151
|
Lan R, Wan Z, Xu Y, Wang Z, Fu S, Zhou Y, Lin X, Han X, Luo Z, Miao J, Yin Y. Taurine Reprograms Mammary-Gland Metabolism and Alleviates Inflammation Induced by Streptococcus uberis in Mice. Front Immunol 2021; 12:696101. [PMID: 34177964 PMCID: PMC8222520 DOI: 10.3389/fimmu.2021.696101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK–mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.
Collapse
Affiliation(s)
- Riguo Lan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhixin Wan
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaodong Fu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinguang Lin
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhenhua Luo
- School of Water, Energy & Environment, Cranfield University, Cranfield, United Kingdom
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha, China
| |
Collapse
|
152
|
Bahadoran A, Bezavada L, Smallwood HS. Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunol Rev 2021; 295:140-166. [PMID: 32320072 DOI: 10.1111/imr.12851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Recent studies support the notion that glycolysis and oxidative phosphorylation are rheostats in immune cells whose bioenergetics have functional outputs in terms of their biology. Specific intrinsic and extrinsic molecular factors function as molecular potentiometers to adjust and control glycolytic to respiratory power output. In many cases, these potentiometers are used by influenza viruses and immune cells to support pathogenesis and the host immune response, respectively. Influenza virus infects the respiratory tract, providing a specific environmental niche, while immune cells encounter variable nutrient concentrations as they migrate in response to infection. Immune cell subsets have distinct metabolic programs that adjust to meet energetic and biosynthetic requirements to support effector functions, differentiation, and longevity in their ever-changing microenvironments. This review details how influenza coopts the host cell for metabolic reprogramming and describes the overlap of these regulatory controls in immune cells whose function and fate are dictated by metabolism. These details are contextualized with emerging evidence of the consequences of influenza-induced changes in metabolic homeostasis on disease progression.
Collapse
Affiliation(s)
- Azadeh Bahadoran
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
153
|
Schmidt NM, Wing PAC, Diniz MO, Pallett LJ, Swadling L, Harris JM, Burton AR, Jeffery-Smith A, Zakeri N, Amin OE, Kucykowicz S, Heemskerk MH, Davidson B, Meyer T, Grove J, Stauss HJ, Pineda-Torra I, Jolly C, Jury EC, McKeating JA, Maini MK. Targeting human Acyl-CoA:cholesterol acyltransferase as a dual viral and T cell metabolic checkpoint. Nat Commun 2021; 12:2814. [PMID: 33990561 PMCID: PMC8121939 DOI: 10.1038/s41467-021-22967-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Determining divergent metabolic requirements of T cells, and the viruses and tumours they fail to combat, could provide new therapeutic checkpoints. Inhibition of acyl-CoA:cholesterol acyltransferase (ACAT) has direct anti-carcinogenic activity. Here, we show that ACAT inhibition has antiviral activity against hepatitis B (HBV), as well as boosting protective anti-HBV and anti-hepatocellular carcinoma (HCC) T cells. ACAT inhibition reduces CD8+ T cell neutral lipid droplets and promotes lipid microdomains, enhancing TCR signalling and TCR-independent bioenergetics. Dysfunctional HBV- and HCC-specific T cells are rescued by ACAT inhibitors directly ex vivo from human liver and tumour tissue respectively, including tissue-resident responses. ACAT inhibition enhances in vitro responsiveness of HBV-specific CD8+ T cells to PD-1 blockade and increases the functional avidity of TCR-gene-modified T cells. Finally, ACAT regulates HBV particle genesis in vitro, with inhibitors reducing both virions and subviral particles. Thus, ACAT inhibition provides a paradigm of a metabolic checkpoint able to constrain tumours and viruses but rescue exhausted T cells, rendering it an attractive therapeutic target for the functional cure of HBV and HBV-related HCC.
Collapse
Affiliation(s)
- Nathalie M Schmidt
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Mariana O Diniz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Laura J Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Leo Swadling
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - James M Harris
- Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Alice R Burton
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Anna Jeffery-Smith
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Nekisa Zakeri
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Oliver E Amin
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Stephanie Kucykowicz
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Mirjam H Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Brian Davidson
- Division of Surgery, University College London, London, UK
- Royal Free London NHS Foundation Trust, London, UK
| | - Tim Meyer
- Royal Free London NHS Foundation Trust, London, UK
- Cancer Institute, University College London, London, UK
| | - Joe Grove
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Hans J Stauss
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | - Clare Jolly
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | | | | | - Mala K Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK.
| |
Collapse
|
154
|
Forni MF, Domínguez-Amorocho OA, de Assis LVM, Kinker GS, Moraes MN, Castrucci AMDL, Câmara NOS. An Immunometabolic Shift Modulates Cytotoxic Lymphocyte Activation During Melanoma Progression in TRPA1 Channel Null Mice. Front Oncol 2021; 11:667715. [PMID: 34041030 PMCID: PMC8141816 DOI: 10.3389/fonc.2021.667715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/21/2021] [Indexed: 02/02/2023] Open
Abstract
Melanoma skin cancer is extremely aggressive with increasing incidence and mortality. Among the emerging therapeutic targets in the treatment of cancer, the family of transient receptor potential channels (TRPs) has been reported as a possible pharmacological target. Specifically, the ankyrin subfamily, representing TRPA1 channels, can act as a pro-inflammatory hub. These channels have already been implicated in the control of intracellular metabolism in several cell models, but little is known about their role in immune cells, and how it could affect tumor progression in a process known as immune surveillance. Here, we investigated the participation of the TRPA1 channel in the immune response against melanoma tumor progression in a mouse model. Using Trpa1 +/+ and Trpa1 -/- animals, we evaluated tumor progression using murine B16-F10 cells and assessed isolated CD8+ T cells for respiratory and cytotoxic functions. Tumor growth was significantly reduced in Trpa1 -/- animals. We observed an increase in the frequency of circulating lymphocytes. Using a dataset of CD8+ T cells isolated from metastatic melanoma patients, we found that TRPA1 reduction correlates with several immunological pathways. Naïve CD8+ T cells from Trpa1 +/+ and Trpa1 -/- animals showed different mitochondrial respiration and glycolysis profiles. However, under CD3/CD28 costimulatory conditions, the absence of TRPA1 led to an even more extensive metabolic shift, probably linked to a greater in vitro killling ability of Trpa1 -/- CD8+ T cells. Therefore, these data demonstrate an unprecedented role of TRPA1 channel in the metabolism control of the immune system cells during carcinogenesis.
Collapse
Affiliation(s)
- Maria Fernanda Forni
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Sarti Kinker
- Laboratory of Translational Immuno-Oncology A. C. Camargo Cancer Center - International Research Center, São Paulo, Brazil
| | - Maria Nathalia Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
155
|
Yuan X, Yi M, Zhang W, Xu L, Chu Q, Luo S, Wu K. The biology of combination immunotherapy in recurrent metastatic head and neck cancer. Int J Biochem Cell Biol 2021; 136:106002. [PMID: 33962022 DOI: 10.1016/j.biocel.2021.106002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Preclinical data suggest that head and neck cancer is an intrinsically immunosuppressive disease with abnormal inflammatory components in the tumor microenvironment. The development of immune checkpoint inhibitors, which are monoclonal antibodies capable of inhibiting immune suppressive signals to prime anticancer immunity, has revolutionized the therapeutic landscape in recurrent/metastatic head and neck cancer. However, patients with head and neck cancer present primary resistance to immunotherapy. Many ongoing trials include combinations of immunotherapy with different therapeutic interventions, aiming to improve response rates and overall survival. As novel therapy strategies are leveraged, the significance of immunotherapy in recurrent/metastatic head and neck cancer continues to be revealed. This review aims to summarize combinational immunotherapy in head and neck cancer.
Collapse
Affiliation(s)
- Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Zhang
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.
| |
Collapse
|
156
|
Blood Transcriptomics of Turbot Scophthalmus maximus: A Tool for Health Monitoring and Disease Studies. Animals (Basel) 2021; 11:ani11051296. [PMID: 33946507 PMCID: PMC8147184 DOI: 10.3390/ani11051296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The analysis of blood gene expression is emerging as a relevant source of information about the health status of an organism. While these investigations are increasingly performed in human and terrestrial animals, their potential is still underexplored in fish pathology. The aim of this work was to analyze the blood transcriptional profile of a commercially important flatfish species, turbot (Scophthalmus maximus), in healthy and diseased specimens. The analysis of the most expressed genes in healthy fish indicated that turbot red blood cells have important immunological functions. In diseased fish, parasitized by a myxozoan, the blood analysis reflected a broad inhibition of the immune response followed by intense inflammatory activation in heavy infections. The results showed that turbot response appears delayed, dysregulated and ineffective in stopping the infection. Particularly, a proper development of the adaptive immune response was lacking. This study points out that blood gene expression profiling is a reliable tool for health monitoring, as well as to advance in the knowledge of fish immunity and diseases. Abstract Blood transcriptomics is emerging as a relevant tool to monitor the status of the immune system and assist in diagnosis, prognosis, treatment and pathogenesis studies of diseases. In fish pathology, the potential of transcriptome profiling of blood is still poorly explored. Here, RNA sequencing was applied to analyze the blood transcriptional profile of turbot (Scophthalmus maximus), the most important farmed flatfish. The study was conducted in healthy specimens and specimens parasitized by the myxozoan Enteromyxum scophthalmi, which causes one of the most devastating diseases in turbot aquaculture. The blood of healthy turbot showed a transcriptomic profile mainly related to erythrocyte gas transportation function, but also to antigen processing and presentation. In moderately infected turbot, the blood reflected a broad inhibition of the immune response. Particularly, down-regulation of the B cell receptor signaling pathway was shared with heavily parasitized fish, which showed larger transcriptomic changes, including the activation of the inflammatory response. Turbot response to enteromyxosis proved to be delayed, dysregulated and ineffective in stopping the infection. The study evinces that blood transcriptomics can contribute to a better understanding of the teleost immune system and serve as a reliable tool to investigate the physiopathological status of fish.
Collapse
|
157
|
Jenkins Y, Zabkiewicz J, Ottmann O, Jones N. Tinkering under the Hood: Metabolic Optimisation of CAR-T Cell Therapy. Antibodies (Basel) 2021; 10:antib10020017. [PMID: 33925949 PMCID: PMC8167549 DOI: 10.3390/antib10020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells are one of the most exciting areas of immunotherapy to date. Clinically available CAR-T cells are used to treat advanced haematological B-cell malignancies with complete remission achieved at around 30-40%. Unfortunately, CAR-T cell success rates are even less impressive when considering a solid tumour. Reasons for this include the paucity of tumour specific targets and greater degree of co-expression on normal tissues. However, there is accumulating evidence that considerable competition for nutrients such as carbohydrates and amino acids within the tumour microenvironment (TME) coupled with immunosuppression result in mitochondrial dysfunction, exhaustion, and subsequent CAR-T cell depletion. In this review, we will examine research avenues being pursued to dissect the various mechanisms contributing to the immunosuppressive TME and outline in vitro strategies currently under investigation that focus on boosting the metabolic program of CAR-T cells as a mechanism to overcome the immunosuppressive TME. Various in vitro and in vivo techniques boost oxidative phosphorylation and mitochondrial fitness in CAR-T cells, resulting in an enhanced central memory T cell compartment and increased anti-tumoural immunity. These include intracellular metabolic enhancers and extracellular in vitro culture optimisation pre-infusion. It is likely that the next generation of CAR-T products will incorporate these elements of metabolic manipulation in CAR-T cell design and manufacture. Given the importance of immunometabolism and T cell function, it is critical that we identify ways to metabolically armour CAR-T cells to overcome the hostile TME and increase clinical efficacy.
Collapse
Affiliation(s)
- Yasmin Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
| | - Joanna Zabkiewicz
- Experimental Cancer Medicine Center, Department of Haematology, Heath Hospital, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (J.Z.); (O.O.)
| | - Oliver Ottmann
- Experimental Cancer Medicine Center, Department of Haematology, Heath Hospital, Cardiff University, Heath Park, Cardiff CF14 4XN, UK; (J.Z.); (O.O.)
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea SA2 8PP, UK;
- Correspondence:
| |
Collapse
|
158
|
Nachef M, Ali AK, Almutairi SM, Lee SH. Targeting SLC1A5 and SLC3A2/SLC7A5 as a Potential Strategy to Strengthen Anti-Tumor Immunity in the Tumor Microenvironment. Front Immunol 2021; 12:624324. [PMID: 33953707 PMCID: PMC8089370 DOI: 10.3389/fimmu.2021.624324] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/31/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer cells are metabolically vigorous and are superior in the uptake of nutrients and in the release of the tumor microenvironment (TME)-specific metabolites. They create an acidic, hypoxic, and nutrient-depleted TME that makes it difficult for the cytotoxic immune cells to adapt to the metabolically hostile environment. Since a robust metabolism in immune cells is required for optimal anti-tumor effector functions, the challenges caused by the TME result in severe defects in the invasion and destruction of the established tumors. There have been many recent developments in NK and T cell-mediated immunotherapy, such as engineering them to express chimeric antigen receptors (CARs) to enhance tumor-recognition and infiltration. However, to defeat the tumor and overcome the limitations of the TME, it is essential to fortify these novel therapies by improving the metabolism of the immune cells. One potential strategy to enhance the metabolic fitness of immune cells is to upregulate the expression of nutrient transporters, specifically glucose and amino acid transporters. In particular, the amino acid transporters SLC1A5 and SLC7A5 as well as the ancillary subunit SLC3A2, which are required for efficient uptake of glutamine and leucine respectively, could strengthen the metabolic capabilities and effector functions of tumor-directed CAR-NK and T cells. In addition to enabling the influx and efflux of essential amino acids through the plasma membrane and within subcellular compartments such as the lysosome and the mitochondria, accumulating evidence has demonstrated that the amino acid transporters participate in sensing amino acid levels and thereby activate mTORC1, a master metabolic regulator that promotes cell metabolism, and induce the expression of c-Myc, a transcription factor essential for cell growth and proliferation. In this review, we discuss the regulatory pathways of these amino acid transporters and how we can take advantage of these processes to strengthen immunotherapy against cancer.
Collapse
Affiliation(s)
- Marianna Nachef
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Alaa Kassim Ali
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Saeedah Musaed Almutairi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Botany and Microbiology Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,The University of Ottawa Centre for Infection, Immunity, and Inflammation, Ottawa, ON, Canada
| |
Collapse
|
159
|
Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. Int J Mol Sci 2021; 22:ijms22073775. [PMID: 33917351 PMCID: PMC8038661 DOI: 10.3390/ijms22073775] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer progression is highly dependent on the heterotypic interaction between tumor cells and stromal cells of the tumor microenvironment. Cancer-associated adipocytes (CAAs) are emerging as breast cancer cell partners favoring proliferation, invasion, and metastasis. This article discussed the intersection between extracellular signals and the transcriptional cascade that regulates adipocyte differentiation in order to appreciate the molecular pathways that have been described to drive adipocyte dedifferentiation. Moreover, recent studies on the mechanisms through which CAAs affect the progression of breast cancer were reviewed, including adipokine regulation, metabolic reprogramming, extracellular matrix remodeling, and immune cell modulation. An in-depth understanding of the complex vicious cycle between CAAs and breast cancer cells is crucial for designing novel strategies for new therapeutic interventions.
Collapse
|
160
|
Abstract
Macrophages are instrumental for the repair of organs that become injured due to ischemia, yet their potential for healing is sensitive to the availability of metabolites from the surrounding milieu. This sensitivity extends beyond anabolic and catabolic reactions, as metabolites are also leveraged to control production of secreted factors that direct intercellular crosstalk. In response to limiting extracellular oxygen, acute-phase macrophages activate hypoxia-inducible transcription factors that repurpose cellular metabolism. Subsequent repair-phase macrophages secrete cytokines to activate stromal cells, the latter which contribute to matrix deposition and scarring. As we now appreciate, these distinct functions are calibrated by directing flux of carbons and cofactors into specific metabolic shunts. This occurs through glycolysis, the pentose phosphate shunt, the tricarboxylic acid cycle, oxidative phosphorylation, nicotinamide adenine dinucleotides, lipids, amino acids, and through lesser understood pathways. The integration of metabolism with macrophage function is particularly important during injury to the ischemic heart, as glucose and lipid imbalance lead to inefficient repair and permanent loss of non-regenerative muscle. Here we review macrophage metabolic signaling under ischemic stress with implications for cardiac repair.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
161
|
Paiola M, Moreira C, Hétru J, Duflot A, Pinto PIS, Scapigliati G, Knigge T, Monsinjon T. Prepubertal gonad investment modulates thymus function: evidence in a teleost fish. J Exp Biol 2021; 224:238091. [PMID: 33789987 DOI: 10.1242/jeb.238576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Thymus plasticity following gonadectomy or sex hormone replacement has long since exemplified sex hormone effects on the immune system in mammals and, to a lesser extent, in 'lower vertebrates', including amphibians and fish. Nevertheless, the underlying physiological significances as well as the ontogenetic establishment of this crosstalk remain largely unknown. Here, we used a teleost fish, the European sea bass, Dicentrarchus labrax, to investigate: (1) whether the regulation of thymus plasticity relies on resource trade-off with somatic growth and reproductive investment and (2) if the gonad-thymus interaction takes place during gonadal differentiation and development. Because gonadal development and, supposedly, thymus function in sea bass depend on environmental changes associated with the winter season, we evaluated thymus changes (foxn1 expression, and thymocyte and T cell content) in juvenile D. labrax raised for 1 year under either constant or fluctuating photoperiod and temperature. Importantly, in both conditions, intensive gonadal development following sex differentiation coincided with a halt of thymus growth, while somatic growth continued. To the best of our knowledge, this is the first study showing that gonadal development during prepuberty regulates thymus plasticity. This finding may provide an explanation for the initiation of the thymus involution related to ageing in mammals. Comparing fixed and variable environmental conditions, our work also demonstrates that the extent of the effects on the thymus, which are related to reproduction, depend on ecophysiological conditions, rather than being directly related to sexual maturity and sex hormone levels.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Julie Hétru
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Patricia I S Pinto
- Laboratory of Comparative Endocrinology and Integrative Biology, CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, Tuscia University, 01100 Viterbo, Italy
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, 76600 Le Havre, France
| |
Collapse
|
162
|
Schuster S, Ewald J, Kaleta C. Modeling the energy metabolism in immune cells. Curr Opin Biotechnol 2021; 68:282-291. [PMID: 33770632 DOI: 10.1016/j.copbio.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 02/08/2023]
Abstract
In this review, we summarize and briefly discuss various approaches to modeling the metabolism in human immune cells, with a focus on energy metabolism. These approaches include metabolic reconstruction, elementary modes, and flux balance analysis, which are often subsumed under constraint-based modeling. Further approaches are evolutionary game theory and kinetic modeling. Many immune cells such as macrophages show the Warburg effect, meaning that glycolysis is upregulated upon activation. We outline a minimal model for explaining that effect using optimization. The effect of a confrontation with pathogen cells on immunometabolism is highlighted. Models describing the differences between M1 and M2 macrophages, ROS production in neutrophils, and tryptophan metabolism are discussed. Obstacles and future prospects are outlined.
Collapse
Affiliation(s)
- Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany.
| | - Jan Ewald
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, 07743 Jena, Germany
| | - Christoph Kaleta
- Medical Systems Biology Group, Institute of Experimental Medicine, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
163
|
Hayes C, Donohoe CL, Davern M, Donlon NE. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett 2021; 500:75-86. [PMID: 33347908 DOI: 10.1016/j.canlet.2020.12.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
The tumour microenvironment is of critical importance in cancer development and progression and includes the surrounding stromal and immune cells, extracellular matrix, and the milieu of metabolites and signalling molecules in the intercellular space. To support sustained mitotic activity cancer cells must reconfigure their metabolic phenotype. Lactate is the major by-product of such metabolic alterations and consequently, accumulates in the tumour. Lactate actively contributes to immune evasion, a hallmark of cancer, by directly inhibiting immune cell cytotoxicity and proliferation. Furthermore, lactate can recruit and induce immunosuppressive cell types, such as regulatory T cells, tumour-associated macrophages, and myeloid-derived suppressor cells which further suppress anti-tumour immune responses. Given its roles in oncogenesis, measuring intratumoural and systemic lactate levels has shown promise as a both predictive and prognostic biomarker in several cancer types. The efficacies of many anti-cancer therapies are limited by an immunosuppressive TME in which lactate is a major contributor, therefore, targeting lactate metabolism is a priority. Developing inhibitors of key proteins in lactate metabolism such as GLUT1, hexokinase, LDH, MCT and HIF have shown promise in preclinical studies, however there is a corresponding lack of success in human trials so far. This may be explained by a weakness of preclinical models that fail to reproduce the complexities of metabolic interactions in natura. The future of these therapies may be as an adjunct to more conventional treatments.
Collapse
Affiliation(s)
- Conall Hayes
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Claire L Donohoe
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Maria Davern
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland
| | - Noel E Donlon
- Department of Surgery, School of Medicine, Trinity College Dublin, Dublin, Ireland; Trinity St James' Cancer Institute, St James's Hospital Dublin, Ireland.
| |
Collapse
|
164
|
Brayshaw LL, Martinez-Fleites C, Athanasopoulos T, Southgate T, Jespers L, Herring C. The role of small molecules in cell and gene therapy. RSC Med Chem 2021; 12:330-352. [PMID: 34046619 PMCID: PMC8130622 DOI: 10.1039/d0md00221f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 01/22/2023] Open
Abstract
Cell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle. For example, small molecules can be used to optimise viral vector production during manufacturing or used in the clinic to enhance the resistance of T cell therapies to the immunosuppressive tumour microenvironment. Here, we review current uses of small molecules in cell and gene therapy and highlight opportunities for medicinal chemists to further consolidate the success of cell and gene therapies.
Collapse
Affiliation(s)
- Lewis L Brayshaw
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Carlos Martinez-Fleites
- Protein Degradation Group, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Takis Athanasopoulos
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Thomas Southgate
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Laurent Jespers
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| | - Christopher Herring
- Cell & Gene Therapy Discovery Research, Medicinal Science & Technology, GlaxoSmithKline Medicines Research Centre Gunnels Wood Road Stevenage SG1 2NY UK
| |
Collapse
|
165
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
166
|
Niederlova V, Tsyklauri O, Chadimova T, Stepanek O. CD8 + Tregs revisited: A heterogeneous population with different phenotypes and properties. Eur J Immunol 2021; 51:512-530. [PMID: 33501647 DOI: 10.1002/eji.202048614] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/31/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Chadimova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Institute of Experimental Neuroimmunology, Technical University of Munich, Munich, Germany
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
167
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
168
|
Bajgar A, Krejčová G, Doležal T. Polarization of Macrophages in Insects: Opening Gates for Immuno-Metabolic Research. Front Cell Dev Biol 2021; 9:629238. [PMID: 33659253 PMCID: PMC7917182 DOI: 10.3389/fcell.2021.629238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance and cachexia represent severe metabolic syndromes accompanying a variety of human pathological states, from life-threatening cancer and sepsis to chronic inflammatory states, such as obesity and autoimmune disorders. Although the origin of these metabolic syndromes has not been fully comprehended yet, a growing body of evidence indicates their possible interconnection with the acute and chronic activation of an innate immune response. Current progress in insect immuno-metabolic research reveals that the induction of insulin resistance might represent an adaptive mechanism during the acute phase of bacterial infection. In Drosophila, insulin resistance is induced by signaling factors released by bactericidal macrophages as a reflection of their metabolic polarization toward aerobic glycolysis. Such metabolic adaptation enables them to combat the invading pathogens efficiently but also makes them highly nutritionally demanding. Therefore, systemic metabolism has to be adjusted upon macrophage activation to provide them with nutrients and thus support the immune function. That anticipates the involvement of macrophage-derived systemic factors mediating the inter-organ signaling between macrophages and central energy-storing organs. Although it is crucial to coordinate the macrophage cellular metabolism with systemic metabolic changes during the acute phase of bacterial infection, the action of macrophage-derived factors may become maladaptive if chronic or in case of infection by an intracellular pathogen. We hypothesize that insulin resistance evoked by macrophage-derived signaling factors represents an adaptive mechanism for the mobilization of sources and their preferential delivery toward the activated immune system. We consider here the validity of the presented model for mammals and human medicine. The adoption of aerobic glycolysis by bactericidal macrophages as well as the induction of insulin resistance by macrophage-derived factors are conserved between insects and mammals. Chronic insulin resistance is at the base of many human metabolically conditioned diseases such as non-alcoholic steatohepatitis, atherosclerosis, diabetes, and cachexia. Therefore, revealing the original biological relevance of cytokine-induced insulin resistance may help to develop a suitable strategy for treating these frequent diseases.
Collapse
Affiliation(s)
- Adam Bajgar
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Gabriela Krejčová
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomáš Doležal
- Department of Molecular Biology and Genetics, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
169
|
Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med 2021; 27:212-224. [PMID: 33574607 DOI: 10.1038/s41591-021-01233-9] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
Most (if not all) tumors emerge and progress under a strong evolutionary pressure imposed by trophic, metabolic, immunological, and therapeutic factors. The relative impact of these factors on tumor evolution changes over space and time, ultimately favoring the establishment of a neoplastic microenvironment that exhibits considerable genetic, phenotypic, and behavioral heterogeneity in all its components. Here, we discuss the main sources of intratumoral heterogeneity and its impact on the natural history of the disease, including sensitivity to treatment, as we delineate potential strategies to target such a detrimental feature of aggressive malignancies.
Collapse
|
170
|
Weng CY, Kao CX, Chang TS, Huang YH. Immuno-Metabolism: The Role of Cancer Niche in Immune Checkpoint Inhibitor Resistance. Int J Mol Sci 2021; 22:1258. [PMID: 33514004 PMCID: PMC7865434 DOI: 10.3390/ijms22031258] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
The use of immune checkpoint inhibitors (ICI) in treating cancer has revolutionized the approach to eradicate cancer cells by reactivating immune responses. However, only a subset of patients benefits from this treatment; the majority remains unresponsive or develops resistance to ICI therapy. Increasing evidence suggests that metabolic machinery in the tumor microenvironment (TME) plays a role in the development of ICI resistance. Within the TME, nutrients and oxygen are scarce, forcing immune cells to undergo metabolic reprogramming to adapt to harsh conditions. Cancer-induced metabolic deregulation in immune cells can attenuate their anti-cancer properties, but can also increase their immunosuppressive properties. Therefore, targeting metabolic pathways of immune cells in the TME may strengthen the efficacy of ICIs and prevent ICI resistance. In this review, we discuss the interactions of immune cells and metabolic alterations in the TME. We also discuss current therapies targeting cellular metabolism in combination with ICIs for the treatment of cancer, and provide possible mechanisms behind the cellular metabolic rewiring that may improve clinical outcomes.
Collapse
Affiliation(s)
- Chao-Yuan Weng
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Cheng-Xiang Kao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
171
|
Bharadwaj S, Singh M, Kirtipal N, Kang SG. SARS-CoV-2 and Glutamine: SARS-CoV-2 Triggered Pathogenesis via Metabolic Reprograming of Glutamine in Host Cells. Front Mol Biosci 2021; 7:627842. [PMID: 33585567 PMCID: PMC7873863 DOI: 10.3389/fmolb.2020.627842] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, as coronavirus disease 2019 (COVID-19) pandemic, has killed more than a million people worldwide, and researchers are constantly working to develop therapeutics in the treatment and prevention of this new viral infection. To infect and induced pathogenesis as observed in other viral infections, we postulated that SARS-CoV-2 may also require an escalation in the anabolic metabolism, such as glucose and glutamine, to support its energy and biosynthetic requirements during the infection cycle. Recently, the requirement of altered glucose metabolism in SARS-CoV-2 pathogenesis was demonstrated, but the role of dysregulated glutamine metabolism is not yet mentioned for its infection. In this perspective, we have attempted to provide a summary of possible biochemical events on putative metabolic reprograming of glutamine in host cells upon SARS-CoV-2 infection by comparison to other viral infections/cancer metabolism and available clinical data or research on SARS-CoV-2 pathogenesis. This systematic hypothesis concluded the vital role of glutaminase-1 (GLS1), phosphoserine aminotransferase (PSAT1), hypoxia-inducible factor-1 alpha (HIF-1α), mammalian target of rapamycin complex 1 (mTORC1), glutamine-fructose amidotransferase 1/2 (GFAT1/2), and transcription factor Myc as key cellular factors to mediate and promote the glutamine metabolic reprogramming in SARS-CoV-2 infected cells. In absence of concrete data available for SARS-CoV-2 induced metabolic reprogramming of glutamine, this study efforts to connect the gaps with available clinical shreds of evidence in SARS-CoV-2 infection with altered glutamine metabolism and hopefully could be beneficial in the designing of strategic methods for therapeutic development with elucidation using in vitro or in vivo approaches.
Collapse
Affiliation(s)
- Shiv Bharadwaj
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| | - Nikhil Kirtipal
- Department of Science, Modern Institute of Technology, Rishikesh, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
172
|
Reizine F, Lesouhaitier M, Gregoire M, Pinceaux K, Gacouin A, Maamar A, Painvin B, Camus C, Le Tulzo Y, Tattevin P, Revest M, Le Bot A, Ballerie A, Cador-Rousseau B, Lederlin M, Lebouvier T, Launey Y, Latour M, Verdy C, Rossille D, Le Gallou S, Dulong J, Moreau C, Bendavid C, Roussel M, Cogne M, Tarte K, Tadié JM. SARS-CoV-2-Induced ARDS Associates with MDSC Expansion, Lymphocyte Dysfunction, and Arginine Shortage. J Clin Immunol 2021; 41:515-525. [PMID: 33387156 PMCID: PMC7775842 DOI: 10.1007/s10875-020-00920-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/12/2020] [Indexed: 11/20/2022]
Abstract
Purpose The SARS-CoV-2 infection can lead to a severe acute respiratory distress syndrome (ARDS) with prolonged mechanical ventilation and high mortality rate. Interestingly, COVID-19-associated ARDS share biological and clinical features with sepsis-associated immunosuppression since lymphopenia and acquired infections associated with late mortality are frequently encountered. Mechanisms responsible for COVID-19-associated lymphopenia need to be explored since they could be responsible for delayed virus clearance and increased mortality rate among intensive care unit (ICU) patients. Methods A series of 26 clinically annotated COVID-19 patients were analyzed by thorough phenotypic and functional investigations at days 0, 4, and 7 after ICU admission. Results We revealed that, in the absence of any difference in demographic parameters nor medical history between the two groups, ARDS patients presented with an increased number of myeloid-derived suppressor cells (MDSC) and a decreased number of CD8pos effector memory cell compared to patients hospitalized for COVID-19 moderate pneumonia. Interestingly, COVID-19-related MDSC expansion was directly correlated to lymphopenia and enhanced arginase activity. Lastly, T cell proliferative capacity in vitro was significantly reduced among COVID-19 patients and could be restored through arginine supplementation. Conclusions The present study reports a critical role for MDSC in COVID-19-associated ARDS. Our findings open the possibility of arginine supplementation as an adjuvant therapy for these ICU patients, aiming to reduce immunosuppression and help virus clearance, thereby decreasing the duration of mechanical ventilation, nosocomial infection acquisition, and mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-020-00920-5.
Collapse
Affiliation(s)
- Florian Reizine
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Mathieu Lesouhaitier
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Murielle Gregoire
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Kieran Pinceaux
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Arnaud Gacouin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Adel Maamar
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Benoit Painvin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Christophe Camus
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Yves Le Tulzo
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Pierre Tattevin
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Matthieu Revest
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Audrey Le Bot
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Alice Ballerie
- Department of Internal Medicine and Clinical Immunology, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Berengère Cador-Rousseau
- Department of Internal Medicine and Clinical Immunology, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Mathieu Lederlin
- Department of Radiology, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Thomas Lebouvier
- Department of Anesthesia and Critical Care, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Yoann Launey
- Department of Anesthesia and Critical Care, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Maelle Latour
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Clotilde Verdy
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Delphine Rossille
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Simon Le Gallou
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Joelle Dulong
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Caroline Moreau
- Department of Biochemistry, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Claude Bendavid
- Department of Biochemistry, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Mikael Roussel
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Michel Cogne
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Karin Tarte
- SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France.,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Jean-Marc Tadié
- Infectious Diseases and Intensive Care Unit, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France. .,SITI, Pole de Biologie, Pontchaillou University Hospital, 2 rue Henri Le Guilloux, 35033, Rennes, France. .,UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France. .,Service des Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes Cedex 9, France.
| |
Collapse
|
173
|
Stearoyl-CoA Desaturase-Mediated Monounsaturated Fatty Acid Availability Supports Humoral Immunity. Cell Rep 2021; 34:108601. [PMID: 33406440 PMCID: PMC7839063 DOI: 10.1016/j.celrep.2020.108601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Immune cells can metabolize glucose, amino acids, and fatty acids (FAs) to generate energy. The roles of different FA species and their impacts on humoral immunity remain poorly understood. Here, we report that proliferating B cells require monounsaturated FAs (MUFAs) to maintain mitochondrial metabolism and mTOR activity and to prevent excessive autophagy and endoplasmic reticulum (ER) stress. Furthermore, B cell-extrinsic stearoyl-CoA desaturase (SCD) activity generates MUFA to support early B cell development and germinal center (GC) formation in vivo during immunization and influenza infection. Thus, SCD-mediated MUFA production is critical for humoral immunity. Zhou et al. show that monounsaturated fatty acids (MUFAs), generated by stearoyl-CoA desaturase (SCD), support B cell mitochondrial metabolism and mTOR activity and promote B cell development and humoral immune responses. These data establish MUFA availability as a key regulator for humoral immunity and a potential therapeutic target.
Collapse
|
174
|
Stubbs BJ, Koutnik AP, Goldberg EL, Upadhyay V, Turnbaugh PJ, Verdin E, Newman JC. Investigating Ketone Bodies as Immunometabolic Countermeasures against Respiratory Viral Infections. MED 2020; 1:43-65. [PMID: 32838361 PMCID: PMC7362813 DOI: 10.1016/j.medj.2020.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Respiratory viral infections remain a scourge, with seasonal influenza infecting millions and killing many thousands annually and viral pandemics, such as COVID-19, recurring every decade. Age, cardiovascular disease, and diabetes mellitus are risk factors for severe disease and death from viral infection. Immunometabolic therapies for these populations hold promise to reduce the risks of death and disability. Such interventions have pleiotropic effects that might not only target the virus itself but also enhance supportive care to reduce cardiopulmonary complications, improve cognitive resilience, and facilitate functional recovery. Ketone bodies are endogenous metabolites that maintain cellular energy but also feature drug-like signaling activities that affect immune activity, metabolism, and epigenetics. Here, we provide an overview of ketone body biology relevant to respiratory viral infection, focusing on influenza A and severe acute respiratory syndrome (SARS)-CoV-2, and discuss the opportunities, risks, and research gaps in the study of exogenous ketone bodies as novel immunometabolic interventions in these diseases.
Collapse
Affiliation(s)
| | - Andrew P Koutnik
- Institute for Human and Machine Cognition, Pensacola, FL, USA
- Department of Molecular Pharmacology and Physiology, USF, Tampa, FL, USA
| | | | - Vaibhav Upadhyay
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, UCSF, San Francisco, CA, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - John C Newman
- Buck Institute for Research on Aging, Novato, CA, USA
- Division of Geriatrics, UCSF, San Francisco, CA, USA
| |
Collapse
|
175
|
Shimizu H, Usui Y, Asakage M, Nezu N, Wakita R, Tsubota K, Sugimoto M, Goto H. Serum Metabolomic Profiling of Patients with Non-Infectious Uveitis. J Clin Med 2020; 9:jcm9123955. [PMID: 33291298 PMCID: PMC7762156 DOI: 10.3390/jcm9123955] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/21/2022] Open
Abstract
The activities of various metabolic pathways can influence the pathogeneses of autoimmune diseases, and intrinsic metabolites can potentially be used to diagnose diseases. However, the metabolomic analysis of patients with uveitis has not yet been conducted. Here, we profiled the serum metabolomes of patients with three major forms of uveitis (Behҫet's disease (BD), sarcoidosis, and Vogt-Koyanagi-Harada disease (VKH)) to identify potential biomarkers. This study included 19 BD, 20 sarcoidosis, and 15 VKH patients alongside 16 healthy control subjects. The metabolite concentrations in their sera were quantified using liquid chromatography with time-of-flight mass spectrometry. The discriminative abilities of quantified metabolites were evaluated by four comparisons: control vs. three diseases, and each disease vs. the other two diseases (such as sarcoidosis vs. BD + VKH). Among 78 quantified metabolites, 24 kinds of metabolites showed significant differences in these comparisons. Four multiple logistic regression models were developed and validated. The area under the receiver operating characteristic (ROC) curve (AUC) in the model to discriminate disease groups from control was 0.72. The AUC of the other models to discriminate sarcoidosis, BD, and VKH from the other two diseases were 0.84, 0.83, and 0.73, respectively. This study provides potential diagnostic abilities of sarcoidosis, BD, and VKH using routinely available serum samples that can be collected with minimal invasiveness.
Collapse
Affiliation(s)
- Hiroyuki Shimizu
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
- Correspondence: ; Tel.: +81-3-3342-6111
| | - Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| | - Naoya Nezu
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| | - Ryo Wakita
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| | - Masahiro Sugimoto
- Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Institute of Medical Sciences, Tokyo Medical University, Tokyo 160-8402, Japan;
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.S.); (M.A.); (N.N.); (R.W.); (K.T.); (H.G.)
| |
Collapse
|
176
|
Domagala J, Lachota M, Klopotowska M, Graczyk-Jarzynka A, Domagala A, Zhylko A, Soroczynska K, Winiarska M. The Tumor Microenvironment-A Metabolic Obstacle to NK Cells' Activity. Cancers (Basel) 2020; 12:cancers12123542. [PMID: 33260925 PMCID: PMC7761432 DOI: 10.3390/cancers12123542] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
NK cells have unique capabilities of recognition and destruction of tumor cells, without the requirement for prior immunization of the host. Maintaining tolerance to healthy cells makes them an attractive therapeutic tool for almost all types of cancer. Unfortunately, metabolic changes associated with malignant transformation and tumor progression lead to immunosuppression within the tumor microenvironment, which in turn limits the efficacy of various immunotherapies. In this review, we provide a brief description of the metabolic changes characteristic for the tumor microenvironment. Both tumor and tumor-associated cells produce and secrete factors that directly or indirectly prevent NK cell cytotoxicity. Here, we depict the molecular mechanisms responsible for the inhibition of immune effector cells by metabolic factors. Finally, we summarize the strategies to enhance NK cell function for the treatment of tumors.
Collapse
Affiliation(s)
- Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Marta Klopotowska
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland; (M.L.); (M.K.)
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Antoni Domagala
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland;
- Department of Urology, Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Andriy Zhylko
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
| | - Karolina Soroczynska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.D.); (A.G.-J.); (A.Z.); (K.S.)
- Correspondence: ; Tel.: +48-225-992-199
| |
Collapse
|
177
|
Galgani M, Bruzzaniti S, La Rocca C, Micillo T, de Candia P, Bifulco M, Matarese G. Immunometabolism of regulatory T cells in cancer. Mol Aspects Med 2020; 77:100936. [PMID: 33250195 DOI: 10.1016/j.mam.2020.100936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023]
Abstract
Regulatory T (Treg) cells are known to orchestrate the regulatory mechanisms aimed at suppressing pathological auto-reactive immune responses and are thus key in ensuring the maintenance of immune homeostasis. On the other hand, the presence of Treg cells with enhanced suppressive capability in a plethora of human cancers represents a major obstacle to an effective anti-cancer immune response. A relevant research effort has thus been dedicated to comprehend Treg cell biology, leading to a continuously refining characterization of their phenotype and function and unveiling the central role of metabolism in ensuring Treg cell fitness in cancer. Here we focus on how the peculiar biochemical characteristics of the tumor microenvironment actually support Treg cell metabolic activation and favor their selective survival and proliferation. Moreover, we examine the key metabolic pathways that may become useful targets of novel treatments directed at hampering tumor resident Treg cell proficiency, thus representing the next research frontier in cancer immunotherapy.
Collapse
Affiliation(s)
- Mario Galgani
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy; Dipartimento di Biologia, Università Degli Studi di Napoli "Federico II", 80126, Napoli, Italy
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy
| | - Teresa Micillo
- Unità di Neuroimmunologia, Fondazione Santa Lucia IRCCS, 00179, Roma, Italy
| | | | - Maurizio Bifulco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Napoli, Italy; Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale Delle Ricerche (IEOS-CNR), 80131, Napoli, Italy.
| |
Collapse
|
178
|
Böttcher M, Baur R, Stoll A, Mackensen A, Mougiakakos D. Linking Immunoevasion and Metabolic Reprogramming in B-Cell-Derived Lymphomas. Front Oncol 2020; 10:594782. [PMID: 33251150 PMCID: PMC7674840 DOI: 10.3389/fonc.2020.594782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Lymphomas represent a diverse group of malignancies that emerge from lymphocytes. Despite improvements in diagnosis and treatment of lymphomas of B-cell origin, relapsed and refractory disease represents an unmet clinical need. Therefore, it is of utmost importance to better understand the lymphomas’ intrinsic features as well as the interactions with their cellular microenvironment for developing novel therapeutic strategies. In fact, the role of immune-based approaches is steadily increasing and involves amongst others the use of monoclonal antibodies against tumor antigens, inhibitors of immunological checkpoints, and even genetically modified T-cells. Metabolic reprogramming and immune escape both represent well established cancer hallmarks. Tumor metabolism as introduced by Otto Warburg in the early 20th century promotes survival, proliferation, and therapeutic resistance. Simultaneously, malignant cells employ a plethora of mechanisms to evade immune surveillance. Increasing evidence suggests that metabolic reprogramming does not only confer cell intrinsic growth and survival advantages to tumor cells but also impacts local as well as systemic anti-tumor immunity. Tumor and immune cells compete over nutrients such as carbohydrates or amino acids that are critical for the immune cell function. Moreover, skewed metabolic pathways in malignant cells can result in abundant production and release of bioactive metabolites such as lactic acid, kynurenine or reactive oxygen species (ROS) that affect immune cell fitness and function. This “metabolic re-modeling” of the tumor microenvironment shifts anti-tumor immune reactivity toward tolerance. Here, we will review molecular events leading to metabolic alterations in B-cell lymphomas and their impact on anti-tumor immunity.
Collapse
Affiliation(s)
- Martin Böttcher
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Rebecca Baur
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andrej Stoll
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Mackensen
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| | - Dimitrios Mougiakakos
- Department of Medicine 5 for Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
179
|
Madan E, Peixoto ML, Dimitrion P, Eubank TD, Yekelchyk M, Talukdar S, Fisher PB, Mi QS, Moreno E, Gogna R. Cell Competition Boosts Clonal Evolution and Hypoxic Selection in Cancer. Trends Cell Biol 2020; 30:967-978. [PMID: 33160818 DOI: 10.1016/j.tcb.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The comparison of fitness between cells leads to the elimination of less competent cells in the presence of more competent neighbors via cell competition (CC). This phenomenon has been linked with several cancer-related genes and thus may play an important role in cancer. Various processes are involved in the regulation of tumor initiation and growth, including tumor hypoxia, clonal stem cell selection, and immune cell response, all of which have been recently shown to have a potential connection with the mechanisms involved in CC. This review aims to unravel the relation between these processes and competitive cell interactions and how this affects disease progression.
Collapse
Affiliation(s)
- Esha Madan
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | | | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Timothy D Eubank
- In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Michail Yekelchyk
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology, Department of Dermatology, Henry Ford Health System, Detroit, MI, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University Medical School, Detroit, MI, USA
| | - Eduardo Moreno
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| | - Rajan Gogna
- Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
180
|
Phillips IL, Everman JL, Bermudez LE, Danelishvili L. Acanthamoeba castellanii as a Screening Tool for Mycobacterium avium Subspecies paratuberculosis Virulence Factors with Relevance in Macrophage Infection. Microorganisms 2020; 8:microorganisms8101571. [PMID: 33066018 PMCID: PMC7601679 DOI: 10.3390/microorganisms8101571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/05/2023] Open
Abstract
The high prevalence of Johne's disease has driven a continuous effort to more readily understand the pathogenesis of the etiological causative bacterium, Mycobacterium avium subsp. paratuberculosis (MAP), and to develop effective preventative measures for infection spread. In this study, we aimed to create an in vivo MAP infection model employing an environmental protozoan host and used it as a tool for selection of bacterial virulence determinants potentially contributing to MAP survival in mammalian host macrophages. We utilized Acanthamoeba castellanii (amoeba) to explore metabolic consequences of the MAP-host interaction and established a correlation between metabolic changes of this phagocytic host and MAP virulence. Using the library of gene knockout mutants, we identified MAP clones that can either enhance or inhibit amoeba metabolism and we discovered that, for most part, it mirrors the pattern of MAP attenuation or survival during infection of macrophages. It was found that MAP mutants that induced an increase in amoeba metabolism were defective in intracellular growth in macrophages. However, MAP clones that exhibited low metabolic alteration in amoeba were able to survive at a greater rate within mammalian cells, highlighting importance of both category of genes in bacterial pathogenesis. Sequencing of MAP mutants has identified several virulence factors previously shown to have a biological relevance in mycobacterial survival and intracellular growth in phagocytic cells. In addition, we uncovered new genetic determinants potentially contributing to MAP pathogenicity. Results of this study support the use of the amoeba model system as a quick initial screening tool for selection of virulence factors of extremely slow-grower MAP that is challenging to study.
Collapse
Affiliation(s)
- Ida L. Phillips
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
| | - Jamie L. Everman
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA;
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (I.L.P.); (L.E.B.)
- Correspondence: ; Tel.: +541-737-6544; Fax: +541-737-2730
| |
Collapse
|
181
|
Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology 2020; 161:200-208. [PMID: 32920838 DOI: 10.1111/imm.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cell migration is an essential, energetically demanding process in immunity. Immune cells navigate the body via chemokines and other immune mediators, which are altered under inflammatory conditions of injury or infection. Several factors determine the migratory abilities of different types of immune cells in diverse contexts, including the precise co-ordination of cytoskeletal remodelling, the expression of specific chemokine receptors and integrins, and environmental conditions. In this review, we present an overview of recent advances in our understanding of the relationship of each of these factors with cellular metabolism, with a focus on the spatial organization of glycolysis and mitochondria, reciprocal regulation of chemokine receptors and the influence of environmental changes.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Physiology, McGill University, Montreal, QC, Canada.,Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
182
|
Ochoa de Olza M, Navarro Rodrigo B, Zimmermann S, Coukos G. Turning up the heat on non-immunoreactive tumours: opportunities for clinical development. Lancet Oncol 2020; 21:e419-e430. [PMID: 32888471 DOI: 10.1016/s1470-2045(20)30234-5] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Notable advances have been achieved in the treatment of cancer since the advent of immunotherapy, and immune checkpoint inhibitors have shown clinical benefit across a wide variety of tumour types. Nevertheless, most patients still progress on these treatments, highlighting the importance of unravelling the underlying mechanisms of primary resistance to immunotherapy. A well described biomarker of non-responsiveness to immune checkpoint inhibitors is the absence or low presence of lymphocytes in the tumour microenvironment, so-called cold tumours. There are five mechanisms of action that have the potential to turn cold tumours into so-called hot and inflamed tumours, hence increasing the tumour's responsiveness to immunotherapy-increasing local inflammation, neutralising immunosuppression at the tumour site, modifying the tumour vasculature, targeting the tumour cells themselves, or increasing the frequency of tumour-specific T cells. In this Review, we discuss preclinical data that serves as the basis for ongoing immunotherapy clinical trials for the treatment of non-immunoreactive tumours, as well as reviewing clinical and translational data where available. We explain how improving our understanding of the underlying mechanisms of primary resistance to immunotherapy will help elucidate an increasingly granular view of the tumour microenvironment cellular composition, functional status, and cellular localisation, with the goal of further therapy refinement.
Collapse
Affiliation(s)
- María Ochoa de Olza
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefan Zimmermann
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Service of Immuno-Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
183
|
Atif M, Mohr A, Conti F, Scatton O, Gorochov G, Miyara M. Metabolic Optimisation of Regulatory T Cells in Transplantation. Front Immunol 2020; 11:2005. [PMID: 33013855 PMCID: PMC7495149 DOI: 10.3389/fimmu.2020.02005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022] Open
Abstract
Regulatory T (Treg) cells expressing the FOXP3 transcription factor are presently under investigation by many teams globally as a cellular therapy to induce tolerance in transplantation. This is primarily due to their immunosuppressive and homeostatic functions. Depending on the type of allograft, Treg cells will need to infiltrate and function in metabolically diverse microenvironments. This means that any resident and circulating Treg cells need to differentially adapt to counter acute or chronic allograft rejection. However, the links between Treg cell metabolism and function are still not entirely delineated. Current data suggest that Treg cells and their effector counterparts have different metabolite dependencies and metabolic programs. These properties could be exploited to optimize intragraft Treg cell function. In this review, we discuss the current paradigms regarding Treg cell metabolism and outline critical intracellular axes that link metabolism and function. Finally, we discuss how this knowledge could be clinically translated for the benefit of transplant patients.
Collapse
Affiliation(s)
- Mo Atif
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France.,Centre for Liver and Gastrointestinal Research, NIHR Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, United Kingdom
| | - Audrey Mohr
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Filomena Conti
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France.,Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Olivier Scatton
- Unité de Transplantation Hépatique, Hôpital Pitié-Salpêtrière, AP-HP, Paris, France
| | - Guy Gorochov
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| | - Makoto Miyara
- Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, AP-HP, Sorbonne Université, Paris, France
| |
Collapse
|
184
|
Schuijs MJ, Png S, Richard AC, Tsyben A, Hamm G, Stockis J, Garcia C, Pinaud S, Nicholls A, Ros XR, Su J, Eldridge MD, Riedel A, Serrao EM, Rodewald HR, Mack M, Shields JD, Cohen ES, McKenzie ANJ, Goodwin RJA, Brindle KM, Marioni JC, Halim TYF. ILC2-driven innate immune checkpoint mechanism antagonizes NK cell antimetastatic function in the lung. Nat Immunol 2020; 21:998-1009. [PMID: 32747815 PMCID: PMC7116357 DOI: 10.1038/s41590-020-0745-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 06/23/2020] [Indexed: 12/23/2022]
Abstract
Metastasis constitutes the primary cause of cancer-related deaths, with the lung being a commonly affected organ. We found that activation of lung-resident group 2 innate lymphoid cells (ILC2s) orchestrated suppression of natural killer (NK) cell-mediated innate antitumor immunity, leading to increased lung metastases and mortality. Using multiple models of lung metastasis, we show that interleukin (IL)-33-dependent ILC2 activation in the lung is involved centrally in promoting tumor burden. ILC2-driven innate type 2 inflammation is accompanied by profound local suppression of interferon-γ production and cytotoxic function of lung NK cells. ILC2-dependent suppression of NK cells is elaborated via an innate regulatory mechanism, which is reliant on IL-5-induced lung eosinophilia, ultimately limiting the metabolic fitness of NK cells. Therapeutic targeting of IL-33 or IL-5 reversed NK cell suppression and alleviated cancer burden. Thus, we reveal an important function of IL-33 and ILC2s in promoting tumor metastasis via their capacity to suppress innate type 1 immunity.
Collapse
Affiliation(s)
| | - Shaun Png
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Arianne C Richard
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Anastasia Tsyben
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Julie Stockis
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Celine Garcia
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Silvain Pinaud
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ashley Nicholls
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Xavier Romero Ros
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jing Su
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Angela Riedel
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
| | - Eva M Serrao
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Matthias Mack
- Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | | | - E Suzanne Cohen
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kevin M Brindle
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - John C Marioni
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
- EMBL-European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | |
Collapse
|
185
|
Silva CADME, Rojony R, Bermudez LE, Danelishvili L. Short-Chain Fatty Acids Promote Mycobacterium avium subsp. hominissuis Growth in Nutrient-Limited Environments and Influence Susceptibility to Antibiotics. Pathogens 2020; 9:pathogens9090700. [PMID: 32859077 PMCID: PMC7559849 DOI: 10.3390/pathogens9090700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is a common intracellular pathogen that infects immunocompromised individuals and patients with pre-existing chronic lung diseases, such as cystic fibrosis, who develop chronic and persistent pulmonary infections. The metabolic remodeling of MAH in response to host environmental stresses or within biofilms formed in bronchial airways plays an important role in development of the persistence phenotype contributing to the pathogen’s tolerance to antibiotic treatment. Recent studies suggest a direct relationship between bacterial metabolic state and antimicrobial susceptibility, and improved antibiotic efficacy has been associated with the enhanced metabolism in bacteria. In the current study, we tested approximately 200 exogenous carbon source-dependent metabolites and identified short-chain fatty acid (SCFA) substrates (propionic, butyric and caproic acids) that MAH can utilize in different physiological states. Selected SCFA enhanced MAH metabolic activity in planktonic and sessile states as well as in the static and established biofilms during nutrient-limited condition. The increased bacterial growth was observed in all conditions except in established biofilms. We also evaluated the influence of SCFA on MAH susceptibility to clinically used antibiotics in established biofilms and during infection of macrophages and found significant reduction in viable bacterial counts in vitro and in cultured macrophages, suggesting improved antibiotic effectiveness against persistent forms of MAH.
Collapse
Affiliation(s)
- Carlos Adriano de Matos e Silva
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
| | - Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Lia Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA; (C.A.d.M.e.S.); (R.R.); (L.E.B.)
- Correspondence: ; Tel.: +1-(541)-737-6544; Fax: +1-(541)-737-2730
| |
Collapse
|
186
|
Li F, Simon MC. Cancer Cells Don't Live Alone: Metabolic Communication within Tumor Microenvironments. Dev Cell 2020; 54:183-195. [PMID: 32640203 DOI: 10.1016/j.devcel.2020.06.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/10/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
Solid tumors reside in harsh tumor microenvironments (TMEs) together with various stromal cell types. During tumor progression and metastasis, both tumor and stromal cells undergo rapid metabolic adaptations. Tumor cells metabolically coordinate or compete with their "neighbors" to maintain biosynthetic and bioenergetic demands while escaping immunosurveillance or therapeutic interventions. Here, we provide an update on metabolic communication between tumor cells and heterogeneous stromal components in primary and metastatic TMEs and discuss emerging strategies to target metabolic communications for improved cancer treatments.
Collapse
Affiliation(s)
- Fuming Li
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
187
|
Sun B, Hyun H, Li LT, Wang AZ. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol Sin 2020; 41:970-985. [PMID: 32424240 PMCID: PMC7470849 DOI: 10.1038/s41401-020-0424-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has received extensive attention due to its ability to activate the innate or adaptive immune systems of patients to combat tumors. Despite a few clinical successes, further endeavors are still needed to tackle unresolved issues, including limited response rates, development of resistance, and immune-related toxicities. Accumulating evidence has pinpointed the tumor microenvironment (TME) as one of the major obstacles in cancer immunotherapy due to its detrimental impacts on tumor-infiltrating immune cells. Nanomedicine has been battling with the TME in the past several decades, and the experience obtained could be exploited to improve current paradigms of immunotherapy. Here, we discuss the metabolic features of the TME and its influence on different types of immune cells. The recent progress in nanoenabled cancer immunotherapy has been summarized with a highlight on the modulation of immune cells, tumor stroma, cytokines and enzymes to reverse the immunosuppressive TME.
Collapse
Affiliation(s)
- Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyesun Hyun
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lian-Tao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Andrew Z Wang
- Laboratory of Nano and Translational Medicine, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
188
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
189
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
190
|
Ma CY, Marioni JC, Griffiths GM, Richard AC. Stimulation strength controls the rate of initiation but not the molecular organisation of TCR-induced signalling. eLife 2020; 9:e53948. [PMID: 32412411 PMCID: PMC7308083 DOI: 10.7554/elife.53948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of naïve T cells with different TCRs may interact with a peptide-MHC ligand, but very few will activate. Remarkably, this fine control is orchestrated using a limited set of intracellular machinery. It remains unclear whether changes in stimulation strength alter the programme of signalling events leading to T cell activation. Using mass cytometry to simultaneously measure multiple signalling pathways during activation of murine CD8+ T cells, we found a programme of distal signalling events that is shared, regardless of the strength of TCR stimulation. Moreover, the relationship between transcription of early response genes Nr4a1 and Irf8 and activation of the ribosomal protein S6 is also conserved across stimuli. Instead, we found that stimulation strength dictates the rate with which cells initiate signalling through this network. These data suggest that TCR-induced signalling results in a coordinated activation program, modulated in rate but not organization by stimulation strength.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Female
- Flow Cytometry
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- Kinetics
- Ligands
- Lymphocyte Activation/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Ovalbumin/pharmacology
- Peptide Fragments/pharmacology
- Phosphorylation
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/metabolism
- Ribosomal Protein S6/metabolism
- Signal Transduction/drug effects
- Single-Cell Analysis
Collapse
Affiliation(s)
- Claire Y Ma
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
- EMBL-European Bioinformatics Institute, Wellcome Genome CampusCambridgeUnited Kingdom
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUnited Kingdom
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
| | - Arianne C Richard
- Cambridge Institute for Medical Research, University of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Institute, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
191
|
Fernandez-de-Cossio-Diaz J, Mulet R. Statistical mechanics of interacting metabolic networks. Phys Rev E 2020; 101:042401. [PMID: 32422765 DOI: 10.1103/physreve.101.042401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
We cast the metabolism of interacting cells within a statistical mechanics framework considering both the actual phenotypic capacities of each cell and its interaction with its neighbors. Reaction fluxes will be the components of high-dimensional spin vectors, whose values will be constrained by the stochiometry and the energy requirements of the metabolism. Within this picture, finding the phenotypic states of the population turns out to be equivalent to searching for the equilibrium states of a disordered spin model. We provide a general solution of this problem for arbitrary metabolic networks and interactions. We apply this solution to a simplified model of metabolism and to a complex metabolic network, the central core of Escherichia coli, and demonstrate that the combination of selective pressure and interactions defines a complex phenotypic space. We also present numerical results for cells fixed in a grid. These results reproduce the qualitative picture discussed for the mean-field model. Cells may specialize in producing or consuming metabolites complementing each other, and this is described by an equilibrium phase space with multiple minima, like in a spin-glass model.
Collapse
Affiliation(s)
- Jorge Fernandez-de-Cossio-Diaz
- Systems Biology Department, Center of Molecular Immunology, Calle 216 esq 15, PO Box 16040, Atabey, Playa, La Habana, CP 11600, Cuba
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, CP 10400, La Habana, Cuba
| | - Roberto Mulet
- Group of Complex Systems and Statistical Physics, Department of Theoretical Physics, Physics Faculty, University of Havana, CP 10400, La Habana, Cuba
- Italian Institute for Genomic Medicine, IIGM, Torino, Italy
| |
Collapse
|
192
|
HSP70/IL-2 Treated NK Cells Effectively Cross the Blood Brain Barrier and Target Tumor Cells in a Rat Model of Induced Glioblastoma Multiforme (GBM). Int J Mol Sci 2020; 21:ijms21072263. [PMID: 32218162 PMCID: PMC7178276 DOI: 10.3390/ijms21072263] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell therapy is one of the most promising treatments for Glioblastoma Multiforme (GBM). However, this emerging technology is limited by the availability of sufficient numbers of fully functional cells. Here, we investigated the efficacy of NK cells that were expanded and treated by interleukin-2 (IL-2) and heat shock protein 70 (HSP70), both in vitro and in vivo. Proliferation and cytotoxicity assays were used to assess the functionality of NK cells in vitro, after which treated and naïve NK cells were administrated intracranially and systemically to compare the potential antitumor activities in our in vivo rat GBM models. In vitro assays provided strong evidence of NK cell efficacy against C6 tumor cells. In vivo tracking of NK cells showed efficient homing around and within the tumor site. Furthermore, significant amelioration of the tumor in rats treated with HSP70/Il-2-treated NK cells as compared to those subjected to nontreated NK cells, as confirmed by MRI, proved the efficacy of adoptive NK cell therapy. Moreover, results obtained with systemic injection confirmed migration of activated NK cells over the blood brain barrier and subsequent targeting of GBM tumor cells. Our data suggest that administration of HSP70/Il-2-treated NK cells may be a promising therapeutic approach to be considered in the treatment of GBM.
Collapse
|
193
|
Zhao H, Raines LN, Huang SCC. Carbohydrate and Amino Acid Metabolism as Hallmarks for Innate Immune Cell Activation and Function. Cells 2020; 9:cells9030562. [PMID: 32121028 PMCID: PMC7140477 DOI: 10.3390/cells9030562] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Immune activation is now understood to be fundamentally linked to intrinsic and/or extrinsic metabolic processes which are essential for immune cells to survive, proliferate, and perform their effector functions. Moreover, disruption or dysregulation of these pathways can result in detrimental outcomes and underly a number of pathologies in both communicable and non-communicable diseases. In this review, we discuss how the metabolism of carbohydrates and amino acids in particular can modulate innate immunity and how perturbations in these pathways can result in failure of these immune cells to properly function or induce unfavorable phenotypes.
Collapse
Affiliation(s)
- Haoxin Zhao
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Lydia N. Raines
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
| | - Stanley Ching-Cheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (H.Z.); (L.N.R.)
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-3909
| |
Collapse
|
194
|
Tamayo-Orbegozo E, Amo L, Díez-García J, Amutio E, Riñón M, Alonso M, Arana P, Maruri N, Larrucea S. Emerging Role of Podocalyxin in the Progression of Mature B-Cell Non-Hodgkin Lymphoma. Cancers (Basel) 2020; 12:cancers12020396. [PMID: 32046309 PMCID: PMC7072361 DOI: 10.3390/cancers12020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mature B-cell non-Hodgkin lymphoma (B-NHL) constitutes a group of heterogeneous malignant lymphoproliferative diseases ranging from indolent to highly aggressive forms. Although the survival after chemo-immunotherapy treatment of mature B-NHL has increased over the last years, many patients relapse or remain refractory due to drug resistance, presenting an unfavorable prognosis. Hence, there is an urgent need to identify new prognostic markers and therapeutic targets. Podocalyxin (PODXL), a sialomucin overexpressed in a variety of tumor cell types and associated with their aggressiveness, has been implicated in multiple aspects of cancer progression, although its participation in hematological malignancies remains unexplored. New evidence points to a role for PODXL in mature B-NHL cell proliferation, survival, migration, drug resistance, and metabolic reprogramming, as well as enhanced levels of PODXL in mature B-NHL. Here, we review the current knowledge on the contribution of PODXL to tumorigenesis, highlighting and discussing its role in mature B-NHL progression.
Collapse
Affiliation(s)
- Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (E.T.-O.); (L.A.)
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Elena Amutio
- Blood Cancer Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain;
| | - Marta Riñón
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Marta Alonso
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Paula Arana
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Plaza de Cruces 12, 48903 Barakaldo, Bizkaia, Spain; (M.R.); (M.A.); (P.A.); (N.M.)
- Correspondence:
| |
Collapse
|
195
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
196
|
Seth Nanda C, Venkateswaran SV, Patani N, Yuneva M. Defining a metabolic landscape of tumours: genome meets metabolism. Br J Cancer 2020; 122:136-149. [PMID: 31819196 PMCID: PMC7051970 DOI: 10.1038/s41416-019-0663-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease of multiple alterations occuring at the epigenomic, genomic, transcriptomic, proteomic and/or metabolic levels. The contribution of genetic mutations in cancer initiation, progression and evolution is well understood. However, although metabolic changes in cancer have long been acknowledged and considered a plausible therapeutic target, the crosstalk between genetic and metabolic alterations throughout cancer types is not clearly defined. In this review, we summarise the present understanding of the interactions between genetic drivers of cellular transformation and cancer-associated metabolic changes, and how these interactions contribute to metabolic heterogeneity of tumours. We discuss the essential question of whether changes in metabolism are a cause or a consequence in the formation of cancer. We highlight two modes of how metabolism contributes to tumour formation. One is when metabolic reprogramming occurs downstream of oncogenic mutations in signalling pathways and supports tumorigenesis. The other is where metabolic reprogramming initiates transformation being either downstream of mutations in oncometabolite genes or induced by chronic wounding, inflammation, oxygen stress or metabolic diseases. Finally, we focus on the factors that can contribute to metabolic heterogeneity in tumours, including genetic heterogeneity, immunomodulatory factors and tissue architecture. We believe that an in-depth understanding of cancer metabolic reprogramming, and the role of metabolic dysregulation in tumour initiation and progression, can help identify cellular vulnerabilities that can be exploited for therapeutic use.
Collapse
Affiliation(s)
| | | | - Neill Patani
- The Francis Crick Institute, 1 Midland Road, London, UK
| | - Mariia Yuneva
- The Francis Crick Institute, 1 Midland Road, London, UK.
| |
Collapse
|
197
|
Brombacher EC, Everts B. Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Front Endocrinol (Lausanne) 2020; 11:555. [PMID: 33013685 PMCID: PMC7493661 DOI: 10.3389/fendo.2020.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nutrients are required for growth and survival of all cells, but are also crucially involved in cell fate determination of many cell types, including immune cells. There is a growing appreciation that the metabolic micro-environment also plays a major role in shaping the functional properties of dendritic cells (DCs). Under pathological conditions nutrient availability can range from a very restricted supply, such as seen in a tumor micro-environment, to an overabundance of nutrients found in for example obese adipose tissue. In this review we will discuss what is currently known about the metabolic requirements for DC differentiation and immunogenicity and compare that to how function and fate of DCs under pathological conditions can be affected by alterations in environmental levels of carbohydrates, lipids and amino acids as well as by other metabolic cues, including availability of oxygen, redox homeostasis and lactate levels. Many of these insights have been generated using in vitro model systems, which have revealed highly diverse effects of different metabolic cues on DC function. However, they also stress the importance of shifting toward more physiologically relevant experimental settings to be able to fully delineate the role of the metabolic surroundings in its full complexity in shaping the functional properties of DCs in health and disease.
Collapse
|
198
|
Kimball BA, Volker SF, Griffin DL, Johnson SR, Gilbert AT. Volatile metabolomic signatures of rabies immunization in two mesocarnivore species. PLoS Negl Trop Dis 2019; 13:e0007911. [PMID: 31790413 PMCID: PMC6907841 DOI: 10.1371/journal.pntd.0007911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2019] [Accepted: 11/08/2019] [Indexed: 11/17/2022] Open
Abstract
Rabies is a zoonotic disease caused by infection with rabies virus, which circulates naturally in several wild carnivore and bat reservoirs in the United States (US). The most important reservoir in the US from an animal and public health perspective is the raccoon (Procyon lotor). To prevent the westward expansion of a significant raccoon rabies epizootic along the eastern seaboard, an operational control program implementing oral rabies vaccination (ORV) has existed in the US since the 1990s. Recently, two vaccine efficacy studies conducted with raccoons and striped skunks (Mephitis mephitis) provided the opportunity to determine if volatile fecal metabolites might be used to non-invasively monitor ORV programs and/or predict virus protection for these species. The volatile metabolome is a rich source of information that may significantly contribute to our understanding of disease and infection. Fecal samples were collected at multiple time points from raccoons and striped skunks subjected to oral treatment with rabies vaccine (or sham). Intramuscular challenge with a lethal dose of rabies virus was used to determine protection status at six (raccoons) and 11 (skunks) months post-vaccination. In addition to fecal samples, blood was collected at various time points to permit quantitative assessment of rabies antibody responses arising from immunization. Feces were analyzed by headspace gas chromatography with mass spectrometric detection and the chromatographic responses were grouped according to cluster analysis. Cluster scores were subjected to multivariate analyses of variance (MANOVA) to determine if fecal volatiles may hold a signal of immunization status. Multiple regression was then used to build models of the measured immune responses based on the metabolomic data. MANOVA results identified one cluster associated with protective status of skunks and one cluster associated with protective status of raccoons. Regression models demonstrated considerably greater success in predicting rabies antibody responses in both species. This is the first study to link volatile compounds with measures of adaptive immunity and provides further evidence that the volatile metabolome holds great promise for contributing to our understanding of disease and infections. The volatile metabolome may be an important resource for monitoring rabies immunization in raccoons and striped skunks.
Collapse
Affiliation(s)
- Bruce A Kimball
- USDA-APHIS-WS-NWRC, Monell Chemical Senses Center, Philadelphia, Pennsylvania, United States of America
| | - Steven F Volker
- USDA-APHIS-WS-NWRC, Fort Collins, Colorado, United States of America
| | - Doreen L Griffin
- USDA-APHIS-WS-NWRC, Fort Collins, Colorado, United States of America
| | - Shylo R Johnson
- USDA-APHIS-WS-NWRC, Fort Collins, Colorado, United States of America
| | - Amy T Gilbert
- USDA-APHIS-WS-NWRC, Fort Collins, Colorado, United States of America
| |
Collapse
|
199
|
Terrén I, Orrantia A, Vitallé J, Zenarruzabeitia O, Borrego F. NK Cell Metabolism and Tumor Microenvironment. Front Immunol 2019; 10:2278. [PMID: 31616440 PMCID: PMC6769035 DOI: 10.3389/fimmu.2019.02278] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/09/2019] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells are characterized by their potential to kill tumor cells by different means without previous sensitization and have, therefore, become a valuable tool in cancer immunotherapy. However, their efficacy against solid tumors is still poor and further studies are required to improve it. One of the major restrictions for NK cell activity is the immunosuppressive tumor microenvironment (TME). There, tumor and other immune cells create the appropriate conditions for tumor proliferation while, among others, preventing NK cell activation. Furthermore, NK cell metabolism is impaired in the TME, presumably due to nutrient and oxygen deprivation, and the higher concentration of tumor-derived metabolic end products, such as lactate. This metabolic restriction of NK cells limits their effector functions, and it could represent a potential target to focus on to improve the efficacy of NK cell-based therapies against solid tumors. In this review, we discuss the potential effect of TME into NK cell metabolism and its influence in NK cell effector functions.
Collapse
Affiliation(s)
- Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|