase 3 and PARP. Conclusions Our results indicate that TCTN1 may be crucial for CRC cell growth, providing a novel alternative to target therapies of CRC. Further research on this topic is warranted.
Collapse
Affiliation(s)
- Xiaoyu Dai
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Mingjun Dong
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Hua Yu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yangyang Xie
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yongming Yu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yisheng Cao
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Zhenfang Kong
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Baofeng Zhou
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Yidong Xu
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Tong Yang
- Department of Anorectal Surgery, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| | - Keqiang Li
- Clinical Research Center, Ningbo Second Hospital, Ningbo, Zhejiang, China (mainland)
| |
Collapse
|
183
|
Arai MA, Utsumi T, Yanase N, Fujimatsu T, Ishibashi M. Efficient Synthesis of Heterocyclic Flavonoids with Hedgehog Signal Inhibitory Activity. Chem Pharm Bull (Tokyo) 2017; 65:784-795. [DOI: 10.1248/cpb.c17-00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Midori A. Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Takao Utsumi
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Natsuki Yanase
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
184
|
Enzenhofer E, Parzefall T, Haymerle G, Schneider S, Kadletz L, Heiduschka G, Pammer J, Oberndorfer F, Wrba F, Loader B, Grasl MC, Perisanidis C, Erovic BM. Impact of Sonic Hedgehog Pathway Expression on Outcome in HPV Negative Head and Neck Carcinoma Patients after Surgery and Adjuvant Radiotherapy. PLoS One 2016; 11:e0167665. [PMID: 27918595 PMCID: PMC5137890 DOI: 10.1371/journal.pone.0167665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION HPV positive patients suffering from head and neck cancer benefit from intensified radiotherapy when applied as a primary as well as an adjuvant treatment strategy. However, HPV negative patients treated with surgery and adjuvant radiotherapy lack validated prognostic biomarkers. It is therefore important to define prognostic biomarkers in this particular patient population. Especially, ´high-risk groups´ need to be defined in order to adapt treatment protocols. Since dysregulation of the sonic hedgehog pathway plays an important role in carcinogenesis, we aimed to assess whether members of the sonic hedgehog-signaling pathway may act as prognostic factors in patients with HPV negative head and neck squamous cell carcinoma. MATERIALS AND METHODS In this prospective study, pretreatment tumor biopsies of patients with head and neck squamous cell carcinoma were taken during panendoscopy (2005 to 2008). All patients were treated with surgery and postoperative radiotherapy. After assessment of HPV and p16 status, protein expression profiles of the Sonic hedgehog-signaling pathway were determined by immunohistochemistry and tissue microarray analyses in 36 HPV negative tumor biopsies. Expression profiles of Sonic hedgehog, Indian hedgehog, Patched, Smoothened, Gli-1, Gli-2 and Gli-3 were correlated with patients´ clinical data, local-control rate, disease-free as well as overall survival. Data from The Cancer Genome Atlas databank were used for external validation of our results. RESULTS Gli-1 (p = 0.04) and Gli-2 (p = 0.02) overexpression was significantly linked to improved overall survival of HPV negative patients. Gli-2 (p = 0.04) overexpression correlated significantly with prolonged disease-free survival. Cox-multivariate analysis showed that overexpression of Gli-2 correlated independently (HR 0.40, 95% CI 0.16-0.95, p = 0.03) with increased overall survival. DISCUSSION Gli-1 and Gli-2 overexpression represents a substantial prognostic factor for overall and disease-free survival in patients with locally advanced HPV negative head and neck cancer undergoing surgery and postoperative radiotherapy.
Collapse
Affiliation(s)
- Elisabeth Enzenhofer
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Parzefall
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Haymerle
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Sven Schneider
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Lorenz Kadletz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Gregor Heiduschka
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Pammer
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Fritz Wrba
- Department of Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | - Benjamin Loader
- Department of Otorhinolaryngology, Head and Neck Surgery, Rudolfstiftung, Vienna, Austria
| | - Matthäus Christoph Grasl
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christos Perisanidis
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Vienna, Austria
| | - Boban M. Erovic
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
185
|
Chaudary N, Pintilie M, Hedley D, Hill RP, Milosevic M, Mackay H. Hedgehog inhibition enhances efficacy of radiation and cisplatin in orthotopic cervical cancer xenografts. Br J Cancer 2016; 116:50-57. [PMID: 27875522 PMCID: PMC5220149 DOI: 10.1038/bjc.2016.383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/07/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Hedgehog (Hh) pathway is upregulated in cervical cancer and associated with poor outcome. We explored the effects of Hh pathway inhibition in combination with RTCT in a patient derived orthotopic cervical cancer xenograft model (OCICx). METHODS 5E1, a monoclonal antibody for SHH, or Sonidegib (LDE225), a clinical SMO inhibitor (Novartis) were added to RTCT. We investigated tumour growth delay, metastasis and GI toxicity using orthotopic cervical cancer xenografts models. The xenografts were treated with radiotherapy (15 × 2 Gy daily fractions over 3 weeks) and weekly cisplatin 4 mg kg-1 concurrently, with or without 5E1 or Sonidegib (LDE225). The Hh inhibitors were administered by subcutaneous injection (5E1; 20 mg kg-1 weekly for 3 weeks), or by oral gavage (Sonidegib; 60 mg kg-1 daily for 3 weeks). RESULTS We observed that both Hh inhibitors administered with RTCT were well tolerated and showed increased tumour growth delay, and reduced metastasis, with no increase in acute GI-toxicity relative to RTCT alone. CONCLUSIONS Our data suggest Hh can be a valid therapeutic target in cervical cancer and supports data suggesting a potential therapeutic role for targeting Hh in patients undergoing RTCT. This warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Naz Chaudary
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada
| | - Melania Pintilie
- Biostatistics Department, Ontario Cancer Institute/Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario M5T 3M7, Canada
| | - David Hedley
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Richard P Hill
- Ontario Cancer Institute/Princess Margaret Cancer Centre and The Campbell Family Institute for Cancer Research, Ontario MG5 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada
| | - Michael Milosevic
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario MG5 2M9, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| | - Helen Mackay
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario MG5 2M9, Canada
| |
Collapse
|
186
|
Chong Y, Tang D, Xiong Q, Jiang X, Xu C, Huang Y, Wang J, Zhou H, Shi Y, Wu X, Wang D. Galectin-1 from cancer-associated fibroblasts induces epithelial-mesenchymal transition through β1 integrin-mediated upregulation of Gli1 in gastric cancer. J Exp Clin Cancer Res 2016; 35:175. [PMID: 27836001 PMCID: PMC5106768 DOI: 10.1186/s13046-016-0449-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is characterized by the excessive deposition of extracellular matrix, which is thought to contribute to this tumor's malignant behavior. Epithelial-mesenchymal transition (EMT) is regarded as a crucial contributing factor to cancer progression. Galectin-1 (Gal-1), a β-galactoside-binding protein abundantly expressed in activated cancer-associated fibroblasts (CAFs), has been reported to be involved in GC progression and metastasis by binding to β1 integrin, which, in turn, can bind to matrix proteins and activate intracellular cascades that mediate EMT. Increasing evidence suggests that abnormal activation of the hedgehog (Hh) signaling pathway enhances GC cell migration and invasion. The purpose of our study is to explore the role of Gal-1 in the GC progression and metastasis as well as the regulatory mechanism. METHODS We hypothesized that Gal-1 binding to β1 integrin would lead to paracrine signaling between CAFs and GC cells, mediating EMT by upregulating Gli1. Invasion and metastasis effects of the Gal-1 and Gli1 were evaluated using wound healing and invasion assay following transfection with mimics. Additionally, to facilitate the delineation of the role of the Hh signaling in GC, we monitored the expression level of associated proteins. We also evaluated the effects of β1 integrin on these processes. Furthermore, Gal-1 and Gli1 expression in GC patient samples were examined by immunohistochemistry and western blot to determine the correlation between their expression and clinicopathologic characteristics. The Kaplan-Meier method and Cox proportional hazards model were used to analyze the relationship of expression with clinical outcomes. RESULTS Gal-1 was found to induce EMT, GC cell migration and invasion. Further data showed that Gal-1 up-regulated Gli1 expression. β1 integrin was responsible for Gal-1-induced Gli1 expression and EMT. In clinical GC tissue, it confirmed a positive relationship between Gal-1 and Gli1 expression. Importantly, their high expression is correlated to poor prognosis. CONCLUSION Gal-1 from CAFs binds to a carbohydrate structure in β1 integrin and plays an important role in the development of GC by inducing GC metastasis and EMT through targeting Gli1. This study highlights the potential therapeutic value of Gal-1 for suppression of GC metastasis.
Collapse
Affiliation(s)
- Yang Chong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Dong Tang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Qingquan Xiong
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Xuetong Jiang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Chuanqi Xu
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Yuqin Huang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Jie Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Huaicheng Zhou
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Youquan Shi
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Xiaoqing Wu
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| | - Daorong Wang
- Department of Gastrointestinal Surgery, Clinical Medical College of Yangzhou University (Subei People’s Hospital of Jiangsu Province), P.O.BOX: 225001, No.98 Nantong West, Yangzhou, China
| |
Collapse
|
187
|
Abstract
Myelofibrosis (MF) is a myeloproliferative neoplasm that presents either as a primary disease or evolves secondarily from polycythemia vera or essential thrombocythemia to post-polycythemia vera MF or post-essential thrombocythemia MF, respectively. Myelofibrosis is characterized by stem cell-derived clonal myeloproliferation, abnormal cytokine expression, bone marrow fibrosis, anemia, splenomegaly, extramedullary hematopoiesis, constitutional symptoms, cachexia, leukemic progression, and shortened survival. Therapeutic options for patients with MF have been limited to the use of cytoreductive agents, predominantly hydroxyurea; splenectomy and splenic irradiation for treatment of splenomegaly; and management of anemia with transfusions, erythropoiesis-stimulating agents, androgens, and immunomodulatory agents along with steroids. The only curative option is allogeneic stem cell transplantation (ASCT), which is associated with high morbidity and mortality risks. Recently, JAK (Janus kinase) inhibitor therapies have become available and proven to be palliative in primary MF patients with hydroxyurea-refractory splenomegaly and severe constitutional symptoms. The purpose of this article is to review the clinical features of MF; discuss different treatment strategies, including ASCT; and discuss the potential danger and benefit of using JAK inhibitors prior to ASCT.
Collapse
|
188
|
Cilia have high cAMP levels that are inhibited by Sonic Hedgehog-regulated calcium dynamics. Proc Natl Acad Sci U S A 2016; 113:13069-13074. [PMID: 27799542 DOI: 10.1073/pnas.1602393113] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Protein kinase A (PKA) phosphorylates Gli proteins, acting as a negative regulator of the Hedgehog pathway. PKA was recently detected within the cilium, and PKA activity specifically in cilia regulates Gli processing. Using a cilia-targeted genetically encoded sensor, we found significant basal PKA activity. Using another targeted sensor, we measured basal ciliary cAMP that is fivefold higher than whole-cell cAMP. The elevated basal ciliary cAMP level is a result of adenylyl cyclase 5 and 6 activity that depends on ciliary phosphatidylinositol (3,4,5)-trisphosphate (PIP3), not stimulatory G protein (Gαs), signaling. Sonic Hedgehog (SHH) reduces ciliary cAMP levels, inhibits ciliary PKA activity, and increases Gli1. Remarkably, SHH regulation of ciliary cAMP and downstream signals is not dependent on inhibitory G protein (Gαi/o) signaling but rather Ca2+ entry through a Gd3+-sensitive channel. Therefore, PIP3 sustains high basal cAMP that maintains PKA activity in cilia and Gli repression. SHH activates Gli by inhibiting cAMP through a G protein-independent mechanism that requires extracellular Ca2+ entry.
Collapse
|
189
|
Chen J, Lv H, Hu J, Ji M, Xue N, Li C, Ma S, Zhou Q, Lin B, Li Y, Yu S, Chen X. CAT3, a novel agent for medulloblastoma and glioblastoma treatment, inhibits tumor growth by disrupting the Hedgehog signaling pathway. Cancer Lett 2016; 381:391-403. [DOI: 10.1016/j.canlet.2016.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/31/2016] [Accepted: 07/21/2016] [Indexed: 01/20/2023]
|
190
|
Guo E, Liu H, Liu X. Overexpression of SCUBE2 Inhibits Proliferation, Migration, and Invasion in Glioma Cells. Oncol Res 2016; 25:437-444. [PMID: 27697090 PMCID: PMC7841219 DOI: 10.3727/096504016x14747335734344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Signal peptide CUB EGF-like domain-containing protein 2 (SCUBE2), a member of the SCUBE family of proteins, was recently found to play an important role in cancer development. However, little is known regarding its biological function in glioma. In the present study, we investigated the effect of SCUBE2 on glioma and explored its relevant mechanisms. The study showed that SCUBE2 had a low expression in glioma tissue and cell lines. SCUBE2 overexpression inhibited glioma cell proliferation in vitro and in vivo as well as suppressed glioma cell migration and invasion in vitro. Furthermore, we found that the Sonic hedgehog (Shh) signaling pathway was involved in the inhibitory effect of SCUBE2 overexpression on glioma cells. In light of the results obtained from our study, SCUBE2 may be regarded as a potential therapeutic target for glioma.
Collapse
|
191
|
Minami H, Ando Y, Ma BBY, Hsiang Lee J, Momota H, Fujiwara Y, Li L, Fukino K, Ito K, Tajima T, Mori A, Lin CC. Phase I, multicenter, open-label, dose-escalation study of sonidegib in Asian patients with advanced solid tumors. Cancer Sci 2016; 107:1477-1483. [PMID: 27467121 PMCID: PMC5084670 DOI: 10.1111/cas.13022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 12/28/2022] Open
Abstract
Sonidegib is a selective inhibitor of Smoothened receptor, which is a key regulator of the Hedgehog signaling pathway. The purpose of this study was to determine the maximum tolerated dose based on dose‐limiting toxicity (DLT) and the recommended dose (RD) of sonidegib in Asian patients with advanced solid tumors. This was an open‐label, single‐arm, multicenter, two‐group, parallel, dose‐escalation, phase I study undertaken in Asian patients; group 1 included patients from Japan and group 2 included patients from Hong Kong and Taiwan. Dose escalation was guided by a Bayesian logistic regression model dependent on DLTs in cycle 1 and other safety findings. A total of 45 adult Asian patients with confirmed advanced solid tumors were enrolled. Group 1 included 21 patients (12 treated with 400 mg q.d. [once daily] and 9 treated with 600 mg q.d.) and group 2 included 24 patients (12 treated with 400 mg q.d., 8 treated with 600 mg q.d., and 4 treated with 800 mg q.d.). Elevation in creatine kinase was the DLT in both groups. The most common adverse events suspected to be related to sonidegib in both patient groups were increase in creatine kinase levels, myalgia, fatigue, and abnormal hepatic function. The RD of 400 mg q.d. was defined in both groups. Difference in tolerability was noted between the East Asian patients and Western population. The RD in East Asian patients (400 mg q.d.) was lower than in patients from Europe and the USA (800 mg q.d. and 250 mg twice daily). (Registered with Clinicaltrials.gov: NCT01208831.) Sonidegib showed a similar safety profile in East Asian patients as that of Western population. No new AEs were reported in the Asian population. The recommended dose of sonidegib in East Asian patients (400 mg) was lower than Western MTD (800 mg daily or 250 mg twice daily) suggesting a difference in tolerability between the 2 populations.
Collapse
Affiliation(s)
- Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Brigette Buig Yue Ma
- Department of Clinical Oncology, Phase I Clinical Trial Centre, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jih- Hsiang Lee
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hiroyuki Momota
- Department of Neurosurgery, Nagoya University Hospital, Nagoya, Japan
| | - Yutaka Fujiwara
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan
| | - Leung Li
- Department of Clinical Oncology, Prince of Wales Hospital, Shatin, Hong Kong
| | | | - Koji Ito
- Translational Clinical Oncology Department, Biomarkers and Support Group, Novartis Pharma, Tokyo, Japan
| | - Takeshi Tajima
- Oncology Clinical Development Department, Oncology Clinical Pharmacology Group, Novartis Pharma, Tokyo, Japan
| | | | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Urology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
192
|
Yang R, Mondal G, Wen D, Mahato RI. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:391-401. [PMID: 27520724 DOI: 10.1016/j.nano.2016.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/24/2023]
Abstract
Repeated treatments with chemotherapeutic agent(s) fail due to cancer stem cells (CSCs) and chemoresistance regulated by microRNAs (miRNA) whose expression alters owing to dysfunctional signaling pathways including Hedgehog (Hh) signaling. We previously demonstrated the combination of Hh inhibitor cyclopamine (CYP) and paclitaxel (PTX) effectively inhibit PTX-resistant cells and side population, a cell fraction rich in CSCs. In this study, we synthesized mPEG-b-PCC-g-PTX-g-DC (P-PTX) and mPEG-b-PCC-g-CYP-g-DC (P-CYP) polymer-drug conjugates, which they self-assembled into micelles. The combination of P-PTX and P-CYP alleviated PTX resistance and suppressed tumor colony formation. Further, combination therapy inhibited Hh signaling and up-regulated tumor suppressor miRNAs. We established orthotopic prostate tumor in nude mice and there was significant tumor growth inhibition in the group treated with the combination therapy of P-PTX and P-CYP compared with monotherapy. In conclusion, this combination therapy of P-PTX and P-CYP has the potential to treat chemoresistant prostate cancer.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
193
|
Fu CL, Wang XF, Cheng Q, Wang D, Hirose S, Liu QX. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila. Sci Rep 2016; 6:27981. [PMID: 27301278 PMCID: PMC4908378 DOI: 10.1038/srep27981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022] Open
Abstract
Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila.
Collapse
Affiliation(s)
- Chong-Lei Fu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xian-Feng Wang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qian Cheng
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Dan Wang
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Susumu Hirose
- Department of Developmental Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Qing-Xin Liu
- Laboratory of Developmental Genetics, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
194
|
Li C, Liu Z, Yang F, Liu W, Wang D, Dong E, Wang Y, Wu CI, Lu X. siRNAs with decreased off-target effect facilitate the identification of essential genes in cancer cells. Oncotarget 2016; 6:21603-13. [PMID: 26057633 PMCID: PMC4673289 DOI: 10.18632/oncotarget.4269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/13/2015] [Indexed: 01/15/2023] Open
Abstract
Since the essential genes are crucial to the proliferation and survival of cancer cells, the interference of these genes is promising to be an option for cancer therapy to overcome heterogeneity. However, the essential genes are highly overestimated by RNA interference (RNAi) screenings, which is mainly caused by the pervasive off-target effect of small interference RNA (siRNA) and short hairpin RNA (shRNA). In the present study, we designed Match-Mismatch paired siRNAs to discriminate the on-target effect from off-target effect of siRNAs on cell viability. Only one of the 7 potential essential genes was validated as essential to cell viability, which demonstrates the high false positive rate in RNAi screenings. We modified the siRNA by introducing random nucleotides (N) into the guide strand to mitigate the off-target effect, without significantly compromising the on-target effect. The whole transcriptome profile analysis of cells transfected with siRNAs with or without Nindicates that siRNA-dN (with Ns on both the 2nd and the 18th bases of the guide strand) weakens the off-target effect by decreasing the unintended targets. The optimized siRNAs can be applied in the characterization of essential genes in cancer cells.
Collapse
Affiliation(s)
- Chunyan Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Zhenzhen Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China.,University of Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China
| | - Fang Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Wensheng Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Di Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Encheng Dong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Yu Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Chung-I Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China
| |
Collapse
|
195
|
Li S, Li S, Han Y, Tong C, Wang B, Chen Y, Jiang J. Regulation of Smoothened Phosphorylation and High-Level Hedgehog Signaling Activity by a Plasma Membrane Associated Kinase. PLoS Biol 2016; 14:e1002481. [PMID: 27280464 PMCID: PMC4900676 DOI: 10.1371/journal.pbio.1002481] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling controls embryonic development and adult tissue homeostasis through the G protein coupled receptor (GPCR)-family protein Smoothened (Smo). Upon stimulation, Smo accumulates on the cell surface in Drosophila or primary cilia in vertebrates, which is thought to be essential for its activation and function, but the underlying mechanisms remain poorly understood. Here we show that Hh stimulates the binding of Smo to a plasma membrane-associated kinase Gilgamesh (Gish)/CK1γ and that Gish fine-tunes Hh pathway activity by phosphorylating a Ser/Thr cluster (CL-II) in the juxtamembrane region of Smo carboxyl-terminal intracellular tail (C-tail). We find that CL-II phosphorylation is promoted by protein kinase A (PKA)-mediated phosphorylation of Smo C-tail and depends on cell surface localization of both Gish and Smo. Consistent with CL-II being critical for high-threshold Hh target gene expression, its phosphorylation appears to require higher levels of Hh or longer exposure to the same level of Hh than PKA-site phosphorylation on Smo. Furthermore, we find that vertebrate CK1γ is localized at the primary cilium to promote Smo phosphorylation and Sonic hedgehog (Shh) pathway activation. Our study reveals a conserved mechanism whereby Hh induces a change in Smo subcellular localization to promote its association with and activation by a plasma membrane localized kinase, and provides new insight into how Hh morphogen progressively activates Smo.
Collapse
Affiliation(s)
- Shuangxi Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Shuang Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Chao Tong
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Bing Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yongbin Chen
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
196
|
Verdelho Machado M, Diehl AM. Role of Hedgehog Signaling Pathway in NASH. Int J Mol Sci 2016; 17:E857. [PMID: 27258259 PMCID: PMC4926391 DOI: 10.3390/ijms17060857] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual's response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
- Gastroenterology Department, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), Lisboa 1649-035, Portugal.
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
197
|
Gonnissen A, Isebaert S, Haustermans K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 2016; 6:13899-913. [PMID: 26053182 PMCID: PMC4546439 DOI: 10.18632/oncotarget.4224] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer.
Collapse
Affiliation(s)
- Annelies Gonnissen
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Sofie Isebaert
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | - Karin Haustermans
- University of Leuven (KU Leuven), Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium.,University Hospitals Leuven, Department of Radiation Oncology, Leuven, Belgium
| |
Collapse
|
198
|
Amendola G, Di Maio D, La Pietra V, Cosconati S. Best Matching Protein Conformations and Docking Programs for a Virtual Screening Campaign Against SMO Receptor. Mol Inform 2016; 35:340-9. [DOI: 10.1002/minf.201501021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/14/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Giorgio Amendola
- DiSTABiF; Seconda Università degli Studi di Napoli; Via Vivaldi 43 81100 Caserta Italy
| | - Danilo Di Maio
- Istituto Nazionale di Fisica Nucleare (INFN); sezione di Pisa; Largo Bruno Pontecorvo 3 56127 Pisa Italy
- Scuola Normale Superiore; Piazza dei Cavalieri 7 I-56126 Pisa Italy
| | - Valeria La Pietra
- Dipartimento di Farmacia; Università di Napoli “Federico II”; Via D. Montesano 49 80131 Naples Italy
| | - Sandro Cosconati
- DiSTABiF; Seconda Università degli Studi di Napoli; Via Vivaldi 43 81100 Caserta Italy
| |
Collapse
|
199
|
Li T, Fan J, Blanco-Sánchez B, Giagtzoglou N, Lin G, Yamamoto S, Jaiswal M, Chen K, Zhang J, Wei W, Lewis MT, Groves AK, Westerfield M, Jia J, Bellen HJ. Ubr3, a Novel Modulator of Hh Signaling Affects the Degradation of Costal-2 and Kif7 through Poly-ubiquitination. PLoS Genet 2016; 12:e1006054. [PMID: 27195754 PMCID: PMC4873228 DOI: 10.1371/journal.pgen.1006054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/25/2016] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Junkai Fan
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | | | - Nikolaos Giagtzoglou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jie Zhang
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wei Wei
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael T. Lewis
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew K. Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Jianhang Jia
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas, United States of America
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
200
|
Sochacki AL, Fischer MA, Savona MR. Therapeutic approaches in myelofibrosis and myelodysplastic/myeloproliferative overlap syndromes. Onco Targets Ther 2016; 9:2273-86. [PMID: 27143923 PMCID: PMC4844455 DOI: 10.2147/ott.s83868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The discovery of JAK2 (V617F) a decade ago led to optimism for a rapidly developing treatment revolution in Ph(-) myeloproliferative neoplasms. Unlike BCR-ABL, however, JAK2 was found to have a more heterogeneous role in carcinogenesis. Therefore, for years, development of new therapies was slow, despite standard treatment options that did not address the overwhelming symptom burden in patients with primary myelofibrosis (MF), post-essential thrombocythemia MF, post-polycythemia vera MF, and myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) syndromes. JAK-STAT inhibitors have changed this, drastically ameliorating symptoms and ultimately beginning to show evidence of impact on survival. Now, the genetic foundations of myelofibrosis and MDS/MPN are rapidly being elucidated and contributing to targeted therapy development. This has been empowered through updated response criteria for MDS/MPN and refined prognostic scoring systems in these diseases. The aim of this article is to summarize concisely the current and rationally designed investigational therapeutics directed at JAK-STAT, hedgehog, PI3K-Akt, bone marrow fibrosis, telomerase, and rogue epigenetic signaling. The revolution in immunotherapy and novel treatments aimed at previously untargeted signaling pathways provides hope for considerable advancement in therapy options for those with chronic myeloid disease.
Collapse
Affiliation(s)
- Andrew L Sochacki
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melissa A Fischer
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael R Savona
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| |
Collapse
|