151
|
Aoyama S, Nakagawa R, Nemoto S, Perez-Villarroel P, Mulé JJ, Mailloux AW. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2020-002269. [PMID: 34135102 PMCID: PMC8211075 DOI: 10.1136/jitc-2020-002269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The temporal response to checkpoint blockade (CB) is incompletely understood. Here, we profiled the tumor infiltrating lymphocyte (TIL) landscape in response to combination checkpoint blockade at two distinct timepoints of solid tumor growth. Methods C57BL/6 mice bearing subcutaneous MC38 tumors were treated with anti-PD-1 and/or anti-CTLA-4 antibodies. At 11 or 21 days, TIL phenotype and effector function were analyzed in excised tumor digests using high parameter flow cytometry. The contributions of major TIL populations toward overall response were then assessed using ex vivo cytotoxicity and in vivo tumor growth assays. Results The distribution and effector function among 37 distinct TIL populations shifted dramatically between early and late MC38 growth. At 11 days, the immune response was dominated by Tumor necrosis factor alpha (TNFα)-producing NKT, representing over half of all TIL. These were accompanied by modest frequencies of natural killer (NK), CD4+, or CD8+ T cells, producing low levels of IFN-γ. At 21 days, NKT populations were reduced to a combined 20% of TIL, giving way to increased NK, CD4+, and CD8+ T cells, with increased IFN-γ production. Treatment with CB accelerated this switch. At day 11, CB reduced NKT to less than 20% of all TIL, downregulated TNFα across NKT and CD4+ T cell populations, increased CD4+ and CD8+ TIL frequencies, and significantly upregulated IFN-γ production. Degranulation was largely associated with NK and NKT TIL. Blockade of H-2kb and/or CD1d during ex vivo cytotoxicity assays revealed NKT has limited direct cytotoxicity against parent MC38. However, forced CD1d overexpression in MC38 cells significantly diminished tumor growth, suggesting NKT TIL exerts indirect control over MC38 growth. Conclusions Despite an indirect benefit of early NKT activity, CB accelerates a switch from TNFα, NKT-driven immune response toward an IFN-γ driven CD4+/CD8+ T cell response in MC38 tumors. These results uncover a novel NKT/T cell switch that may be a key feature of CB response in CD1d+ tumors.
Collapse
Affiliation(s)
- Shota Aoyama
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Ryosuke Nakagawa
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | - Satoshi Nemoto
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Department of Gastroenterology and General Surgery, Tokyo Women's Medical University, Shinjuku-ku, Japan
| | | | - James J Mulé
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida, USA.,Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida, USA
| | - Adam William Mailloux
- Department of Microbiology and Immunology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
152
|
Sonanini D, Griessinger CM, Schörg BF, Knopf P, Dittmann K, Röcken M, Pichler BJ, Kneilling M. Low-dose total body irradiation facilitates antitumoral Th1 immune responses. Theranostics 2021; 11:7700-7714. [PMID: 34335959 PMCID: PMC8315067 DOI: 10.7150/thno.61459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
CD4+ T helper cells are capable of mediating long-term antitumoral immune responses. We developed a combined immunotherapy (COMBO) using tumor antigen-specific T helper 1 cells (Tag-Th1), dual PD-L1/LAG-3 immune checkpoint blockade, and a low-dose total body irradiation (TBI) of 2 Gy, that was highly efficient in controlling the tumor burden of non-immunogenic RIP1-Tag2 mice with late-stage endogenous pancreatic islet carcinomas. In this study, we aimed to explore the impact of 2 Gy TBI on the treatment efficacy and the underlying mechanisms to boost CD4+ T cell-based immunotherapies. Methods: Heavily progressed RIP1-Tag2 mice underwent COMBO treatment and their survival was compared to a cohort without 2 Gy TBI. Positron emission tomography/computed tomography (PET/CT) with radiolabeled anti-CD3 monoclonal antibodies and flow cytometry were applied to investigate 2 Gy TBI-induced alterations in the biodistribution of endogenous T cells of healthy C3H mice. Migration and homing properties of Cy5-labeled adoptive Tag-Th1 cells were monitored by optical imaging and flow cytometric analyses in C3H and tumor-bearing RIP1-Tag2 mice. Splenectomy or sham-surgery of late-stage RIP1-Tag2 mice was performed before onset of COMBO treatment to elucidate the impact of the spleen on the therapy response. Results: First, we determined a significant longer survival of RIP1-Tag2 mice and an increased CD4+ T cell tumor infiltrate when 2 Gy TBI was applied in addition to Tag-Th1 cell PD-L1/LAG-3 treatment. In non-tumor-bearing C3H mice, TBI induced a moderate host lymphodepletion and a tumor antigen-independent accumulation of Tag-Th1 cells in lymphoid and non-lymphoid organs. In RIP1-Tag2, we found increased numbers of effector memory-like Tag-Th1 and endogenous CD4+ T cells in the pancreatic tumor tissue after TBI, accompanied by a tumor-specific Th1-driven immune response. Furthermore, the spleen negatively regulated T cell effector function by upregulation PD-1/LAG-3/TIM-3 immune checkpoints, providing a further rationale for this combined treatment approach. Conclusion: Low-dose TBI represents a powerful tool to foster CD4+ T cell-based cancer immunotherapies by favoring Th1-driven antitumoral immunity. As TBI is a clinically approved and well-established technique it might be an ideal addition for adoptive cell therapy with CD4+ T cells in the clinical setting.
Collapse
|
153
|
Wang Y, Li Z, Zhang Z, Chen X. Identification ACTA2 and KDR as key proteins for prognosis of PD-1/PD-L1 blockade therapy in melanoma. Animal Model Exp Med 2021; 4:138-150. [PMID: 34179721 PMCID: PMC8212820 DOI: 10.1002/ame2.12154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) /programmed cell death ligand 1 (PD-L1) blockade is an important therapeutic strategy for melanoma, despite its low clinical response. It is important to identify genes and pathways that may reflect the clinical outcomes of this therapy in patients. We analyzed clinical dataset GSE96619, which contains clinical information from five melanoma patients before and after anti-PD-1 therapy (five pairs of data). We identified 704 DEGs using these five pairs of data, and then the number of DEGs was narrowed down to 286 in patients who responded to treatment. Next, we performed KEGG pathway enrichment and constructed a DEG-associated protein-protein interaction network. Smooth muscle actin 2 (ACTA2) and tyrosine kinase growth factor receptor (KDR) were identified as the hub genes, which were significantly downregulated in the tumor tissue of the two patients who responded to treatment. To confirm our analysis, we demonstrated similar expression tendency to the clinical data for the two hub genes in a B16F10 subcutaneous xenograft model. This study demonstrates that ACTA2 and KDR are valuable responsive markers for PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
154
|
Lim SY, Alavi S, Ming Z, Shklovskaya E, Fung C, Stewart A, Rizos H. Melanoma Cell State-Specific Responses to TNFα. Biomedicines 2021; 9:biomedicines9060605. [PMID: 34073253 PMCID: PMC8230114 DOI: 10.3390/biomedicines9060605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors that target the programmed cell death protein 1 (PD1) pathway have revolutionized the treatment of patients with advanced metastatic melanoma. PD1 inhibitors reinvigorate exhausted tumor-reactive T cells, thus restoring anti-tumor immunity. Tumor necrosis factor alpha (TNFα) is abundantly expressed as a consequence of T cell activation and can have pleiotropic effects on melanoma response and resistance to PD1 inhibitors. In this study, we examined the influence of TNFα on markers of melanoma dedifferentiation, antigen presentation and immune inhibition in a panel of 40 melanoma cell lines. We report that TNFα signaling is retained in all melanomas but the downstream impact of TNFα was dependent on the differentiation status of melanoma cells. We show that TNFα is a poor inducer of antigen presentation molecules HLA-ABC and HLA-DR but readily induces the PD-L2 immune checkpoint in melanoma cells. Our results suggest that TNFα promotes dynamic changes in melanoma cells that may favor immunotherapy resistance.
Collapse
Affiliation(s)
- Su Yin Lim
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Sara Alavi
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
- Melanoma Oncology and Immunology, Centenary Institute, Camperdown, NSW 2050, Australia
| | - Zizhen Ming
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Elena Shklovskaya
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Carina Fung
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Ashleigh Stewart
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
| | - Helen Rizos
- Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (S.Y.L.); (Z.M.); (E.S.); (C.F.); (A.S.)
- Melanoma Institute Australia, Sydney, NSW 2065, Australia;
- Correspondence: ; Tel.: +61-02-98502762
| |
Collapse
|
155
|
Haanen J, Ernstoff M, Wang Y, Menzies A, Puzanov I, Grivas P, Larkin J, Peters S, Thompson J, Obeid M. Rechallenge patients with immune checkpoint inhibitors following severe immune-related adverse events: review of the literature and suggested prophylactic strategy. J Immunother Cancer 2021; 8:jitc-2020-000604. [PMID: 32532839 PMCID: PMC7295425 DOI: 10.1136/jitc-2020-000604] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with cancer who developed severe, grade 3 or 4 immune-related adverse events (irAEs) during therapy with immune checkpoint inhibitors are at risk for developing severe toxicities again on rechallenge with checkpoint inhibitors. Consequently, medical oncologists and multidisciplinary teams are hesitant to retreat in this scenario, despite the fact that a number of patients may derive clinical benefit from this approach. Balancing such clinical benefit and treatment-related toxicities for each patient is becoming increasingly challenging as more and more patients with cancer are being treated with checkpoint inhibitors. In this manuscript, we provide an extensive overview of the relevant literature on retreatment after toxicity, and suggest prophylactic approaches to minimize the risk of severe irAE following rechallenge with immune checkpoint blockade, since treatment may be lifesaving in a number of occasions.
Collapse
Affiliation(s)
- John Haanen
- Netherlands Cancer Institute, Division of Medical Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marc Ernstoff
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology & Nutrition, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander Menzies
- Melanoma Institute Australia and The University of Sydney, Sydeny, New South Wales, Australia.,Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Elm & Carlton Streets, Buffalo, New York 14263, USA
| | - Petros Grivas
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Oncology, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | - John Thompson
- University of Washington, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Michel Obeid
- Centre Hospitalier Universitaire Vaudois (CHUV), Department of Medicine, Service of Immunology and Allergy, rue du Bugnon 46, CH-1011 Lausanne, Switzerland .,Centre Hospitalier Universitaire Vaudois (CHUV), Vaccine and Immunotherapy Center, rue du Bugnon 17, CH-1011 Lausanne, Switzerland
| |
Collapse
|
156
|
Lichterman JN, Reddy SM. Mast Cells: A New Frontier for Cancer Immunotherapy. Cells 2021; 10:cells10061270. [PMID: 34063789 PMCID: PMC8223777 DOI: 10.3390/cells10061270] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are unique tissue-resident immune cells of the myeloid lineage that have long been implicated in the pathogenesis of allergic and autoimmune disorders. More recently, mast cells have been recognized as key orchestrators of anti-tumor immunity, modulators of the cancer stroma, and have also been implicated in cancer cell intrinsic properties. As such, mast cells are an underrecognized but very promising target for cancer immunotherapy. In this review, we discuss the role of mast cells in shaping cancer and its microenvironment, the interaction between mast cells and cancer therapies, and strategies to target mast cells to improve cancer outcomes. Specifically, we address (1) decreasing cell numbers through c-KIT inhibition, (2) modulating mast cell activation and phenotype (through mast cell stabilizers, FcεR1 signaling pathway activators/inhibitors, antibodies targeting inhibitory receptors and ligands, toll like receptor agonists), and (3) altering secreted mast cell mediators and their downstream effects. Finally, we discuss the importance of translational research using patient samples to advance the field of mast cell targeting to optimally improve patient outcomes. As we aim to expand the successes of existing cancer immunotherapies, focused clinical and translational studies targeting mast cells in different cancer contexts are now warranted.
Collapse
Affiliation(s)
- Jake N. Lichterman
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sangeetha M. Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: ; Tel.: +1-214-648-4180
| |
Collapse
|
157
|
Zou R, Wang Y, Ye F, Zhang X, Wang M, Cui S. Mechanisms of primary and acquired resistance to PD-1/PD-L1 blockade and the emerging role of gut microbiome. Clin Transl Oncol 2021; 23:2237-2252. [PMID: 34002348 DOI: 10.1007/s12094-021-02637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
As a very promising immunotherapy, PD-1/PD-L1 blockade has revolutionized the treatment of a variety of tumor types, resulting in significant clinical efficacy and lasting responses. However, these therapies do not work for a large proportion of patients initially, which is called primary resistance. And more frustrating is that most patients eventually develop acquired resistance after an initial response to PD-1/PD-L1 blockade. The mechanisms that lead to primary and acquired resistance to PD-1/PD-L1 inhibition have remained largely unclear. Recently, the gut microbiome has emerged as a potential regulator for PD-1/PD-L1 blockade. This review elaborates on the current understanding of the mechanisms in terms of PD-1 related signaling pathways and necessary factors. Moreover, this review discusses new strategies to increase the efficacy of immunotherapy from the perspectives of immune markers and gut microbiome.
Collapse
Affiliation(s)
- R Zou
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Y Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - F Ye
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - X Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - M Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - S Cui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
158
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
159
|
Chatzidionysiou K, Liapi M, Tsakonas G, Gunnarsson I, Catrina A. Treatment of rheumatic immune-related adverse events due to cancer immunotherapy with immune checkpoint inhibitors-is it time for a paradigm shift? Clin Rheumatol 2021; 40:1687-1695. [PMID: 32989505 PMCID: PMC8102438 DOI: 10.1007/s10067-020-05420-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022]
Abstract
Immunotherapy has revolutionized cancer treatment during the last years. Several monoclonal antibodies that are specific for regulatory checkpoint molecules, that is, immune checkpoint inhibitors (ICIs), have been approved and are currently in use for various types of cancer in different lines of treatment. Cancer immunotherapy aims for enhancing the immune response against cancer cells. Despite their high efficacy, ICIs are associated to a new spectrum of adverse events of autoimmune origin, often referred to as immune-related adverse events (irAEs), which limit the utility of these drugs. These irAEs are quite common and can affect almost every organ. The grade of toxicity varies from very mild to life-threatening. The pathophysiological mechanisms behind these events are not fully understood. In this review, we will summarize current evidence specifically regarding the rheumatic irAEs and we will focus on current and future treatment strategies. Treatment guidelines largely support the use of glucocorticoids as first-line therapy, when symptomatic therapy is not efficient, and for more persistent and/or moderate/severe degree of inflammation. Targeted therapies are higher up in the treatment pyramid, after inadequate response to glucocorticoids and conventional, broad immunosuppressive agents, and for severe forms of irAEs. However, preclinical data provide evidence that raise concerns regarding the potential risk of impaired antitumoral effect. This potential risk of glucocorticoids, together with the high efficacy and potential synergistic effect of newer, targeted immunomodulation, such as tumor necrosis factor and interleukin-6 blockade, could support a paradigm shift, where more targeted treatments are considered earlier in the treatment sequence.
Collapse
Affiliation(s)
- Katerina Chatzidionysiou
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden.
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.
| | - Matina Liapi
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Georgios Tsakonas
- Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Iva Gunnarsson
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Anca Catrina
- Rheumatology Unit, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
160
|
IL-7 coupled with IL-12 increases intratumoral T cell clonality, leading to complete regression of non-immunogenic tumors. Cancer Immunol Immunother 2021; 70:3557-3571. [PMID: 33909103 PMCID: PMC8571137 DOI: 10.1007/s00262-021-02947-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/14/2021] [Indexed: 12/13/2022]
Abstract
Immune checkpoint inhibitors against PD-1, PD-L1 and CTLA-4 have altered the treatment paradigm for various types of cancers in the past decade. However, they offer clinical benefits to only a subset of patients. Evaluation and identification of an appropriate therapeutic approach to improve intratumoral immune status are needed for better treatment outcomes. We previously demonstrated that intratumoral expression of IL-7 and IL-12 increased tumor-infiltrating lymphocytes in poorly immunogenic tumors, resulting in a higher tumor regression rate than IL-12 alone. However, the mechanism underlying the difference in efficacy with and without IL-7 remains unclear. Here, we identified a previously unknown effect of IL-7 on the T cell receptor (TCR) repertoire of intratumoral CD8+ T cells, which is induced in the presence of IL-12. While IL-7 alone increased the diversity of intratumoral CD8+ T cells, IL-7 with IL-12 increased a limited number of high-frequency clones, conversely augmenting IL-12 function to increase the clonality. The proportion of mice with multiple high-frequency clones in tumors correlated with that achieving complete tumor regression in efficacy studies. These findings provide a scientific rationale for combining IL-7 and IL-12 in anticancer immunotherapy and unveil a novel IL-7 function on intratumoral TCR repertoire.
Collapse
|
161
|
Tingry T, Massy E, Piperno M, Auroux M, Kostine M, Maillet D, Amini-Adle M, Fabien N, Estublier C, Goncalves D, Girard N, Confavreux CB. [Rheumatic immune adverse events related to immune checkpoint inhibitors-(IrAEs related to ICI)]. Bull Cancer 2021; 108:643-653. [PMID: 33902919 DOI: 10.1016/j.bulcan.2021.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
New anti-cancer therapeutics have been developed in the recent years and dramatically change prognosis and patient management. Either used alone or in combination, immune checkpoint inhibitors (ICI), such as anti-CTLA-4 and anti-PD1/PD-(L)1, act by removing T-cell inhibition to enhance their antitumor response. This change in therapeutic targets leads to a break in immune-tolerance and a unique toxicity profile resulting in immune complications. These side effects, called Immune-Related Adverse Events (IrAEs), can affect all organs, with a wide range of clinical and biological presentations and severity. Various rheumatic and musculoskeletal manifestations have been reported in the literature, ranging from mild arthralgia, polymyalgia rheumatica, to genuine serodefined rheumatoid arthritis and myositis. Tolerance studies suggest some correlations between IrAEs occurrence and tumor response. Assessment of patient musculoskeletal status prior to the start of the ICI is warranted. Management of rheumatic IrAEs does not usually request ICI discontinuation, exception for myositis or very severe forms where it should be discussed. Treatment relies on non-steroidal anti-inflammatory drugs (NSAIDs) or low dose glucocortioids (<20mg per day). Dose should be adjusted according to severity. The use of disease modifying anti-rheumatic drugs (DMARDs), either conventional and/or biological should be very cautious and result from a shared decision between oncologist and rheumatologist to best manage dysimmunitary complications without hampering the antitumor efficacy of ICI.
Collapse
Affiliation(s)
- Thomas Tingry
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France; Université de Lyon, Inserm UMR 1033-LYOS, 69003 Lyon, France; Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France
| | - Emmanuel Massy
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France; Université de Lyon, Inserm UMR 1033-LYOS, 69003 Lyon, France; Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France
| | - Muriel Piperno
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France; Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France
| | - Maxime Auroux
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France
| | - Marie Kostine
- Centre hospitalier universitaire de Bordeaux, département de rhumatologie, 33000 Bordeaux, France
| | - Denis Maillet
- Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France; Centre Hospitalier Lyon Sud, Hospices civils de Lyon, service d'oncologie médicale, 69310 Pierre Bénite, France
| | - Mona Amini-Adle
- Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France; Centre de lutte contre le cancer Léon-Bérard, service de dermatologie, 69003 Lyon, France
| | - Nicole Fabien
- Centre Hospitalier Lyon Sud, hospices civils de Lyon, laboratoire d'auto-immunité, 69310 Pierre Bénite, France
| | - Charline Estublier
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France; Université de Lyon, Inserm UMR 1033-LYOS, 69003 Lyon, France; Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France
| | - David Goncalves
- Centre Hospitalier Lyon Sud, hospices civils de Lyon, laboratoire d'auto-immunité, 69310 Pierre Bénite, France
| | - Nicolas Girard
- Institut Curie, institut du Thorax Curie Montsouris, 75005 Paris, France
| | - Cyrille B Confavreux
- Centre hospitalier Lyon Sud-hospices civils de Lyon, service de rhumatologie, centre expert des métastases et d'oncologie osseuse secondaire (CEMOS), 69310 Pierre Bénite, France; Université de Lyon, Inserm UMR 1033-LYOS, 69003 Lyon, France; Institut de cancérologie des hospices Civils de Lyon, ImmuCare (Immunology cancer research), 69310 Pierre Bénite, France.
| |
Collapse
|
162
|
Yang Y, Islam MS, Hu Y, Chen X. TNFR2: Role in Cancer Immunology and Immunotherapy. Immunotargets Ther 2021; 10:103-122. [PMID: 33907692 PMCID: PMC8071081 DOI: 10.2147/itt.s255224] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-CTLA-4 (cytotoxic T lymphocyte antigen-4) and anti-PD-1/PD-L1 (programmed death-1/programmed death-ligand 1), represent a turning point in the cancer immunotherapy. However, only a minor fraction of patients could derive benefit from such therapy. Therefore, new strategies targeting additional immune regulatory mechanisms are urgently needed. CD4+Foxp3+ regulatory T cells (Tregs) represent a major cellular mechanism in cancer immune evasion. There is compelling evidence that tumor necrosis factor (TNF) receptor type II (TNFR2) plays a decisive role in the activation and expansion of Tregs and other types of immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs). Furthermore, TNFR2 is also expressed by some tumor cells. Emerging experimental evidence indicates that TNFR2 may be a therapeutic target to enhance naturally occurring or immunotherapeutic-triggered anti-tumor immune responses. In this article, we discuss recent advances in the understanding of the mechanistic basis underlying the Treg-boosting effect of TNFR2. The role of TNFR2-expressing highly suppressive Tregs in tumor immune evasion and their possible contribution to the non-responsiveness to checkpoint treatment are analyzed. Moreover, the role of TNFR2 expression on tumor cells and the impact of TNFR2 signaling on other types of cells that shape the immunological landscape in the tumor microenvironment, such as MDSCs, MSCs, ECs, EPCs, CD8+ CTLs, and NK cells, are also discussed. The reports revealing the effect of TNFR2-targeting pharmacological agents in the experimental cancer immunotherapy are summarized. We also discuss the potential opportunities and challenges for TNFR2-targeting immunotherapy.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Md Sahidul Islam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, 999078, People's Republic of China
| |
Collapse
|
163
|
Micheau O, Rizzi M, Smulski CR. Editorial: TNFR Superfamily Oligomerization and Signaling. Front Cell Dev Biol 2021; 9:682472. [PMID: 33959618 PMCID: PMC8093801 DOI: 10.3389/fcell.2021.682472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Affiliation(s)
- Olivier Micheau
- INSERM, LNC, UMR 1231, Dijon, France.,Université de Bourgogne Franche-Comté, Dijon, France
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Cristian R Smulski
- Medical Physics Department, Bariloche Atomic Centre Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
164
|
Weulersse M, Asrir A, Pichler AC, Lemaitre L, Braun M, Carrié N, Joubert MV, Le Moine M, Do Souto L, Gaud G, Das I, Brauns E, Scarlata CM, Morandi E, Sundarrajan A, Cuisinier M, Buisson L, Maheo S, Kassem S, Agesta A, Pérès M, Verhoeyen E, Martinez A, Mazieres J, Dupré L, Gossye T, Pancaldi V, Guillerey C, Ayyoub M, Dejean AS, Saoudi A, Goriely S, Avet-Loiseau H, Bald T, Smyth MJ, Martinet L. Eomes-Dependent Loss of the Co-activating Receptor CD226 Restrains CD8 + T Cell Anti-tumor Functions and Limits the Efficacy of Cancer Immunotherapy. Immunity 2021; 53:824-839.e10. [PMID: 33053331 DOI: 10.1016/j.immuni.2020.09.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/15/2020] [Accepted: 09/10/2020] [Indexed: 01/16/2023]
Abstract
CD8+ T cells within the tumor microenvironment (TME) are exposed to various signals that ultimately determine functional outcomes. Here, we examined the role of the co-activating receptor CD226 (DNAM-1) in CD8+ T cell function. The absence of CD226 expression identified a subset of dysfunctional CD8+ T cells present in peripheral blood of healthy individuals. These cells exhibited reduced LFA-1 activation, altered TCR signaling, and a distinct transcriptomic program upon stimulation. CD226neg CD8+ T cells accumulated in human and mouse tumors of diverse origin through an antigen-specific mechanism involving the transcriptional regulator Eomesodermin (Eomes). Despite similar expression of co-inhibitory receptors, CD8+ tumor-infiltrating lymphocyte failed to respond to anti-PD-1 in the absence of CD226. Immune checkpoint blockade efficacy was hampered in Cd226-/- mice. Anti-CD137 (4-1BB) agonists also stimulated Eomes-dependent CD226 loss that limited the anti-tumor efficacy of this treatment. Thus, CD226 loss restrains CD8+ T cell function and limits the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Marianne Weulersse
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Assia Asrir
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Andrea C Pichler
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Lea Lemaitre
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Matthias Braun
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nadège Carrié
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Marie Le Moine
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Laura Do Souto
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Guillaume Gaud
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Indrajit Das
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Elisa Brauns
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Clara M Scarlata
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Elena Morandi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | | | - Marine Cuisinier
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Laure Buisson
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sabrina Maheo
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Sahar Kassem
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Arantxa Agesta
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Michaël Pérès
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, Nice, France; Centre international de recherche en infectiologie (CIRI), Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Julien Mazieres
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Loïc Dupré
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Thomas Gossye
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France
| | - Vera Pancaldi
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Barcelona Supercomputing Center, Barcelona, Spain
| | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Anne S Dejean
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Abdelhadi Saoudi
- Centre de physiopathologie de Toulouse Purpan (CPTP), INSERM UMR 1043, CNRS UMR 5282, UPS, Toulouse, France
| | - Stanislas Goriely
- UCR-I (ULB Centre for Research in Immunology), Université Libre de Bruxelles, Institute for Medical Immunology (IMI), Gosselies, 6041 Belgium
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France
| | - Tobias Bald
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ludovic Martinet
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1037, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Toulouse, France; Institut Universitaire du Cancer, CHU Toulouse, France.
| |
Collapse
|
165
|
Hoekstra ME, Vijver SV, Schumacher TN. Modulation of the tumor micro-environment by CD8 + T cell-derived cytokines. Curr Opin Immunol 2021; 69:65-71. [PMID: 33862306 DOI: 10.1016/j.coi.2021.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023]
Abstract
Upon their activation, CD8+ T cells in the tumor micro-environment (TME) secrete cytokines such as IFNγ, TNFα, and IL-2. While over the past years a major interest has developed in the antigenic signals that induce such cytokine release, our understanding of the cells that subsequently sense these CD8+ T-cell secreted cytokines is modest. Here, we review the current insights into the spreading behavior of CD8+ T-cell-secreted cytokines in the TME. We argue for a model in which variation in the mode of cytokine secretion, cytokine half-life, receptor-mediated clearance, cytokine binding to extracellular components, and feedback or forward loops, between different cytokines or between individual tumors, sculpts the local tissue response to natural and therapy-induced T-cell activation in human cancer.
Collapse
Affiliation(s)
- Mirjam E Hoekstra
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Saskia V Vijver
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
166
|
Abstract
Immune checkpoint inhibitors (ICIs) are effective in the treatment of patients with advanced cancer and have emerged as a pillar of standard cancer care. However, their use is complicated by adverse effects known as immune-related adverse events (irAEs), including ICI-induced inflammatory arthritis. ICI-induced inflammatory arthritis is distinguished from other irAEs by its persistence and requirement for long-term treatment. TNF inhibitors are commonly used to treat inflammatory diseases such as rheumatoid arthritis, spondyloarthropathies and inflammatory bowel disease, and have also been adopted as second-line agents to treat irAEs refractory to glucocorticoid treatment. Experiencing an irAE is associated with a better antitumour response after ICI treatment. However, whether TNF inhibition can be safely used to treat irAEs without promoting cancer progression, either by compromising ICI therapy efficacy or via another route, remains an open question. In this Review, we discuss clinical and preclinical studies that address the relationship between TNF, TNF inhibition and cancer. The bulk of the evidence suggests that at least short courses of TNF inhibitors are safe for the treatment of irAEs in patients with cancer undergoing ICI therapy. Data from preclinical studies hint that TNF inhibition might augment the antitumour effect of ICI therapy while simultaneously ameliorating irAEs.
Collapse
|
167
|
Dougan M, Luoma AM, Dougan SK, Wucherpfennig KW. Understanding and treating the inflammatory adverse events of cancer immunotherapy. Cell 2021; 184:1575-1588. [PMID: 33675691 PMCID: PMC7979511 DOI: 10.1016/j.cell.2021.02.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
During the past decade, immunotherapies have made a major impact on the treatment of diverse types of cancer. Inflammatory toxicities are not only a major concern for Food and Drug Administration (FDA)-approved checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies, but also limit the development and use of combination therapies. Fundamentally, these adverse events highlight the intricate balance of pro- and anti-inflammatory pathways that regulate protective immune responses. Here, we discuss the cellular and molecular mechanisms of inflammatory adverse events, current approaches to treatment, as well as opportunities for the design of immunotherapies that limit such inflammatory toxicities while preserving anti-tumor efficacy.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.
| | - Adrienne M Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
168
|
Montfort A, Bertrand F, Rochotte J, Gilhodes J, Filleron T, Milhès J, Dufau C, Imbert C, Riond J, Tosolini M, Clarke CJ, Dufour F, Constantinescu AA, Junior NDF, Garcia V, Record M, Cordelier P, Brousset P, Rochaix P, Silvente-Poirot S, Therville N, Andrieu-Abadie N, Levade T, Hannun YA, Benoist H, Meyer N, Micheau O, Colacios C, Ségui B. Neutral Sphingomyelinase 2 Heightens Anti-Melanoma Immune Responses and Anti-PD-1 Therapy Efficacy. Cancer Immunol Res 2021; 9:568-582. [PMID: 33727246 PMCID: PMC9631340 DOI: 10.1158/2326-6066.cir-20-0342] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 12/17/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism affects the behavior of cancer cells, but how this happens is not completely understood. Neutral sphingomyelinase 2 (nSMase2), encoded by SMPD3, catalyzes the breakdown of sphingomyelin to produce the anti-oncometabolite ceramide. We found that this enzyme was often downregulated in human metastatic melanoma, likely contributing to immune escape. Overexpression of nSMase2 in mouse melanoma reduced tumor growth in syngeneic wild-type but not CD8-deficient mice. In wild-type mice, nSMase2-overexpressing tumors showed accumulation of both ceramide and CD8+ tumor-infiltrating lymphocytes, and this was associated with increased level of transcripts encoding IFNγ and CXCL9. Overexpressing the catalytically inactive nSMase2 failed to alter tumor growth, indicating that the deleterious effect nSMase2 has on melanoma growth depends on its enzymatic activity. In vitro, small extracellular vesicles from melanoma cells overexpressing wild-type nSMase2 augmented the expression of IL12, CXCL9, and CCL19 by bone marrow-derived dendritic cells, suggesting that melanoma nSMase2 triggers T helper 1 (Th1) polarization in the earliest stages of the immune response. Most importantly, overexpression of wild-type nSMase2 increased anti-PD-1 efficacy in murine models of melanoma and breast cancer, and this was associated with an enhanced Th1 response. Therefore, increasing SMPD3 expression in melanoma may serve as an original therapeutic strategy to potentiate Th1 polarization and CD8+ T-cell-dependent immune responses and overcome resistance to anti-PD-1.
Collapse
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Florie Bertrand
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Julia Rochotte
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Julia Gilhodes
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | | | - Jean Milhès
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Caroline Imbert
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Joëlle Riond
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Marie Tosolini
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Christopher J Clarke
- Stony Brook Cancer Center, and Department of Medicine, Stony Brook University, New York, New York
| | - Florent Dufour
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Andrei A Constantinescu
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Nilton De França Junior
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Virginie Garcia
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Michel Record
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III - Paul Sabatier/ERL5294 CNRS, Toulouse, France
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Pierre Brousset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Philippe Rochaix
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Sandrine Silvente-Poirot
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Team "Cholesterol Metabolism and Therapeutic Innovations," Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/Université Toulouse III - Paul Sabatier/ERL5294 CNRS, Toulouse, France
| | - Nicole Therville
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France.,Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Yusuf A Hannun
- Stony Brook Cancer Center, and Department of Medicine, Stony Brook University, New York, New York
| | - Hervé Benoist
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Olivier Micheau
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France.,UFR Sciences de Santé, Université Bourgogne Franche-Comté (UBFC), Dijon, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France. .,Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France.,Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
169
|
Walsh MJ, Dougan M. Checkpoint blockade toxicities: Insights into autoimmunity and treatment. Semin Immunol 2021; 52:101473. [PMID: 33726931 DOI: 10.1016/j.smim.2021.101473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Checkpoint blockade has transformed not only the way cancers are treated, but also highlighted the importance of mounting a proper immune response against tumors. Despite advances in the field of immunotherapy, many patients develop a range of inflammatory toxicities that limit the efficacy of these therapies. These toxicities range from barrier site injury, such as colitis, to endocrine organ dysfunction, such as diabetes. In order to properly treat patients with cancer and avoid checkpoint blockade induced toxicities, we must gain a deeper understanding of the underlying mechanisms generating these adverse events. Cytotoxic and tissue-resident T cells likely play an important role in mediating some toxicities, though high levels of cytokines and the generation of auto-antibodies in other toxicities demonstrates these mechanisms are not all shared. Certain risk factors for specific toxicities may be able to predict who might benefit most from alternative therapies given the risk-benefit associated with checkpoint blockade. As the targets of checkpoint inhibitors have important functions in the prevention of autoimmunity, insights into risk factors and causes of toxicities will further our knowledge of fundamental immunology and enable the development of novel therapeutics.
Collapse
Affiliation(s)
- Michael J Walsh
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Harvard Program in Virology, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
170
|
Kang JH, Bluestone JA, Young A. Predicting and Preventing Immune Checkpoint Inhibitor Toxicity: Targeting Cytokines. Trends Immunol 2021; 42:293-311. [PMID: 33714688 DOI: 10.1016/j.it.2021.02.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapies can successfully activate immune responses towards certain tumors. However, this can also result in the development of treatment-induced immune-related adverse events (irAEs) in multiple tissues. Growing evidence suggests that cytokine production in response to these therapeutics potentiates the development of irAEs and may have predictive value as biomarkers for irAE occurrence. In addition, therapeutic agents that inhibit cytokine activity can limit the severity of irAEs, and their use is being tested in the clinical setting. This review provides an in-depth analysis of strategies to uncouple the cytokine response, that precipitates irAEs following cancer immunotherapies, from the benefit gained in promoting antitumor immunity.
Collapse
Affiliation(s)
- Jee Hye Kang
- Sean N. Parker Autoimmune Research Laboratory and Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory and Diabetes Center, University of California San Francisco, San Francisco, CA, USA; Sonoma Biotherapeutics, South San Francisco, CA, USA
| | - Arabella Young
- Sean N. Parker Autoimmune Research Laboratory and Diabetes Center, University of California San Francisco, San Francisco, CA, USA; QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
171
|
Lin JS, Mamlouk O, Selamet U, Tchakarov A, Glass WF, Sheth RA, Layman RM, Dadu R, Abdelwahab N, Abdelrahim M, Diab A, Yee C, Abudayyeh A. Infliximab for the treatment of patients with checkpoint inhibitor-associated acute tubular interstitial nephritis. Oncoimmunology 2021; 10:1877415. [PMID: 33643693 PMCID: PMC7872057 DOI: 10.1080/2162402x.2021.1877415] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute tubular interstitial nephritis (ATIN) is the most frequently reported pathology in patients with checkpoint inhibitor (CPI) induced acute kidney injury (AKI). Glucocorticoid (GC) therapy and discontinuation of CPI are the mainstay of treatment to prevent permanent renal dysfunction and dialysis. However, less than 50% of patients have complete kidney recovery and relapse of ATIN can occur. Infliximab is effective in treating other immune-related adverse events but its use for the treatment of CPI-ATIN is not well established. We report the first retrospective study examining the steroid-sparing potential of infliximab in achieving durable and complete renal recovery for patients with CPI-ATIN. Data were collected from medical records of patients diagnosed with CPI-AKI with a kidney biopsy or clinical diagnosis of ATIN that was managed with GC and infliximab. Infliximab-containing regimens were used to treat 10 patients with CPI-ATIN. Four patients relapsing after GC therapy achieved durable and complete renal recovery, four patients experienced partial renal recovery, and two patients showed no improvement in kidney function. This is the first study evaluating clinical outcomes using an infliximab-containing regimen for treatment of relapsed CPI-ATIN in patients or patients failing to achieve complete response after primary therapy. Our data suggest that infliximab may be a treatment option for achieving durable and complete renal recovery in this patient population and represents a potential steroid-sparing strategy in challenging cases of CPI-ATIN. Rigorous clinical studies are warranted to evaluate the risk-benefit analysis for infliximab usage in CPI-ATIN patients.
Collapse
Affiliation(s)
- Jamie S Lin
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omar Mamlouk
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Umut Selamet
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Amanda Tchakarov
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - William F Glass
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center McGovern Medical School, Houston, Texas, USA
| | - Rahul A Sheth
- dDepartment of Interventional Radiology, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rachel M Layman
- Department of Breast Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona Dadu
- Department of Endocrine Neoplasia and Hormonal Disorders, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Noha Abdelwahab
- Section of Rheumatology and Clinical Immunology, Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Rheumatology and Rehabilitation, Assiut University Hospitals, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Maen Abdelrahim
- Department of Medical Oncology, Institute of Academic Medicine and Weill Cornell Medical College, Houston Methodist Cancer Center, Houston, Texas, USA
| | - Adi Diab
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cassian Yee
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Immunology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
172
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
173
|
Hamilton JAG, Lee MY, Hunter R, Ank RS, Story JY, Talekar G, Sisroe T, Ballak DB, Fedanov A, Porter CC, Eisenmesser EZ, Dinarello CA, Raikar SS, DeGregori J, Henry CJ. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 2021; 20:e13309. [PMID: 33480151 PMCID: PMC7884049 DOI: 10.1111/acel.13309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/17/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Aging‐associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging‐associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin‐37 (IL‐37) is a potent anti‐inflammatory cytokine, and we present data demonstrating that IL‐37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin‐37 (IL‐37) in aged mice reduces or prevents aging‐associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL‐37 expression decreases the surface expression of programmed cell death protein 1 (PD‐1) and augments cytokine production from aged T‐cells. Improved T‐cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T‐cells and Lat in CD8+ T‐cells when aged mice were treated with recombinant IL‐37 (rIL‐37) but not control immunoglobin (Control Ig). Importantly, IL‐37‐mediated rejuvenation of aged endogenous T‐cells was also observed in aged chimeric antigen receptor (CAR) T‐cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL‐37 in boosting the function of aged T‐cells and highlight its therapeutic potential to overcome aging‐associated immunosenescence.
Collapse
Affiliation(s)
- Jamie A. G. Hamilton
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Miyoung Y. Lee
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Rae Hunter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Raira S. Ank
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Jamie Y. Story
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
- Molecular and Systems Pharmacology Graduate Program Graduate Division of Biological and Biomedical Sciences Laney Graduate School Emory University School of Medicine Atlanta GA USA
| | - Ganesh Talekar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | | | - Dov B. Ballak
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Andrew Fedanov
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Christopher C. Porter
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - Elan Z. Eisenmesser
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Charles A. Dinarello
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine Radboud University Medical Center Nijmegen The Netherlands
| | - Sunil S. Raikar
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Medicine University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO USA
- Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA
| | - Curtis J. Henry
- Department of Pediatrics Emory University School of Medicine Atlanta GA USA
- Aflac Cancer and Blood Disorders Center Children’s Healthcare of Atlanta Atlanta GA USA
| |
Collapse
|
174
|
Marcucci F, Rumio C. The tumor-promoting effects of the adaptive immune system: a cause of hyperprogressive disease in cancer? Cell Mol Life Sci 2021; 78:853-865. [PMID: 32940721 PMCID: PMC11072297 DOI: 10.1007/s00018-020-03606-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Adaptive antitumor immune responses, either cellular or humoral, aim at eliminating tumor cells expressing the cognate antigens. There are some instances, however, where these same immune responses have tumor-promoting effects. These effects can lead to the expansion of antigen-negative tumor cells, tumor cell proliferation and tumor growth, metastatic dissemination, resistance to antitumor therapy and apoptotic stimuli, acquisition of tumor-initiating potential and activation of various forms of survival mechanisms. We describe the basic mechanisms that underlie tumor-promoting adaptive immune responses and try to identify the variables that induce the switching of a tumor-inhibitory, cellular or humoral immune response, into a tumor-promoting one. We suggest that tumor-promoting adaptive immune responses may be at the origin of at least a fraction of hyperprogressive diseases (HPD) that are observed in cancer patients during therapy with immune checkpoint inhibitors (ICI) and, less frequently, with single-agent chemotherapy. We also propose the use of non-invasive biomarkers allowing to predict which patients may undergo HPD during ICI and other forms of antitumor therapy. Eventually, we suggest possibilities of therapeutic intervention allowing to inhibit tumor-promoting adaptive immune responses.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy.
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Trentacoste 2, Milan, Italy
| |
Collapse
|
175
|
Alvarado-Cruz I, Mahmoud M, Khan M, Zhao S, Oeck S, Meas R, Clairmont K, Quintana V, Zhu Y, Porciuncula A, Wyatt H, Ma S, Shyr Y, Kong Y, LoRusso PM, Laverty D, Nagel ZD, Schalper KA, Krauthammer M, Sweasy JB. Differential immunomodulatory effect of PARP inhibition in BRCA1 deficient and competent tumor cells. Biochem Pharmacol 2021; 184:114359. [PMID: 33285109 PMCID: PMC8668236 DOI: 10.1016/j.bcp.2020.114359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 01/23/2023]
Abstract
Poly-ADP-ribose polymerase (PARP) inhibitors are active against cells and tumors with defects in homology-directed repair as a result of synthetic lethality. PARP inhibitors (PARPi) have been suggested to act by either catalytic inhibition or by PARP localization in chromatin. In this study, we treat BRCA1 mutant cells derived from a patient with triple negative breast cancer and control cells for three weeks with veliparib, a PARPi, to determine if treatment with this drug induces increased levels of mutations and/or an inflammatory response. We show that long-term treatment with PARPi induces an inflammatory response in HCC1937 BRCA1 mutant cells. The levels of chromatin-bound PARP1 in the BRCA1 mutant cells correlate with significant upregulation of inflammatory genes and activation of the cyclic GMP-AMP synthase (cGAS)/signaling effector stimulator of interferon genes (STING pathway). In contrast, an increased mutational load is induced in BRCA1-complemented cells treated with a PARPi. Our results suggest that long-term PARP inhibitor treatment may prime both BRCA1 mutant and wild-type tumors for positive responses to immune checkpoint blockade, but by different underlying mechanisms.
Collapse
Affiliation(s)
- Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center College, Tucson, AZ, USA
| | - Mariam Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammed Khan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Shilin Zhao
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA; Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Rithy Meas
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center College, Tucson, AZ, USA
| | - Kaylyn Clairmont
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria Quintana
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center College, Tucson, AZ, USA
| | - Ying Zhu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Angelo Porciuncula
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Hailey Wyatt
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Yong Kong
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Patricia M LoRusso
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center College, Tucson, AZ, USA.
| |
Collapse
|
176
|
Gong K, Guo G, Beckley N, Zhang Y, Yang X, Sharma M, Habib AA. Tumor necrosis factor in lung cancer: Complex roles in biology and resistance to treatment. Neoplasia 2021; 23:189-196. [PMID: 33373873 PMCID: PMC7773536 DOI: 10.1016/j.neo.2020.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor (TNF) and its receptors are widely expressed in non-small cell lung cancer (NSCLC). TNF has an established role in inflammation and also plays a key role in inflammation-induced cancer. TNF can induce cell death in cancer cells and has been used as a treatment in certain types of cancer. However, TNF is likely to play an oncogenic role in multiple types of cancer, including NSCLC. TNF is a key activator of the transcription factor NF-κB. NF-κB, in turn, is a key effector of TNF in inflammation-induced cancer. Data from The Cancer Genome Atlas database suggest that TNF could be a biomarker in NSCLC and indicate a complex role for TNF and its receptors in NSCLC. Recent studies have reported that TNF is rapidly upregulated in NSCLC in response to targeted treatment with epidermal growth factor receptor (EGFR) inhibition, and this upregulation leads to NF-κB activation. The TNF upregulation and consequent NF-κB activation play a key role in mediating both primary and secondary resistance to EGFR inhibition in NSCLC, and a combined inhibition of EGFR and TNF can overcome therapeutic resistance in experimental models. TNF may mediate the toxic side effects of immunotherapy and may also modulate resistance to immune checkpoint inhibitors. Drugs inhibiting TNF are widely used for the treatment of various inflammatory and rheumatologic diseases and could be quite useful in combination with targeted therapy of NSCLC and other cancers.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Gao Guo
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Beckley
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yue Zhang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoyao Yang
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mishu Sharma
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
177
|
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2021; 12:12/526/eaax7992. [PMID: 31941828 DOI: 10.1126/scitranslmed.aax7992] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator in determining the antitumor effectiveness of immunotherapies. Data support the role of activation and expansion of tumor-infiltrating lymphocytes (TILs) in increasing the benefit of immunotherapies in patients with solid tumors. We found that intratumoral injection of a tumor-selective oncolytic vaccinia virus encoding interleukin-7 (IL-7) and IL-12 into tumor-bearing immunocompetent mice activated the inflammatory immune status of previously poorly immunogenic tumors and resulted in complete tumor regression, even in distant tumor deposits. Mice achieving complete tumor regression resisted rechallenge with the same tumor cells, suggesting establishment of long-term tumor-specific immune memory. Combining this virotherapy with anti-programmed cell death-1 (PD-1) or anti-cytotoxic T lymphocyte antigen 4 (CTLA4) antibody further increased the antitumor activity as compared to virotherapy alone, in tumor models unresponsive to either of the checkpoint inhibitor monotherapies. These findings suggest that administration of an oncolytic vaccinia virus carrying genes encoding for IL-7 and IL-12 has antitumor activity in both directly injected and distant noninjected tumors through immune status changes rendering tumors sensitive to immune checkpoint blockade. The benefit of intratumoral IL-7 and IL-12 expression was also observed in humanized mice bearing human cancer cells. These data support further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan.
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Mamoru Tasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Midori Yamashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Ryuji Murakami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Nobuaki Amino
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Motomu Nakatake
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Takafumi Nakamura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
178
|
The Search for an Interesting Partner to Combine with PD-L1 Blockade in Mesothelioma: Focus on TIM-3 and LAG-3. Cancers (Basel) 2021; 13:cancers13020282. [PMID: 33466653 PMCID: PMC7838786 DOI: 10.3390/cancers13020282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer that is causally associated with previous asbestos exposure in most afflicted patients. The prognosis of patients remains dismal, with a median overall survival of only 9-12 months, due to the limited effectiveness of any conventional anti-cancer treatment. New therapeutic strategies are needed to complement the limited armamentarium against MPM. We decided to focus on the combination of different immune checkpoint (IC) blocking antibodies (Abs). Programmed death-1 (PD-1), programmed death ligand-1 (PD-L1), T-cell immunoglobulin mucin-3 (TIM-3), and lymphocyte activation gene-3 (LAG-3) blocking Abs were tested as monotherapies, and as part of a combination strategy with a second IC inhibitor. We investigated their effect in vitro by examining the changes in the immune-related cytokine secretion profile of supernatant collected from treated allogeneic MPM-peripheral blood mononuclear cell (PBMC) co-cultures. Based on our in vitro results of cytokine secretion, and flow cytometry data that showed a significant upregulation of PD-L1 on PBMC after co-culture, we chose to further investigate the combinations of anti PD-L1 + anti TIM-3 versus anti PD-L1 + anti LAG-3 therapies in vivo in the AB1-HA BALB/cJ mesothelioma mouse model. PD-L1 monotherapy, as well as its combination with LAG-3 blockade, resulted in in-vivo delayed tumor growth and significant survival benefit.
Collapse
|
179
|
Ascierto PA, Butterfield LH, Campbell K, Daniele B, Dougan M, Emens LA, Formenti S, Janku F, Khleif SN, Kirchhoff T, Morabito A, Najjar Y, Nathan P, Odunsi K, Patnaik A, Paulos CM, Reinfeld BI, Skinner HD, Timmerman J, Puzanov I. Perspectives in immunotherapy: meeting report from the "Immunotherapy Bridge" (December 4th-5th, 2019, Naples, Italy). J Transl Med 2021; 19:13. [PMID: 33407605 PMCID: PMC7789268 DOI: 10.1186/s12967-020-02627-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Over the last few years, numerous clinical trials and real-world experience have provided a large amount of evidence demonstrating the potential for long-term survival with immunotherapy agents across various malignancies, beginning with melanoma and extending to other tumours. The clinical success of immune checkpoint blockade has encouraged increasing development of other immunotherapies. It has been estimated that there are over 3000 immuno-oncology trials ongoing, targeting hundreds of disease and immune pathways. Evolving topics on cancer immunotherapy, including the state of the art of immunotherapy across various malignancies, were the focus of discussions at the Immunotherapy Bridge meeting (4-5 December, 2019, Naples, Italy), and are summarised in this report.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Cancer Unit of Melanoma, Cancer Immunotherapy and Development Therapeutics, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Via Mariano Semmola, 80131, Naples, Italy.
| | - Lisa H Butterfield
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Katie Campbell
- PICI Research & Development, Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Michael Dougan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leisha A Emens
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Formenti
- Sandra and Edward Meyer Cancer Center, Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Filip Janku
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir N Khleif
- The Loop Immuno-Oncology Research Laboratory, Lombardi Cancer Center, Georgetown University, Washington, DC, USA
| | - Tomas Kirchhoff
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Alessandro Morabito
- Thoracic Medical Oncology, National Cancer Institute, IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Yana Najjar
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kunle Odunsi
- Center for Immunotherapy and Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Akash Patnaik
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | | | - Heath D Skinner
- Department of Radiation Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Timmerman
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Igor Puzanov
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
180
|
Kilgour MK, MacPherson S, Zacharias LG, Ellis AE, Sheldon RD, Liu EY, Keyes S, Pauly B, Carleton G, Allard B, Smazynski J, Williams KS, Watson PH, Stagg J, Nelson BH, DeBerardinis RJ, Jones RG, Hamilton PT, Lum JJ. 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. SCIENCE ADVANCES 2021; 7:eabe1174. [PMID: 33523930 PMCID: PMC7817098 DOI: 10.1126/sciadv.abe1174] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Immune regulatory metabolites are key features of the tumor microenvironment (TME), yet with a few exceptions, their identities remain largely unknown. Here, we profiled tumor and T cells from tumor and ascites of patients with high-grade serous carcinoma (HGSC) to uncover the metabolomes of these distinct TME compartments. Cells within the ascites and tumor had pervasive metabolite differences, with a notable enrichment in 1-methylnicotinamide (MNA) in T cells infiltrating the tumor compared with ascites. Despite the elevated levels of MNA in T cells, the expression of nicotinamide N-methyltransferase, the enzyme that catalyzes the transfer of a methyl group from S-adenosylmethionine to nicotinamide, was restricted to fibroblasts and tumor cells. Functionally, MNA induces T cells to secrete the tumor-promoting cytokine tumor necrosis factor alpha. Thus, TME-derived MNA contributes to the immune modulation of T cells and represents a potential immunotherapy target to treat human cancer.
Collapse
Affiliation(s)
- Marisa K Kilgour
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Sarah MacPherson
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | | | - Abigail E Ellis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Ryan D Sheldon
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Elaine Y Liu
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Sarah Keyes
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Brenna Pauly
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Gillian Carleton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
- Institut du Cancer de Montréal, Québec, Canada
| | - Julian Smazynski
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Peter H Watson
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Biobanking and Biospecimen Research Services, Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Québec, Canada
- Faculté de Pharmacie, Université de Montréal, Québec, Canada
- Institut du Cancer de Montréal, Québec, Canada
| | - Brad H Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ralph J DeBerardinis
- Children's Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Julian J Lum
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, BC, Canada
| |
Collapse
|
181
|
Singh MP, Sethuraman SN, Miller C, Malayer J, Ranjan A. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics 2021; 11:540-554. [PMID: 33391491 PMCID: PMC7738858 DOI: 10.7150/thno.49517] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Advanced stage cancers with a suppressive tumor microenvironment (TME) are often refractory to immune checkpoint inhibitor (ICI) therapy. Recent studies have shown that focused ultrasound (FUS) TME-modulation can synergize ICI therapy, but enhancing survival outcomes in poorly immunogenic tumors remains challenging. Here, we investigated the role of focused ultrasound based boiling histotripsy (HT) and in-situ anti-CD40 agonist antibody (αCD40) combinatorial therapy in enhancing therapeutic efficacy against ICI refractory murine melanoma. Methods: Unilateral and bilateral large (~330-400 mm3) poorly immunogenic B16F10 melanoma tumors were established in the flank regions of mice. Tumors were exposed to single local HT followed by an in-situ administration of αCD40 (HT+ αCD40: HT40). Inflammatory signatures post treatment were assessed using pan-cancer immune profiling and flow cytometry. The ability of HT40 ± ICI to enhance local and systemic effects was determined by immunological characterization of the harvested tissues, and by tumor growth delay of local and distant untreated tumors 4-6 weeks post treatment. Results: Immune profiling revealed that HT40 upregulated a variety of inflammatory markers in the tumors. Immunologically, HT40 treated tumors showed an increased population of granzyme B+ expressing functional CD8+ T cells (~4-fold) as well as an increased M1 to M2 macrophage ratio (~2-3-fold) and CD8+ T: regulatory T cell ratio (~5-fold) compared to the untreated control. Systemically, the proliferation rates of the melanoma-specific memory T cell population were significantly enhanced by HT40 treatment. Finally, the combination of HT40 and ICI therapy (anti-CTLA-4 and anti-PD-L1) caused superior inhibition of distant untreated tumors, and prolonged survival rates compared to the control. Conclusions: Data suggest that HT40 reprograms immunologically cold tumors and sensitizes them to ICI therapy. This approach may be clinically useful for treating advanced stage melanoma cancers.
Collapse
Affiliation(s)
- Mohit Pratap Singh
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Sri Nandhini Sethuraman
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Craig Miller
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Jerry Malayer
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078
| |
Collapse
|
182
|
Wang L, Jiang G, Jing N, Liu X, Zhuang H, Zeng W, Liang W, Liu Z. Downregulating testosterone levels enhance immunotherapy efficiency. Oncoimmunology 2021; 10:1981570. [PMID: 34595060 PMCID: PMC8477942 DOI: 10.1080/2162402x.2021.1981570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Low response rates to certain tumor types remain a major challenge for immune checkpoint blockade therapy. In this study, we first conducted an integrated biomarker evaluation of bladder cancer patients from confirmatory cohorts (IMvigor210) and found that no significant differences exist between sexes before acceptance of anti-PD-L1 treatment, whereas male patients showed a better response. Thus, we then focused on sex-related changes post anti-PD-L1 treatment and found no obvious impact on the gut microbiota in male mice but a significant decrease in the sex hormone levels. Further, castration dramatically enhanced the antitumor efficacy against murine colon adenocarcinoma in male mice. Moreover, a narrow-spectrum antibiotic, colistin was innovatively used for deregulation of testosterone levels to enhance the immunotherapy efficiency in male mice. These findings indicate that the impact on the sex hormone levels in males may contribute to the sexual dimorphism in response and provide a promising way to enhance immunotherapy efficiency.
Collapse
Affiliation(s)
- Luoyang Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Guoqiang Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
- CONTACT Guoqiang Jiang
| | - Nan Jing
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Xuerun Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Huiren Zhuang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| | - Wenfeng Zeng
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liang
- Protein and Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
- Zheng Liu Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; Key Lab of Industrial Biocatalysis, Ministry of Education, Beijing, China
| |
Collapse
|
183
|
Nishioka N, Naito T, Notsu A, Mori K, Kodama H, Miyawaki E, Miyawaki T, Mamesaya N, Kobayashi H, Omori S, Wakuda K, Ono A, Kenmotsu H, Murakami H, Takayama K, Takahashi T. Unfavorable impact of decreased muscle quality on the efficacy of immunotherapy for advanced non-small cell lung cancer. Cancer Med 2021; 10:247-256. [PMID: 33300678 PMCID: PMC7826480 DOI: 10.1002/cam4.3631] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Quantitative skeletal muscle mass loss has the potential to predict the therapeutic effects of immune checkpoint inhibitors. This study aimed to assess the impact of muscular quality on the abovementioned outcomes. METHODS This study retrospectively reviewed the medical records of patients with advanced non-small cell lung cancer (NSCLC) who had received PD-1/PD-L1 inhibitor monotherapy between March 2016 and February 2018. High muscle quality was stipulated as a skeletal muscle density ≥41 and ≥33 Hounsfield units in patients with a body mass index (BMI) <25 kg/m2 and ≥25 kg/m2 , respectively, as assessed using lumbar computed tomography images. High muscle quantity was stipulated as a lumbar skeletal muscle index ≥41 cm2 /m2 in women, ≥43 cm2 /m2 in men with a BMI <25 kg/m2 , and ≥53 cm2 /m2 in men with a BMI ≥25 kg/m2 . We evaluated the associations of these muscular parameters with the overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). RESULTS Out of 156 patients, 80 (51.3%) and 47 (30.1%) showed low muscle quality and quantity, respectively. Patients with high muscle quality showed higher ORR (35.0 vs. 15.8 %, p<0.05) and longer PFS durations (median, 4.5 vs. 2.0 months, p<0.05) than those with low muscle quality. There were no noted differences in the ORR or PFS between patients with high and those with low muscle quantities. On the contrary, regardless of muscle quality and quantity, there were no differences in OS between patients with high and those with low muscle status. CONCLUSIONS Lumbar skeletal muscle quality has the potential to predict the therapeutic effect of anti-programed cell death 1/programed cell death ligand 1 inhibitor monotherapy in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Naoya Nishioka
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tateaki Naito
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akifumi Notsu
- Division of Clinical Research Management Office, Shizuoka Cancer Center, Shizuoka, Japan
| | - Keita Mori
- Division of Clinical Research Management Office, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hiroaki Kodama
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Eriko Miyawaki
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Taichi Miyawaki
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Nobuaki Mamesaya
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Haruki Kobayashi
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shota Omori
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazushige Wakuda
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akira Ono
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Haruyasu Murakami
- Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | |
Collapse
|
184
|
Lv C, Yuan D, Cao Y. Downregulation of Interferon- γ Receptor Expression Endows Resistance to Anti-Programmed Death Protein 1 Therapy in Colorectal Cancer. J Pharmacol Exp Ther 2021; 376:21-28. [PMID: 33158943 PMCID: PMC7745088 DOI: 10.1124/jpet.120.000284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Immune checkpoint inhibitors have emerged as a frontline treatment of a variety of malignancies. However, only a subset of patients respond to these therapies, and many initial responders eventually develop resistance, leading to tumor relapse. Programmed death protein 1 is one of the checkpoint inhibitors that is expressed on activated T cells and suppresses the antitumor immune response when binding to its ligand, programmed death ligand 1, on tumor cells. Previous studies indicated that loss-of-function mutations in the IFN-γ pathway could result in acquired resistance to immune checkpoint inhibitors in human patients with cancer. Here, we investigated the effects of the IFN-γ receptor downexpression on the response to an anti-PD-1 antibody (αPD1) in a murine colorectal cancer model and the underlying mechanisms of resistance. IFN-γ receptor (IFNGR) 1 was knocked down in MC38 cells, a murine colon adenocarcinoma cell line using IFNGR1 short hairpin RNA (shRNA) lentiviral particles. Then, MC38 IFNGR1 knockdown (KD) cells and negative control (SC) cells were used in this study. In the C57BL/6 xenograft model, the KD tumor demonstrated resistance to αPD1 in comparison with SC cells. The observed treatment resistance might be associated with reduced tumor-infiltrating immune cells (TILs). When mixed, the resistant (KD) and control cells (SC) grew in spatially separated tumor areas, and αPD1 did not impact this pattern of spatial distribution. Our findings have proved that downregulation of the IFNGR1 endowed resistance to αPD1 and provided the potential mechanisms involving the TILs. SIGNIFICANCE STATEMENT: Immunological checkpoint blockades have achieved substantial efficacy in a variety of tumors. However, only a subset of patients respond to these therapies, and innate and acquired resistance is widely present. Our study found that the downregulation of the IFN-γ receptor caused resistance to an anti-PD-1 antibody in a murine colorectal cancer model associated with the reduced tumor-infiltrating lymphocytes. Our findings have substantial implications for improving the efficacy of checkpoint blockades.
Collapse
Affiliation(s)
- Chunxiao Lv
- Department of Clinical Pharmacology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (C.L.) and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (C.L., D.Y., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dongfen Yuan
- Department of Clinical Pharmacology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (C.L.) and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (C.L., D.Y., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yanguang Cao
- Department of Clinical Pharmacology, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (C.L.) and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy (C.L., D.Y., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine (Y.C.), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
185
|
Kostine M, Finckh A, Bingham CO, Visser K, Leipe J, Schulze-Koops H, Choy EH, Benesova K, Radstake TRDJ, Cope AP, Lambotte O, Gottenberg JE, Allenbach Y, Visser M, Rusthoven C, Thomasen L, Jamal S, Marabelle A, Larkin J, Haanen JBAG, Calabrese LH, Mariette X, Schaeverbeke T. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann Rheum Dis 2021; 80:36-48. [PMID: 32327425 PMCID: PMC7788064 DOI: 10.1136/annrheumdis-2020-217139] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rheumatic and musculoskeletal immune-related adverse events (irAEs) are observed in about 10% of patients with cancer receiving checkpoint inhibitors (CPIs). Given the recent emergence of these events and the lack of guidance for rheumatologists addressing them, a European League Against Rheumatism task force was convened to harmonise expert opinion regarding their identification and management. METHODS First, the group formulated research questions for a systematic literature review. Then, based on literature and using a consensus procedure, 4 overarching principles and 10 points to consider were developed. RESULTS The overarching principles defined the role of rheumatologists in the management of irAEs, highlighting the shared decision-making process between patients, oncologists and rheumatologists. The points to consider inform rheumatologists on the wide spectrum of musculoskeletal irAEs, not fulfilling usual classification criteria of rheumatic diseases, and their differential diagnoses. Early referral and facilitated access to rheumatologist are recommended, to document the target organ inflammation. Regarding therapeutic, three treatment escalations were defined: (1) local/systemic glucocorticoids if symptoms are not controlled by symptomatic treatment, then tapered to the lowest efficient dose, (2) conventional synthetic disease-modifying antirheumatic drugs, in case of inadequate response to glucocorticoids or for steroid sparing and (3) biological disease-modifying antirheumatic drugs, for severe or refractory irAEs. A warning has been made on severe myositis, a life-threatening situation, requiring high dose of glucocorticoids and close monitoring. For patients with pre-existing rheumatic disease, baseline immunosuppressive regimen should be kept at the lowest efficient dose before starting immunotherapies. CONCLUSION These statements provide guidance on diagnosis and management of rheumatic irAEs and aim to support future international collaborations.
Collapse
MESH Headings
- Advisory Committees
- Analgesics/therapeutic use
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antirheumatic Agents/therapeutic use
- Arthralgia/chemically induced
- Arthralgia/diagnosis
- Arthralgia/immunology
- Arthralgia/therapy
- Arthritis, Psoriatic/chemically induced
- Arthritis, Psoriatic/diagnosis
- Arthritis, Psoriatic/immunology
- Arthritis, Psoriatic/therapy
- Arthritis, Reactive/chemically induced
- Arthritis, Reactive/diagnosis
- Arthritis, Reactive/immunology
- Arthritis, Reactive/therapy
- Autoantibodies/immunology
- Decision Making, Shared
- Deprescriptions
- Europe
- Glucocorticoids/therapeutic use
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Factors/therapeutic use
- Medical Oncology
- Methotrexate/therapeutic use
- Myalgia/chemically induced
- Myalgia/diagnosis
- Myalgia/immunology
- Myalgia/therapy
- Myocarditis/chemically induced
- Myocarditis/diagnosis
- Myocarditis/immunology
- Myocarditis/therapy
- Myositis/chemically induced
- Myositis/diagnosis
- Myositis/immunology
- Myositis/therapy
- Neoplasms/drug therapy
- Plasma Exchange
- Polymyalgia Rheumatica/chemically induced
- Polymyalgia Rheumatica/diagnosis
- Polymyalgia Rheumatica/immunology
- Polymyalgia Rheumatica/therapy
- Rheumatic Diseases/chemically induced
- Rheumatic Diseases/diagnosis
- Rheumatic Diseases/immunology
- Rheumatic Diseases/therapy
- Rheumatology
- Severity of Illness Index
- Societies, Medical
- Tumor Necrosis Factor Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Marie Kostine
- Rheumatology, University Hospital of Bordeaux, Bordeaux, France
| | - Axel Finckh
- Division of Rheumatology, University Hospital of Geneva, Geneva, Switzerland
| | | | - Karen Visser
- Rheumatology, Haga Hospital, Den Haag, The Netherlands
| | - Jan Leipe
- Department of Medicine V, Division of Rheumatology, University Hospital Centre, Mannheim, Germany
- Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Hendrik Schulze-Koops
- Department of Internal Medicine IV, Division of Rheumatology and Clinical Immunology, University of Munich, Munich, Germany
| | - Ernest H Choy
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | | | | | - Andrew P Cope
- Academic Department of Rheumatology, King's College London, London, UK
| | - Olivier Lambotte
- Internal Medicine and Clinical Immunology, Hopital Bicetre, Le Kremlin-Bicetre, France
| | | | - Yves Allenbach
- Internal Medicine and Clinical Immunology, Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marianne Visser
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | - Cindy Rusthoven
- EULAR PARE Patient Research Partners, Amsterdam, The Netherlands
| | | | - Shahin Jamal
- Rheumatology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - James Larkin
- Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - John B A G Haanen
- The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | | | - Xavier Mariette
- Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux universitaires Paris-Sud - Hôpital Bicêtre, Le Kremlin Bicêtre, France
- 3Université Paris-Sud, Center for Immunology of Viral Infections and Auto-immune Diseases (IMVA), Institut pour la Santé et la Recherche Médicale (INSERM) UMR 1184, Université Paris-Saclay, Le Kremlin Bicêtre, France
| | | |
Collapse
|
186
|
FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 2020; 184:352-369.e23. [PMID: 33357448 DOI: 10.1016/j.cell.2020.11.042] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Repetitive elements (REs) compose ∼50% of the human genome and are normally transcriptionally silenced, although the mechanism has remained elusive. Through an RNAi screen, we identified FBXO44 as an essential repressor of REs in cancer cells. FBXO44 bound H3K9me3-modified nucleosomes at the replication fork and recruited SUV39H1, CRL4, and Mi-2/NuRD to transcriptionally silence REs post-DNA replication. FBXO44/SUV39H1 inhibition reactivated REs, leading to DNA replication stress and stimulation of MAVS/STING antiviral pathways and interferon (IFN) signaling in cancer cells to promote decreased tumorigenicity, increased immunogenicity, and enhanced immunotherapy response. FBXO44 expression inversely correlated with replication stress, antiviral pathways, IFN signaling, and cytotoxic T cell infiltration in human cancers, while a FBXO44-immune gene signature correlated with improved immunotherapy response in cancer patients. FBXO44/SUV39H1 were dispensable in normal cells. Collectively, FBXO44/SUV39H1 are crucial repressors of RE transcription, and their inhibition selectively induces DNA replication stress and viral mimicry in cancer cells.
Collapse
|
187
|
Ebelt ND, Zuniga E, Marzagalli M, Zamloot V, Blazar BR, Salgia R, Manuel ER. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines 2020; 8:E617. [PMID: 33339195 PMCID: PMC7765568 DOI: 10.3390/biomedicines8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor-associated CD8+ T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub-therapeutic doses of our Salmonella typhimurium-based therapy targeting the suppressive molecule indoleamine 2,3-dioxygenase (shIDO-ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO-ST treatment with anti-PD-1/CTLA-4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8+ and CD4+ T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO-ST could be used to create a more conducive tumor microenvironment for improving responses to ICB.
Collapse
Affiliation(s)
- Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Edith Zuniga
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Monica Marzagalli
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Vic Zamloot
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| |
Collapse
|
188
|
Zhang Y, Guan XY, Jiang P. Cytokine and Chemokine Signals of T-Cell Exclusion in Tumors. Front Immunol 2020; 11:594609. [PMID: 33381115 PMCID: PMC7768018 DOI: 10.3389/fimmu.2020.594609] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
The success of cancer immunotherapy in solid tumors depends on a sufficient distribution of effector T cells into malignant lesions. However, immune-cold tumors utilize many T-cell exclusion mechanisms to resist immunotherapy. T cells have to go through three steps to fight against tumors: trafficking to the tumor core, surviving and expanding, and maintaining the memory phenotype for long-lasting responses. Cytokines and chemokines play critical roles in modulating the recruitment of T cells and the overall cellular compositions of the tumor microenvironment. Manipulating the cytokine or chemokine environment has brought success in preclinical models and early-stage clinical trials. However, depending on the immune context, the same cytokine or chemokine signals may exhibit either antitumor or protumor activities and induce unwanted side effects. Therefore, a comprehensive understanding of the cytokine and chemokine signals is the premise of overcoming T-cell exclusion for effective and innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Xin-yuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| | - Peng Jiang
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
189
|
Guyon N, Garnier D, Briand J, Nadaradjane A, Bougras-Cartron G, Raimbourg J, Campone M, Heymann D, Vallette FM, Frenel JS, Cartron PF. Anti-PD1 therapy induces lymphocyte-derived exosomal miRNA-4315 release inhibiting Bim-mediated apoptosis of tumor cells. Cell Death Dis 2020; 11:1048. [PMID: 33311449 PMCID: PMC7733505 DOI: 10.1038/s41419-020-03224-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
Abstract
Anti-PD1 immunotherapy, as a single agent or in combination with standard chemotherapies, has significantly improved the outcome of many patients with cancers. However, resistance to anti-PD1 antibodies often decreases the long-term therapeutic benefits. Despite this observation in clinical practice, the molecular mechanisms associated with resistance to anti-PD1 antibody therapy have not yet been elucidated. To identify the mechanisms of resistance associated with anti-PD1 antibody therapy, we developed cellular models including purified T cells and different cancer cell lines from glioblastoma, lung adenocarcinoma, breast cancer and ovarian carcinoma. A murine model of lung cancer was also used. Longitudinal blood samples of patients treated with anti-PD1 therapy were also used to perform a proof-of-concept study of our findings. We found that anti-PD1 exposure of T-cell promotes an enrichment of exosomal miRNA-4315. We also noted that exosomal miRNA-4315 induced a phenomenon of apopto-resistance to conventional chemotherapies in cancer cells receiving exosomal miRNA-4315. At molecular level, we discern that the apopto-resistance phenomenon was associated with the miRNA-4315-mediated downregulation of Bim, a proapoptotic protein. In cellular and mice models, we observed that the BH3 mimetic agent ABT263 circumvented this resistance. A longitudinal study using patient blood showed that miRNA-4315 and cytochrome c can be used to define the time period during which the addition of ABT263 therapy may effectively increase cancer cell death and bypass anti-PD1 resistance.This work provides a blood biomarker (exosomal miRNA-4315) for patient stratification developing a phenomenon of resistance to anti-PD1 antibody therapy and also identifies a therapeutic alternative (the use of a BH3 mimetic drug) to limit this resistance phenomenon.
Collapse
Affiliation(s)
- Nina Guyon
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France
| | - Delphine Garnier
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France
| | - Arulraj Nadaradjane
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France
| | - Judith Raimbourg
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Department of Medical Oncology, Institut de Cancérologie de l'Ouest site René Gauducheau, Saint Herblain, France
| | - Mario Campone
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest site René Gauducheau, Saint Herblain, France
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France.,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France.,LabEX IGO, Université de Nantes, Nantes, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France.,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France.,Department of Medical Oncology, Institut de Cancérologie de l'Ouest site René Gauducheau, Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France. .,Equipe Apoptose et Progression Tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France. .,Cancéropole Grand-Ouest, Réseau Niches et Epigénétique des Tumeurs (NET), Saint Herblain, France. .,EpiSAVMEN Network (Région Pays de la Loire), Saint Herblain, France. .,LabEX IGO, Université de Nantes, Nantes, France.
| |
Collapse
|
190
|
Guo W, Ma J, Guo S, Wang H, Wang S, Shi Q, Liu L, Zhao T, Yang F, Chen S, Chen J, Zhao J, Yu C, Yi X, Yang Y, Ma J, Ni Q, Zhu G, Gao T, Li C. A20 regulates the therapeutic effect of anti-PD-1 immunotherapy in melanoma. J Immunother Cancer 2020; 8:jitc-2020-001866. [PMID: 33298620 PMCID: PMC7733187 DOI: 10.1136/jitc-2020-001866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background The therapeutic effect of immune checkpoint blockers, especially the neutralizing antibodies of programmed cell death (PD-1) and its ligand programmed death ligand 1 (PD-L1), has been well verified in melanoma. Nevertheless, the dissatisfactory response rate and the occurrence of resistance significantly hinder the treatment effect. Inflammation-related molecules like A20 are greatly implicated in cancer immune response, but the role of tumorous A20 in antitumor immunity and immunotherapy efficacy remains elusive. Methods The association between tumorous A20 expression and the effect of anti-PD-1 immunotherapy was determined by immunoblotting, immunofluorescence staining and flow cytometry analysis of primary tumor specimens from melanoma patients. Preclinical mouse model, in vitro coculture system, immunohistochemical staining and flow cytometry analysis were employed to investigate the role of A20 in regulating the effect of anti-PD-1 immunotherapy. Bioinformatics, mass spectrum analysis and a set of biochemical analyzes were used to figure out the underlying mechanism. Results We first discovered that upregulated A20 was associated with impaired antitumor capacity of CD8+T cells and poor response to anti-PD-1 immunotherapy in melanoma patients. Subsequent functional studies in preclinical mouse model and in vitro coculture system proved that targeting tumorous A20 prominently improved the effect of immunotherapy through the invigoration of infiltrating CD8+T cells via the regulation of PD-L1. Mechanistically, A20 facilitated the ubiquitination and degradation of prohibitin to potentiate STAT3 activation and PD-L1 expression. Moreover, tumorous A20 expression was highly associated with the ratio of Ki-67 percentage in circulating PD-1+CD8+T cells to tumor burden. Conclusions Together, our findings uncover a novel crosstalk between inflammatory molecules and antitumor immunity in melanoma, and highlight that A20 can be exploited as a promising target to bring clinical benefit to melanomas refractory to immune checkpoint blockade.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huina Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.,Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Shi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Fengfan Yang
- Department of Clinical Immunology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuyang Chen
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianhong Zhao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Yu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingrong Ni
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
191
|
Ballotti R, Cheli Y, Bertolotto C. The complex relationship between MITF and the immune system: a Melanoma ImmunoTherapy (response) Factor? Mol Cancer 2020; 19:170. [PMID: 33276788 PMCID: PMC7718690 DOI: 10.1186/s12943-020-01290-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/29/2020] [Indexed: 12/18/2022] Open
Abstract
The clinical benefit of immune checkpoint inhibitory therapy (ICT) in advanced melanomas is limited by primary and acquired resistance. The molecular determinants of the resistance have been extensively studied, but these discoveries have not yet been translated into therapeutic benefits. As such, a paradigm shift in melanoma treatment, to surmount the therapeutic impasses linked to the resistance, is an important ongoing challenge.This review outlines the multifaceted interplay between microphthalmia-associated transcription factor (MITF), a major determinant of the biology of melanoma cells, and the immune system. In melanomas, MITF functions downstream oncogenic pathways and microenvironment stimuli that restrain the immune responses. We highlight how MITF, by controlling differentiation and genome integrity, may regulate melanoma-specific antigen expression by interfering with the endolysosomal pathway, KARS1, and antigen processing and presentation. MITF also modulates the expression of coinhibitory receptors, i.e., PD-L1 and HVEM, and the production of an inflammatory secretome, which directly affects the infiltration and/or activation of the immune cells.Furthermore, MITF is also a key determinant of melanoma cell plasticity and tumor heterogeneity, which are undoubtedly one of the major hurdles for an effective immunotherapy. Finally, we briefly discuss the role of MITF in kidney cancer, where it also plays a key role, and in immune cells, establishing MITF as a central mediator in the regulation of immune responses in melanoma and other cancers.We propose that a better understanding of MITF and immune system intersections could help in the tailoring of current ICT in melanomas and pave the way for clinical benefits and long-lasting responses.
Collapse
Affiliation(s)
- Robert Ballotti
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Yann Cheli
- Université Côte d'Azur, Nice, France
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France.
- Inserm, Biology and Pathologies of melanocytes, team1, Equipe labellisée Ligue 2020 and Equipe labellisée ARC 2019, Centre Méditerranéen de Médecine Moléculaire, Nice, France.
| |
Collapse
|
192
|
Montfort A, Filleron T, Virazels M, Dufau C, Milhès J, Pagès C, Olivier P, Ayyoub M, Mounier M, Lusque A, Brayer S, Delord JP, Andrieu-Abadie N, Levade T, Colacios C, Ségui B, Meyer N. Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clin Cancer Res 2020; 27:1037-1047. [PMID: 33272982 DOI: 10.1158/1078-0432.ccr-20-3449] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE TNF blockers can be used to manage gastrointestinal inflammatory side effects following nivolumab and/or ipilimumab treatment in patients with advanced melanoma. Our preclinical data showed that anti-TNF could promote the efficacy of immune checkpoint inhibitors. PATIENTS AND METHODS TICIMEL (NTC03293784) is an open-label, two-arm phase Ib clinical trial. Fourteen patients with advanced and/or metastatic melanoma (stage IIIc/IV) were enrolled. Patients were treated with nivolumab (1 mg/kg) and ipilimumab (3 mg/kg) combined to infliximab (5 mg/kg, N = 6) or certolizumab (400/200 mg, N = 8). The primary endpoint was safety and the secondary endpoint was antitumor activity. Adverse events (AEs) were graded according to the NCI Common Terminology Criteria for Adverse Events and response was assessed following RECIST 1.1. RESULTS Only one dose-limiting toxicity was observed in the infliximab cohort. The two different combinations were found to be safe. We observed lower treatment-related AEs with infliximab as compared with certolizumab. In the certolizumab cohort, one patient was not evaluable for response. In this cohort, four of eight patients exhibited hepatobiliary disorders and seven of seven evaluable patients achieved objective response including four complete responses (CRs) and three partial responses (PRs). In the infliximab cohort, we observed one CR, two PRs, and three progressive diseases. Signs of activation and maturation of systemic T-cell responses were seen in patients from both cohorts. CONCLUSIONS Our results show that both combinations are safe in human and provide clinical and biological activities. The high response rate in the certolizumab-treated patient cohort deserves further investigations.
Collapse
Affiliation(s)
- Anne Montfort
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Thomas Filleron
- Methodology, biostatistics and clinical operations, Institut Claudius Regaud, IUCT-O, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Mathieu Virazels
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Carine Dufau
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Jean Milhès
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Cécile Pagès
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | - Pascale Olivier
- Service de Pharmacologie médicale et clinique, Centre Régional de Pharmacovigilance, de Pharmacoépidémiologie et d'information sur le médicament du CHU de Toulouse, Toulouse, France
| | - Maha Ayyoub
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Muriel Mounier
- Methodology, biostatistics and clinical operations, Institut Claudius Regaud, IUCT-O, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Amélie Lusque
- Methodology, biostatistics and clinical operations, Institut Claudius Regaud, IUCT-O, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Stéphanie Brayer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Thierry Levade
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
- Laboratoire de Biochimie, Institut Fédératif de Biologie, CHU Purpan, Toulouse, France
| | - Céline Colacios
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Bruno Ségui
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Nicolas Meyer
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Toulouse, France.
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| |
Collapse
|
193
|
Matull J, Livingstone E, Wetter A, Zimmer L, Zaremba A, Lahner H, Schadendorf D, Ugurel S. Durable Complete Response in a Melanoma Patient With Unknown Primary, Associated With Sequential and Severe Multi-Organ Toxicity After a Single Dose of CTLA-4 Plus PD-1 Blockade: A Case Report. Front Oncol 2020; 10:592609. [PMID: 33262949 PMCID: PMC7686558 DOI: 10.3389/fonc.2020.592609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Monoclonal antibodies blocking PD-1 and CTLA-4 immunological checkpoints lead to durable tumor responses in a considerable number of advanced melanoma patients. Besides their anti-neoplastic efficacy, these immune checkpoint inhibitors cause a wide range of immune-related adverse events (irAEs), often enforcing an early discontinuation of therapy. The value of irAEs as a predictive marker for better patient survival is still debated. We report here on a melanoma patient with intramuscular, pulmonary, and bone metastases who developed severe sequential irAEs involving multiple organ systems after single application of a combined immunotherapy with ipilimumab plus nivolumab, followed by a durable complete response despite an early discontinuation of therapy.
Collapse
Affiliation(s)
- Johanna Matull
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | | | - Axel Wetter
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Harald Lahner
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University of Duisburg-Essen, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
194
|
Lim JU, Yoon HK. Potential predictive value of change in inflammatory cytokines levels subsequent to initiation of immune checkpoint inhibitor in patients with advanced non-small cell lung cancer. Cytokine 2020; 138:155363. [PMID: 33264749 DOI: 10.1016/j.cyto.2020.155363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
For a definite indication for immunotherapy, finding appropriate biomarkers that are predictive of treatment responses is necessary. Inflammatory cytokines which play critical roles in immunity against infectious sources or cancer cells are suggested to activate immune cells after initiation of immune checkpoint inhibitors (ICI). Through activation of immune cells such as T cells, natural killer cells, macrophages, or tumor infiltrating dendritic cells, inflammatory cytokines usually increase after programmed death (PD)-1/PD-L1 axis blockade. There have been several studies evaluating the predictive value of early changes in inflammatory cytokines in non-small cell lung cancer (NSCLC) patients undergoing immunotherapy. In this mini-review, we went through recent articles on potential blood level values of inflammatory cytokines in NSCLC patients receiving ICI and their early change around commencement of ICIs in predicting response to treatment and disease progression. The studies evaluated cytokines including interleukin (IL)-2, 6, 8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α for predictability for responses to ICI. A combination cytokine panel can help predict the response and prognosis of patients with NSCLC who are receiving ICI treatment. Furthermore, a more individualized ICI treatment will be available if responses and change in tumor burden can be predicted. However, most of the studies on cytokines in NSCLC patients receiving ICIs had a small number of patients, and the heterogeneous measurement time points. Nevertheless, cytokines such as IL-8 and IFN- γ have considerable potential predictive value for immunotherapy response, which is worthy of further studies. To utilize blood cytokines levels as biomarkers for immunotherapy, a larger study with uniform measurement protocol is necessary.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
195
|
Yang L, Dong XZ, Xing XX, Cui XH, Li L, Zhang L. Efficacy and safety of anti-PD-1/anti-PD-L1 antibody therapy in treatment of advanced gastric cancer or gastroesophageal junction cancer: A meta-analysis. World J Gastrointest Oncol 2020; 12:1346-1363. [PMID: 33250966 PMCID: PMC7667450 DOI: 10.4251/wjgo.v12.i11.1346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Faced with limited and inadequate treatment options for patients with advanced gastric cancer or gastroesophageal junction cancer (GC/GEJC), researchers have turned toward, with the support of promising clinical trials, anti-PD-1/anti-PD-L1 antibody therapy. But there are also different clinical trial results. To better assess its efficacy and safety, we integrated data from 13 eligible studies for a systematic review and meta-analysis.
AIM To comprehensively evaluate the efficacy and safety of anti-PD-1/anti-PD-L1 antibody therapy in the treatment of advanced GC/GEJC patients.
METHODS PubMed, Web of Science, Cochrane Library ,and EMBASE databases were searched to identify eligible articles with outcomes including objective response rate (ORR), disease control rate (DCR), overall survival (OS), progression-free survival (PFS), and adverse events (AEs) of anti-PD-1/anti-PD-L1 antibody therapy.
RESULTS Our study encompassed a total of 13 trials totaling 1618 patients. The outcomes showed a pooled ORR and DCR of 15% (95% confidence interval [CI]: 14%-18%) and 40% (95%CI: 33%-46%), respectively. The pooled 6-mo OS and PFS were 54% (95%CI: 45%-64%) and 26% (95%CI: 20%-32%), respectively, and the 12-mo OS and PFS were 42% (95%CI: 21%-62%) and 11% (95%CI: 8%-13%), respectively. In addition, the incidence of any-grade AEs and grade ≥ 3 AEs was 64% (95%CI: 54%-73%) and 18% (95%CI: 16%-20%), respectively. Most importantly, PD-L1 positive patients exhibited a higher ORR rate than PD-L1 negative patients (odds ratio = 2.54, 95%CI: 1.56-4.15).
CONCLUSION Anti-PD-1/anti-PD-L1 antibody therapy has shown promising anti-tumor efficacy with manageable AEs in advanced GC/GEJC patients, with PD-L1 overexpressing patients exhibiting a higher ORR. What is more, the clinical efficacy of anti-PD-1/PD-L1 combined with traditional chemotherapy drugs is even better, although the occurrence of AEs still causes considerate concerns.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
- College of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiao-Xuan Xing
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Xiao-Hui Cui
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
196
|
Rodriguez YI, Campos LE, Castro MG, Bannoud N, Blidner AG, Filippa VP, Croci DO, Rabinovich GA, Alvarez SE. Tumor Necrosis Factor Receptor-1 (p55) Deficiency Attenuates Tumor Growth and Intratumoral Angiogenesis and Stimulates CD8 + T Cell Function in Melanoma. Cells 2020; 9:cells9112469. [PMID: 33202705 PMCID: PMC7696624 DOI: 10.3390/cells9112469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The role of tumor necrosis factor-α (TNF-α) in shaping the tumor microenvironment is ambiguous. Consistent with its uncertain role in melanoma, TNF-α plays a dual role, either acting as a cytotoxic cytokine or favoring a tumorigenic inflammatory microenvironment. TNF-α signals via two cognate receptors, namely TNFR1 (p55) and TNFR2 (p75), which mediate divergent biological activities. Here, we analyzed the impact of TNFR1 deficiency in tumor progression in the B16.F1 melanoma model. Tumors developed in mice lacking TNFR1 (TNFR1 knock-out; KO) were smaller and displayed lower proliferation compared to their wild type (WT) counterpart. Moreover, TNFR1 KO mice showed reduced tumor angiogenesis. Although no evidence of spontaneous metastases was observed, conditioned media obtained from TNFR1 KO tumors increased tumor cell migration. Whereas the analysis of tumor-associated immune cell infiltrates showed similar frequency of total and M2-polarized tumor-associated macrophages (TAMs), the percentage of CD8+ T cells was augmented in TNFR1 KO tumors. Indeed, functional ex vivo assays demonstrated that CD8+ T cells obtained from TNFR1KO mice displayed an increased cytotoxic function. Thus, lack of TNFR1 attenuates melanoma growth by modulating tumor cell proliferation, migration, angiogenesis and CD8+ T cell accumulation and activation, suggesting that interruption of TNF-TNFR1 signaling may contribute to control tumor burden.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Lymphocyte Activation/immunology
- Melanins/metabolism
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Invasiveness
- Neovascularization, Pathologic/immunology
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Yamila I. Rodriguez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL), San Luis D5700, Argentina; (Y.I.R.); (L.E.C.); (M.G.C.); (V.P.F.)
| | - Ludmila E. Campos
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL), San Luis D5700, Argentina; (Y.I.R.); (L.E.C.); (M.G.C.); (V.P.F.)
| | - Melina G. Castro
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL), San Luis D5700, Argentina; (Y.I.R.); (L.E.C.); (M.G.C.); (V.P.F.)
| | - Nadia Bannoud
- Laboratorio de Inmunopatología, Facultad de Ciencias Exactas y Naturales, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza C5500, Argentina; (N.B.); (D.O.C.)
| | - Ada G. Blidner
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina; (A.G.B.); (G.A.R.)
| | - Verónica P. Filippa
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL), San Luis D5700, Argentina; (Y.I.R.); (L.E.C.); (M.G.C.); (V.P.F.)
| | - Diego O. Croci
- Laboratorio de Inmunopatología, Facultad de Ciencias Exactas y Naturales, Instituto de Histología y Embriología de Mendoza (IHEM), Universidad Nacional de Cuyo, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza C5500, Argentina; (N.B.); (D.O.C.)
| | - Gabriel A. Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428, Argentina; (A.G.B.); (G.A.R.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428, Argentina
| | - Sergio E. Alvarez
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Luis (UNSL), San Luis D5700, Argentina; (Y.I.R.); (L.E.C.); (M.G.C.); (V.P.F.)
- Correspondence:
| |
Collapse
|
197
|
Hill M, Segovia M, Russo S, Girotti MR, Rabinovich GA. The Paradoxical Roles of Inflammation during PD-1 Blockade in Cancer. Trends Immunol 2020; 41:982-993. [DOI: 10.1016/j.it.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
|
198
|
Mao X, Tey SK, Yeung CLS, Kwong EML, Fung YME, Chung CYS, Mak L, Wong DKH, Yuen M, Ho JCM, Pang H, Wong MP, Leung CO, Lee TKW, Ma V, Cho WC, Cao P, Xu X, Gao Y, Yam JWP. Nidogen 1-Enriched Extracellular Vesicles Facilitate Extrahepatic Metastasis of Liver Cancer by Activating Pulmonary Fibroblasts to Secrete Tumor Necrosis Factor Receptor 1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002157. [PMID: 33173740 PMCID: PMC7640351 DOI: 10.1002/advs.202002157] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Indexed: 05/24/2023]
Abstract
In hepatocellular carcinoma (HCC) patients with extrahepatic metastasis, the lung is the most frequent site of metastasis. However, how the lung microenvironment favors disseminated cells remains unclear. Here, it is found that nidogen 1 (NID1) in metastatic HCC cell-derived extracellular vesicles (EVs) promotes pre-metastatic niche formation in the lung by enhancing angiogenesis and pulmonary endothelial permeability to facilitate colonization of tumor cells and extrahepatic metastasis. EV-NID1 also activates fibroblasts, which secrete tumor necrosis factor receptor 1 (TNFR1), facilitate lung colonization of tumor cells, and augment HCC cell growth and motility. Administration of anti-TNFR1 antibody effectively diminishes lung metastasis induced by the metastatic HCC cell-derived EVs in mice. In the clinical perspective, analysis of serum EV-NID1 and TNFR1 in HCC patients reveals their positive correlation and association with tumor stages suggesting the potential of these molecules as noninvasive biomarkers for the early detection of HCC. In conclusion, these results demonstrate the interplay of HCC EVs and activated fibroblasts in pre-metastatic niche formation and how blockage of their functions inhibits distant metastasis to the lungs. This study offers promise for the new direction of HCC treatment by targeting oncogenic EV components and their mediated pathways.
Collapse
Affiliation(s)
- Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Ernest Man Lok Kwong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulamHong Kong
| | - Clive Yik Sham Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Lung‐Yi Mak
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Danny Ka Ho Wong
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - Man‐Fung Yuen
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| | - James Chung Man Ho
- Department of Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Herbert Pang
- School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Maria Pik Wong
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
| | - Carmen Oi‐Ning Leung
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong
| | - Victor Ma
- Department of Clinical OncologyQueen Elizabeth HospitalKowloonHong Kong
| | | | - Peihua Cao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Clinical Research CenterZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xiaoping Xu
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
- Guangdong Provincial Research Center of Artificial Organ and Tissue Engineering, Zhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong
- State Key Laboratory of Liver ResearchThe University of Hong KongHong Kong
| |
Collapse
|
199
|
Cheung VTF, Brain O. Immunotherapy induced enterocolitis and gastritis - What to do and when? Best Pract Res Clin Gastroenterol 2020; 48-49:101703. [PMID: 33317787 DOI: 10.1016/j.bpg.2020.101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023]
Abstract
Oncological treatment has been revolutionised by the advent of immune checkpoint inhibitors (ICPi), which block inhibitory immune pathways to enhance anti-tumour responses and improve survival. This mode of action is non-specific so can cause immune-related adverse events, of which diarrhoea and enterocolitis are amongst the most common. ICPi-enterocolitis frequently leads to cancer therapy interruption. ICPi-gastritis typically occurs at a later stage of ICPi therapy and can present more insidiously with nausea and vomiting. ICPi-enterocolitis and gastritis are treated with corticosteroids, with refractory cases typically requiring biologic therapy. This review will briefly consider the pathogenesis of ICPi-induced GI disease, before focussing on the practical management of these conditions. The anticipated global increase in ICPi use across cancer types highlights the importance of prospective research in order that we can understand the immuno-microbiology of ICPi-enterocolitis and gastritis. This will lead to predictive biomarkers and help to define optimal treatment regimens.
Collapse
Affiliation(s)
- Vincent Ting Fung Cheung
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Oliver Brain
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
200
|
Schmalzing M. Rheumatologische medikamentöse Therapie bei Malignomanamnese. AKTUEL RHEUMATOL 2020. [DOI: 10.1055/a-1247-4252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
ZusammenfassungRheumatologische Therapie bei Patienten mit Malignomanamnese ist mit komplexen Fragestellungen verbunden. Schwierigkeiten und Lösungsmöglichkeiten bei der Interpretation aussagekräftiger Studien werden dargestellt. Empfehlungen in Leitlinien zu diesem Thema werden diskutiert. Nationale Register und Versicherungsdatenbanken wurden mit der Frage nach Tumorrezidivrisiko unter Basistherapeutika untersucht ; diese Analysen beziehen sich aber v. a. auf TNF-Inhibitoren und Rituximab. Zu den gängigen Substanzen der Basistherapie werden Daten zur Tumorinzidenz und wenn vorhanden zum Tumorrezidivrisiko zusammengefasst. Abschließend wird der Versuch unternommen Vorschläge zur rheumatolgischen Therapie bei Malignomanamnese zu formulieren.
Collapse
Affiliation(s)
- Marc Schmalzing
- Rheumatologie / Klinische Immunologie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| |
Collapse
|