151
|
Revived Amplicon Sequence Variants Monitoring in Closed Systems Identifies More Dormant Microorganisms. Microorganisms 2023; 11:microorganisms11030757. [PMID: 36985330 PMCID: PMC10055844 DOI: 10.3390/microorganisms11030757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The large number of dormant microorganisms present in the environment is an important component of microbial diversity, and neglecting dormant microorganisms would be disruptive to all research under the science of microbial diversity. However, current methods can only predict the dormancy potential of microorganisms in a sample and are not yet able to monitor dormant microorganisms directly and efficiently. Based on this, this study proposes a new method for the identification of dormant microorganisms based on high-throughput sequencing technology: Revived Amplicon sequence variants (ASV) Monitoring (RAM). Pao cai (Chinese fermented vegetables) soup was used to construct a closed experimental system, and sequenced samples were collected at 26 timepoints over a 60-day period. RAM was used to identify dormant microorganisms in the samples. The results were then compared with the results of the currently used gene function prediction (GFP), and it was found that RAM was able to identify more dormant microorganisms. In 60 days, GFP monitored 5045 ASVs and 270 genera, while RAM monitored 27,415 ASVs and 616 genera, and the RAM results were fully inclusive of the GFP results. Meanwhile, the consistency of GFP and RAM was also found in the results. The dormant microorganisms monitored by both showed a four-stage distribution pattern over a 60-day period, with significant differences in the community structure between the stages. Therefore, RAM monitoring of dormant microorganisms is effective and feasible. It is worth noting that the results of GFP and RAM can complement and refer to each other. In the future, the results obtained from RAM can be used as a database to extend and improve the monitoring of dormant microorganisms by GFP, and the two can be combined with each other to build a dormant microorganism detection system.
Collapse
|
152
|
Corona Ramirez A, Bregnard D, Junier T, Cailleau G, Dorador C, Bindschedler S, Junier P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol 2023; 23:68. [PMID: 36918804 PMCID: PMC10015814 DOI: 10.1186/s12866-023-02809-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Collapse
Affiliation(s)
- Andrea Corona Ramirez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
153
|
Vera-Gargallo B, Hernández M, Dumont MG, Ventosa A. Thrive or survive: prokaryotic life in hypersaline soils. ENVIRONMENTAL MICROBIOME 2023; 18:17. [PMID: 36915176 PMCID: PMC10012753 DOI: 10.1186/s40793-023-00475-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Soil services are central to life on the planet, with microorganisms as their main drivers. Thus, the evaluation of soil quality requires an understanding of the principles and factors governing microbial dynamics within it. High salt content is a constraint for life affecting more than 900 million hectares of land, a number predicted to rise at an alarming rate due to changing climate. Nevertheless, little is known about how microbial life unfolds in these habitats. In this study, DNA stable-isotope probing (DNA-SIP) with 18O-water was used to determine for the first time the taxa able to grow in hypersaline soil samples (ECe = 97.02 dS/m). We further evaluated the role of light on prokaryotes growth in this habitat. RESULTS We detected growth of both archaea and bacteria, with taxon-specific growth patterns providing insights into the drivers of success in saline soils. Phylotypes related to extreme halophiles, including haloarchaea and Salinibacter, which share an energetically efficient mechanism for salt adaptation (salt-in strategy), dominated the active community. Bacteria related to moderately halophilic and halotolerant taxa, such as Staphylococcus, Aliifodinibius, Bradymonadales or Chitinophagales also grew during the incubations, but they incorporated less heavy isotope. Light did not stimulate prokaryotic photosynthesis but instead restricted the growth of most bacteria and reduced the diversity of archaea that grew. CONCLUSIONS The results of this study suggest that life in saline soils is energetically expensive and that soil heterogeneity and traits such as exopolysaccharide production or predation may support growth in hypersaline soils. The contribution of phototrophy to supporting the heterotrophic community in saline soils remains unclear. This study paves the way toward a more comprehensive understanding of the functioning of these environments, which is fundamental to their management. Furthermore, it illustrates the potential of further research in saline soils to deepen our understanding of the effect of salinity on microbial communities.
Collapse
Affiliation(s)
- Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Marcela Hernández
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Marc G Dumont
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain.
| |
Collapse
|
154
|
Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics 2023; 24:106. [PMID: 36899305 PMCID: PMC9999646 DOI: 10.1186/s12864-023-09175-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Collapse
|
155
|
Bradley JA, Trivedi CB, Winkel M, Mourot R, Lutz S, Larose C, Keuschnig C, Doting E, Halbach L, Zervas A, Anesio AM, Benning LG. Active and dormant microorganisms on glacier surfaces. GEOBIOLOGY 2023; 21:244-261. [PMID: 36450703 PMCID: PMC10099831 DOI: 10.1111/gbi.12535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Glacier and ice sheet surfaces host diverse communities of microorganisms whose activity (or inactivity) influences biogeochemical cycles and ice melting. Supraglacial microbes endure various environmental extremes including resource scarcity, frequent temperature fluctuations above and below the freezing point of water, and high UV irradiance during summer followed by months of total darkness during winter. One strategy that enables microbial life to persist through environmental extremes is dormancy, which despite being prevalent among microbial communities in natural settings, has not been directly measured and quantified in glacier surface ecosystems. Here, we use a combination of metabarcoding and metatranscriptomic analyses, as well as cell-specific activity (BONCAT) incubations to assess the diversity and activity of microbial communities from glacial surfaces in Iceland and Greenland. We also present a new ecological model for glacier microorganisms and simulate physiological state-changes in the glacial microbial community under idealized (i) freezing, (ii) thawing, and (iii) freeze-thaw conditions. We show that a high proportion (>50%) of bacterial cells are translationally active in-situ on snow and ice surfaces, with Actinomycetota, Pseudomonadota, and Planctomycetota dominating the total and active community compositions, and that glacier microorganisms, even when frozen, could resume translational activity within 24 h after thawing. Our data suggest that glacial microorganisms respond rapidly to dynamic and changing conditions typical of their natural environment. We deduce that the biology and biogeochemistry of glacier surfaces are shaped by processes occurring over short (i.e., daily) timescales, and thus are susceptible to change following the expected alterations to the melt-regime of glaciers driven by climate change. A better understanding of the activity of microorganisms on glacier surfaces is critical in addressing the growing concern of climate change in Polar regions, as well as for their use as analogues to life in potentially habitable icy worlds.
Collapse
Affiliation(s)
- James A. Bradley
- Queen Mary University of LondonLondonUK
- GFZ German Research Centre for GeosciencesBerlinGermany
| | | | - Matthias Winkel
- GFZ German Research Centre for GeosciencesBerlinGermany
- Bundesanstalt für Risikobewertung (BfR)BerlinGermany
| | - Rey Mourot
- GFZ German Research Centre for GeosciencesBerlinGermany
- Freie University BerlinBerlinGermany
| | - Stefanie Lutz
- GFZ German Research Centre for GeosciencesBerlinGermany
| | - Catherine Larose
- Environmental Microbial GenomicsUniversité de LyonEcully CedexFrance
| | | | - Eva Doting
- Environmental ScienceAarhus UniversityRoskildeDenmark
| | - Laura Halbach
- Environmental ScienceAarhus UniversityRoskildeDenmark
| | | | | | - Liane G. Benning
- GFZ German Research Centre for GeosciencesBerlinGermany
- Freie University BerlinBerlinGermany
| |
Collapse
|
156
|
Mechanisms and Applications of Bacterial Inoculants in Plant Drought Stress Tolerance. Microorganisms 2023; 11:microorganisms11020502. [PMID: 36838467 PMCID: PMC9958599 DOI: 10.3390/microorganisms11020502] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Agricultural systems are highly affected by climatic factors such as temperature, rain, humidity, wind, and solar radiation, so the climate and its changes are major risk factors for agricultural activities. A small portion of the agricultural areas of Brazil is irrigated, while the vast majority directly depends on the natural variations of the rains. The increase in temperatures due to climate change will lead to increased water consumption by farmers and a reduction in water availability, putting production capacity at risk. Drought is a limiting environmental factor for plant growth and one of the natural phenomena that most affects agricultural productivity. The response of plants to water stress is complex and involves coordination between gene expression and its integration with hormones. Studies suggest that bacteria have mechanisms to mitigate the effects of water stress and promote more significant growth in these plant species. The underlined mechanism involves root-to-shoot phenotypic changes in growth rate, architecture, hydraulic conductivity, water conservation, plant cell protection, and damage restoration through integrating phytohormones modulation, stress-induced enzymatic apparatus, and metabolites. Thus, this review aims to demonstrate how plant growth-promoting bacteria could mitigate negative responses in plants exposed to water stress and provide examples of technological conversion applied to agroecosystems.
Collapse
|
157
|
Liu C, Ai C, Liao H, Wen C, Gao T, Yang Q, Zhou S. Distinctive community assembly enhances the adaptation to extreme environments during hyperthermophilic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:60-68. [PMID: 36525880 DOI: 10.1016/j.wasman.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Hyperthermophilic composting (hTC) is a promising technique for solid waste treatment due to its distinctive microbiomes. However, the assembly process of the hTC microbial community remains unclear. We investigated the assembly process of hTC and explored the underlying drivers influencing community assembly in this work by employing conventional thermophilic composting (cTC) as a comparison group. Our results showed that the two composting treatments have different community assembly processes. Especially for the initial and thermophilic phases, hTC is affected by homogeneous dispersal (48%) and homogeneous selection (44%), respectively, while cTC is controlled by undominant (38%) and homogeneous selection (92%), respectively. Furthermore, random forest models and network results suggested that different factors govern the community assembly in these two composting methods. Specifically, the hTC community increases the stability of the thermophilic community via enhancing the interactions of low-abundance taxa with other operational taxonomic units (OTUs) in community assembly. Our results suggested that the distinctive nature of hTC community assembly may be responsible for its adaptation to extreme environments.
Collapse
Affiliation(s)
- Chen Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaofan Ai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chang Wen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tian Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiue Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
158
|
Han Q, Fu Y, Qiu R, Ning H, Liu H, Li C, Gao Y. Carbon Amendments Shape the Bacterial Community Structure in Salinized Farmland Soil. Microbiol Spectr 2023; 11:e0101222. [PMID: 36625648 PMCID: PMC9927309 DOI: 10.1128/spectrum.01012-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Practical, effective, and economically feasible salt reclamation and amelioration methods are in great demand in arid and semiarid areas. Energy amendments may be more appropriate than alternatives for improving salinized farmland soil because of their effects on soil microbes. We investigated the effects of biochar (Carbon) addition and desulfurization (noncarbon) on the soil bacterial community associated with Zea mays seedlings. Proteobacteria, Firmicutes, and Actinobacteriota were the dominant soil bacterial phyla. Biochar significantly increased soil bacterial biodiversity but desulfurization did not. The application of both amendments stimulated a soil bacterial community shift, and biochar amendments relieved selection pressure and increased the stochasticity of community assembly of bacterial communities. We concluded that biochar amendment can improve plant salt resistance by increasing the abundance of bacteria associated with photosynthetic processes and alter bacterial species involved in carbon cycle functions to reduce the toxicity of soil salinity to plants. IMPORTANCE Farmland application of soil amendments is a usual method to mitigate soil salinization. Most studies have concluded that soil properties can be improved by soil amendment, which indirectly affects the soil microbial community structures. In this study, we applied carbon and noncarbon soil amendments and analyzed the differences between them on the soil microbial community. We found that carbon soil amendment distinctly altered the soil microbial community. This finding provides key theoretical and technical support for using soil amendments in the future.
Collapse
Affiliation(s)
- Qisheng Han
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yuanyuan Fu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- College of Agriculture of Tarim University, Aral, China
| | - Rangjian Qiu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Huifeng Ning
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Hao Liu
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Caixia Li
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| | - Yang Gao
- Farmland Irrigation Research Institute of Chinese Academy of Agricultural Sciences, Xinxiang, China
- Farmland Irrigation Research Institute, CAAS/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture, Xinxiang, China
| |
Collapse
|
159
|
Ye F, Hong Y, Yi X, Sun Z, Wu J, Wang Y. Stochastic processes drive the soil fungal communities in a developing mid-channel bar. Front Microbiol 2023; 14:1104297. [PMID: 36814566 PMCID: PMC9939660 DOI: 10.3389/fmicb.2023.1104297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Intricate associations between rhizosphere microbial communities and plants play a critical role in developing and maintaining of soil ecological functioning. Therefore, understanding the assembly patterns of rhizosphere microbes in different plants and their responses to environmental changes is of great ecological implications for dynamic habitats. In this study, a developing mid-channel bar was employed in the Yangtze River to explore the assembly processes of rhizosphere fungal communities among various plant species using high-throughput sequencing-based null model analysis. The results showed a rare significant variation in the composition and alpha diversity of the rhizosphere fungal community among various plant species. Additionally, the soil properties were found to be the primary drivers instead of plant species types. The null model analysis revealed that the rhizosphere fungal communities were primarily driven by stochastic processes (i.e., undominated processes of ecological drift), and the predominance varied with various plant species. Moreover, the assembly processes of rhizosphere fungal communities were significantly related to the changes in soil properties (i.e., soil total carbon, total nitrogen, organic matter, and pH). The co-occurrence network analysis revealed that many keystone species belonged to unclassified fungi. Notably, five network hubs were almost unaffected by the measured soil properties and aboveground plant traits, indicating the effect of stochastic processes on the rhizosphere fungal community assembly. Overall, these results will provide insights into the underlying mechanisms of fungal community assembly in the rhizosphere soils, which are significant for maintaining the functional stability of a developing ecosystem.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xuemei Yi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhaohong Sun
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China,*Correspondence: Yu Wang,
| |
Collapse
|
160
|
Zheng X, Xu K, Naoum J, Lian Y, Wu B, He Z, Yan Q. Deciphering microeukaryotic-bacterial co-occurrence networks in coastal aquaculture ponds. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:44-55. [PMID: 37073331 PMCID: PMC10077187 DOI: 10.1007/s42995-022-00159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems. Although their diversity and composition have been widely investigated in aquaculture systems, the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood. This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds. Chlorophyta and fungi were dominant phyla in the microeukaryotic-bacterial bipartite networks in water and sediment, respectively. Chlorophyta also had overrepresented links with bacteria in water. Most microeukaryotes and bacteria were classified as generalists, and tended to have symmetric positive and negative links with bacteria in both water and sediment. However, some microeukaryotes with high density of links showed asymmetric links with bacteria in water. Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections. Moreover, the microeukaryotic-bacterial bipartite network in sediment harbored significantly more nestedness than that in water. The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment. This study unveils the topology, dominant taxa, keystone species, and robustness in the microeukaryotic-bacterial bipartite networks in coastal aquaculture ecosystems. These species herein can be applied for further management of ecological services, and such knowledge may also be very useful for the regulation of other eutrophic ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00159-6.
Collapse
Affiliation(s)
- Xiafei Zheng
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, 315100 China
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, College of Life Sciences, Hubei Normal University, Huangshi, 435002 China
| | - Jonathan Naoum
- Department of Biological Sciences, Ecotoxicology of Aquatic Microorganisms Laboratory, GRIL-EcotoQ-TOXEN, Université Du Québec À Montréal, Succursale Centre-Ville, Montreal, QC Canada
| | - Yingli Lian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
- Animal Husbandry and Fisheries Research Center of Guangdong Haid Group CO., Ltd. Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of Agriculture and Rural Affairs, Guangzhou, 510006 China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, State Key Laboratory for Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
161
|
Flow cytometry: a tool for understanding the behaviour of polyhydroxyalkanoate accumulators. Appl Microbiol Biotechnol 2023; 107:581-590. [PMID: 36525042 DOI: 10.1007/s00253-022-12318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The use of mixed microbial cultures (MMCs) is seen as an attractive strategy for polyhydroxyalkanoate (PHA) production. In order to optimize the MMC-PHA production process, tools are required to improve our understanding of the physiological state of the PHA-storing microorganisms within the MMC. In the present study, we explored the use of flow cytometry to analyse the metabolic state and polyhydroxybutyrate (PHB) content of the microorganisms from an MMC-PHA production process. A sequencing batch reactor under a feast and famine regime was used to enrich an MMC with PHB-storing microorganisms. Interestingly, once the PHB-storing microorganisms are selected, the level of PHB accumulation depends largely on the metabolic state of these microorganisms and not exclusively on the consortium composition. These results demonstrate that flow cytometry is a powerful tool to help to understand the PHA storage response of an MMC-PHA production process. KEY POINTS: • Flow cytometry allows to measure PHB content and metabolic activity over time. • Microorganisms showing high PHB content also have high metabolic activity. • PHB producers with low metabolic activity show low PHB content.
Collapse
|
162
|
Corona Ramírez A, Lee KS, Odriozola A, Kaminek M, Stocker R, Zuber B, Junier P. Multiple roads lead to Rome: unique morphology and chemistry of endospores, exospores, myxospores, cysts and akinetes in bacteria. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36804869 DOI: 10.1099/mic.0.001299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The production of specialized resting cells is a remarkable survival strategy developed by many organisms to withstand unfavourable environmental factors such as nutrient depletion or other changes in abiotic and/or biotic conditions. Five bacterial taxa are recognized to form specialized resting cells: Firmicutes, forming endospores; Actinobacteria, forming exospores; Cyanobacteria, forming akinetes; the δ-Proteobacterial order Myxococcales, forming myxospores; and Azotobacteraceae, forming cysts. All these specialized resting cells are characterized by low-to-absent metabolic activity and higher resistance to environmental stress (desiccation, heat, starvation, etc.) when compared to vegetative cells. Given their similarity in function, we tested the potential existence of a universal morpho-chemical marker for identifying these specialized resting cells. After the production of endospores, exospores, akinetes and cysts in model organisms, we performed the first cross-species morphological and chemical comparison of bacterial sporulation. Cryo-electron microscopy of vitreous sections (CEMOVIS) was used to describe near-native morphology of the resting cells in comparison to the morphology of their respective vegetative cells. Resting cells shared a thicker cell envelope as their only common morphological feature. The chemical composition of the different specialized resting cells at the single-cell level was investigated using confocal Raman microspectroscopy. Our results show that the different specialized cells do not share a common chemical signature, but rather each group has a unique signature with a variable conservation of the signature of the vegetative cells. Additionally, we present the validation of Raman signatures associated with calcium dipicolinic acid (CaDPA) and their variation across individual cells to develop specific sorting thresholds for the isolation of endospores. This provides a proof of concept of the feasibility of isolating bacterial spores using a Raman-activated cell-sorting platform. This cross-species comparison and the current knowledge of genetic pathways inducing the formation of the resting cells highlights the complexity of this convergent evolutionary strategy promoting bacterial survival.
Collapse
Affiliation(s)
- Andrea Corona Ramírez
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Kang Soo Lee
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | | | - Marek Kaminek
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Stocker
- Department of Civil, Institute for Environmental Engineering, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| |
Collapse
|
163
|
Bolin LG, Lennon JT, Lau JA. Traits of soil bacteria predict plant responses to soil moisture. Ecology 2023; 104:e3893. [PMID: 36208193 DOI: 10.1002/ecy.3893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 02/03/2023]
Abstract
Microorganisms can help plants and animals contend with abiotic stressors, but why they provide such benefits remains unclear. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider. In a greenhouse experiment, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered soils. Thus, microbial traits that promote microbial success in different moisture environments also promote plant success in these same environments. Our results demonstrate that byproduct benefits, a concept developed to explain the evolution of cooperation in pairwise mutualisms, can also extend to interactions between plants and nonsymbiotic soil microbes.
Collapse
Affiliation(s)
- Lana G Bolin
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, Indiana, USA.,Environmental Resilience Institute, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
164
|
Li C, Jin L, Zhang C, Li S, Zhou T, Hua Z, Wang L, Ji S, Wang Y, Gan Y, Liu J. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress. IMETA 2023; 2:e79. [PMID: 38868331 PMCID: PMC10989821 DOI: 10.1002/imt2.79] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/14/2024]
Abstract
Global changes such as seawater intrusion and freshwater resource salinization increase environmental stress imposed on the aquatic microbiome. A strong predictive understanding of the responses of the aquatic microbiome to environmental stress will help in coping with the "gray rhino" events in the environment, thereby contributing to an ecologically sustainable future. Considering that microbial ecological networks are tied to the stability of ecosystem functioning and that abundant and rare biospheres with different biogeographic patterns are important drivers of ecosystem functioning, the roles of abundant and rare biospheres in maintaining ecological networks need to be clarified. Here we showed that, with the increasing salinity stress induced by the freshwater-to-seawater transition, the microbial diversity reduced significantly and the taxonomic structure experienced a strong succession. The complexity and stability of microbial ecological networks were diminished by the increasing stress. The composition of the microorganisms supporting the networks underwent sharp turnovers during the freshwater-to-seawater transition, with the abundant biosphere behaving more robustly than the rare biosphere. Notably, the abundant biosphere played a much more important role than the rare biosphere in stabilizing ecological networks under low-stress environments, but the difference between their relative importance narrowed significantly with the increasing stress, suggesting that the environmental stress weakened the "Matthew effect" in the microbial world. With in-depth insights into the aquatic microbial ecology under stress, our findings highlight the importance of adjusting conservation strategies for the abundant and rare biospheres to maintain ecosystem functions and services in response to rising environmental stress.
Collapse
Affiliation(s)
- Changchao Li
- Environment Research InstituteShandong UniversityQingdaoChina
- Department of Civil and Environmental Engineering and State Key Laboratory of Marine PollutionThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Ling Jin
- Department of Civil and Environmental Engineering and State Key Laboratory of Marine PollutionThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)GuangzhouChina
| | - Chao Zhang
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Zhongyi Hua
- National Resource Center for Chinese Materia MedicaChinese Academy of Chinese Medical SciencesBeijingChina
| | - Lifei Wang
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Shuping Ji
- Environment Research InstituteShandong UniversityQingdaoChina
| | - Yanfei Wang
- College of Computer Science and TechnologyShanghai University of Electric PowerShanghaiChina
| | - Yandong Gan
- School of Life SciencesQufu Normal UniversityQufuChina
| | - Jian Liu
- Environment Research InstituteShandong UniversityQingdaoChina
| |
Collapse
|
165
|
Zhao J, Chakrabarti S, Chambers R, Weisenhorn P, Travieso R, Stumpf S, Standen E, Briceno H, Troxler T, Gaiser E, Kominoski J, Dhillon B, Martens-Habbena W. Year-around survey and manipulation experiments reveal differential sensitivities of soil prokaryotic and fungal communities to saltwater intrusion in Florida Everglades wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159865. [PMID: 36461566 DOI: 10.1016/j.scitotenv.2022.159865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Global sea-level rise is transforming coastal ecosystems, especially freshwater wetlands, in part due to increased episodic or chronic saltwater exposure, leading to shifts in biogeochemistry, plant- and microbial communities, as well as ecological services. Yet, it is still difficult to predict how soil microbial communities respond to the saltwater exposure because of poorly understood microbial sensitivity within complex wetland soil microbial communities, as well as the high spatial and temporal heterogeneity of wetland soils and saltwater exposure. To address this, we first conducted a two-year survey of microbial community structure and bottom water chemistry in submerged surface soils from 14 wetland sites across the Florida Everglades. We identified ecosystem-specific microbial biomarker taxa primarily associated with variation in salinity. Bacterial, archaeal and fungal community composition differed between freshwater, mangrove, and marine seagrass meadow sites, irrespective of soil type or season. Especially, methanogens, putative denitrifying methanotrophs and sulfate reducers shifted in relative abundance and/or composition between wetland types. Methanogens and putative denitrifying methanotrophs declined in relative abundance from freshwater to marine wetlands, whereas sulfate reducers showed the opposite trend. A four-year experimental simulation of saltwater intrusion in a pristine freshwater site and a previously saltwater-impacted site corroborated the highest sensitivity and relative increase of sulfate reducers, as well as taxon-specific sensitivity of methanogens, in response to continuously pulsing of saltwater treatment. Collectively, these results suggest that besides increased salinity, saltwater-mediated increased sulfate availability leads to displacement of methanogens by sulfate reducers even at low or temporal salt exposure. These changes of microbial composition could affect organic matter degradation pathways in coastal freshwater wetlands exposed to sea-level rise, with potential consequences, such as loss of stored soil organic carbon.
Collapse
Affiliation(s)
- Jun Zhao
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Seemanti Chakrabarti
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA
| | - Randolph Chambers
- College of William and Mary, W.M. Keck Environmental Field Laboratory, P.O. Box 8795, Williamsburg, VA, USA
| | | | - Rafael Travieso
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Sandro Stumpf
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Emily Standen
- Institute of Environment, Florida International University, Miami, FL, USA
| | - Henry Briceno
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Tiffany Troxler
- Department of Earth and Environment and Sea Level Solutions Center in the Institute of Environment, Florida International University, Miami, FL, USA
| | - Evelyn Gaiser
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - John Kominoski
- Department of Biological Sciences and Institute of Environment, Florida International University, Miami, FL, USA
| | - Braham Dhillon
- Fort Lauderdale Research and Education Center and Department of Plant Pathology, University of Florida, Davie, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center and Department of Microbiology & Cell Science, University of Florida, Davie, FL, USA.
| |
Collapse
|
166
|
Luan L, Shi G, Zhu G, Zheng J, Fan J, Dini-Andreote F, Sun B, Jiang Y. Biogeographical patterns of abundant and rare bacterial biospheres in paddy soils across East Asia. Environ Microbiol 2023; 25:294-305. [PMID: 36353981 DOI: 10.1111/1462-2920.16281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Soil bacterial communities play fundamental roles in ecosystem functioning and often display a skewed distribution of abundant and rare taxa. So far, relatively little is known about the biogeographical patterns and mechanisms structuring the assembly of abundant and rare biospheres of soil bacterial communities. Here, we studied the geographical distribution of different bacterial sub-communities by examining the relative influence of environmental selection and dispersal limitation on taxa distributions in paddy soils across East Asia. Our results indicated that the geographical patterns of four different bacterial sub-communities consistently displayed significant distance-decay relationships (DDRs). In addition, we found niche breadth and dispersal rates to significantly explain differences in community assembly of abundant and rare taxa, directly affecting the strength of DDRs. While conditionally rare and abundant taxa displayed the strongest DDR due to higher environmental filtering and dispersal limitation, moderate taxa sub-communities had the weakest DDR due to greater environmental tolerance and dispersal rate. Random forest models indicated that soil pH (9.13%-49.78%) and average annual air temperature (16.59%-46.49%) were the most important predictors of the variation in the bacterial community. This study advances our understanding of the intrinsic links between fundamental ecological processes and microbial biogeographical patterns in paddy soils.
Collapse
Affiliation(s)
- Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Guangping Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Guofan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jianbo Fan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
167
|
Resuscitation-Promoting Factor Accelerates Enrichment of Highly Active Tetrachloroethene/Polychlorinated Biphenyl-Dechlorinating Cultures. Appl Environ Microbiol 2023; 89:e0195122. [PMID: 36629425 PMCID: PMC9888273 DOI: 10.1128/aem.01951-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The anaerobic bioremediation of polychlorinated biphenyls (PCBs) is largely impeded by difficulties in massively enriching PCB dechlorinators in short periods of time. Tetrachloroethene (PCE) is often utilized as an alternative electron acceptor to preenrich PCB-dechlorinating bacteria. In this study, resuscitation promoting factor (Rpf) was used as an additive to enhance the enrichment of the microbial communities involved in PCE/PCBs dechlorination. The results indicated that Rpf accelerates PCE dechlorination 3.8 to 5.4 times faster than control cultures. In Aroclor 1260-fed cultures, the amendment of Rpf enables significantly more rapid and extensive dechlorination of PCBs. The residual high-chlorinated PCB congeners (≥5 Cl atoms) accounted for 36.7% and 59.8% in the Rpf-amended cultures and in the corresponding controls, respectively. This improvement was mainly attributed to the enhanced activity of the removal of meta-chlorines (47.7 mol % versus 14.7 mol %), which did not appear to affect dechlorination pathways. The dechlorinators, including Dehalococcoides in Chloroflexi and Desulfitobacterium in Firmicutes, were greatly enriched via Rpf amendment. The abundance of nondechlorinating populations, including Methanosarcina, Desulfovibrio, and Bacteroides, was also greatly enhanced via Rpf amendment. These results suggest that Rpf serves as an effective additive for the rapid enrichment of active dechlorinating cultures so as to provide a new approach by which to massively cultivate bioinoculants for accelerated in situ anaerobic bioremediation. IMPORTANCE The resuscitation promoting factor (Rpf) of Micrococcus luteus has been reported to resuscitate and stimulate the growth of functional microorganisms that are involved in the aerobic degradation of polychlorinated biphenyls (PCBs). However, few studies have been conducted to investigate the role of Rpf on anaerobic microbial populations. In this study, the enhancement of Rpf on the anaerobic microbial dechlorination of PCE/PCBs was discovered. Additionally, the Rpf-responsive populations underlying the enhanced dechlorination were uncovered. This report reveals the rapid enrichment of active dechlorinating cultures via Rpf amendment, and this sheds light on massively enriching PCB dechlorinators in short periods of time. The enhanced in situ anaerobic bioremediation of PCBs could be expected by supplementing Rpf.
Collapse
|
168
|
Li JH, Muhammad Aslam M, Gao YY, Dai L, Hao GF, Wei Z, Chen MX, Dini-Andreote F. Microbiome-mediated signal transduction within the plant holobiont. Trends Microbiol 2023; 31:616-628. [PMID: 36702670 DOI: 10.1016/j.tim.2022.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant-microbe interactions and changes in plant physiology activated by signal transduction.
Collapse
Affiliation(s)
- Jian-Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mehtab Muhammad Aslam
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
169
|
Elevated temperature and CO 2 strongly affect the growth strategies of soil bacteria. Nat Commun 2023; 14:391. [PMID: 36693873 PMCID: PMC9873651 DOI: 10.1038/s41467-023-36086-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.
Collapse
|
170
|
Han Z, Lin Q, Zhang S, Zhou X, Li S, Sun F, Shen C, Su X. High PCBs mineralization capability of a resuscitated strain Bacillus sp. LS1 and its survival in PCB-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159224. [PMID: 36206912 DOI: 10.1016/j.scitotenv.2022.159224] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Polychlorinated biphenyl (PCB)-degrading strains resuscitated by resuscitation promoting factor (Rpf) enlarged pure degraders to screen effective bio-inoculants for soil bioaugmentation. In this study, whole-genome analysis and PCB-degrading performance of a resuscitated strain LS1 were investigated. Importantly, the persistence and the physiological response of soil-inoculated LS1 were checked. The results indicate that the Bacillus sp. strain LS1 possessed the potential to degrade polycyclic aromatic compounds. LS1 exhibited better performance in degrading PCBs 18 and 52, but lower PCB 77 degradation capability. At PCBs concentration of 10 mg/L, the degradation efficiencies of PCBs 18, 52 and 77 within 96 h were 62.8 %, 59.6 % and 39.8 %, respectively. Combined the bph genes and metabolites detected, as well as the genes found in the genome, the abilities of LS1 for oxidative dehalogenation and mineralization of PCBs via HOPDA-benzoate-protocatechuate-β-ketoadipate pathway were determined. Notably, LS1 can still maintain survival and culturable state after inoculation into PCB-contaminated soil for 70 days. This is the first report to demonstrate the fate of resuscitated strain when used as soil bio-inoculant, which revealed the necessity and feasibility of using resuscitated strains to enhance bioremediation of PCB-contaminated soils.
Collapse
Affiliation(s)
- Zhen Han
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Qihua Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Shusheng Zhang
- The Management Center of Wuyanling National Natural Reserve in Zhejiang, Wenzhou 325500, China
| | - Xinru Zhou
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Si Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Faqian Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaomei Su
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
171
|
Prosdocimi EM, Arioli S, Mapelli F, Zeaiter Z, Fusi M, Daffonchio D, Borin S, Crotti E. Cell phenotype changes and oxidative stress response in Vibrio spp. induced into viable but non-culturable (VBNC) state. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-022-01703-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Purpose
Aquatic bacteria of the genus Vibrio include animal and human pathogens. The occurrence of Vibrio-related diseases has been associated with the current climate change-driven increase of sea surface temperature. Vibrio spp. can enter into the viable but non-culturable (VBNC) state, as a consequence of starvation in seawater at low temperatures. In such physiological state, Vibrio cells are no longer culturable on standard media agar plates but can resuscitate if incubated at 30 °C prior to plating, retaining virulence. Since limited information is available on regards to this topic, in this work, we characterized the phenotypic changes of four Vibrio spp. strains (one laboratory strain and three environmental isolates) in cold seawater microcosms, investigating the relationship between resuscitation and a hydrogen peroxide-induced oxidative stress.
Methods
Cell phenotypic changes and the effect of hydrogen peroxide and/or catalase addition to the medium were studied on VBNC and resuscitated cells by flow cytometry in microcosm experiments, paralleled by culturability experiments by plating.
Results
The cells of all the Vibrio strains changed their phenotype upon the induction of the VBNC state resulting in cell dwarfing and decrease in DNA quantity, losing the ability to grow on solid media. These features were partially or totally reverted when the cells were treated for resuscitation. Hydrogen peroxide at concentrations as low as 0.007 mM prevented resuscitation and a prolonged exposure to hydrogen peroxide at concentrations far under those inhibiting the growth of log-phase cells permanently damaged VBNC cells, which could not be resuscitated. However, the potential of culturability of VBNC cells could be preserved, at least for a part of the population, by plating the cells in the presence of catalase. The study also showed that during the resuscitation process, the cells gradually increased their resistance to hydrogen peroxide.
Conclusions
The timing and mode of induction of the VBNC state, as well as cell resuscitation and response to hydrogen peroxide, differed among Vibrio strains, indicating that induction and resuscitation from dormancy could vary in the context of species belonging to a single genus.
Collapse
|
172
|
Nandan S. Spatial populations with seed-banks in random environment: III. Convergence towards mono-type equilibrium. ELECTRON J PROBAB 2023. [DOI: 10.1214/23-ejp922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Shubhamoy Nandan
- Mathematisch Instituut, Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, NL
| |
Collapse
|
173
|
Li Q, Qiu J, Liang Y, Lan G. Soil bacterial community changes along elevation gradients in karst graben basin of Yunnan-Kweichow Plateau. Front Microbiol 2022; 13:1054667. [PMID: 36620048 PMCID: PMC9813600 DOI: 10.3389/fmicb.2022.1054667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Elevation gradients could provide natural experiments to examine geomorphological influences on biota ecology and evolution, however little is known about microbial community structures with soil depths along altitudinal gradients in karst graben basin of Yunnan-Kweichow Plateau. Here, bulk soil in A layer (0 ~ 10 cm) and B layer (10 ~ 20 cm) from two transect Mounts were analyzed by using high-throughput sequencing coupled with physicochemical analysis. It was found that the top five phyla in A layer were Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia, and the top five phyla in B layer were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi in a near-neutral environment. Edaphic parameters were different in two layers along altitudinal gradients. Besides that, soil microbial community compositions varied along altitudinal gradient, and soil organic carbon (SOC) and total nitrogen (TN) increased monotonically with increasing elevation. It was further observed that Shannon indexes with increasing altitudes in two transect Mounts decreased monotonically with significant difference (p = 0.001), however beta diversity followed U-trend with significant difference (p = 0.001). The low proportions of unique operational taxonomic units (OTUs) appeared at high altitude areas which impact the widely accepted elevation Rapoport's rules. The dominant Bradyrhizobium (alphaproteobacterial OTU 1) identified at high altitudes in two layers constitutes the important group of free-living diazotrophs and could bring fixed N into soils, which simultaneously enhances SOC and TN accumulation at high altitudes (p < 0.01). Due to different responses of bacterial community to environmental changes varying with soil depths, altitudinal gradients exerted negative effects on soil bacterial communities via soil physical properties and positive effects on soil bacterial diversities via soil chemical properties in A layer, however the results in B layer were opposite. Overall, our study is the first attempt to bring a deeper understanding of soil microbial structure patterns along altitudinal gradients at karst graben basin areas.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China,*Correspondence: Qiang Li, ✉
| | - Jiangmei Qiu
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Yueming Liang
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| | - Gaoyong Lan
- Key Laboratory of Karst Ecosystem and Treatment of Rocky Desertification, MNR, Key Laboratory of Karst Dynamics, MNR & GZAR, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China,International Research Center on Karst under the Auspices of UNESCO, Guilin, China
| |
Collapse
|
174
|
Villeneuve K, Violette M, Lazar CS. From Recharge, to Groundwater, to Discharge Areas in Aquifer Systems in Quebec (Canada): Shaping of Microbial Diversity and Community Structure by Environmental Factors. Genes (Basel) 2022; 14:1. [PMID: 36672742 PMCID: PMC9858702 DOI: 10.3390/genes14010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Groundwater recharge and discharge rates and zones are important hydrogeological characteristics of aquifer systems, yet their impact on the formation of both subterranean and surface microbiomes remains largely unknown. In this study, we used 16S rRNA gene sequencing to characterize and compare the microbial community of seven different aquifers, including the recharge and discharge areas of each system. The connectivity between subsurface and surface microbiomes was evaluated at each site, and the temporal succession of groundwater microbial communities was further assessed at one of the sites. Bacterial and archaeal community composition varied between the different sites, reflecting different geological characteristics, with communities from unconsolidated aquifers being distinct from those of consolidated aquifers. Our results also revealed very little to no contribution of surface recharge microbial communities to groundwater communities as well as little to no contribution of groundwater microbial communities to surface discharge communities. Temporal succession suggests seasonal shifts in composition for both bacterial and archaeal communities. This study demonstrates the highly diverse communities of prokaryotes living in aquifer systems, including zones of groundwater recharge and discharge, and highlights the need for further temporal studies with higher resolution to better understand the connectivity between surface and subsurface microbiomes.
Collapse
Affiliation(s)
| | | | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal, UQAM, C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
175
|
Ye F, Sun Z, Moore SS, Wu J, Hong Y, Wang Y. Discrepant Effects of Flooding on Assembly Processes of Abundant and Rare Communities in Riparian Soils. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02152-z. [PMID: 36502425 DOI: 10.1007/s00248-022-02152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Numerous rare species coexist with a few abundant species in microbial communities and together play an essential role in riparian ecosystems. Relatively little is understood, however, about the nature of assembly processes of these communities and how they respond to a fluctuating environment. In this study, drivers controlling the assembly of abundant and rare subcommunities for bacteria and archaea in a riparian zone were determined, and their resulting patterns on these processes were analyzed. Abundant and rare bacteria and archaea showed a consistent variation in the community structure along the riparian elevation gradient, which was closely associated with flooding frequency. The community assembly of abundant bacteria was not affected by any measured environmental variables, while soil moisture and ratio of submerged time to exposed time were the two most decisive factors determining rare bacterial community. Assembly of abundant archaeal community was also determined by these two factors, whereas rare archaea was significantly associated with soil carbon-nitrogen ratio and total carbon content. The assembly process of abundant and rare bacterial subcommunities was driven respectively by dispersal limitation and variable selection. Undominated processes and dispersal limitation dominated the assembly of abundant archaea, whereas homogeneous selection primarily driven rare archaea. Flooding may therefore play a crucial role in determining the community assembly processes by imposing disturbances and shaping soil niches. Overall, this study reveals the assembly patterns of abundant and rare communities in the riparian zone and provides further insight into the importance of their respective roles in maintaining a stable ecosystem during times of environmental perturbations.
Collapse
Affiliation(s)
- Fei Ye
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zhaohong Sun
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Selina Sterup Moore
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padua, Italy
| | - Jiapeng Wu
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu Wang
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
176
|
Lin X, Li Y, Xu G, Tian C, Yu Y. Biodegradable microplastics impact the uptake of Cd in rice: The roles of niche breadth and assembly process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158222. [PMID: 36028027 DOI: 10.1016/j.scitotenv.2022.158222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Biodegradable microplastics (MPs) can impact the accumulation of cadmium (Cd) by plants, however, its mechanisms have not been fully understood. In this study, two biodegradable MPs, polypropylene carbonate (PPC) and polylactic acid (PLA), were used to examine their influences on the uptake of Cd in rice plants. Results showed that PPC significantly reduced the accumulation of Cd in rice root and aerial part, whereas PLA increased the Cd concentrations in rice root. The random forest analysis revealed that the bacterial biomarkers enriched by two MPs were different at genus level. Niche breadths were significantly reduced under Cd stress, and PPC alleviated this environmental pressure for entire bacterial community, whereas PLA reduced the niche breadth for whole community and abundant taxa, which was further verified by co-occurrence network and normalized stochasticity ratio model. The abundant taxa of group PPC were primarily governed by deterministic process while rare taxa were more driven by stochastic process. Structural equation model and Mantel analysis identified that the niche breadth imposed a strong selection on Cd accumulation after co-exposure. This study reveals the underlying mechanism of assembly process and niche breadth of rice rhizosphere microbiome on Cd accumulation by rice plants.
Collapse
Affiliation(s)
- Xiaolong Lin
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chunjie Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
177
|
Bier RL, Vass M, Székely AJ, Langenheder S. Ecosystem size-induced environmental fluctuations affect the temporal dynamics of community assembly mechanisms. THE ISME JOURNAL 2022; 16:2635-2643. [PMID: 35982230 PMCID: PMC9666552 DOI: 10.1038/s41396-022-01286-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Understanding processes that determine community membership and abundance is important for many fields from theoretical community ecology to conservation. However, spatial community studies are often conducted only at a single timepoint despite the known influence of temporal variability on community assembly processes. Here we used a spatiotemporal study to determine how environmental fluctuation differences induced by mesocosm volumes (larger volumes were more stable) influence assembly processes of aquatic bacterial metacommunities along a press disturbance gradient. By combining path analysis and network approaches, we found mesocosm size categories had distinct relative influences of assembly process and environmental factors that determined spatiotemporal bacterial community composition, including dispersal and species sorting by conductivity. These processes depended on, but were not affected proportionately by, mesocosm size. Low fluctuation, large mesocosms primarily developed through the interplay of species sorting that became more important over time and transient priority effects as evidenced by more time-delayed associations. High fluctuation, small mesocosms had regular disruptions to species sorting and greater importance of ecological drift and dispersal limitation indicated by lower richness and higher taxa replacement. Together, these results emphasize that environmental fluctuations influence ecosystems over time and its impacts are modified by biotic properties intrinsic to ecosystem size.
Collapse
Affiliation(s)
- Raven L. Bier
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden ,grid.213876.90000 0004 1936 738XPresent Address: Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802 USA
| | - Máté Vass
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden
| | - Anna J. Székely
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden
| | - Silke Langenheder
- grid.8993.b0000 0004 1936 9457Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18 D, 75236 Uppsala, Sweden
| |
Collapse
|
178
|
Calvo-Martin E, Teira E, Álvarez-Salgado XA, Rocha C, Jiang S, Justel-Díez M, Ibánhez JSP. On the hidden diversity and niche specialization of the microbial realm of subterranean estuaries. Environ Microbiol 2022; 24:5859-5881. [PMID: 36054689 PMCID: PMC10087554 DOI: 10.1111/1462-2920.16160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Subterranean estuaries (STEs) modulate the chemical composition of continental groundwater before it reaches the coast, but their microbial community is poorly known. Here, we explored the microbial ecology of two neighbouring, yet contrasting STEs (Panxón and Ladeira STEs; Ría de Vigo, NW Iberian Peninsula). We investigated microbial composition (16S rRNA gene sequencing), abundance, heterotrophic production and their geochemical drivers. A total of 10,150 OTUs and 59 phyla were retrieved from porewater sampled during four surveys covering each STE seepage face. In both STEs, we find a very diverse microbial community composed by abundant cosmopolitans and locally restricted rare taxa. Porewater oxygen and dissolved organic matter are the main environmental predictors of microbial community composition. More importantly, the high variety of benthic microbiota links to biogeochemical processes of different elements in STEs. The oxygen-rich Panxón beach showed strong associations of the ammonium oxidizing archaea Nitrosopumilales with the heterotrophic community, thus acting as a net source of nitrogen to the coast. On the other hand, the prevailing anoxic conditions of Ladeira beach promoted the dominance of anaerobic heterotrophs related to the degradation of complex and aromatic compounds, such as Dehalococcoidia and Desulfatiglans, and the co-occurrence of methane oxidizers and methanogens.
Collapse
Affiliation(s)
- Elisa Calvo-Martin
- Organic Geochemistry Lab, Department of Oceanography, Instituto de Investigacións Mariñas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.,PhD Program in Marine Science, Technology and Management, Universidade de Vigo, Vigo, Spain
| | - Eva Teira
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Spain
| | - Xosé Antón Álvarez-Salgado
- Organic Geochemistry Lab, Department of Oceanography, Instituto de Investigacións Mariñas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain
| | - Carlos Rocha
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Shan Jiang
- School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Maider Justel-Díez
- Departamento de Ecología y Biología Animal, Universidade de Vigo, Centro de Investigación Mariña da Universidade de Vigo (CIM-UVigo), Vigo, Spain
| | - Juan Severino Pino Ibánhez
- Organic Geochemistry Lab, Department of Oceanography, Instituto de Investigacións Mariñas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.,School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
179
|
Brown TL, Charity OJ, Adriaenssens EM. Ecological and functional roles of bacteriophages in contrasting environments: marine, terrestrial and human gut. Curr Opin Microbiol 2022; 70:102229. [PMID: 36347213 DOI: 10.1016/j.mib.2022.102229] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
While they are the most abundant biological entities on the planet, the role of bacteriophages (phages) in the microbiome remains enigmatic and understudied. With a rise in the number of metagenomics studies and the publication of highly efficient phage mining programmes, we now have extensive data on the genomic and taxonomic diversity of (mainly) DNA bacteriophages in a wide range of environments. In addition, the higher throughput and quality of sequencing is allowing for strain-level reconstructions of phage genomes from metagenomes. These factors will ultimately help us to understand the role these phages play as part of specific microbial communities, enabling the tracking of individual virus genomes through space and time. Using lessons learned from the latest metagenomic studies, we focus on two explicit aspects of the role bacteriophages play within the microbiome, their ecological role in structuring bacterial populations, and their contribution to microbiome functioning by encoding auxiliary metabolism genes.
Collapse
Affiliation(s)
- Teagan L Brown
- Quadram Institute Bioscience, Norwich NR4 7UQ, United Kingdom
| | | | | |
Collapse
|
180
|
Fatton M, Filippidou S, Junier T, Cailleau G, Berge M, Poppleton D, Blum TB, Kaminek M, Odriozola A, Blom J, Johnson SL, Abrahams JP, Chain PS, Gribaldo S, Tocheva EI, Zuber B, Viollier PH, Junier P. Cryptosporulation in Kurthia spp. forces a rethinking of asporogenesis in Firmicutes. Environ Microbiol 2022; 24:6320-6335. [PMID: 36530021 PMCID: PMC10086788 DOI: 10.1111/1462-2920.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Endosporulation is a complex morphophysiological process resulting in a more resistant cellular structure that is produced within the mother cell and is called endospore. Endosporulation evolved in the common ancestor of Firmicutes, but it is lost in descendant lineages classified as asporogenic. While Kurthia spp. is considered to comprise only asporogenic species, we show here that strain 11kri321, which was isolated from an oligotrophic geothermal reservoir, produces phase-bright spore-like structures. Phylogenomics of strain 11kri321 and other Kurthia strains reveals little similarity to genetic determinants of sporulation known from endosporulating Bacilli. However, morphological hallmarks of endosporulation were observed in two of the four Kurthia strains tested, resulting in spore-like structures (cryptospores). In contrast to classic endospores, these cryptospores did not protect against heat or UV damage and successive sub-culturing led to the loss of the cryptosporulating phenotype. Our findings imply that a cryptosporulation phenotype may have been prevalent and subsequently lost by laboratory culturing in other Firmicutes currently considered as asporogenic. Cryptosporulation might thus represent an ancestral but unstable and adaptive developmental state in Firmicutes that is under selection under harsh environmental conditions.
Collapse
Affiliation(s)
- Mathilda Fatton
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sevasti Filippidou
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,AstrobiologyOU, The Open University, Milton Keynes, UK
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Vital-IT group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Matthieu Berge
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Poppleton
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Thorsten B Blum
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Marek Kaminek
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Shannon L Johnson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jan Pieter Abrahams
- Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland.,Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Patrick S Chain
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Simonetta Gribaldo
- Unité de Biologie Moléculaire du Gène chez les Extrémophiles, Département de Microbiologie, Institut Pasteur, France
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Benoît Zuber
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
181
|
Zhang Z, Chai X, Gao Y, Zhang B, Lu Y, Du Y, Zhang Y, Ding Y, Tariq A, Ullah A, Li X, Zeng F. Alhagi sparsifolia Harbors a Different Root-Associated Mycobiome during Different Development Stages. Microorganisms 2022; 10:microorganisms10122376. [PMID: 36557629 PMCID: PMC9785364 DOI: 10.3390/microorganisms10122376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/04/2022] Open
Abstract
The mycobiome in the rhizosphere and within the roots benefits the nutrition and function of host plants. However, compared with the bacterial community, root-associated mycobiomes of desert plants and the forces that drive their assemblage are limited. Here, we investigated the mycobiomes in bulk soil, rhizosphere, and root compartments of Alhagi sparsifolia Shap., a phreatophyte species dominating in Central Asia. The internal transcribed spacer (ITS) gene phylogenetic profiles displayed significantly diverse mycobiomes across three compartments and host growth times, together explaining 31.45% of the variation in the community composition. The community structure of the perennial stage was markedly different from that of other stages (30 days to 2 years old). Along the soil-plant continuum, the α-diversity (estimated by Chao1) decreased gradually, while concomitantly increasing the community dissimilarity and the influence of edaphic factors. Specific leaf area, soil water content, and soil organic matter levels were common factors driving the composition of the three mycobiome communities. A more complex and connected network was observed in the root community compared with the other compartments. Overall, our work suggests that an age-sensitive host effect restructured the desert-plant-root-associated mycobiome, and that edaphic factors and host growth strategy may play potential roles in this process.
Collapse
Affiliation(s)
- Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- Correspondence: (Z.Z.); (F.Z.)
| | - Xutian Chai
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanju Gao
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yan Lu
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yi Du
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulin Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
| | - Ya Ding
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- College of Resource and Environment Sciences, Xinjiang University, Urumqi 830046, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyi Li
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Z.Z.); (F.Z.)
| |
Collapse
|
182
|
Smith TP, Mombrikotb S, Ransome E, Kontopoulos DG, Pawar S, Bell T. Latent functional diversity may accelerate microbial community responses to temperature fluctuations. eLife 2022; 11:e80867. [PMID: 36444646 PMCID: PMC9708066 DOI: 10.7554/elife.80867] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
How complex microbial communities respond to climatic fluctuations remains an open question. Due to their relatively short generation times and high functional diversity, microbial populations harbor great potential to respond as a community through a combination of strain-level phenotypic plasticity, adaptation, and species sorting. However, the relative importance of these mechanisms remains unclear. We conducted a laboratory experiment to investigate the degree to which bacterial communities can respond to changes in environmental temperature through a combination of phenotypic plasticity and species sorting alone. We grew replicate soil communities from a single location at six temperatures between 4°C and 50°C. We found that phylogenetically and functionally distinct communities emerge at each of these temperatures, with K-strategist taxa favored under cooler conditions and r-strategist taxa under warmer conditions. We show that this dynamic emergence of distinct communities across a wide range of temperatures (in essence, community-level adaptation) is driven by the resuscitation of latent functional diversity: the parent community harbors multiple strains pre-adapted to different temperatures that are able to 'switch on' at their preferred temperature without immigration or adaptation. Our findings suggest that microbial community function in nature is likely to respond rapidly to climatic temperature fluctuations through shifts in species composition by resuscitation of latent functional diversity.
Collapse
Affiliation(s)
- Thomas P Smith
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Shorok Mombrikotb
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Emma Ransome
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | | | - Samraat Pawar
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| | - Thomas Bell
- The Georgina Mace Centre for the Living Planet, Imperial College LondonAscotUnited Kingdom
| |
Collapse
|
183
|
Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat Commun 2022; 13:6991. [PMID: 36385003 PMCID: PMC9668848 DOI: 10.1038/s41467-022-34449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought.
Collapse
|
184
|
Koffel T, Umemura K, Litchman E, Klausmeier CA. A general framework for species-abundance distributions: Linking traits and dispersal to explain commonness and rarity. Ecol Lett 2022; 25:2359-2371. [PMID: 36106355 PMCID: PMC9826146 DOI: 10.1111/ele.14094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
Species-abundance distributions (SADs) describe the spectrum of commonness and rarity in a community. Beyond the universal observation that most species are rare and only a few common, more-precise description of SAD shape is controversial. Furthermore, the mechanisms behind SADs and how they vary along environmental gradients remain unresolved. We lack a general, non-neutral theory of SADs. Here, we develop a trait-based framework, focusing on a local community coupled to the region by dispersal. The balance of immigration and exclusion determines abundances, which vary over orders-of-magnitude. The local trait-abundance distribution (TAD) reflects a transformation of the regional TAD. The left-tail of the SAD depends on scaling exponents of the exclusion function and the regional species pool. More-complex local dynamics can lead to multimodal TADs and SADs. Connecting SADs with trait-based ecological theory provides a way to generate more-testable hypotheses on the controls over commonness and rarity in communities.
Collapse
Affiliation(s)
- Thomas Koffel
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
| | - Kaito Umemura
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Elena Litchman
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Integrative BiologyProgram in Ecology & Evolutionary BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
| | - Christopher A. Klausmeier
- W. K. Kellogg Biological StationMichigan State UniversityHickory CornersMichiganUSA
- Department of Integrative BiologyProgram in Ecology & Evolutionary BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of Global EcologyCarnegie Institution for ScienceStanfordCaliforniaUSA
- Department of Plant BiologyProgram in Ecology & Evolutionary BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
185
|
Pantigoso HA, Newberger D, Vivanco JM. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J Appl Microbiol 2022; 133:2864-2876. [PMID: 36648151 PMCID: PMC9796772 DOI: 10.1111/jam.15686] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 01/21/2023]
Abstract
While horticulture tools and methods have been extensively developed to improve the management of crops, systems to harness the rhizosphere microbiome to benefit plant crops are still in development. Plants and microbes have been coevolving for several millennia, conferring fitness advantages that expand the plant's own genetic potential. These beneficial associations allow the plants to cope with abiotic stresses such as nutrient deficiency across a wide range of soils and growing conditions. Plants achieve these benefits by selectively recruiting microbes using root exudates, positively impacting their nutrition, health and overall productivity. Advanced knowledge of the interplay between root exudates and microbiome alteration in response to plant nutrient status, and the underlying mechanisms there of, will allow the development of technologies to increase crop yield. This review summarizes current knowledge and perspectives on plant-microbial interactions for resource acquisition and discusses promising advances for manipulating rhizosphere microbiomes and root exudation.
Collapse
Affiliation(s)
- Hugo A. Pantigoso
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Derek Newberger
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| | - Jorge M. Vivanco
- Center for Root and Rhizosphere Biology, Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado80523‐1173United States
| |
Collapse
|
186
|
van Tartwijk FW, Kaminski CF. Protein Condensation, Cellular Organization, and Spatiotemporal Regulation of Cytoplasmic Properties. Adv Biol (Weinh) 2022; 6:e2101328. [PMID: 35796197 DOI: 10.1002/adbi.202101328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/15/2022] [Indexed: 01/28/2023]
Abstract
The cytoplasm is an aqueous, highly crowded solution of active macromolecules. Its properties influence the behavior of proteins, including their folding, motion, and interactions. In particular, proteins in the cytoplasm can interact to form phase-separated assemblies, so-called biomolecular condensates. The interplay between cytoplasmic properties and protein condensation is critical in a number of functional contexts and is the subject of this review. The authors first describe how cytoplasmic properties can affect protein behavior, in particular condensate formation, and then describe the functional implications of this interplay in three cellular contexts, which exemplify how protein self-organization can be adapted to support certain physiological phenotypes. The authors then describe the formation of RNA-protein condensates in highly polarized cells such as neurons, where condensates play a critical role in the regulation of local protein synthesis, and describe how different stressors trigger extensive reorganization of the cytoplasm, both through signaling pathways and through direct stress-induced changes in cytoplasmic properties. Finally, the authors describe changes in protein behavior and cytoplasmic properties that may occur in extremophiles, in particular organisms that have adapted to inhabit environments of extreme temperature, and discuss the implications and functional importance of these changes.
Collapse
Affiliation(s)
- Francesca W van Tartwijk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Clemens F Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
187
|
Roux S, Emerson JB. Diversity in the soil virosphere: to infinity and beyond? Trends Microbiol 2022; 30:1025-1035. [PMID: 35644779 DOI: 10.1016/j.tim.2022.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/13/2023]
Abstract
Viruses are key members of Earth's microbiomes, shaping microbial community composition and metabolism. Here, we describe recent advances in 'soil viromics', that is, virus-focused metagenome and metatranscriptome analyses that offer unprecedented windows into the soil virosphere. Given the emerging picture of high soil viral activity, diversity, and dynamics over short spatiotemporal scales, we then outline key eco-evolutionary processes that we hypothesize are the major diversity drivers for soil viruses. We argue that a community effort is needed to establish a 'global soil virosphere atlas' that can be used to address the roles of viruses in soil microbiomes and terrestrial biogeochemical cycles across spatiotemporal scales.
Collapse
Affiliation(s)
- Simon Roux
- DOE (Department of Energy) Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Joanne B Emerson
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA; Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
188
|
Ablimit R, Li W, Zhang J, Gao H, Zhao Y, Cheng M, Meng X, An L, Chen Y. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115859. [PMID: 35985268 DOI: 10.1016/j.jenvman.2022.115859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Maize is a crop that is cultivated worldwide. The Hexi Oasis is one of the most important areas for high-yield maize seed production in China. Green manure, a plant fertilizer, has great potential for increasing crop yield and agricultural sustainability. However, the role of microorganisms in soil health and the microbiological mechanism of green manure in improving soil fertility and crop production in the Hexi Oasis area remain unknown. The effects of maize-green manure intercropping on the soil microbial community structure and diversity and the mechanism of soil improvement were investigated in a 10-year field experiment. The study revealed that microbial phylotypes were grouped into four major ecological clusters. Module #2 is a soil core ecological cluster enriched with many plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. The application of green manure led to significantly increased soil pH, nutrient contents, and enzyme activities, and significantly reduced the relative abundance of potential plant pathogens compared with monocropping, which should ensure high and stable maize yield under long-term continuous cropping. It also increased the economic benefits by 56.39% compared with monocropping, owing to the additional products produced by the green manure. These improvements were associated with changes in the microbial community structure and activity, consistent with the structural equation model results. Therefore, soil microorganisms are the key drivers of the potential benefits of maize-green manure on agricultural sustainability.
Collapse
Affiliation(s)
- Ruxangul Ablimit
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Weikun Li
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiudong Zhang
- Institute of Soil, Fertilizer, and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, 730070, China
| | - Haining Gao
- Key Laboratory of the Hexi Corridor Resources Utilization of Gansu, Zhangye, 734000, China
| | - Yiming Zhao
- School of Life Sciences, Lanzhou, 730000, China
| | | | - Xueqin Meng
- School of Life Sciences, Lanzhou, 730000, China
| | - Lizhe An
- School of Life Sciences, Lanzhou, 730000, China.
| | - Yong Chen
- School of Life Sciences, Lanzhou, 730000, China; The Key Laboratory of Cell Activity and Adversity Adaptation, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
189
|
Parada-Pozo G, Bravo LA, Sáez PL, Cavieres LA, Reyes-Díaz M, Abades S, Alfaro FD, De la Iglesia R, Trefault N. Vegetation drives the response of the active fraction of the rhizosphere microbial communities to soil warming in Antarctic vascular plants. FEMS Microbiol Ecol 2022; 98:6679102. [PMID: 36040342 DOI: 10.1093/femsec/fiac099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/11/2022] [Accepted: 08/27/2022] [Indexed: 01/21/2023] Open
Abstract
In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.
Collapse
Affiliation(s)
- Génesis Parada-Pozo
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - León A Bravo
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera. 4811230, Temuco, Chile
| | - Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, 4070386, Chile.,Instituto de Ecología y Biodiversidad (IEB), 775000, Santiago, Chile
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad (IEB), 775000, Santiago, Chile.,Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, 4070386, Chile
| | - Marjorie Reyes-Díaz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, 4811230, Chile.,Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811230, Chile
| | - Sebastián Abades
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - Fernando D Alfaro
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| | - Rodrigo De la Iglesia
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, 8320000, Chile
| | - Nicole Trefault
- Centro GEMA-Genómica, Ecología & Medio Ambiente, Facultad de Ciencias, Universidad Mayor, 8580745, Santiago, Chile
| |
Collapse
|
190
|
Temporal Dynamics of Rare and Abundant Soil Bacterial Taxa from Different Fertilization Regimes Under Various Environmental Disturbances. mSystems 2022; 7:e0055922. [PMID: 36121168 PMCID: PMC9600180 DOI: 10.1128/msystems.00559-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Global climate change has emerged as a critical environmental problem. Different types of climate extremes drive soil microbial communities to alternative states, leading to a series of consequences for soil microbial ecosystems and related functions. An effective method is urgently needed for buffering microbial communities to tackle environmental disturbances. Here, we conducted a series of mesocosm experiments in which the organic (NOF) and chemical fertilizer (NCF) long-term-amended soil microbiotas were subjected to environmental disturbances that included drought, flooding, freeze-thaw cycles, and heat. We subsequently tracked the temporal dynamics of rare and abundant bacterial taxa in NOF and NCF treatment soils to assess the efficiencies of organic amendments in recovery of soil microbiome. Our results revealed that freeze-thaw cycles and drought treatments showed weaker effects on bacterial communities than flooding and heat. The turnover between rare and abundant taxa occurred in postdisturbance succession of flooding and heat treatments, indicating that new equilibria were tightly related to the rare taxa in both NCF and NOF treatment soils. The Bayesian fits of modeling for the microbiome recovery process revealed that the stability of abundant taxa in NOF was higher than that in NCF soil. In particular, the NOF treatment soil reduced the divergence from the initial bacterial community after weak perturbations occurred. Together, we demonstrated that long-term organic input is an effective strategy to enhance the thresholds for transition to alternative states via enhancing the stability of abundant bacterial species. These findings provide a basis for the sustainable development of agricultural ecosystems in response to changing climates. IMPORTANCE Different climate extremes are expected to be a major threat to crop production, and the soil microbiome has been known to play a crucial role in agricultural ecosystems. In recent years, we have known that organic amendments are an effective method for optimizing the composition and functioning of the soil microbial community and maintaining the health of the soil ecosystem. However, the effects of organic fertilization on buffering bacterial communities against environmental disturbances and the underlying mechanisms are still unclear. We conducted a series of mesocosm experiments and showed that organic fertilizers had additional capacities in promoting the soil microbiome to withstand climate change effects. Our study provides both mechanistic insights as well as a direct guide for the sustainable development of agricultural ecosystems in response to climate change.
Collapse
|
191
|
Yellow polyketide pigment suppresses premature hatching in social amoeba. Proc Natl Acad Sci U S A 2022; 119:e2116122119. [PMID: 36252029 PMCID: PMC9618038 DOI: 10.1073/pnas.2116122119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Low-molecular-weight natural products from microbes are indispensable in the development of potent drugs. However, their biological roles within an ecological context often remain elusive. Here, we shed light on natural products from eukaryotic microorganisms that have the ability to transition from single cells to multicellular organisms: the social amoebae. These eukaryotes harbor a large number of polyketide biosynthetic genes in their genomes, yet virtually none of the corresponding products can be isolated or characterized. Using complementary molecular biology approaches, including CRISPR-Cas9, we generated polyketide synthase (pks5) inactivation and overproduction strains of the social amoeba Dictyostelium discoideum. Differential, untargeted metabolomics of wild-type versus mutant fruiting bodies allowed us to pinpoint candidate metabolites derived from the amoebal PKS5. Extrachromosomal expression of the respective gene led to the identification of a yellow polyunsaturated fatty acid. Analysis of the temporospatial production pattern of this compound in conjunction with detailed bioactivity studies revealed the polyketide to be a spore germination suppressor.
Collapse
|
192
|
Jia Y, Li X, Xu F, Liu Z, Fu Y, Xu X, Yang J, Zhang S, Shen C. Single-cell-level microfluidics assisted with resuscitation-promoting factor technology (SMART) to isolate novel biphenyl-degrading bacteria from typical soils in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119864. [PMID: 35952991 DOI: 10.1016/j.envpol.2022.119864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Soil microorganisms represent one of the largest biodiversity reservoirs. However, most low-abundance, slow-growing or dormant microorganisms in soils are difficult to capture with traditional enrichment culture methods. These types of microorganisms represent a valuable "microbial seed bank". To better exploit and utilize this "microbial dark matter", we developed a novel strategy that integrates single-cell-level isolation with microfluidics technology and culture with resuscitation-promoting factor (Rpf) to isolate biphenyl-degrading bacteria from four typical soils (paddy soil, red soil, alluvial soil and black soil) in eastern China. Multitudinous bacteria were successfully isolated and cultured; some of the identified clades have not been previously linked to biphenyl biodegradation, such as Actinotalea, Curtobacterium and Rothia. Soil microcosmic experiments validated that some bacteria are responsible for biphenyl degradation in soil. In addition, genomic sequencing and Illumina MiSeq sequencing of 16S rRNA genes indicated that exogenous Rpf mainly promotes the recovery and growth of bacteria containing endogenous Rpf-encoding genes. In summary, this study provides a novel strategy for capturing target functional microorganisms in soils, indicates potential bioresources for the bioremediation of contaminated soils, and enhances our current understanding of the mechanisms involved in the response to exogenous Rpf.
Collapse
Affiliation(s)
- Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengjun Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zefan Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Jialan Environmental Technology Co., LTD, Hangzhou, 311051, China
| | - Shuai Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
193
|
Wagner R, Montoya L, Gao C, Head JR, Remais J, Taylor JW. The air mycobiome is decoupled from the soil mycobiome in the California San Joaquin Valley. Mol Ecol 2022; 31:4962-4978. [PMID: 35933707 PMCID: PMC9624177 DOI: 10.1111/mec.16640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/21/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Dispersal is a key force in the assembly of fungal communities and the air is the dominant route of dispersal for most fungi. Understanding the dynamics of airborne fungi is important for determining their source and for helping to prevent fungal disease. This understanding is important in the San Joaquin Valley of California, which is home to 4.2 million people and where the airborne fungus Coccidioides is responsible for the most important fungal disease of otherwise healthy humans, coccidioidomycosis. The San Joaquin Valley is the most productive agricultural region in the United States, with the principal crops grown therein susceptible to fungal pathogens. Here, we characterize the fungal community in soil and air on undeveloped and agricultural land in the San Joaquin Valley using metabarcoding of the internal transcribed spacer 2 variable region of fungal rDNA. Using 1,002 individual samples, we report one of the most extensive studies of fungi sampled simultaneously from air and soil using modern sequencing techniques. We find that the air mycobiome in the San Joaquin Valley is distinct from the soil mycobiome, and that the assemblages of airborne fungi from sites as far apart as 160 km are far more similar to one another than to the fungal communities in nearby soils. Additionally, we present evidence that airborne fungi in the San Joaquin Valley are subject to dispersal limitation and cyclical intra-annual patterns of community composition. Our findings are broadly applicable to understanding the dispersal of airborne fungi and the taxonomic structure of airborne fungal assemblages.
Collapse
Affiliation(s)
- Robert Wagner
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Liliam Montoya
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Cheng Gao
- Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Jennifer R. Head
- Division of EpidemiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Justin Remais
- Division of Environmental Health SciencesUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - John W. Taylor
- Department of Plant & Microbial BiologyUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
194
|
How to Shut Down Transcription in Archaea during Virus Infection. Microorganisms 2022; 10:microorganisms10091824. [PMID: 36144426 PMCID: PMC9501531 DOI: 10.3390/microorganisms10091824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function.
Collapse
|
195
|
Berkvens A, Chauhan P, Bruggeman FJ. Integrative biology of persister cell formation: molecular circuitry, phenotypic diversification and fitness effects. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220129. [PMID: 36099930 PMCID: PMC9470271 DOI: 10.1098/rsif.2022.0129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial populations often contain persister cells, which reduce the extinction risk upon sudden stresses. Persister cell formation is deeply intertwined with physiology. Due to this complexity, it cannot be satisfactorily understood by focusing only on mechanistic, physiological or evolutionary aspects. In this review, we take an integrative biology perspective to identify common principles of persister cell formation, which might be applicable across evolutionary-distinct microbes. Persister cells probably evolved to cope with a fundamental trade-off between cellular stress and growth tasks, as any biosynthetic resource investment in growth-supporting proteins is at the expense of stress tasks and vice versa. Natural selection probably favours persister cell subpopulation formation over a single-phenotype strategy, where each cell is prepared for growth and stress to a suboptimal extent, since persister cells can withstand harsher environments and their coexistence with growing cells leads to a higher fitness. The formation of coexisting phenotypes requires bistable molecular circuitry. Bistability probably emerges from growth-modulated, positive feedback loops in the cell's growth versus stress control network, involving interactions between sigma factors, guanosine pentaphosphate and toxin-antitoxin (TA) systems. We conclude that persister cell formation is most likely a response to a sudden reduction in growth rate, which can be achieved by antibiotic addition, nutrient starvation, sudden stresses, nutrient transitions or activation of a TA system.
Collapse
Affiliation(s)
- Alicia Berkvens
- Systems Biology Lab, AIMMS, VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Priyanka Chauhan
- Systems Biology Lab, AIMMS, VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Frank J Bruggeman
- Systems Biology Lab, AIMMS, VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
196
|
Schwartz DA, Lehmkuhl BK, Lennon JT. Phage-Encoded Sigma Factors Alter Bacterial Dormancy. mSphere 2022; 7:e0029722. [PMID: 35856690 PMCID: PMC9429907 DOI: 10.1128/msphere.00297-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
By entering a reversible state of reduced metabolic activity, dormant microorganisms are able to tolerate suboptimal conditions that would otherwise reduce their fitness. Dormancy may also benefit bacteria by serving as a refuge from parasitic infections. Here, we focus on dormancy in the Bacillota, where endospore development is transcriptionally regulated by the expression of sigma factors. A disruption of this process could influence the survivorship or reproduction of phages that infect spore-forming hosts with implications for coevolutionary dynamics. We characterized the distribution of sigma factors in over 4,000 genomes of diverse phages capable of infecting hosts that span the bacterial domain. From this, we identified homologs of sporulation-specific sigma factors in phages that infect spore-forming hosts. Unlike sigma factors required for phage reproduction, we provide evidence that sporulation-like sigma factors are nonessential for lytic infection. However, when expressed in the spore-forming Bacillus subtilis, some of these phage-derived sigma factors can activate the bacterial sporulation gene network and lead to a reduction in spore yield. Our findings suggest that the acquisition of host-like transcriptional regulators may allow phages to manipulate a complex and ancient trait in one of the most abundant cell types on Earth. IMPORTANCE As obligate parasites, phages exert strong top-down pressure on host populations with eco-evolutionary implications for community dynamics and ecosystem functioning. The process of phage infection, however, is constrained by bottom-up processes that influence the energetic and nutritional status of susceptible hosts. Many phages have acquired auxiliary genes from bacteria, which can be used to exploit host metabolism with consequences for phage fitness. In this study, we demonstrate that phages infecting spore-forming bacteria carry homologs of sigma factors, which their hosts use to orchestrate gene expression during spore development. By tapping into regulatory gene networks, phages may manipulate the physiology and survival strategies of nongrowing bacteria in ways that influence host-parasite coevolution.
Collapse
Affiliation(s)
- D. A. Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - B. K. Lehmkuhl
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - J. T. Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
197
|
Crevecoeur S, Prairie YT, del Giorgio PA. Tracking the upstream history of aquatic microbes in a boreal lake yields new insights on microbial community assembly. PNAS NEXUS 2022; 1:pgac171. [PMID: 36714827 PMCID: PMC9802056 DOI: 10.1093/pnasnexus/pgac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 02/01/2023]
Abstract
Bacterial community structure can change rapidly across short spatial and temporal scales as environmental conditions vary, but the mechanisms underlying those changes are still poorly understood. Here, we assessed how a lake microbial community assembles by following its reorganization from the main tributary, which, when flowing into the lake, first traverses an extensive macrophyte-dominated vegetated habitat, before reaching the open water. Environmental conditions in the vegetated habitat changed drastically compared to both river and lake waters and represented a strong environmental gradient for the incoming bacteria. We used amplicon sequencing of the 16S rRNA gene and transcript to reconstruct the shifts in relative abundance of individual taxa and link this to their pattern in activity (here assessed with RNA:DNA ratios). Our results indicate that major shifts in relative abundance were restricted mostly to rare taxa (<0.1% of relative abundance), which seemed more responsive to environmental changes. Dominant taxa (>1% of relative abundance), on the other hand, traversed the gradient mostly unchanged with relatively low and stable RNA:DNA ratios. We also identified a high level of local recruitment and a seedbank of taxa capable of activating/inactivating, but these were almost exclusively associated with the rare biosphere. Our results suggest a scenario where the lake community results from a reshuffling of the rank abundance structure within the incoming rare biosphere, driven by selection and growth, and that numerical dominance is not a synonym of activity, growth rate, or environmental selection, but rather reflect mass effects structuring these freshwater bacterial communities.
Collapse
Affiliation(s)
| | - Yves T Prairie
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC H2×1Y4, Canada
| | - Paul A del Giorgio
- Département des Sciences Biologiques, Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Université du Québec à Montréal, Montréal, QC H2×1Y4, Canada
| |
Collapse
|
198
|
Gittins DA, Desiage PA, Morrison N, Rattray JE, Bhatnagar S, Chakraborty A, Zorz J, Li C, Horanszky O, Cramm MA, Bisiach F, Bennett R, Webb J, MacDonald A, Fowler M, Campbell DC, Hubert CRJ. Geological processes mediate a microbial dispersal loop in the deep biosphere. SCIENCE ADVANCES 2022; 8:eabn3485. [PMID: 36026445 PMCID: PMC9417182 DOI: 10.1126/sciadv.abn3485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry. Thermophilic endospores in the permanently cold seabed correlated with underlying seep conduits reveal geofluid-facilitated cell migration pathways originating in deep petroleum-bearing sediments. Endospore genomes highlight adaptations to life in anoxic petroleum systems and bear close resemblance to oil reservoir microbiomes globally. Upon transport out of the subsurface, viable thermophilic endospores reenter the geosphere by sediment burial, enabling germination and environmental selection at depth where new petroleum systems establish. This microbial dispersal loop circulates living biomass in and out of the deep biosphere.
Collapse
Affiliation(s)
- Daniel A. Gittins
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
- Corresponding author.
| | | | - Natasha Morrison
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | - Jayne E. Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Srijak Bhatnagar
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | - Jackie Zorz
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Carmen Li
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Oliver Horanszky
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Margaret A. Cramm
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Francesco Bisiach
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Robbie Bennett
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Jamie Webb
- Applied Petroleum Technology, Calgary, Canada
| | - Adam MacDonald
- Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Canada
| | | | - D. Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Canada
| | - Casey R. J. Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Canada
| |
Collapse
|
199
|
Zhu M, Yin H, Yuan Y, Liu H, Qi X, Ren Y, Dang Z. Discrepancy strategies of sediment abundant and rare microbial communities in response to floating microplastic disturbances: Study using a microcosmic experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155346. [PMID: 35489492 DOI: 10.1016/j.scitotenv.2022.155346] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Floating microplastics (FMPs) in surface water have been extensively studied, but their influence on sedimentary microbial ecosystems is poorly understood. Here, we investigated response patterns of abundant and rare sedimentary microbes to FMP disturbances by performing microcosmic experiments using fluvial sediment with polyethylene (PE), polylactic acid (PLA), polystyrene (PS) and polyvinyl chloride (PVC) MPs. The results indicated that FMPs altered sediment microbial community diversity and composition. Some organic-degrading, nitrifying and denitrifying bacteria significantly decreased in response to FMP disturbances, which may affect the sediment carbon and nitrogen cycles. Rare taxa persisted under FMP disturbances, whereas abundant taxa were more susceptible to FMP disturbances, suggesting a higher sensitivity of abundant taxa to FMP disturbances. Although stochastic processes governed the assembly of the overall microbial communities, the assembly mechanisms of abundant and rare populations have significantly different responses to FMP interference. The relative contribution of deterministic processes was reinforced by enhanced homogenous selection in abundant populations, while it markedly decreased in rare populations under FMP disturbances. Furthermore, FMPs substantially decreased the network complexity, loosened the coexistence relationships, and increased the negative correlations. Rare species play an important role in reshaping complex microbial interactions and coexistence networks in response to FMP disturbances. This research broadens our perspectives for comprehensively evaluating the ecological effects of FMPs in the aquatic environment to formulate further policy controls.
Collapse
Affiliation(s)
- Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| |
Collapse
|
200
|
YTHDF3 Is Involved in the Diapause Process of Bivoltine Bombyx mori Strains by Regulating the Expression of Cyp307a1 and Cyp18a1 Genes in the Ecdysone Synthesis Pathway. Biomolecules 2022; 12:biom12081127. [PMID: 36009021 PMCID: PMC9406231 DOI: 10.3390/biom12081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
The variable diapause features of bivoltine silkworm (Bombyx mori) strains regulated by environmental signals in the embryonic stage are closely related to epigenetics. Previously, we showed that the expression of YTHDF3 is significantly different in the pupae of the bivoltine silkworm Qiufeng developed from eggs incubated at a normal temperature (QFHT, diapause egg producer) compared to those from eggs incubated at a low temperature (QFLT, nondiapause egg producer), indicating that the expression of diapause-associated genes is regulated by the m6A modification level. However, how YTHDF3 regulates the expression of diapause-related genes remains unclear. In this study, we observed that the knockdown of B. mori YTHDF3 resulted in delayed embryo development, while the overexpression of YTHDF3 resulted in the transformation of nondiapause-destined eggs into a mixture of diapause and nondiapause eggs. Further studies showed that YTHDF3, as a reading protein, can recognize the m6A site of Cyp307a1 and Cyp18a1 genes in the ecdysone synthesis pathway (ESP), and the overexpression of YTHDF3 affects the diapause traits of the silkworm by decreasing the stabilities of mRNAs of Cyp307a1 and Cyp18a1 and inhibiting their translation. The above results demonstrate that m6A modification mediates YTHDF3 to affect the expression levels of its target genes, Cyp307a1 and Cyp18a1, in the ESP to regulate diapause in bivoltine B. mori. This is the first report of the m6A methylation regulation mechanism in diapause in B. mori and provides new experimental data for clarifying the diapause regulation network.
Collapse
|