151
|
Kobayashi C, Suzuki‐Imaizumi M, Sakaguchi Y, Ishii T, Adachi M, Kaneda A, Ebihara R, Saito M, Uemori T, Mori K. The novel and potent CD40 agonist KHK2840 augments the antitumor efficacy of anti-PD-1 antibody and paclitaxel. Cancer Sci 2024; 115:4008-4020. [PMID: 39380291 PMCID: PMC11611760 DOI: 10.1111/cas.16366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Lack of tumor-reactive cytotoxic T lymphocytes (CTLs) limits the antitumor efficacy of immune checkpoint inhibitors (ICIs). CD40 agonists have been expected to overcome this limitation by generating tumor-reactive CTLs. However, the clinical efficacy of CD40 agonistic antibodies is not as good as in non-clinical studies. The novel human CD40 (hCD40) agonist KHK2840 is a fully human anti-CD40 IgG2 agonistic antibody that is Fc-engineered to minimize complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity. Compared to other hCD40 agonists, KHK2840 exhibited the most potent hCD40 agonistic signal in tumor-bearing hCD40 transgenic mice and human peripheral blood B cells. Moreover, KHK2840 enhanced the antitumor efficacy of the antiprogrammed cell death 1 antibody and paclitaxel. Comprehensive immune profiling revealed that the antitumor immune response of the triple combination involved tumor-draining lymph nodes in addition to tumor microenvironments. This suggests that a coordinated antitumor immune response between tumors and lymph nodes may underlie the synergistic antitumor efficacy of the triple combination therapy. Finally, a toxicology study in cynomolgus monkeys demonstrated that KHK2840 activated the CD40 signal with tolerable toxicological properties. These results indicate that KHK2840 is a novel and potent hCD40 agonistic antibody for cancer immunotherapy, which is expected to augment the antitumor efficacy of ICIs and chemotherapy.
Collapse
|
152
|
Mei T, Ye T, Huang D, Xie Y, Xue Y, Zhou D, Wang W, Chen J. Triggering immunogenic death of cancer cells by nanoparticles overcomes immunotherapy resistance. Cell Oncol (Dordr) 2024; 47:2049-2071. [PMID: 39565509 DOI: 10.1007/s13402-024-01009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/21/2024] Open
Abstract
Immunotherapy resistance poses a significant challenge in oncology, necessitating novel strategies to enhance the therapeutic efficacy. Immunogenic cell death (ICD), including necroptosis, pyroptosis and ferroptosis, triggers the release of tumor-associated antigens and numerous bioactive molecules. This release can potentiate a host immune response, thereby overcoming resistance to immunotherapy. Nanoparticles (NPs) with their biocompatible and immunomodulatory properties, are emerging as promising vehicles for the delivery of ICD-inducing agents and immune-stimulatory adjuvants to enhance immune cells tumoral infiltration and augment immunotherapy efficacy. This review explores the mechanisms underlying immunotherapy resistance, and offers an in-depth examination of ICD, including its principles and diverse modalities of cell death that contribute to it. We also provide a thorough overview of how NPs are being utilized to trigger ICD and bolster antitumor immunity. Lastly, we highlight the potential of NPs in combination with immunotherapy to revolutionize cancer treatment.
Collapse
Affiliation(s)
- Ting Mei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dingkun Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Ying Xue
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongfang Zhou
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weimin Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, 430022, China.
- Cell Architecture Research Institute, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
153
|
Deng T, Chen D, Chen F, Xu C, Zhang Q, Li M, Wang Y, He Z, Li M, He Q. Synergizing autophagic cell death and oxaliplatin-induced immunogenic death by a self-delivery micelle for enhanced tumor immunotherapy. Acta Biomater 2024; 190:548-559. [PMID: 39426655 DOI: 10.1016/j.actbio.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Chemotherapy has become an emerging strategy to activate cytotoxic T cell responses by inducing immunogenic cell death (ICD), but the level of antitumor immunity induced by chemotherapeutic agents, such as oxaliplatin (OXA), is limited due to inadequate tumor antigen presentation and T cell activation. Inducing autophagic cell death (ACD) promotes the release of tumor antigen and the recruitment of dendritic cells, therefore strengthening antitumor immune responses. Here we simultaneously activate ICD and ACD with tumor targeting micelle to achieve enhanced antitumor chemo-immunotherapy. A self-delivery micelle is formulated by conjugating OXA prodrug with tocopherol succinate (TOS) as a hydrophobic segment and further encapsulates autophagy activator SMER28 to afford TOPR/SMER28, which specifically targets αvβ3 on tumor cells with c(RGDfK). Upon cellular internalization, OXA is released from the prodrug in response to the high concentration of reduced glutathione (GSH) in tumor cells, triggering ICD and releasing associated molecular patterns (DAMPs) signaling molecules to stimulate immunity. Meanwhile, SMER28 over-activates autophagy to induce autophagic cell death, which further leads to the maturation of dendritic cells and ultimately activates anti-tumor immune response. In the 4T1 tumor-bearing mice, the combination of OXA and SMER28 effectively inhibits tumor growth and activates antitumor immune responses. The tumor targeted micelle releases OXA and SMER28 in an on-demand profile and strengthens tumor chemo-immunotherapy by synergizing ICD and ACD, providing an alternative for antitumor immunotherapy. STATEMENT OF SIGNIFICANCE: Chemotherapy induces immunogenic cell death (ICD) to activate anti-tumor immunity. However, the efficacy is limited by low levels of antigen presentation and T cell activation. To strengthen the antitumor immune responses induced by ICD, we first combine autophagic cell death (ACD) with ICD by formulating a glutathione-responsive oxaliplatin prodrug micelle co-encapsulating the autophagy activator SMER28. The activated autophagic level by SMER28 enhances the release of antigen and the recruitment of APCs, and ultimately bolsters T cell-mediated antitumor immune responses. We provide a potential strategy to amplify antitumor immune effects by combining autophagy activation with chemotherapy.
Collapse
Affiliation(s)
- Tao Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Fang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chaoqun Xu
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610041, PR China
| | - Qiang Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Min Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhidi He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
154
|
Zheng J, Meng W, Cui Z, Tian J, Zhang W. A dual-enzyme-like photosensitive nanozyme for remodeling the tumor immunosuppressive microenvironment to enhance immunotherapy. Biomaterials 2024; 311:122660. [PMID: 38865911 DOI: 10.1016/j.biomaterials.2024.122660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
In "immune-cold" tumors, the upregulation of immunosuppressive cells and insufficient infiltration of lymphocytes contribute to the resistance against immune therapy. Herein, we have developed a dual-enzyme-like photosensitive nanozyme (PBAF) to remodel the tumor immunosuppressive microenvironment (TIME) and induce the tumor infiltration of cytotoxic T lymphocytes (CTLs). Specifically, PBAF exhibits peroxidase (POD)-like activity and glutathione oxidase (GSHOx)-like activity and can be stimulated by 750 nm laser, promoting oxidative stress at the tumor site. Consequently, this process further leads to the reconstruction of TIME in animal experiments, inducing tumor-associated macrophages (TAMs) toward the immunostimulatory M1 phenotype, eliminating myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Simultaneously, PBAF also promotes dendritic cells (DCs) maturation to enhance CTLs infiltration into the tumor. The remodeled TIME and enhanced immune responses by PBAF demonstrate significant post-administration inhibition of recurrence and metastasis in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Jiahao Zheng
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wangyang Meng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
155
|
Zeng Z, Sun Y, Jiang J, Xu X, Lin H, Li W, Zheng D, Huang Y, Zhao C. Engineered low-pathogenic Helicobacter pylori as orally tumor immunomodulators for the stimulation of systemic immune response. Biomaterials 2024; 311:122672. [PMID: 38897029 DOI: 10.1016/j.biomaterials.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/14/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Gastric cancer constitutes a malignant neoplasm characterized by heightened invasiveness, posing significant global health threat. Inspired by the analysis that gastric cancer patients with Helicobacter pylori (H. pylori) infection have higher overall survival, whether H. pylori can be used as therapeutics agent and oral drug delivery system for gastric cancer. Hence, we constructed engineered H. pylori for gastric cancer treatment. A type Ⅱ H. pylori with low pathogenicity, were conjugated with photosensitizer to develop the engineered living bacteria NIR-triggered system (Hp-Ce6). Hp-Ce6 could maintain activity in stomach acid, quickly infiltrate through mucus layer and finally migrate to tumor region owing to the cell morphology and urease of H. pylori. H. pylori, accumulated in the tumor site, severed as vaccine to activate cGAS-STING pathway, and synergistically remodel the macrophages phenotype. Upon irradiation within stomach, Hp-Ce6 directly destroyed tumor cells via photodynamic effect inherited by Ce6, companied by inducing immunogenic tumor cell death. Additionally, Hp-Ce6 exhibited excellent biosafety with fecal elimination and minimal blood absorption. This work explores the feasibility and availability of H. pylori-based oral delivery platforms for gastric tumor and further provides enlightening strategy to utilize H. pylori invariably presented in the stomach as in-situ immunomodulator to enhance antitumor efficacy.
Collapse
Affiliation(s)
- Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yue Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huanxin Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Wanzhen Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Dong Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
156
|
Wang G, Mu M, Zhang Z, Chen Y, Yang N, Zhong K, Li Y, Lu F, Guo G, Tong A. Systemic delivery of tannic acid-ferric-masked oncolytic adenovirus reprograms tumor microenvironment for improved therapeutic efficacy in glioblastoma. Cancer Gene Ther 2024; 31:1804-1817. [PMID: 39385009 DOI: 10.1038/s41417-024-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Glioblastoma (GBM) represents the most aggressive primary brain tumor, and urgently requires effective treatments. Oncolytic adenovirus (OA) shows promise as a potential candidate for clinical antitumor therapy, including in the treatment of GBM. Nevertheless, the systemic delivery of OA continues to face challenges, leading to significantly compromised antitumor efficacy. In this study, we developed an innovative approach by encapsulating CXCL11-armed OA with tannic acid and Fe3+ (TA-Fe3+) to realize the systemic delivery of OA. The nanocarrier's ability to protect the OA from elimination by host immune response was evaluated in vitro and in vivo. We evaluated the antitumor effect and safety profile of OA@TA-Fe3+ in a GBM-bearing mice model. OA@TA-Fe3+ effectively safeguarded the virus from host immune clearance and extended its circulation in vivo. After targeting tumor sites, TA-Fe3+ could dissolve and release Fe3+ and OA. Fe3+-induced O2 production from H2O2 relieved the hypoxic state, and promoted OA replication, leading to a remarkable alteration of tumor immune microenvironment and enhancement in antitumor efficacy. Moreover, the systemic delivery of OA@TA-Fe3+ was safe without inflammation or organ damage. Our findings demonstrated the promising potential of systemically delivering the engineered OA for effective oncolytic virotherapy against GBM.
Collapse
Affiliation(s)
- Guoqing Wang
- Department of Ophthalmology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China
| | - Min Mu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Nian Yang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yanfang Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, PR China.
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
157
|
You H, Geng S, Li S, Imani M, Brambilla D, Sun T, Jiang C. Recent advances in biomimetic strategies for the immunotherapy of glioblastoma. Biomaterials 2024; 311:122694. [PMID: 38959533 DOI: 10.1016/j.biomaterials.2024.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Immunotherapy is regarded as one of the most promising approaches for treating tumors, with a multitude of immunotherapeutic thoughts currently under consideration for the lethal glioblastoma (GBM). However, issues with immunotherapeutic agents, such as limited in vivo stability, poor blood-brain barrier (BBB) penetration, insufficient GBM targeting, and represented monotherapy, have hindered the success of immunotherapeutic interventions. Moreover, even with the aid of conventional drug delivery systems, outcomes remain suboptimal. Biomimetic strategies seek to overcome these formidable drug delivery challenges by emulating nature's intelligent structures and functions. Leveraging the variety of biological structures and functions, biomimetic drug delivery systems afford a versatile platform with enhanced biocompatibility for the co-delivery of diverse immunotherapeutic agents. Moreover, their inherent capacity to traverse the BBB and home in on GBM holds promise for augmenting the efficacy of GBM immunotherapy. Thus, this review begins by revisiting the various thoughts and agents on immunotherapy for GBM. Then, the barriers to successful GBM immunotherapy are analyzed, and the corresponding biomimetic strategies are explored from the perspective of function and structure. Finally, the clinical translation's current state and prospects of biomimetic strategy are addressed. This review aspires to provide fresh perspectives on the advancement of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shangkuo Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mohammad Imani
- Department of Science, Iran Polymer and Petrochemical Institute, Tehran 14977-13115, Iran; Center for Nanoscience and Nanotechnology, Institute for Convergence Science & Technology, Tehran 14588-89694, Iran
| | - Davide Brambilla
- Faculty of Pharmacy, University of Montreal, Montreal Quebec H3T 1J4, Canada
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
158
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
159
|
Feng Q, Qi F, Fang W, Hu P, Shi J. Ferroptosis to Pyroptosis Regulation by Iron-Based Nanocatalysts for Enhanced Tumor Immunotherapy. J Am Chem Soc 2024; 146:32403-32414. [PMID: 39531413 DOI: 10.1021/jacs.4c08304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immunogenic cell death serves as a pivotal mechanism in enhancing antitumor immunotherapy by engaging both innate and adaptive immune responses. However, a key unanswered question is which mode of cell death, particularly ferroptosis or pyroptosis, serves as the optimal pathway for activating the immune response. In this study, we introduce an innovative iron-based nanocatalytic medicine that strategically regulates ferroptosis to pyroptosis to augment antitumor immunotherapy. By harnessing the intricate interplay between iron and carbonyl cyanide m-chlorophenyl hydrazone (CP), we engineered the nanomedicine which is capable of regulating ferroptosis to the more immunogenic pyroptosis within tumor cells. In vitro analyses revealed that the treatment with CP-encapsulated iron-based nanomedicine (HFCP) can effectively induce pyroptosis of cancer cells, exhibiting greatly enhanced efficacy in eradicating tumor cells and stimulating immune responses compared to the ferroptosis-inducing counterpart without CP incorporation (iron alone). Resultantly, HFCP not only effectively inhibited primary tumor growth but also suppressed the growth of untreated distant tumors to a large extent, underscoring a notably induced immune memory. Taken together, these results indicate that HFCP-induced pyroptosis offers a significantly more powerful approach to tumor immunotherapy than ferroptosis, offering promising potentials for achieving long-term immunotherapeutic outcomes through the reversal of the immunosuppressive tumor microenvironment and the effective regulation of immunogenic cell death modes.
Collapse
Affiliation(s)
- Qishuai Feng
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Fenggang Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
160
|
Hengst JA, Ruiz-Velasco VJ, Raup-Konsavage WM, Vrana KE, Yun JK. Cannabinoid-Induced Immunogenic Cell Death of Colorectal Cancer Cells Through De Novo Synthesis of Ceramide Is Partially Mediated by CB2 Receptor. Cancers (Basel) 2024; 16:3973. [PMID: 39682160 DOI: 10.3390/cancers16233973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Our recent studies have identified a link between sphingolipid metabolites and the induction of a specialized form of regulated cell death termed immunogenic cell death (ICD). We have recently demonstrated that the synthetic cannabinoid (±) 5-epi CP 55,940 (5-epi) stimulates the accumulation of ceramide (Cer), and that inhibition of sphingosine kinase 1 (SphK1) enhances Cer accumulation and ICD-induction in human colorectal cancer (CRC) cell lines. Methods: We employed flow-cytometric, western blot analyses, pharmacological inhibitors of the sphingolipid metabolic pathway and small molecule agonists and antagonists of the CB receptors to further analyze the mechanism by which 5-epi induces Cer accumulation. Results: Herein, and report that 5-epi induces de novo synthesis of Cer primarily through engagement of the cannabinoid receptor 2 (CB2) and depletion of intracellular calcium levels. Moreover, we report that 5-epi stimulates Cer synthesis through dysregulation of the endogenous inhibitor of the de novo Cer pathway, ORMDL3. We also observed a remarkable and specific accumulation of one Cer species, C20:4 Cer, generated predominantly by ceramide synthase 4, as a key factor required for 5-epi-induced ICD. Conclusions: Together, these data indicate that engagement of CB2, by 5-epi, alters regulation of the de novo ceramide synthesis pathway to generate Cer species that mediate ICD.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pediatrics, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Victor J Ruiz-Velasco
- Department of Anesthesiology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Wesley M Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Kent E Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| |
Collapse
|
161
|
Xiao K, Zhang S, Peng Q, Du Y, Yao X, Ng II, Tang H. PD-L1 protects tumor-associated dendritic cells from ferroptosis during immunogenic chemotherapy. Cell Rep 2024; 43:114868. [PMID: 39423128 DOI: 10.1016/j.celrep.2024.114868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
Dendritic cells (DCs) express high levels of PD-L1 in the tumor microenvironment. However, the physiological functions of PD-L1 on DCs remain incompletely understood. Here, we explored the roles of PD-L1 signaling during immunogenic chemotherapy. We found that antitumor efficacy was dramatically reduced in the absence of PD-L1 on DCs. Chemotherapy reshaped the tumor immune microenvironment, particularly the DC compartment. In the absence of PD-L1, DCs were more susceptible to the cytotoxicity induced by chemotherapy. Mechanistically, loss of PD-L1 led to the downregulation of SLC7A11, resulting in increased lipid peroxidation that caused DCs to succumb to ferroptosis and dampened antitumor immune responses. Mice with Pdl1-deficient DCs were less efficient at priming T cells during chemotherapy. In cancer patients, a higher level of PD-L1 on DCs correlated with better prognosis after immunogenic chemotherapy. Collectively, these findings reveal an underappreciated role of PD-L1 in orchestrating DC survival, which is critical during chemoimmunotherapy.
Collapse
Affiliation(s)
- Kaimin Xiao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Silin Zhang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Peng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Joint Graduate Program of Peking-Tsinghua-NIBS, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuxia Du
- Department of General Practice, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province 362000, China
| | - Xiyue Yao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Ian-Ian Ng
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Haidong Tang
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
162
|
Fujimoto A, Ikeda K, Takeiwa T, Osaki A, Horie K, Inoue S. ZCCHC3 and Efp coordinately contribute to the pathophysiology of triple-negative breast cancer by modulating NCAPH. Biochem Biophys Res Commun 2024; 735:150663. [PMID: 39276521 DOI: 10.1016/j.bbrc.2024.150663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with limited targeted therapies and high rates of recurrence. We previously showed that Efp promotes TNBC cell proliferation by regulating cell cycle-related gene expression. Recent studies showed that ZCCHC3 interacts with Efp, promoting Efp signaling in innate immune responses. We here characterize whether ZCCHC3 plays a pathophysiological role in TNBC tumorigenesis. We showed that ZCCHC3 silencing significantly repressed the proliferation of TNBC conventional cultured cells and three-dimensional patient-derived spheroid culture, which we established from a clinical TNBC tissue. RNA-sequencing in TNBC cells defined that "cell division" was a major pathway commonly downregulated by ZCCHC3 and Efp silencing, and NCAPH was a cell division-related gene highly downregulated by ZCCHC3 silencing. In a TNBC cell-derived xenograft model, ZCCHC3-specific siRNA injection successfully reduced in vivo TNBC tumor growth and downregulated NCAPH expression. Overall, our findings demonstrate that ZCCHC3 and Efp coordinately promote TNBC progression by regulating NCAPH expression and that ZCCHC3/Efp/NCAPH pathway can be applied to clinical TNBC management.
Collapse
Affiliation(s)
- Akihiro Fujimoto
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Japan; Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka-shi, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Japan
| | - Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Akihiko Osaki
- Department of Breast Oncology, Saitama Medical University International Medical Center, Hidaka-shi, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Japan.
| | - Satoshi Inoue
- Division of Systems Medicine & Gene Therapy, Saitama Medical University, Japan; Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
163
|
Llop S, Plana M, Tous S, Ferrando-Díez A, Brenes J, Juarez M, Vidales Z, Vilajosana E, Linares I, Arribas L, Duch M, Fulla M, Brunet A, Lozano A, Cirauqui B, Mesía R, Oliva M. Salvage chemotherapy after progression on immunotherapy in recurrent/metastatic squamous cell head and neck carcinoma. Front Oncol 2024; 14:1458479. [PMID: 39655068 PMCID: PMC11625818 DOI: 10.3389/fonc.2024.1458479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024] Open
Abstract
Objectives Anti-PD-(L)1 agents changed the landscape of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) treatment. Previous studies showed improved response rates to salvage chemotherapy (SCT) after progression to anti-PD-(L)1 agents. This study aims to evaluate the outcomes of SCT and to identify predictors of response and survival in patients with R/M HNSCC. Materials and methods Retrospective cohort analysis of 63 R/M patients treated with SCT after antiPD-(L1)-based therapy between January 2015 and August 2022. The overall response rate (ORR) was evaluated. Progression-free survival (PFS) and overall survival (OS) were estimated with Kaplan-Meier method. Progression-free survival 2 was calculated from anti-PD-(L)1-therapy start until progression to SCT (PFS2-I). Logistic regression and Cox regression analyses were performed to identify predictors of outcome. Results A total of 63 patients were included: 76% were men, and median age was 60 years. PD-L1 status was available in 68% (61% positive). Up to 71% received SCT as third line or beyond. ORR to SCT was 49% with higher rates in PD-L1 positive tumors, 71% vs. 18% (p=0.001), and cetuximab-containing regimens, 68% vs. 39% (p=0.026). PD-L1 status was the only predictor of ORR in the adjusted model (OR=8.6, 95% CI 1.7-43.0). OS and PFS were 9.3 months (95% CI, 6.5-12.3) and 4.1 months (95% CI, 3.0-5.8) respectively. PFS2-I was 8.6 months (95% CI, 6.6-10.5). In the multivariate analysis, PD-L1 was the only independent factor for OS (HR=0.3; 95% CI, 0.1-0.7), PFS (HR=0.2; 95% CI, 0.1-0.5; p<0.001), and PFS2-I (HR=0.2; 95% CI 0.1-0.5; p<0.001). Conclusion PDL1 status appeared as a strong predictor of response of efficacy for SCT after anti-PD-(L)1 agents. Patients receiving cetuximab-containing regimens trended towards greater benefit. This highlights the importance of treatment sequencing and personalized treatment strategies.
Collapse
Affiliation(s)
- Sandra Llop
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Plana
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Tous
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Angelica Ferrando-Díez
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), B-ARGO group, IGTP, Badalona, Spain
| | - Jesús Brenes
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Marc Juarez
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Zara Vidales
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Esther Vilajosana
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Linares
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Lorena Arribas
- Clinical Nutrition Unit, Catalan Institute of Oncology (ICO), IDIBELL, L’Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Maria Duch
- Department of Oral and Maxillofacial Surgery. Hospital Universitari Bellvitge, Barcelona, Spain
| | - Marta Fulla
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Aina Brunet
- Department of Otorhinolaryngology, Head and Neck Surgery, Hospital Universitari Bellvitge, Barcelona, Spain
| | - Alicia Lozano
- Department of Radiation Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Beatriz Cirauqui
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), B-ARGO group, IGTP, Badalona, Spain
| | - Ricard Mesía
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), B-ARGO group, IGTP, Badalona, Spain
| | - Marc Oliva
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
164
|
Lee CB, Choi HG, Gurmessa SK, Jang IT, Kumar N, Jiang Z, Kaushik NK, Kim HJ. Enhancing antitumor immunity in Lewis lung cancer through plasma-treated medium-induced activation of dendritic cells. Cancer Cell Int 2024; 24:389. [PMID: 39580412 PMCID: PMC11585098 DOI: 10.1186/s12935-024-03569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Recently, atmospheric non-thermal plasma jet-treated medium (PTM) has been recognized as a novel strategy in cancer therapy and lymphocyte activation. However, PTM has limitations in inducing a robust antitumor-immune response. This study demonstrated that PTM treatment inhibited tumor progression by activating dendritic cells (DCs). METHOD In this study, we investigated the effects of PTM on selective cytotoxicity and intracellular reactive oxygen species (ROS) generation and oxidative stress-mediated signaling (e.g., glutathione peroxidase, catalase) using respective fluorescence probes in Lewis lung cancer (LLC) cells. Then, the PTM affects the expression of interferon-gamma (IFN)-γ-induced programmed death-ligand 1 (PD-L1) and inhibition of signal transducer and activator of transcription 1 (STAT1) in LLC cells using immunoblotting. Additionally, PTM effects on the tumor cell's death and activation of DCs were done by co-culturing DCs with or without tumor cells. Further, a mouse model was used to evaluate the synergistic antitumor effects of PTM and DCs where tumors are grown under the skin. RESULTS PTM-exposed tumor cells increase intracellular superoxide production, enhancing ROS generation and leading to cancer immunogenic cell death. In addition, PTM suppresses IFN-γ-induced PD-L1 expression and STAT1 activation in tumor cells. The activation of DCs induced by PTM is downregulated when these cells are co-cultured with tumor cells. In vivo, intraperitoneal injection of PTM-activated DCs, as a synergistic agent to intertumoral PTM treatment, led to increased CD4+ and CD8+ T cell infiltration into the tumor and spleen and eventually decreased tumor growth. CONCLUSION Overall, this research introduces a promising avenue for improving lung cancer treatment using PTM to stimulate an immune response and induce cell death in tumor cells. Further studies will be essential to validate these findings and explore clinical applications.
Collapse
Affiliation(s)
- Chae Bok Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Hei Gwon Choi
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
- Department of Medical Sciences, Chungnam National University, Daejeon, 35015, Korea
| | - Sintayehu Kebede Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - In-Taek Jang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research Guwahati (NIPER-G), Kamrup, Assam, 781101, India
| | - Zongyou Jiang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 35015, Korea.
| |
Collapse
|
165
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
166
|
Chen KS, Manoury-Battais S, Kanaya N, Vogiatzi I, Borges P, Kruize SJ, Chen YC, Lin LY, Rossignoli F, Mendonca NC, Shah K. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety. J Clin Invest 2024; 135:e181143. [PMID: 39560995 PMCID: PMC11735097 DOI: 10.1172/jci181143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Recent progress in cancer cell-based therapies has led to effective targeting and robust immune responses against cancer. However, the inherent safety risks of using live cancer cells necessitate the creation of an optimized safety switch without hindering the efficacy of immunotherapy. The existing safety switches typically induce tolerogenic cell death, potentially leading to an immunosuppressive tumor immune microenvironment (TIME), which is counterproductive to the goals of immunotherapy. Here, we developed and characterized an inducible receptor-interacting protein kinase 3-driven (RIPK3-driven) necroptotic system that serves a dual function of safety switch as well as inducer of immunogenic cell death, which in turn stimulates antitumor immune responses. We show that activation of the RIPK3 safety switch triggered immunogenic responses marked by an increased release of ATP and damage-associated molecular patterns (DAMPs). Compared with other existing safety switches, incorporating the RIPK3 system inhibited tumor growth, improved survival outcomes in tumor-bearing mice, and fostered long-term antitumor immunity. Moreover, the RIPK3 system reinvigorated the TIME by promoting DC maturation, polarizing the macrophages toward a M1 phenotype, and reducing the exhaustion of CD4+ and CD8+ T lymphocytes. Our study highlights the dual role of the RIPK3-driven necroptotic system in improving the safety and efficacy of cancer cell-based therapy, with broader implications for cellular therapies.
Collapse
Affiliation(s)
- Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Manoury-Battais
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education and Research in Biology, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ioulia Vogiatzi
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sterre J. Kruize
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Ching Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Y. Lin
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Claire Mendonca
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
167
|
Zhou Z“Z, Si Y, Zhang J, Chen K, George A, Kim S, Zhou L, Liu X“M. A Dual-Payload Antibody-Drug Conjugate Targeting CD276/B7-H3 Elicits Cytotoxicity and Immune Activation in Triple-Negative Breast Cancer. Cancer Res 2024; 84:3848-3863. [PMID: 39186778 PMCID: PMC11565169 DOI: 10.1158/0008-5472.can-23-4099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and heterogeneous disease that often relapses following treatment with standard radiotherapies and cytotoxic chemotherapies. Combination therapies have potential for treating refractory metastatic TNBC. In this study, we aimed to develop an antibody-drug conjugate with dual payloads (DualADC) as a chemoimmunotherapy for TNBC. The overexpression of an immune checkpoint transmembrane CD276 (also known as B7-H3) was associated with angiogenesis, metastasis, and immune tolerance in more than 60% of patients with TNBC. Development of a mAb capable of targeting the extracellular domain of surface CD276 enabled delivery of payloads to tumors, and a platform was established for concurrent conjugation of a traditional cytotoxic payload and an immunoregulating Toll-like receptor 7/8 agonist to the CD276 mAb. The DualADC effectively killed multiple TNBC subtypes, significantly enhanced immune functions in the tumor microenvironment, and reduced tumor burden by up to 90% to 100% in animal studies. Single-cell RNA sequencing, multiplex cytokine analysis, and histology elucidated the impact of treatment on tumor cells and the immune landscape. This study suggests that the developed DualADC could represent a promising targeted chemoimmunotherapy for TNBC. Significance: An anti-CD276 monoclonal antibody conjugated with both a cytotoxic drug and an immune boosting reagent effectively targets triple-negative breast cancer by inducing tumor cell death and stimulating immune cell infiltration.
Collapse
Affiliation(s)
- Zhuoxin “Zora” Zhou
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Yingnan Si
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jiashuai Zhang
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Kai Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Ashley George
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Seulhee Kim
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Lufang Zhou
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Xiaoguang “Margaret” Liu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
168
|
Liu X, Xu Z, Yin H, Zhao X, Duan J, Zhou K, Shen Q. Immune-oncology targets and therapeutic response of cell pyroptosis-related genes with prognostic implications in neuroblastoma. Discov Oncol 2024; 15:661. [PMID: 39548036 PMCID: PMC11568093 DOI: 10.1007/s12672-024-01518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
OBJECTIVE Construction of a neuroblastoma (NB) prognostic predictive model based on pyroptosis-related genes (PRGs) to improve individualized management of NB patients. METHODS The NB cohort GSE49711 was obtained from the Gene Expression Omnibus (GEO) database, and a total of 498 patients were enrolled into the study, which were randomized into a training set and a test set at a ratio of 1:1, with 250 patients in the training set and 248 patients in the test set. A risk prediction model was constructed using the training set, and the GSE49711 cohort and test set were used as internal validation to verify the reliability of the model. Independent predictors associated with prognosis were screened using univariate and multivariate COX regression analyses, and risk score models were constructed. Single-cell gene set enrichment analysis (ssGSEA) was used to assess the relationship between PRGs and the tumor immune microenvironment. Nomograms were constructed to extend the clinical usability of the model and the reliability of the model was verified using ROC curves and calibration curves. Protein interaction networks of risk genes were mapped using the String database, and the expression of PRGs in NB cell lines was staged using the CCLE database. RESULTS A prognostic model was first developed with the training set: the risk score formula was (- 0.30 × GSDMB) + (- 0.46 × IL-18) + (- 0.21 × NLRP3) + (0.56 × AIM2). Patients were categorized into high- and low-risk groups based on the median risk score value. Survival analysis showed that NB patients in the high-risk group had a significantly lower survival rate than those in the low-risk group (P < 0.001). In both the GSE49711 overall cohort and the test cohort, survival analyses showed that patients in the high-risk group had significantly lower survival than those in the low-risk group (P < 0.001). Single-cell gene set enrichment analysis was used to assess the relationship between PRGs and the tumor immune microenvironment. Time-dependent ROC curves assessed the predictive performance of the nomogram in 5-, 7.5-, and 10-year survival with areas under the curve (AUC) of 0.843, 0.802 and 0.797, respectively. The calibration curves show good clinical predictive performance for nomograms. CONCLUSION The results suggest that PRGs may serve as a novel prognostic marker for NB patients to provide new immunotherapeutic targets for the clinical treatment of NB patients.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Zhongya Xu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China
| | - Hanjun Yin
- Department of Pediatrics, Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, China
| | - Xu Zhao
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinjiang Duan
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Kai Zhou
- Department of Pediatric Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.
| | - Qiyang Shen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
169
|
Li P, Du Y, Qiu J, Jiang Q, Chen W, Zhang X, Li G, Li D, Shan G. Immune Checkpoint-Modulating Photosensitizer That Targets BRD4 for Cancer Photoimmunotherapy. J Med Chem 2024; 67:18930-18942. [PMID: 39447075 DOI: 10.1021/acs.jmedchem.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Photodynamic therapy is an efficient approach to promote cytotoxic T lymphocyte tumor infiltration to convert immunologically cold tumors into hot tumors through the induction of immunogenic cell death . However, tumors usually overexpress immune checkpoints such as PD-L1 to suppress T lymphocyte antitumor activity and evade immune surveillance. Therefore, the design of efficient photosensitizers to overcome checkpoint-mediated immune evasion is highly necessary. In this work, we report the design of BRD-PS, a BRD4-targeting photosensitizer, as a new class of immunomodulatory photosensitizer termed an immune checkpoint-modulating photosensitizer, to solve this issue. On one hand, BRD-PS induces immunogenic pyroptosis and ferroptosis to promote the activation and tumor infiltration of cytotoxic T cells. On the other hand, BRD-PS suppresses the expression of PD-L1 to avoid immune evasion. This work demonstrated the feasibility of utilizing a single photosensitizer to simultaneously induce immunogenic cell death and PD-L1 downregulation for synergistic cancer photoimmunotherapy.
Collapse
Affiliation(s)
- Peixia Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Yayin Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Jingru Qiu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Qiaoyun Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Weijia Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| | - Xinke Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Guiling Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Donghai Li
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shenzhen Research Institute, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Gang Shan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province 250012, P. R. China
| |
Collapse
|
170
|
Yang Y, Zheng P, Duan B, Yang Y, Zheng X, Li W, Liu Q, Hu Y, Ma Y. A personalized vaccine combining immunogenic cell death-induced cells and nanosized antigens for enhanced antitumor immunity. J Control Release 2024; 376:1271-1287. [PMID: 39515613 DOI: 10.1016/j.jconrel.2024.10.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The tumor vaccine aims to activate the immune system, promote antitumor cellular responses, and restore immune recognition and clearance of tumor cells. However, the low immunogenicity and heterogeneity of tumor antigens, along with immunosuppressive mechanisms, severely hinder tumor vaccines from achieving an efficient and sustained antitumor effect. Herein, we developed a combined vaccine strategy that utilizes immunogenic cell death (ICD) to elicit a broad spectrum of antigen-specific responses in a whole-cell-based manner. Additionally, we introduced nanosized antigens to intensify immune responses targeting a key tumor antigen. The combination of mitoxantrone (MTX) and curcumin (Cur) optimized ICD properties in TC-1 tumor cells, as evidenced by increased release of "find me" signals, such as HMGB1 and ATP, and enhanced exposure of the "eat me" signal, CALR, compared to either MTX or Cur alone. Correspondingly, the ICD cells induced by the combination produced more significant antitumor effects in vivo. Furthermore, the ICD cells in combination with E7-HBcAg VLPs or E7-Q11 nanofibers induced more intense effector cell responses to the antigen included in the nanovaccines, as well as a broad spectrum of antigens provided by tumor cells, and significantly suppressed the growth of established tumors compared with either ICD cells, VLPs, or nanofibers alone. In conclusion, the combination of ICD cells and nanosized antigens produced synergistic antitumor effects and elicited robust and comprehensive antitumor immunity, presenting an attractive strategy for developing personalized tumor vaccines.
Collapse
Affiliation(s)
- Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Chunrong West Road, Kunming 650500, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Kunming Medical University Graduate School, Chunrong West Road, Kunming 650500, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; Kunming Medical University Graduate School, Chunrong West Road, Kunming 650500, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; School of Life Sciences, Yunnan University, No.2 Cuihu North Road, Kunming 650091, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No.935 Jiaoling Road, Kunming 650118, China; State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
171
|
Yan HW, Feng YD, Tang N, Cao FC, Lei YF, Cao W, Li XQ. Viral myocarditis: From molecular mechanisms to therapeutic prospects. Eur J Pharmacol 2024; 982:176935. [PMID: 39182550 DOI: 10.1016/j.ejphar.2024.176935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/10/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Myocarditis is characterized as local or diffuse inflammatory lesions in the myocardium, primarily caused by viruses and other infections. It is a common cause of sudden cardiac death and dilated cardiomyopathy. In recent years, the global prevalence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the widespread vaccination have coincided with a notable increase in the number of reported cases of myocarditis. In light of the potential threat that myocarditis poses to global public health, numerous studies have sought to elucidate the pathogenesis of this condition. However, despite these efforts, effective treatment strategies remain elusive. To collate the current research advances in myocarditis, and thereby provide possible directions for further research, this review summarizes the mechanisms involved in viral invasion of the organism and primarily focuses on how viruses trigger excessive inflammatory responses and in result in different types of cell death. Furthermore, this article outlines existing therapeutic approaches and potential therapeutic targets for the acute phase of myocarditis. In particular, immunomodulatory treatments are emphasized and suggested as the most extensively studied and clinically promising therapeutic options.
Collapse
Affiliation(s)
- Han-Wei Yan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Da Feng
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Na Tang
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng-Chuan Cao
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Ying-Feng Lei
- Department of Microbiology, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| | - Wei Cao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Department of Pharmacy, School of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiao-Qiang Li
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
172
|
Morel VJ, Rössler J, Bernasconi M. Targeted immunotherapy and nanomedicine for rhabdomyosarcoma: The way of the future. Med Res Rev 2024; 44:2730-2773. [PMID: 38885148 DOI: 10.1002/med.22059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. Histology separates two main subtypes: embryonal RMS (eRMS; 60%-70%) and alveolar RMS (aRMS; 20%-30%). The aggressive aRMS carry one of two characteristic chromosomal translocations that result in the expression of a PAX3::FOXO1 or PAX7::FOXO1 fusion transcription factor; therefore, aRMS are now classified as fusion-positive (FP) RMS. Embryonal RMS have a better prognosis and are clinically indistinguishable from fusion-negative (FN) RMS. Next to histology and molecular characteristics, RMS risk groupings are now available defining low risk tumors with excellent outcomes and advanced stage disease with poor prognosis, with an overall survival of about only 20% despite intensified multimodal treatment. Therefore, development of novel effective targeted strategies to increase survival and to decrease long-term side effects is urgently needed. Recently, immunotherapies and nanomedicine have been emerging for potent and effective tumor treatments with minimal side effects, raising hopes for effective and safe cures for RMS patients. This review aims to describe the most relevant preclinical and clinical studies in immunotherapy and targeted nanomedicine performed so far in RMS and to provide an insight in future developments.
Collapse
Affiliation(s)
- Victoria Judith Morel
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
173
|
Heirman P, Verswyvel H, Bauwens M, Yusupov M, De Waele J, Lin A, Smits E, Bogaerts A. Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach. Redox Biol 2024; 77:103381. [PMID: 39395241 PMCID: PMC11663777 DOI: 10.1016/j.redox.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHC-I complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
Collapse
Affiliation(s)
- Pepijn Heirman
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Hanne Verswyvel
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Mauranne Bauwens
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; Laboratory of Experimental Biophysics, Center for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Abraham Lin
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| |
Collapse
|
174
|
Zhang M, Ye Y, Chen Z, Wu X, Chen Y, Zhao P, Zhao M, Zheng C. Targeting delivery of mifepristone to endometrial dysfunctional macrophages for endometriosis therapy. Acta Biomater 2024; 189:505-518. [PMID: 39341437 DOI: 10.1016/j.actbio.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Endometriosis seriously affects 6-10 % of reproductive women globally and poses significant clinical challenges. The process of ectopic endometrial cell colonization shares similarities with cancer, and a dysfunctional immune microenvironment, characterized by non-classically polarized macrophages, plays a critical role in the progression of endometriosis. In this study, a targeted nano delivery system (BSA@Mif NPs) was developed using bovine serum albumin (BSA) as the carrier of mifepristone. The BSA@Mif NPs were utilized to selectively target M2 macrophages highly enriched in ectopic endometrial tissue via the SPARC receptor. This targeting strategy increases drug concentration at ectopic lesions while minimizing its distribution to normal tissue, thereby reducing side effects. In vitro studies demonstrated that BSA@Mif NPs not only enhanced the cellular uptake of M2-type macrophages and ectopic endometrial cells but also improved the cytotoxic effect of mifepristone on ectopic endometrial cells. Furthermore, the BSA@Mif NPs effectively induced immunogenic cell death (ICD) in ectopic endometrial cells and repolarized M2-type macrophages toward the M1 phenotype, resulting in a synergistic inhibition of ectopic endometrial cell growth. In vivo experiments revealed that BSA@Mif NPs exhibited significant therapeutic efficacy in endometriosis-bearing mice by increasing drug accumulation in the endometriotic tissues and modulating the immune microenvironment. This targeted biomimetic delivery strategy presents a promising approach for the development of endometriosis-specific therapies based on existing drugs. STATEMENT OF SIGNIFICANCE: Macrophages play an essential role in immune dysfunctional microenvironment promoting the occurrence and progression of endometriosis and can be a crucial target for developing immune microenvironment regulation strategies for the unmet long-term management of endometriosis. The albumin nanoparticles constructed based on SPARC overexpression in macrophages and endometrial cells and albumin biosafety can achieve the targeted therapy of endometriosis by increasing the passive- and active-mediated drug accumulation in ectopic endometrium and remodeling the immune microenvironment based on macrophage regulation. This study has the following implications: i) overcoming the inherent shortcomings of clinical drugs by nanotechnology is an alternative way of developing medication; ii) developing microenvironment modulation strategies based on macrophage regulation for endometriosis management is feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhengyun Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaodong Wu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Pengfei Zhao
- Clinical Pharmacology Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
175
|
Wang Y, Qian M, Xie Y, Zhang X, Qin Y, Huang R. Biodegradable nanoparticles-mediated targeted drug delivery achieves trans-spatial immunotherapy. FUNDAMENTAL RESEARCH 2024; 4:1639-1649. [PMID: 39734540 PMCID: PMC11670710 DOI: 10.1016/j.fmre.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy has been seriously retarded due to inadequate antigen presentation and a tumor cell-dominated immunosuppressive microenvironment (TME). Herein, biodegradable multifunctional mesoporous silica nanoparticles, with dispersed carbon nanodots incorporated into the frameworks, active TKD peptide modification on the surfaces and hydrophobic drug loading in the pores, were prepared for targeted chemotherapy synergized with trans-spatial immunotherapy. The nanoparticles were biodegradable due to nanodot-induced framework swelling, which would (1) kill the in situ tumor cells and promote antigen release by targeted chemotherapy and (2) trigger biodegraded debris involving TKD and CDs to largely adsorb the tumor antigens via π-π conjugation synergized hydrophobic interactions and then massively transport these antigens from the tumor cell-dominated TME to the immune cell-dominated spleen via TKD-mediated small size effects. Thereafter, these antigens can be processed into antigen peptides via TKD-mediated lysosome endocytosis and then activate T cells in the spleen via MHC complex construction and dendritic cell cytomembrane presentation. Therefore, improved immunotherapy with trans-spatial antigen presentation avoided TME immunosuppression, which when synergized with targeted chemotherapy, markedly enhanced the therapeutic outcomes of triple-negative breast cancer.
Collapse
Affiliation(s)
- Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201600, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Yibo Xie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Xiaoyi Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai 201203, China
| |
Collapse
|
176
|
Wang N, Liu Y, Peng D, Zhang Q, Zhang Z, Xu L, Yin L, Zhao X, Lu Z, Peng J. Copper-Based Composites Nanoparticles Improve Triple-Negative Breast Cancer Treatment with Induction of Apoptosis-Cuproptosis and Immune Activation. Adv Healthc Mater 2024; 13:e2401646. [PMID: 39001628 DOI: 10.1002/adhm.202401646] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/05/2024] [Indexed: 11/12/2024]
Abstract
The synergistic effect of apoptosis and cuproptosis, along with the activation of the immune system, presents a promising approach to enhance the efficacy against triple-negative breast cancer (TNBC). Here, two prodrugs are synthesized: a reactive oxygen species (ROS)-responsive prodrug PEG-TK-DOX and a glutathione (GSH)-responsive prodrug PEG-DTPA-SS-CPT. These prodrugs are self-assembled and chelated Cu2+ to prepare nanoparticle PCD@Cu that simultaneously loaded doxorubicin (DOX), camptothecin (CPT), and Cu2+. The elevated levels of ROS and GSH in TNBC cells disrupted the PCD@Cu structure, leading to the release of Cu+, DOX, and CPT and the depletion of GSH. DOX and CPT triggered apoptosis with immunogenic cell death (ICD) in TNBC cells. Simultaneously, PCD@Cu downregulated the expression of copper transporting ATPase 2 (ATP7B), causing a significant accumulation of copper ions in TNBC cells. This further induced the aggregation of lipoylated dihydrolipoamide S-acetyltransferase (DLAT) and downregulation of iron-sulfur (Fe-S) cluster proteins, ultimately leading to cuproptosis and ICD in TNBC. In vitro and in vivo experiments confirmed that PCD@Cu induced apoptosis and cuproptosis in TNBC and activated the immune system, demonstrating strong anti-tumor capabilities. Moreover, PCD@Cu exhibited an excellent biosafety profile. Overall, this study provides a promising strategy for effective TNBC therapy.
Collapse
Affiliation(s)
- Ning Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yichao Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Dezhou Peng
- School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Qiyu Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhibo Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xuerong Zhao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhi Lu
- Department of Nuclear Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, 430065, China
| |
Collapse
|
177
|
He Y, Wang D, Zhang C, Huang S, Li X, Chen Y, Ma Y, Ju S, Ye H, Fan W. EGFR-targeting oxygen-saturated nanophotosensitizers for orchestrating multifaceted antitumor responses by counteracting immunosuppressive milieu. J Control Release 2024; 375:127-141. [PMID: 39233281 DOI: 10.1016/j.jconrel.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
High Epidermal growth factor receptor (EGFR) in Cutaneous Squamous Cell Carcinoma (cSCC) is associated with poor prognosis and advanced metastatic stages, severely impeding the efficacy of EGFR-targeting immunotherapy. This is commonly attributed to the combinatory outcomes of hypoxic tumor microenvironment (TME) and immunosuppressive effector cells together. Herein, a novel paradigm of EGFR-targeting oxygen-saturated nanophotosensitizers, designated as CHPFN-O2, has been specifically tailored to mitigate tumor hypoxia in EGFR-positive cSCC and achieve Cetuximab (CTX)-mediated immunotherapy (CIT). The conjugated CTX in CHPFN-O2 serves to initiate immune responses by recruiting Fc receptor (FcR)-expressing immune effector cells towards tumor cells, thereby eliciting antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular trogocytosis (ADCT) and antibody-dependent cellular cytotoxicity (ADCC). Besides, CHPFN-O2 can engender a shift from a tumor-friendly to a tumor-hostile one through improved tumor oxygenation, contributing to oxygen-elevated photodynamic therapy (oxPDT). Notably, the combination of oxPDT and CIT eventually promotes T-cell-mediated antitumor activity and successfully inhibits the growth of EGFR-expressing cSCC with good safety profiles. This comprehensive oxPDT/CIT integration aims not only to enhance therapeutic efficacy against EGFRhigh cSCC but also to extend its applicability to other EGFRhigh malignancies, thus delineating a new avenue for the highly efficient synergistic treatment of EGFR-expressing malignancies.
Collapse
Affiliation(s)
- Yuan He
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Deng Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Cheng Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Siting Huang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangzheng Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Ma
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Hongxun Ye
- Department of Radiology, Taixing People's Hospital, Medical School, Yangzhou University, Taixing 225400, China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
178
|
Mowday AM, van de Laak JM, Fu Z, Henare KL, Dubois L, Lambin P, Theys J, Patterson AV. Tumor-targeting bacteria as immune stimulants - the future of cancer immunotherapy? Crit Rev Microbiol 2024; 50:955-970. [PMID: 38346140 PMCID: PMC11523919 DOI: 10.1080/1040841x.2024.2311653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/11/2024] [Accepted: 01/24/2024] [Indexed: 03/22/2024]
Abstract
Cancer immunotherapies have been widely hailed as a breakthrough for cancer treatment in the last decade, epitomized by the unprecedented results observed with checkpoint blockade. Even so, only a minority of patients currently achieve durable remissions. In general, responsive patients appear to have either a high number of tumor neoantigens, a preexisting immune cell infiltrate in the tumor microenvironment, or an 'immune-active' transcriptional profile, determined in part by the presence of a type I interferon gene signature. These observations suggest that the therapeutic efficacy of immunotherapy can be enhanced through strategies that release tumor neoantigens and/or produce a pro-inflammatory tumor microenvironment. In principle, exogenous tumor-targeting bacteria offer a unique solution for improving responsiveness to immunotherapy. This review discusses how tumor-selective bacterial infection can modulate the immunological microenvironment of the tumor and the potential for combination with cancer immunotherapy strategies to further increase therapeutic efficacy. In addition, we provide a perspective on the clinical translation of replicating bacterial therapies, with a focus on the challenges that must be resolved to ensure a successful outcome.
Collapse
Affiliation(s)
- Alexandra M. Mowday
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Jella M. van de Laak
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Zhe Fu
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Kimiora L. Henare
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- The M-Lab, Department of Precision Medicine, GROW—Research School of Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Adam V. Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
179
|
Zhang H, Montesdeoca N, Tang D, Liang G, Cui M, Xu C, Servos LM, Bing T, Papadopoulos Z, Shen M, Xiao H, Yu Y, Karges J. Tumor-targeted glutathione oxidation catalysis with ruthenium nanoreactors against hypoxic osteosarcoma. Nat Commun 2024; 15:9405. [PMID: 39477929 PMCID: PMC11526146 DOI: 10.1038/s41467-024-53646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The majority of anticancer agents have a reduced or even complete loss of a therapeutic effect within hypoxic tumors. To overcome this limitation, research efforts have been devoted to the development of therapeutic agents with biological mechanisms of action that are independent of the oxygen concentration. Here we show the design, synthesis, and biological evaluation of the incorporation of a ruthenium (Ru) catalyst into polymeric nanoreactors for hypoxic anticancer therapy. The nanoreactors can catalyze the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) in hypoxic cancer cells. This initiates the buildup of reactive oxygen species (ROS) and lipid peroxides, leading to the demise of cancer cells. It also stimulates the overexpression of the transient receptor potential melastatin 2 (TRPM2) ion channels, triggering macrophage activation, leading to a systemic immune response. Upon intravenous injection, the nanoreactors can systemically activate the immune system, and nearly fully eradicate an aggressive osteosarcoma tumor inside a mouse model.
Collapse
Affiliation(s)
- Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nicolás Montesdeoca
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Minhui Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Lisa-Marie Servos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Tiejun Bing
- Immunology and Oncology center, ICE Bioscience, Beijing, China
| | - Zisis Papadopoulos
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Meifang Shen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, China.
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
180
|
Fontana P, Du G, Zhang Y, Zhang H, Vora SM, Hu JJ, Shi M, Tufan AB, Healy LB, Xia S, Lee DJ, Li Z, Baldominos P, Ru H, Luo HR, Agudo J, Lieberman J, Wu H. Small-molecule GSDMD agonism in tumors stimulates antitumor immunity without toxicity. Cell 2024; 187:6165-6181.e22. [PMID: 39243763 PMCID: PMC11648675 DOI: 10.1016/j.cell.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/14/2023] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Gasdermin-mediated inflammatory cell death (pyroptosis) can activate protective immunity in immunologically cold tumors. Here, we performed a high-throughput screen for compounds that could activate gasdermin D (GSDMD), which is expressed widely in tumors. We identified 6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB) as a direct and selective GSDMD agonist that activates GSDMD pore formation and pyroptosis without cleaving GSDMD. In mouse tumor models, pulsed and low-level pyroptosis induced by DMB suppresses tumor growth without harming GSDMD-expressing immune cells. Protection is immune-mediated and abrogated in mice lacking lymphocytes. Vaccination with DMB-treated cancer cells protects mice from secondary tumor challenge, indicating that immunogenic cell death is induced. DMB treatment synergizes with anti-PD-1. DMB treatment does not alter circulating proinflammatory cytokine or leukocyte numbers or cause weight loss. Thus, our studies reveal a strategy that relies on a low level of tumor cell pyroptosis to induce antitumor immunity and raise the possibility of exploiting pyroptosis without causing overt toxicity.
Collapse
Affiliation(s)
- Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ying Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haiwei Zhang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Setu M Vora
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jun Jacob Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ming Shi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ahmet B Tufan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Liam B Healy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dian-Jang Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Zhouyihan Li
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Pilar Baldominos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Heng Ru
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA 02115, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
181
|
Hong P, Hu Z, Lin J, Cui K, Gao Z, Tian X, Shi Q, Lin T, Wei G. Multi-omics revealed that ELAVL3 regulates MYCN in neuroblastoma via immunogenic cell death: Risk stratification and experimental research. Int J Biol Macromol 2024; 282:137045. [PMID: 39486730 DOI: 10.1016/j.ijbiomac.2024.137045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Neuroblastoma (NB), a common and highly lethal malignant disease in pediatrics, still lacks an effective therapeutic approach that addresses all conditions. Immunogenic Cell Death (ICD) plays a crucial role in tumor cell death and triggers a potent anti-tumor immune response. In this study, we report an ICD-related index (ICDR-Index) in NB through various machine learning methodologies, utilizing bulk transcriptome data from 1244 NB samples and 16 scRNA-seq datasets. Our results showed that the ICDR-Index could accurately identify different risk subtypes of patients with NB and provide predictive value for prognosis. Importantly, we found that high-risk patients with NB exhibited significantly poor overall survival (OS) rates, adverse clinical phenotypes, poor immune cell infiltration, and low sensitivity to immunotherapy. Furthermore, we identified ELAVL3 as a key gene within the ICDR-Index, where high expression levels were associated with malignancy and poor OS in NB. Additionally, targeted silencing of ELAVL3 down-regulated MYCN gene expression and reduced the malignancy of NB cells. Notably, the si-ELAVL3-transfected NB cells enhanced the anti-tumor activity of NK cells. Collectively, this study offers avenues for predicting the risk stratification of patients with NB and reveals a potential mechanism by which ELAVL3 regulates NB cell death.
Collapse
Affiliation(s)
- Peng Hong
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Zaihong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Jie Lin
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Kongkong Cui
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Zhiqiang Gao
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Qinlin Shi
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China.
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, China
| |
Collapse
|
182
|
Tang M, Song J, Zhang S, Shu X, Liu S, Ashrafizadeh M, Ertas YN, Zhou Y, Lei M. Innovative theranostic hydrogels for targeted gastrointestinal cancer treatment. J Transl Med 2024; 22:970. [PMID: 39465365 PMCID: PMC11514878 DOI: 10.1186/s12967-024-05749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Gastrointestinal tumors are the main causes of death among the patients. These tumors are mainly diagnosed in the advanced stages and their response to therapy is unfavorable. In spite of the development of conventional therapeutics including surgery, chemotherapy, radiotherapy and immunotherapy, the treatment of these tumors is still challenging. As a result, the new therapeutics based on (nano)biotechnology have been introduced. Hydrogels are polymeric 3D networks capable of absorbing water to swell with favorable biocompatibility. In spite of application of hydrogels in the treatment of different human diseases, their wide application in cancer therapy has been improved because of their potential in drug and gene delivery, boosting chemotherapy and immunotherapy as well as development of vaccines. The current review focuses on the role of hydrogels in the treatment of gastrointestinal tumors. Hydrogels provide delivery of drugs (both natural or synthetic compounds and their co-delivery) along with gene delivery. Along with delivery, hydrogels stimulate phototherapy (photothermal and photodynamic therapy) in the suppression of these tumors. Besides, the ability of hydrogels for the induction of immune-related cells such as dendritic cells can boost cancer immunotherapy. For more specific cancer therapy, the stimuli-responsive types of hydrogels including thermo- and pH-sensitive hydrogels along with their self-healing ability have improved the site specific drug delivery. Moreover, hydrogels are promising for diagnosis, circulating tumor cell isolation and detection of biomarkers in the gastrointestinal tumors, highlighting their importance in clinic. Hence, hydrogels are diagnostic and therapeutic tools for the gastrointestimal tumors.
Collapse
Affiliation(s)
- Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China
| | - Junzhou Song
- Department of Oncology, BoAo Evergrande International Hospital, Qionghai, 571400, Hainan Province, China
| | - Shuyi Zhang
- Department of Health Management Center, Chongqing General Hospital, Chongqing University, Chongqing, 401120, China
| | - Xiaolei Shu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, Shandong, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, 38039, Kayseri, Türkiye
- Department of Technical Sciences, Western Caspian University, AZ1001, Baku, Azerbaijan
| | - Ya Zhou
- Department of Oncology, Chongqing General Hospital, Chongqing University, No.104 Pipa Mountain Main Street, Chongqing, 401120, China.
| | - Ming Lei
- Department of Nuclear Medicine, Chongqing University FuLing Hospital, Chongqing University, No. 2 Gaosuntang Road, Chongqing, China.
| |
Collapse
|
183
|
Yang C, Ming H, Li B, Liu S, Chen L, Zhang T, Gao Y, He T, Huang C, Du Z. A pH and glutathione-responsive carbon monoxide-driven nano-herb delivery system for enhanced immunotherapy in colorectal cancer. J Control Release 2024; 376:659-677. [PMID: 39442888 DOI: 10.1016/j.jconrel.2024.10.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Dihydroartemisinin (DHA), a compound extracted from the herbal medicine Artemisia annua, has shown promise as a clinical treatment strategy for colorectal cancer. However, its clinical use is hindered by its low water solubility and bioavailability. A pH/glutathione (GSH) dual-responsive nano-herb delivery system (PMDC NPs) has been developed for the targeted delivery of DHA, accompanied by abundant carbon monoxide (CO) release. Due to the passive enhanced permeability and retention (EPR) effect and active targeting mediated by pHCT74 peptide binding to overexpressed α-enolase on colorectal cancer cells, the pHCT74/MOF-5@DHA&CORM-401 nanoparticles (PMDC NPs) exhibited specific targeting capacity against colorectal cancer cells. Once reaching the tumor site, the pH/GSH dual-responsive behavior of metal-organic framework-5 (MOF-5) enabled the rapid release of cargo, including DHA and CORM-401, in the acidic tumor microenvironment. Subsequently, DHA stimulated CORM-401 to release CO, which facilitated ROS-induced ferroptosis and apoptosis, leading to immunogenic cell death (ICD) and a sustained antitumor response through the release of tumor-associated antigens (TAAs) and damage-associated molecular patterns (DAMPs). Overall, PMDC NPs enhanced the bioavailability of DHA and exhibited outstanding therapeutic effectiveness both in vitro and in vivo, indicating their potential as a promising and feasible alternative for synergistic treatment with immunotherapy and gas therapy in the clinical management of colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihua Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Zhang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yajie Gao
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China.
| |
Collapse
|
184
|
Jiang Y, Cao H, Deng H, Guan L, Langthasa J, Colburg DRC, Melemenidis S, Cotton RM, Aleman J, Wang XJ, Graves EE, Kalbasi A, Pu K, Rao J, Le QT. Gold-siRNA supraclusters enhance the anti-tumor immune response of stereotactic ablative radiotherapy at primary and metastatic tumors. Nat Biotechnol 2024:10.1038/s41587-024-02448-0. [PMID: 39448881 PMCID: PMC12018592 DOI: 10.1038/s41587-024-02448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Strategies to enhance the anti-tumor immune response of stereotactic ablative radiotherapy (SABR) at primary tumors and abscopal sites are under intensive investigation. Here we report a metabolizable binary supracluster (BSCgal) that combines gold nanoclusters as radiosensitizing adjuvants with small interfering RNA (siRNA) targeting the immunosuppressive mediator galectin-1 (Gal-1). BSCgal comprises reversibly crosslinked cationic gold nanoclusters and siRNA complexes in a polymer matrix that biodegrades over weeks, facilitating clearance (90.3% in vivo clearance at 4 weeks) to reduce toxicity. The particle size well above the renal filtration threshold facilitates passive delivery to tumors. Using mouse models of head and neck cancer, we show that BSCgal augments the radiodynamic and immunotherapeutic effects of SABR at the primary and metastatic tumors by promoting tumor-inhibitory leukocytes, upregulating cytotoxic granzyme B and reducing immunosuppressive cell populations. It outperforms SABR plus Gal-1 antagonists, chemoradiation drug cisplatin or PD-1 inhibitor. This work presents a translatable strategy to converge focal radiosensitization with targeted immune checkpoint silencing for personalized radioimmunotherapy.
Collapse
Affiliation(s)
- Yuyan Jiang
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Hongbin Cao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Huaping Deng
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Li Guan
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Jimpi Langthasa
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | | | | | - Renee M Cotton
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - John Aleman
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Xiao-Jing Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Veterans Affairs Northern California Health Care System, Mather, CA, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
185
|
Zhang J, Chen J, Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol 2024; 981:176913. [PMID: 39154830 DOI: 10.1016/j.ejphar.2024.176913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Tumor immunotherapy, especially immune checkpoint inhibitors (ICIs), has been applied in clinical practice, but low response to immune therapies remains a thorny issue. Oncolytic viruses (OVs) are considered promising for cancer treatment because they can selectively target and destroy tumor cells followed by spreading to nearby tumor tissues for a new round of infection. Immunogenic cell death (ICD), which is the major mechanism of OVs' anticancer effects, is induced by endoplasmic reticulum stress and reactive oxygen species overload after virus infection. Subsequent release of specific damage-associated molecular patterns (DAMPs) from different types of tumor cells can transform the tumor microenvironment from "cold" to "hot". In this paper, we broadly define ICD as those types of cell death that is immunogenic, and describe their signaling pathways respectively. Focusing on ICD, we also elucidate the advantages and disadvantages of recent combination therapies and their future prospects.
Collapse
Affiliation(s)
- Jingyu Zhang
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiahe Chen
- The First Clinical College of Wenzhou Medical University, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kezhi Lin
- Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiential Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
186
|
Rencinai A, Tollapi E, Marianantoni G, Brunetti J, Henriquez T, Pini A, Bracci L, Falciani C. Branched oncolytic peptides target HSPGs, inhibit metastasis, and trigger the release of molecular determinants of immunogenic cell death in pancreatic cancer. Front Mol Biosci 2024; 11:1429163. [PMID: 39417004 PMCID: PMC11479992 DOI: 10.3389/fmolb.2024.1429163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Immunogenic cell death (ICD) can be exploited to treat non-immunoreactive tumors that do not respond to current standard and innovative therapies. Not all chemotherapeutics trigger ICD, among those that do exert this effect, there are anthracyclines, irinotecan, some platinum derivatives and oncolytic peptides. We studied two new branched oncolytic peptides, BOP7 and BOP9 that proved to elicit the release of damage-associated molecular patterns DAMPS, mediators of ICD, in pancreatic cancer cells. The two BOPs selectively bound and killed tumor cells, particularly PANC-1 and Mia PaCa-2, but not cells of non-tumor origin such as RAW 264.7, CHO-K1 and pgsA-745. The cancer selectivity of the two BOPs may be attributed to their repeated cationic sequences, which enable multivalent binding to heparan sulfate glycosaminoglycans (HSPGs), bearing multiple anionic sulfation patterns on cancer cells. This interaction of BOPs with HSPGs not only fosters an anti-metastatic effect in vitro, as demonstrated by reduced adhesion and migration of PANC-1 cancer cells, but also shows promising tumor-specific cytotoxicity and low hemolytic activity. Remarkably, the cytotoxicity induced by BOPs triggers the release of DAMPs, particularly HMGB1, IFN-β and ATP, by dying cells, persisting longer than the cytotoxicity of conventional chemotherapeutic agents such as irinotecan and daunorubicin. An in vivo assay in nude mice showed an encouraging 20% inhibition of tumor grafting and growth in a pancreatic cancer model by BOP9.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
187
|
Meng M, Wu J, Guo X, Li T, Yue P, Tu Z, Wu R, Xing Y, Li F, Cao Q, Li K, Shang L, Chen J, Pang X, Li Y, Hao K, Tian H, Chen X. An Injectable Photothermal-Fusing Hydrogel: Achieving Temperature-Controllable Mild Photothermal Therapy to Reverse Chemotherapy-Induced Immune Tolerance. NANO LETTERS 2024. [PMID: 39356082 DOI: 10.1021/acs.nanolett.4c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Mild photothermal therapy (M-PTT) can induce immunogenic cell death (ICD) to reverse the immune tolerance caused by low-dose chemotherapy. However, it still needs convenient strategies to control temperature during M-PTT. In this work, the phase change material lauric acid (LA, melting point 43 °C) was introduced to construct nanoparticles loaded with deferoxamine mesylate (DFO) and cisplatin (CDDP), which were mixed into a supramolecular hydrogel formed by polyvinylpyrrolidone (PVP)/tannic acid (TA)/Fe3+ to obtain FeTP@DLD/DLC. When the temperature reached 43 °C under laser irradiation, DFO was released from melted LA and destroyed the interaction between Fe3+ and TA to cut off the temperature increase, achieving a "photothermal fusing effect". Meanwhile, CDDP was released for low-dose chemotherapy, while the resulting immune tolerance was reversed by M-PTT-induced ICD. Finally, through a single administration, FeTP@DLD/DLC-mediated M-PTT synergized with chemotherapy achieved a potent antitumor effect. This work provided a convenient solution for the revitalization of these traditional antitumor therapies.
Collapse
Affiliation(s)
- Meng Meng
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jiayan Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoya Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Tong Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Penghan Yue
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Zhaoyuan Tu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Ruiying Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yumeng Xing
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Qiannan Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Keyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Ludan Shang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jie Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuan Pang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhui Li
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Kai Hao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Huayu Tian
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xuesi Chen
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
188
|
Dong Y, Zhang Z, Luan S, Zheng M, Wang Z, Chen Y, Chen X, Tong A, Yang H. Novel bispecific antibody-drug conjugate targeting PD-L1 and B7-H3 enhances antitumor efficacy and promotes immune-mediated antitumor responses. J Immunother Cancer 2024; 12:e009710. [PMID: 39357981 PMCID: PMC11448212 DOI: 10.1136/jitc-2024-009710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) offer a promising approach, combining monoclonal antibodies with chemotherapeutic drugs to target cancer cells effectively while minimizing toxicity. METHODS This study examined the therapeutic efficacy and potential mechanisms of a bispecific ADC (BsADC) in laryngeal squamous cell carcinoma. This BsADC selectively targets the immune checkpoints programmed cell death ligand-1 (PD-L1) and B7-H3, and the precise delivery of the small-molecule toxin monomethyl auristatin E. RESULTS Our findings demonstrated that the BsADC outperformed its bispecific antibody and PD-L1 or B7-H3 ADC counterparts, particularly in terms of in vitro/in vivo tumor cytotoxicity, demonstrating remarkable immune cytotoxicity. Additionally, we observed potent activation of tumor-specific immunity and significant induction of markers of immunogenic cell death (ICD) and potential endoplasmic reticulum stress. CONCLUSION In conclusion, this novel BsADC, through immune checkpoint inhibition and promotion of ICD, amplified durable tumor immune cytotoxicity, providing novel insights and potential avenues for future cancer treatments and overcoming resistance.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Meijun Zheng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongdong Chen
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui Yang
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
189
|
Cui Z, Wang L, Liu W, Xu D, Zhang T, Ma B, Zhang K, Yuan L, Bing Z, Liu J, Liu B, Wu W, Tian L. Imageable Brachytherapy with Chelator-Free Radiolabeling Hydrogel. Adv Healthc Mater 2024; 13:e2401438. [PMID: 38744050 DOI: 10.1002/adhm.202401438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Brachytherapy stands as an essential clinical approach for combating locally advanced tumors. Here, an injectable brachytherapy hydrogel is developed for the treatment of both local and metastatic tumor. Fe-tannins nanoparticles are efficiently and stably radiolabeled with clinical used therapeutic radionuclides (such as 131I, 90Y, 177Lu, and 225Ac) without a chelator, and then chemically cross-linked with 4-armPEG-SH to form brachytherapy hydrogel. Upon intratumoral administration, magnetic resonance imaging (MRI) signal from ferric ions embedded within the hydrogel directly correlates with the retention dosage of radionuclides, which can real-time monitor radionuclides emitting short-range rays in vivo without penetration limitation during brachytherapy. The hydrogel's design ensures the long-term tumor retention of therapeutic radionuclides, leading to the effective eradication of local tumor. Furthermore, the radiolabeled hydrogel is integrated with an adjuvant to synergize with immune checkpoint blocking therapy, thereby activating potent anti-tumor immune responses and inhibiting metastatic tumor growth. Therefore, this work presents an imageable brachytherapy hydrogel for real-time monitoring therapeutic process, and expands the indications of brachytherapy from treatment of localized tumors to metastatic tumors.
Collapse
Affiliation(s)
- Zhencun Cui
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Liqin Wang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Wei Liu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Xu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Taofeng Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, 287 Langongping Road, Lanzhou, 730000, China
| | - Baoliang Ma
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Kai Zhang
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Lingyan Yuan
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Zhitong Bing
- Key Laboratory of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, Second Hospital of Lanzhou University, 82 Cuiying Gate, Lanzhou, 730000, China
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Stomatology, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, China
| | - Wangsuo Wu
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| |
Collapse
|
190
|
Wang R, Kumar P, Reda M, Wallstrum AG, Crumrine NA, Ngamcherdtrakul W, Yantasee W. Nanotechnology Applications in Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308639. [PMID: 38126905 PMCID: PMC11493329 DOI: 10.1002/smll.202308639] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Next-generation cancer treatments are expected not only to target cancer cells but also to simultaneously train immune cells to combat cancer while modulating the immune-suppressive environment of tumors and hosts to ensure a robust and lasting response. Achieving this requires carriers that can codeliver multiple therapeutics to the right cancer and/or immune cells while ensuring patient safety. Nanotechnology holds great potential for addressing these challenges. This article highlights the recent advances in nanoimmunotherapeutic development, with a focus on breast cancer. While immune checkpoint inhibitors (ICIs) have achieved remarkable success and lead to cures in some cancers, their response rate in breast cancer is low. The poor response rate in solid tumors is often associated with the low infiltration of anti-cancer T cells and an immunosuppressive tumor microenvironment (TME). To enhance anti-cancer T-cell responses, nanoparticles are employed to deliver ICIs, bispecific antibodies, cytokines, and agents that induce immunogenic cancer cell death (ICD). Additionally, nanoparticles are used to manipulate various components of the TME, such as immunosuppressive myeloid cells, macrophages, dendritic cells, and fibroblasts to improve T-cell activities. Finally, this article discusses the outlook, challenges, and future directions of nanoimmunotherapeutics.
Collapse
Affiliation(s)
- Ruijie Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Pramod Kumar
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
| | - Moataz Reda
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Noah A. Crumrine
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| | | | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 S Bond Ave, Portland, OR 97239, USA
- PDX Pharmaceuticals, 3303 S Bond Ave, CH13B, Portland, OR 97239, USA
| |
Collapse
|
191
|
Wu Y, Lin JY, Zhou YD, Liu HJ, Lu SX, Zhang XK, Guan YY, Nagle DG, Zhang WD, Chen HZ, Luan X. Oncolytic Peptide-Nanoplatform Drives Oncoimmune Response and Reverses Adenosine-Induced Immunosuppressive Tumor Microenvironment. Adv Healthc Mater 2024; 13:e2303445. [PMID: 38290499 DOI: 10.1002/adhm.202303445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The application of oncolytic peptides has become a powerful approach to induce complete and long-lasting remission in multiple types of carcinomas, as affirmed by the appearance of tumor-associated antigens and adenosine triphosphate (ATP) in large quantities, which jumpstarts the cancer-immunity cycle. However, the ATP breakdown product adenosine is a significant contributor to forming the immunosuppressive tumor microenvironment, which substantially weakens peptide-driven oncolytic immunotherapy. In this study, a lipid-coated micelle (CA@TLM) loaded with a stapled oncolytic peptide (PalAno) and an adenosine 2A receptor (A2AR) inhibitor (CPI-444) is devised to enact tumor-targeted oncolytic immunotherapy and to overcome adenosine-mediated immune suppression simultaneously. The CA@TLM micelle accumulates in tumors with high efficiency, and the acidic tumor microenvironment prompts the rapid release of PalAno and CPI-444. Subsequently, PalAno induces swift membrane lysis of tumor cells and the release of antigenic materials. Meanwhile, CPI-444 blocks the activation of the immunosuppressive adenosine-A2AR signaling pathway. This combined approach exhibits pronounced synergy at stalling tumor growth and metastasis in animal models for triple-negative breast cancer and melanoma, providing a novel strategy for enhanced oncolytic immunotherapy.
Collapse
Affiliation(s)
- Ye Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia-Yi Lin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Dong Zhou
- Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, MS, 38677, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sheng-Xin Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Kun Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying-Yun Guan
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Dale G Nagle
- Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100700, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
192
|
Nik Nabil WN, Dai R, Liu M, Xi Z, Xu H. Repurposing cardiac glycosides for anticancer treatment: a review of clinical studies. Drug Discov Today 2024; 29:104129. [PMID: 39098384 DOI: 10.1016/j.drudis.2024.104129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cardiac glycosides (CGs), which are traditionally used for heart disease, show promise for cancer therapy. However, there is a lack of a comprehensive review of clinical studies in this area, and so far, CGs have not been widely integrated into clinical cancer treatment. This review covers clinical studies from the past five years, highlighting the potential of CGs to reduce cancer risk, enhance chemotherapy effectiveness, mitigate chemotherapy-induced side effects and improve quality of life. Future clinical trials should personalize the dosage of CGs, integrate molecular testing and investigate immunogenic cell death induction and the potential of CGs for treating bone cancer and metastasis. Optimizing the repurposing of CGs for anticancer treatment requires consideration of specific CGs, cancer types and concurrent medications.
Collapse
Affiliation(s)
- Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China; National Pharmaceutical Regulatory Agency, Ministry of Health, Lot 36, Jalan University, Petaling Jaya, Selangor 46200, Malaysia
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
193
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
194
|
Yang S, Hu X, Yong Z, Dou Q, Quan C, Cheng HB, Zhang M, Wang J. GSH-responsive bithiophene Aza-BODIPY@HMON nanoplatform for achieving triple-synergistic photoimmunotherapy. Colloids Surf B Biointerfaces 2024; 242:114109. [PMID: 39047644 DOI: 10.1016/j.colsurfb.2024.114109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Photoimmunotherapy represents an innovative approach to enhancing the efficiency of immunotherapy in cancer treatment. This approach involves the fusion of immunotherapy and phototherapy (encompassing techniques like photodynamic therapy (PDT) and photothermal therapy (PTT)). Boron-dipyrromethene (BODIPY) has the potential to trigger immunotherapy owing to its excellent PD and PT efficiency. However, the improvements in water solubility, bioavailability, PD/PT combined efficiency, and tumor tissue targeting of BODIPY require introduction of suitable carriers for potential practical application. Herein, a disulfide bond-based hollow mesoporous organosilica (HMON) with excellent biocompatibility and GSH-responsive degradation properties was used as a carrier to load a bithiophene Aza-BODIPY dye (B5), constructing a sample chemotherapy reagent-free B5@HMON nanoplatform achieving triple-synergistic photoimmunotherapy. HMON, involving disulfide bond, is utilized to improve water solubility, tumor tissue targeting, and PD efficiency by depleting GSH and enhancing host-guest interaction between B5 and HMO. The study reveals that HMON's large specific surface area and porous properties significantly enhance the light collection and oxygen adsorption capacity. The HMON's rich mesoporous structure and internal cavity achieved a loading rate of B5 at 11 %. It was found that the triple-synergistic nanoplatform triggered a stronger anti-tumor immune response, including tumor invasion, cytokine production, calreticulin translocation, and dendritic cell maturation, eliciting specific tumor-specific immunological responses in vivo and in vitro. The BALB/c mouse model with 4T1 tumors was used to assess tumor suppression efficiency in vivo, showing that almost all tumors in the B5@HMON group disappeared after 14 days. Such a simple chemotherapy reagent-free B5@HMON nanoplatform achieved triple-synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Siao Yang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Zhengze Yong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Cuilu Quan
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
195
|
Bo Y, Wang H. Biomaterial-Based In Situ Cancer Vaccines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210452. [PMID: 36649567 PMCID: PMC10408245 DOI: 10.1002/adma.202210452] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Cancer immunotherapies have reshaped the paradigm for cancer treatment over the past decade. Among them, therapeutic cancer vaccines that aim to modulate antigen-presenting cells and subsequent T cell priming processes are among the first FDA-approved cancer immunotherapies. However, despite showing benign safety profiles and the capability to generate antigen-specific humoral and cellular responses, cancer vaccines have been limited by the modest therapeutic efficacy, especially for immunologically cold solid tumors. One key challenge lies in the identification of tumor-specific antigens, which involves a costly and lengthy process of tumor cell isolation, DNA/RNA extraction, sequencing, mutation analysis, epitope prediction, peptide synthesis, and antigen screening. To address these issues, in situ cancer vaccines have been actively pursued to generate endogenous antigens directly from tumors and utilize the generated tumor antigens to elicit potent cytotoxic T lymphocyte (CTL) response. Biomaterials-based in situ cancer vaccines, in particular, have achieved significant progress by taking advantage of biomaterials that can synergize antigens and adjuvants, troubleshoot delivery issues, home, and manipulate immune cells in situ. This review will provide an overview of biomaterials-based in situ cancer vaccines, either living or artificial materials, under development or in the clinic, and discuss the design criteria for in situ cancer vaccines.
Collapse
Affiliation(s)
- Yang Bo
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois (CCIL), Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
196
|
Liu D, Wang L, Guo Y. Advances in and prospects of immunotherapy for prostate cancer. Cancer Lett 2024; 601:217155. [PMID: 39127338 DOI: 10.1016/j.canlet.2024.217155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Immunotherapy has shown promising therapeutic effects in hematological malignancies and certain solid tumors and has emerged as a critical and highly potential treatment modality for cancer. However, prostate cancer falls under the category of immune-resistant cold tumors, for which immunotherapy exhibits limited efficacy in patients with solid tumors. Thus, it is important to gain a deeper understanding of the tumor microenvironment in prostate cancer to facilitate immune system activation and overcome immune suppression to advance immunotherapy for prostate cancer. In this review, we discuss the immunosuppressive microenvironment of prostate cancer, which is characterized by the presence of few tumor-infiltrating lymphocytes, abundant immunosuppressive cells, low immunogenicity, and a noninflammatory phenotype, which significantly influences the efficacy of immunotherapy for prostate cancer. Immunotherapy is mainly achieved by activating the host immune system and overcoming immunosuppression. In this regard, we summarize the therapeutic advances in immune checkpoint blockade, immunogenic cell death, reversal of the immunosuppressive tumor microenvironment, tumor vaccines, immune adjuvants, chimeric antigen receptor T-cell therapy, and overcoming penetration barriers in prostate cancer, with the aim of providing novel research insights and approaches to enhance the effectiveness of immunotherapy for prostate cancer.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
197
|
Huang Y, Zou J, Huo J, Zhang M, Yang Y. Sulfate Radical Based In Situ Vaccine Boosts Systemic Antitumor Immunity via Concurrent Activation of Necroptosis and STING Pathway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407914. [PMID: 39148154 DOI: 10.1002/adma.202407914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/07/2024] [Indexed: 08/17/2024]
Abstract
In situ vaccine (ISV) can provoke systemic anti-tumor immunity through the induction of immunogenic cell death (ICD). The development of ISV technology has been restricted by the limited and suboptimal ICD driven tumor antigen production which are currently relying on chemo-drugs, photo-/radio-sensitizers, oncolytic-virus and immunostimulatory agents. Herein, a sulfate radical (SO4 ·-) based ISV is reported that accomplishes superior tumor immunotherapy dispense from conventional approaches. The ISV denoted as P-Mn-LDH is constructed by intercalating peroxydisulfate (PDS, a precursor of SO4 ·-) into manganese layered double hydroxide nanoparticles (Mn-LDH). This design allows the stabilization of PDS under ambient condition, but triggers a Mn2+ mediated PDS decomposition in acidic tumor microenvironment (TME) to generate in situ SO4 ·-. Importantly, it is found that the SO4 ·- radicals not only effectively kill cancer cells, but also induce a necroptotic cell death pathway, leading to robust ICD signaling for eliciting adaptive immunity. Further, the P-Mn-LDH can activate the stimulator of interferon genes (STING) pathway to further boost anti-tumor immunity. Collectively, the P-Mn-LDH based ISV exhibited potent activity in inhibiting tumor growth and lung metastasis. When combined with immune checkpoint inhibitor, significant inhibition of distant tumors is achieved. This study underpins the promise of SO4 ·- based vaccine technology for cancer immunotherapy.
Collapse
Affiliation(s)
- Yiming Huang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Jie Zou
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Jiangyan Huo
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Min Zhang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Yannan Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoeletronics and Perception Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
- South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
198
|
Scibilia KR, Schlicke P, Schneller F, Kuttler C. Predicting resistance and pseudoprogression: are minimalistic immunoediting mathematical models capable of forecasting checkpoint inhibitor treatment outcomes in lung cancer? Math Biosci 2024; 376:109287. [PMID: 39218211 DOI: 10.1016/j.mbs.2024.109287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND The increased application of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 in lung cancer treatment generates clinical need to reliably predict individual patients' treatment outcomes. METHODS To bridge the prediction gap, we examine four different mathematical models in the form of ordinary differential equations, including a novel delayed response model. We rigorously evaluate their individual and combined predictive capabilities with regard to the patients' progressive disease (PD) status through equal weighting of model-derived outcome probabilities. RESULTS Fitting the complete treatment course, the novel delayed response model (R2=0.938) outperformed the simplest model (R2=0.865). The model combination was able to reliably predict patient PD outcome with an overall accuracy of 77% (sensitivity = 70%, specificity = 81%), solely through calibration with primary tumor longest diameter measurements. It autonomously identified a subset of 51% of patients where predictions with an overall accuracy of 81% (sensitivity = 81%, specificity = 81%) can be achieved. All models significantly outperformed a fully data-driven machine learning-based approach. IMPLICATIONS These modeling approaches provide a dynamic baseline framework to support clinicians in treatment decisions by identifying different treatment outcome trajectories with already clinically available measurement data. LIMITATIONS AND FUTURE DIRECTIONS Conjoint application of the presented approach with other predictive tools and biomarkers, as well as further disease information (e.g. metastatic stage), could further enhance treatment outcome prediction. We believe the simple model formulations allow widespread adoption of the developed models to other cancer types. Similar models can easily be formulated for other treatment modalities.
Collapse
Affiliation(s)
- Kevin Robert Scibilia
- Department of Computer Science, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany
| | - Pirmin Schlicke
- Department of Mathematics, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany.
| | - Folker Schneller
- Department of Internal Medicine III, Klinikum Rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany
| | - Christina Kuttler
- Department of Mathematics, TUM School of Computation, Information and Technology, Technical University of Munich, Boltzmannstr. 3, Garching, 85747, Germany
| |
Collapse
|
199
|
Xu X, Zhang Y, Meng C, Zheng W, Wang L, Zhao C, Luo F. Nanozymes in cancer immunotherapy: metabolic disruption and therapeutic synergy. J Mater Chem B 2024; 12:9111-9143. [PMID: 39177061 DOI: 10.1039/d4tb00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Over the past decade, there has been a growing emphasis on investigating the role of immunotherapy in cancer treatment. However, it faces challenges such as limited efficacy, a diminished response rate, and serious adverse effects. Nanozymes, a subset of nanomaterials, demonstrate boundless potential in cancer catalytic therapy for their tunable activity, enhanced stability, and cost-effectiveness. By selectively targeting the metabolic vulnerabilities of tumors, they can effectively intensify the destruction of tumor cells and promote the release of antigenic substances, thereby eliciting immune clearance responses and impeding tumor progression. Combined with other therapies, they synergistically enhance the efficacy of immunotherapy. Hence, a large number of metabolism-regulating nanozymes with synergistic immunotherapeutic effects have been developed. This review summarizes recent advancements in cancer immunotherapy facilitated by nanozymes, focusing on engineering nanozymes to potentiate antitumor immune responses by disturbing tumor metabolism and performing synergistic treatment. The challenges and prospects in this field are outlined. We aim to provide guidance for nanozyme-mediated immunotherapy and pave the way for achieving durable tumor eradication.
Collapse
Affiliation(s)
- Xiangrui Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chijun Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lingfeng Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chenyi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
200
|
Huang H, Li L, Tong L, Luo H, Luo H, Zhang Q. Perioperative PD-1/PD-L1 inhibitors for resectable non-small cell lung cancer: A meta-analysis based on randomized controlled trials. PLoS One 2024; 19:e0310808. [PMID: 39312569 PMCID: PMC11419369 DOI: 10.1371/journal.pone.0310808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND PD-1/PD-L1 inhibitors (PI) have shown promising results in both neoadjuvant and adjuvant therapies for resectable non-small cell lung cancer (NSCLC). However, substantial evidence from large-scale studies is still lacking for their use in the perioperative setting (neoadjuvant plus adjuvant). This meta-analysis aims to evaluate the integration of perioperative PI (PPI) with neoadjuvant chemotherapy for resectable NSCLC. METHODS To identify appropriate randomized controlled trials (RCTs), we thoroughly explored six different databases. The primary endpoint was survival, while the secondary measures included pathological responses and adverse events (AEs). RESULTS Six RCTs involving 2941 patients were included. The PPI group significantly improved overall survival (OS) (hazard ratio [HR]: 0.62 [0.51, 0.77]), event-free survival (EFS) (HR: 0.57 [0.51, 0.64]), pathological complete response (risk ratio [RR]: 5.81 [4.47, 7.57]), and major pathological response (RR: 2.60 [1.77, 3.82]). Benefits in EFS were seen across all subgroups. OS rates at 12-48 months and EFS rates at 6-48 months were higher in the PPI cohort. Furthermore, the advantages in OS and EFS increased with prolonged survival times. The PPI group also exhibited higher rates of surgery and R0 resections. However, the PPI group experienced more grade 3-5 AEs, serious AEs, and treatment discontinuations due to AEs. CONCLUSIONS The integration of perioperative PI with neoadjuvant chemotherapy can significantly improve survival and pathological responses for resectable NSCLC. However, the increased incidence of grade 3-5 AEs must be carefully evaluated.
Collapse
Affiliation(s)
- Hai Huang
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| | - Lianyun Li
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| | - Ling Tong
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| | - Houfu Luo
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| | - Huijing Luo
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| | - Qimin Zhang
- Department of Oncology, Taihe People’s Hospital, Taihe, China
| |
Collapse
|