151
|
Perluigi M, Di Domenico F, Barone E, Butterfield DA. mTOR in Alzheimer disease and its earlier stages: Links to oxidative damage in the progression of this dementing disorder. Free Radic Biol Med 2021; 169:382-396. [PMID: 33933601 PMCID: PMC8145782 DOI: 10.1016/j.freeradbiomed.2021.04.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the elderly population and has worldwide impact. The etiology of the disease is complex and results from the confluence of multiple mechanisms ultimately leading to neuronal loss and cognitive decline. Among risk factors, aging is the most relevant and accounts for several pathogenic events that contribute to disease-specific toxic mechanisms. Accumulating evidence linked the alterations of the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase playing a key role in the regulation of protein synthesis and degradation, to age-dependent cognitive decline and pathogenesis of AD. To date, growing studies demonstrated that aberrant mTOR signaling in the brain affects several pathways involved in energy metabolism, cell growth, mitochondrial function and proteostasis. Recent advances associated alterations of the mTOR pathway with the increased oxidative stress. Disruption of all these events strongly contribute to age-related cognitive decline including AD. The current review discusses the main regulatory roles of mTOR signaling network in the brain, focusing on its role in autophagy, oxidative stress and energy metabolism. Collectively, experimental data suggest that targeting mTOR in the CNS can be a valuable strategy to prevent/slow the progression of AD.
Collapse
Affiliation(s)
- M Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - F Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - E Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D A Butterfield
- Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy; Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
152
|
Neuroinflammation in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9050524. [PMID: 34067173 PMCID: PMC8150909 DOI: 10.3390/biomedicines9050524] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease associated with human aging. Ten percent of individuals over 65 years have AD and its prevalence continues to rise with increasing age. There are currently no effective disease modifying treatments for AD, resulting in increasingly large socioeconomic and personal costs. Increasing age is associated with an increase in low-grade chronic inflammation (inflammaging) that may contribute to the neurodegenerative process in AD. Although the exact mechanisms remain unclear, aberrant elevation of reactive oxygen and nitrogen species (RONS) levels from several endogenous and exogenous processes in the brain may not only affect cell signaling, but also trigger cellular senescence, inflammation, and pyroptosis. Moreover, a compromised immune privilege of the brain that allows the infiltration of peripheral immune cells and infectious agents may play a role. Additionally, meta-inflammation as well as gut microbiota dysbiosis may drive the neuroinflammatory process. Considering that inflammatory/immune pathways are dysregulated in parallel with cognitive dysfunction in AD, elucidating the relationship between the central nervous system and the immune system may facilitate the development of a safe and effective therapy for AD. We discuss some current ideas on processes in inflammaging that appear to drive the neurodegenerative process in AD and summarize details on a few immunomodulatory strategies being developed to selectively target the detrimental aspects of neuroinflammation without affecting defense mechanisms against pathogens and tissue damage.
Collapse
|
153
|
Proteomic identification of select protein variants of the SNARE interactome associated with cognitive reserve in a large community sample. Acta Neuropathol 2021; 141:755-770. [PMID: 33646358 DOI: 10.1007/s00401-021-02282-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
Age-related neuropathologies progressively impair cognitive abilities by damaging synaptic function. We aimed to identify key components within the presynaptic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) machinery associated with cognitive performance and estimate their potential contribution to brain reserve in old age. We used targeted SRM proteomics to quantify amounts of 60 peptides, encoded in 30 different genes, in postmortem specimens of the prefrontal cortex from 1209 participants of two aging studies, with available antemortem cognitive evaluations and postmortem neuropathologic assessments. We found that select (but not all) proteoforms are strongly associated with cognitive function and the burden of Alzheimer's disease (AD) pathology. Specifically, greater abundance of STX1A (but not other syntaxins), SYT12, full-length SNAP25, and the GABAergic STXBP1 variant were robustly associated with better cognitive performance. By contrast, greater abundance of other presynaptic proteins (e.g., STXBP5 or tomosyn, STX7, or SYN2) showed a negative influence on cognition. Regression models adjusting for demographic and pathologic variables showed that altered levels of these protein species explained 7.7% additional between-subject variance in cognition (more than any individual age-related neuropathology in the model), suggesting that these molecules constitute key elements of brain reserve. Network analyses indicated that those peptides associated with brain reserve, and closest to the SNARE fusogenic activity, showed greater centrality measures and were better connected in the network. Validation assays confirmed the selective loss of the STX1A (but not STX1B) isoform in cognitively impaired cases. In rodent and human brains, STX1A was selectively located at glutamatergic terminals. However, in AD brains, STX1A was redistributed adjacent to neuritic pathology, and markedly expressed in astrocytes. Our study provides strong evidence, indicating that select presynaptic proteins are key in maintaining brain reserve. Compromised ability to sustain expression levels of these proteins may trigger synaptic dysfunction and concomitant cognitive impairment.
Collapse
|
154
|
Titus MB, Wright EG, Bono JM, Poliakon AK, Goldstein BR, Super MK, Young LA, Manaj M, Litchford M, Reist NE, Killian DJ, Olesnicky EC. The conserved alternative splicing factor caper regulates neuromuscular phenotypes during development and aging. Dev Biol 2021; 473:15-32. [PMID: 33508255 PMCID: PMC7987824 DOI: 10.1016/j.ydbio.2021.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022]
Abstract
RNA-binding proteins play an important role in the regulation of post-transcriptional gene expression throughout the nervous system. This is underscored by the prevalence of mutations in genes encoding RNA splicing factors and other RNA-binding proteins in a number of neurodegenerative and neurodevelopmental disorders. The highly conserved alternative splicing factor Caper is widely expressed throughout the developing embryo and functions in the development of various sensory neural subtypes in the Drosophila peripheral nervous system. Here we find that caper dysfunction leads to aberrant neuromuscular junction morphogenesis, as well as aberrant locomotor behavior during larval and adult stages. Despite its widespread expression, our results indicate that caper function is required to a greater extent within the nervous system, as opposed to muscle, for neuromuscular junction development and for the regulation of adult locomotor behavior. Moreover, we find that Caper interacts with the RNA-binding protein Fmrp to regulate adult locomotor behavior. Finally, we show that caper dysfunction leads to various phenotypes that have both a sex and age bias, both of which are commonly seen in neurodegenerative disorders in humans.
Collapse
Affiliation(s)
- M Brandon Titus
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Ethan G Wright
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Jeremy M Bono
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Andrea K Poliakon
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Brandon R Goldstein
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Meg K Super
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Lauren A Young
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Melpomeni Manaj
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Morgan Litchford
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Noreen E Reist
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Darrell J Killian
- Department of Molecular Biology, Colorado College, Colorado Springs, CO, 80903, USA
| | - Eugenia C Olesnicky
- Department of Biology, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| |
Collapse
|
155
|
Huang D, Cao Y, Yang X, Liu Y, Zhang Y, Li C, Chen G, Wang Q. A Nanoformulation-Mediated Multifunctional Stem Cell Therapy with Improved Beta-Amyloid Clearance and Neural Regeneration for Alzheimer's Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006357. [PMID: 33624894 DOI: 10.1002/adma.202006357] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a common dementia that is currently incurable. The existing treatments can only moderately relieve the symptoms of AD to slow down its progress. How to achieve effective neural regeneration to ameliorate cognitive impairments is a major challenge for current AD treatment. Here, the therapeutic potential of a nanoformulation-mediated neural stem cell (NSC) therapy capable of simultaneous Aβ clearance and neural regeneration is investigated in a murine model. Genetically engineered NSCs capable of stably and continuously expressing neprilysin (NEP) are developed to enhance Aβ degradation and NSC survival in the brain. A PBAE-PLGA-Ag2 S-RA-siSOX9 (PPAR-siSOX9) nanoformulation with high gene/drug deliverability is synthesized to overcome AD microenvironment-associated adverse effects and to promote neuronal differentiation of the NEP-expressing NSCs. For achieving accurate stereotactic transplantation, Ag2 S quantum-dot-based fluorescence imaging is used to guide NSC transplantation in real time. This strategy shows numerous benefits, including efficient and long-lasting Aβ degradation, improved neural regeneration, and accurate cell transplantation. It is shown that a single administration of this therapy achieves long-term efficacy (6 months) with respect to memory reversal and improvement of learning deficits.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuheng Cao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xue Yang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yongyang Liu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
156
|
Sohn E, Kim YJ, Kim JH, Jeong SJ. Ficus erecta Thunb Leaves Alleviate Memory Loss Induced by Scopolamine in Mice via Regulation of Oxidative Stress and Cholinergic System. Mol Neurobiol 2021; 58:3665-3676. [PMID: 33797061 PMCID: PMC8280041 DOI: 10.1007/s12035-021-02358-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
We examined the neuropharmacological effects of ethanol extract of Ficus erecta Thunb leaves (EEFE) on cognitive dysfunction in a scopolamine (SCO)-induced memory impairment animal model. Memory impairment was measured using the Y-maze test and passive avoidance task (PAT). For 19 days, EEFE (100 or 200 mg/kg) was treated through oral administration. Treatment with EEFE ameliorated memory impairment in behavioral tests, along with significant protection from neuronal oxidative stress and neuronal cell loss in the brain tissues of SCO-injected mice. Antioxidant and neuroprotective effects of EEFE were further confirmed using in vitro assays. Our findings indicate that the mechanisms of neuroprotection and antioxidation of EEFE are regulated by the cholinergic system, promotion of cAMP response element-binding protein (CREB) phosphorylation, and the nuclear factor erythroid-2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling activation. The current study proposes that EEFE could be an encouraging plant resource and serve as a potent neuropharmacological drug candidate against neurodegenerative diseases.
Collapse
Affiliation(s)
- Eunjin Sohn
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| | - Yu Jin Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea
| | - Joo-Hwan Kim
- Department of Life Science, Gachon University, Seongnam, 21936, South Korea
| | - Soo-Jin Jeong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, 34054, South Korea.
| |
Collapse
|
157
|
Pham C, Hérault K, Oheim M, Maldera S, Vialou V, Cauli B, Li D. Astrocytes respond to a neurotoxic Aβ fragment with state-dependent Ca 2+ alteration and multiphasic transmitter release. Acta Neuropathol Commun 2021; 9:44. [PMID: 33726852 PMCID: PMC7968286 DOI: 10.1186/s40478-021-01146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Excessive amounts of amyloid β (Aβ) peptide have been suggested to dysregulate synaptic transmission in Alzheimer's disease (AD). As a major type of glial cell in the mammalian brain, astrocytes regulate neuronal function and undergo activity alterations upon Aβ exposure. Yet the mechanistic steps underlying astrocytic responses to Aβ peptide remain to be elucidated. Here by fluorescence imaging of signaling pathways, we dissected astrocytic responses to Aβ25-35 peptide, a neurotoxic Aβ fragment present in AD patients. In native health astrocytes, Aβ25-35 evoked Ca2+ elevations via purinergic receptors, being also dependent on the opening of connexin (CX) hemichannels. Aβ25-35, however, induced a Ca2+ diminution in Aβ-preconditioned astrocytes as a result of the potentiation of the plasma membrane Ca2+ ATPase (PMCA). The PMCA and CX protein expression was observed with immunostaining in the brain tissue of hAPPJ20 AD mouse model. We also observed both Ca2+-independent and Ca2+-dependent glutamate release upon astrocytic Aβ exposure, with the former mediated by CX hemichannel and the latter by both anion channels and lysosome exocytosis. Our results suggest that Aβ peptide causes state-dependent responses in astrocytes, in association with a multiphasic release of signaling molecules. This study therefore helps to understand astrocyte engagement in AD-related amyloidopathy.
Collapse
|
158
|
López-Ortiz S, Pinto-Fraga J, Valenzuela PL, Martín-Hernández J, Seisdedos MM, García-López O, Toschi N, Di Giuliano F, Garaci F, Mercuri NB, Nisticò R, Emanuele E, Lista S, Lucia A, Santos-Lozano A. Physical Exercise and Alzheimer's Disease: Effects on Pathophysiological Molecular Pathways of the Disease. Int J Mol Sci 2021; 22:ijms22062897. [PMID: 33809300 PMCID: PMC7999827 DOI: 10.3390/ijms22062897] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common form of neurodegenerative dementia in adults worldwide, is a multifactorial and heterogeneous disorder characterized by the interaction of genetic and epigenetic factors and the dysregulation of numerous intracellular signaling and cellular/molecular pathways. The introduction of the systems biology framework is revolutionizing the study of complex diseases by allowing the identification and integration of cellular/molecular pathways and networks of interaction. Here, we reviewed the relationship between physical activity and the next pathophysiological processes involved in the risk of developing AD, based on some crucial molecular pathways and biological process dysregulated in AD: (1) Immune system and inflammation; (2) Endothelial function and cerebrovascular insufficiency; (3) Apoptosis and cell death; (4) Intercellular communication; (5) Metabolism, oxidative stress and neurotoxicity; (6) DNA damage and repair; (7) Cytoskeleton and membrane proteins; (8) Synaptic plasticity. Moreover, we highlighted the increasingly relevant role played by advanced neuroimaging technologies, including structural/functional magnetic resonance imaging, diffusion tensor imaging, and arterial spin labelling, in exploring the link between AD and physical exercise. Regular physical exercise seems to have a protective effect against AD by inhibiting different pathophysiological molecular pathways implicated in AD.
Collapse
Affiliation(s)
- Susana López-Ortiz
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Jose Pinto-Fraga
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Pedro L. Valenzuela
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Juan Martín-Hernández
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - María M. Seisdedos
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
| | - Oscar García-López
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Department of Radiology, “Athinoula A. Martinos” Center for Biomedical Imaging, Boston, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Francesca Di Giuliano
- Neuroradiology Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (N.T.); (F.G.)
- Casa di Cura “San Raffaele Cassino”, 03043 Cassino, Italy
| | - Nicola Biagio Mercuri
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00161 Rome, Italy;
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Simone Lista
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- School of Pharmacy, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alejandro Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (P.L.V.); (O.G.-L.); (S.L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
- Centro de Investigación Biomeédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), 28029 Madrid, Spain
- Correspondence:
| | - Alejandro Santos-Lozano
- i+HeALTH Research Group, Department of Health Sciences, European University Miguel de Cervantes, 47012 Valladolid, Spain; (S.L.-O.); (J.P.-F.); (J.M.-H.); (M.M.S.); (A.S.-L.)
- Research Institute of the Hospital 12 de Octubre (“imas12”), 28041 Madrid, Spain
| |
Collapse
|
159
|
Baker JD, Uhrich RL, Strovas TJ, Saxton AD, Kraemer BC. AlphaScreen Identifies MSUT2 Inhibitors for Tauopathy-Targeting Therapeutic Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:400-409. [PMID: 32981422 PMCID: PMC8592089 DOI: 10.1177/2472555220958387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tauopathies are neurological disorders characterized by intracellular tau deposits forming neurofibrillary tangles, neuropil threads, or other disease-specific aggregates composed of the protein tau. Tauopathy disorders include frontotemporal lobar degeneration, corticobasal degeneration, Pick's disease, and the largest cause of dementia, Alzheimer's disease. The lack of disease-modifying therapeutic strategies to address tauopathies remains a critical unmet need in dementia care. Thus, novel broad-spectrum tau-targeted therapeutics could have a profound impact in multiple tauopathy disorders, including Alzheimer's disease. Here we have designed a drug discovery paradigm to identify inhibitors of the pathological tau-enabling protein, MSUT2. We previously showed that activity of the RNA-binding protein MSUT2 drives tauopathy, including tau-mediated neurodegeneration and cognitive dysfunction, in mouse models. Thus, we hypothesized that MSUT2 inhibitors could be therapeutic for tauopathy disorders. Our pipeline for MSUT2 inhibitory compound identification included a primary AlphaScreen, followed by dose-response validation, a secondary fluorescence polarization orthogonal assay, a tertiary specificity screen, and a preliminary toxicity screen. Our work here serves as a proof-of-principle methodology for finding specific inhibitors of the poly(A) RNA-binding protein MSUT2 interaction. Here we identify 4,4'-diisothiocyanostilbene-2,2'-sulfonic acid (DIDS) as a potential tool compound for future work probing the mechanism of MSUT2-induced tau pathology.
Collapse
Affiliation(s)
- Jeremy D. Baker
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Rikki L. Uhrich
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Timothy J. Strovas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Aleen D. Saxton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
160
|
Elshamy S, Abdel Motaal A, Abdel-Halim M, Medhat D, Handoussa H. Potential neuroprotective activity of Mentha longifolia L. in aluminum chloride-induced rat model of Alzheimer's disease. J Food Biochem 2021; 45:1770. [PMID: 33587299 DOI: 10.1111/jfbc.13644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder manifested by cognitive deterioration where the available treatments failed to delay its progression. The objective of this study was to investigate the neuroprotective activity in an aluminum chloride (AlCl3 )-induced AD in vivo model and phytochemical profile of the traditional Egyptian herb Mentha longifolia (Ml). Male albino rats were injected with Ml fractions and essential oil for 15 days followed by AlCl3 for 30 days. Oxidative stress and neuroinflammatory markers were measured namely: malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), and nuclear factor-κB (NF-κB). Furthermore, cholinesterase activity was tested and analysis of brain neurotransmitters using HPLC was performed. Results showed that methylene chloride and ethyl acetate fractions were able to reverse the AlCl3 mediated MDA increase, GSH decrease and exhibited anticholinesterase activity. EaFr reversed the increased levels of NF-κB and NO. Ml fractions and oil counteracted the AlCl3 effect on brain neurotransmitters. Forty metabolites were tentatively characterized in the bioactive fractions using UPLC-PDA-ESI-MS. 5,6,4'-trihydroxy-3',7,8-trimethoxy flavone was isolated from Ml as a first report, in addition to 5,6-dihydroxy-3',4',7,8-tetramethoxy flavone and rosmarinic acid. These findings suggest that Ml is a promising nutraceutical and source of lead compounds halting AD progression. PRACTICAL APPLICATIONS: The results presented in this paper unravels the neuroprotective effect of Mentha longifolia fractions and oil by acting as anti-inflammatory, antioxidant agents, and regulating the levels of neurotransmitters. This provides basic knowledge for the development of Ml as a source of lead compounds and a promising food supplement protective against Alzheimer's disease.
Collapse
Affiliation(s)
- Salma Elshamy
- Department of Pharmaceutical Biology, German University in Cairo GUC, Cairo, Egypt
| | - Amira Abdel Motaal
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, German University in Cairo, Cairo, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Giza, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo GUC, Cairo, Egypt
| |
Collapse
|
161
|
Boix CA, James BT, Park YP, Meuleman W, Kellis M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 2021; 590:300-307. [PMID: 33536621 PMCID: PMC7875769 DOI: 10.1038/s41586-020-03145-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2020] [Indexed: 01/30/2023]
Abstract
Annotating the molecular basis of human disease remains an unsolved challenge, as 93% of disease loci are non-coding and gene-regulatory annotations are highly incomplete1-3. Here we present EpiMap, a compendium comprising 10,000 epigenomic maps across 800 samples, which we used to define chromatin states, high-resolution enhancers, enhancer modules, upstream regulators and downstream target genes. We used this resource to annotate 30,000 genetic loci that were associated with 540 traits4, predicting trait-relevant tissues, putative causal nucleotide variants in enriched tissue enhancers and candidate tissue-specific target genes for each. We partitioned multifactorial traits into tissue-specific contributing factors with distinct functional enrichments and disease comorbidity patterns, and revealed both single-factor monotropic and multifactor pleiotropic loci. Top-scoring loci frequently had multiple predicted driver variants, converging through multiple enhancers with a common target gene, multiple genes in common tissues, or multiple genes and multiple tissues, indicating extensive pleiotropy. Our results demonstrate the importance of dense, rich, high-resolution epigenomic annotations for the investigation of complex traits.
Collapse
Affiliation(s)
- Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin T James
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yongjin P Park
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
162
|
Kosyakovsky J, Fine JM, Frey WH, Hanson LR. Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease. Pharmaceuticals (Basel) 2021; 14:ph14020095. [PMID: 33513737 PMCID: PMC7911954 DOI: 10.3390/ph14020095] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Identifying disease-modifying therapies for neurological diseases remains one of the greatest gaps in modern medicine. Herein, we present the rationale for intranasal (IN) delivery of deferoxamine (DFO), a high-affinity iron chelator, as a treatment for neurodegenerative and neurovascular disease with a focus on its novel mechanisms. Brain iron dyshomeostasis with iron accumulation is a known feature of brain aging and is implicated in the pathogenesis of a number of neurological diseases. A substantial body of preclinical evidence and early clinical data has demonstrated that IN DFO and other iron chelators have strong disease-modifying impacts in Alzheimer’s disease (AD), Parkinson’s disease (PD), ischemic stroke, and intracranial hemorrhage (ICH). Acting by the disease-nonspecific pathway of iron chelation, DFO targets each of these complex diseases via multifactorial mechanisms. Accumulating lines of evidence suggest further mechanisms by which IN DFO may also be beneficial in cognitive aging, multiple sclerosis, traumatic brain injury, other neurodegenerative diseases, and vascular dementia. Considering its known safety profile, targeted delivery method, robust preclinical efficacy, multiple mechanisms, and potential applicability across many neurological diseases, the case for further development of IN DFO is considerable.
Collapse
Affiliation(s)
- Jacob Kosyakovsky
- School of Medicine, University of Virginia, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, USA;
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Jared M. Fine
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
- Correspondence:
| | - William H. Frey
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| | - Leah R. Hanson
- HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, MN 55130, USA; (W.H.F.II); (L.R.H.)
| |
Collapse
|
163
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
164
|
SOX1 Is a Backup Gene for Brain Neurons and Glioma Stem Cell Protection and Proliferation. Mol Neurobiol 2021; 58:2634-2642. [PMID: 33481176 DOI: 10.1007/s12035-020-02240-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Failed neuroprotection leads to the initiation of several diseases. SOX1 plays many roles in embryogenesis, oncogenesis, and male sex determination, and can promote glioma stem cell proliferation, invasion, and migration due to its high expression in glioblastoma cells. The functional versatility of the SOX1 gene in malignancy, epilepsy, and Parkinson's disease, as well as its adverse effects on dopaminergic neurons, makes it an interesting research focus. Hence, we collate the most important discoveries relating to the neuroprotective effects of SOX1 in brain cancer and propose hypothesis worthy of SOX1's role in the survival of senescent neuronal cells, its roles in fibroblast cell proliferation, and cell fat for neuroprotection, and the discharge of electrical impulses for homeostasis. Increase in electrical impulses transmitted by senescent cells affects the synthesis of neurotransmitters, which will modify the brain cell metabolism and microenvironment.
Collapse
|
165
|
Shafik AM, Zhang F, Guo Z, Dai Q, Pajdzik K, Li Y, Kang Y, Yao B, Wu H, He C, Allen EG, Duan R, Jin P. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer's disease. Genome Biol 2021; 22:17. [PMID: 33402207 PMCID: PMC7786910 DOI: 10.1186/s13059-020-02249-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is known to impact many aspects of RNA metabolism, including mRNA stability and translation, and is highly prevalent in the brain. RESULTS We show that m6A modification displays temporal and spatial dynamics during neurodevelopment and aging. Genes that are temporally differentially methylated are more prone to have mRNA expression changes and affect many pathways associated with nervous system development. Furthermore, m6A shows a distinct tissue-specific methylation profile, which is most pronounced in the hypothalamus. Tissue-specific methylation is associated with an increase in mRNA expression and is associated with tissue-specific developmental processes. During the aging process, we observe significantly more m6A sites as age increases, in both mouse and human. We show a high level of overlap between mouse and human; however, humans at both young and old ages consistently show more m6A sites compared to mice. Differential m6A sites are found to be enriched in alternative untranslated regions of genes that affect aging-related pathways. These m6A sites are associated with a strong negative effect on mRNA expression. We also show that many Alzheimer-related transcripts exhibit decreased m6A methylation in a mouse model of Alzheimer's disease, which is correlated with reduced protein levels. CONCLUSIONS Our results suggest that m6A exerts a critical function in both early and late brain development in a spatio-temporal fashion. Furthermore, m6A controls protein levels of key genes involved in Alzheimer's disease-associated pathways, suggesting that m6A plays an important role in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Andrew M Shafik
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Feiran Zhang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zhenxing Guo
- Department of Biostatistics and Bioinformatics, School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Qing Dai
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Kinga Pajdzik
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Yangping Li
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yunhee Kang
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Bing Yao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Hao Wu
- Department of Biostatistics and Bioinformatics, School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
166
|
Wang X, Davis RL. Early Mitochondrial Fragmentation and Dysfunction in a Drosophila Model for Alzheimer's Disease. Mol Neurobiol 2021; 58:143-155. [PMID: 32909149 PMCID: PMC7704861 DOI: 10.1007/s12035-020-02107-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
Many different cellular systems and molecular processes become compromised in Alzheimer's disease (AD) including proteostasis, autophagy, inflammatory responses, synapse and neuronal circuitry, and mitochondrial function. We focused in this study on mitochondrial dysfunction owing to the toxic neuronal environment produced by expression of Aβ42, and its relationship to other pathologies found in AD including increased neuronal apoptosis, plaque deposition, and memory impairment. Using super-resolution microscopy, we have assayed mitochondrial status in the three distinct neuronal compartments (somatic, dendritic, axonal) of mushroom body neurons of Drosophila expressing Aβ42. The mushroom body neurons comprise a major center for olfactory memory formation in insects. We employed calcium imaging to measure mitochondrial function, immunohistochemical and staining techniques to measure apoptosis and plaque formation, and olfactory classical conditioning to measure learning. We found that mitochondria become fragmented at a very early age along with decreased function measured by mitochondrial calcium entry. Increased apoptosis and plaque deposition also occur early, yet interestingly, a learning impairment was found only after a much longer period of time-10 days, which is a large fraction of the fly's lifespan. This is similar to the pronounced delay between cellular pathologies and the emergence of a memory dysfunction in humans. Our studies are consistent with the model that mitochondrial dysfunction and/or other cellular pathologies emerge at an early age and lead to much later learning impairments. The results obtained further develop this Drosophila model as a useful in vivo system for probing the mechanisms by which Aβ42 produces mitochondrial and other cellular toxicities that produce memory dysfunction.
Collapse
Affiliation(s)
- Xingjun Wang
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida, 33458, USA
| | - Ronald L Davis
- Department of Neuroscience, Scripps Research Institute Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
167
|
Huang GD, Jiang LX, Su F, Wang HL, Zhang C, Yu X. A novel paradigm for assessing olfactory working memory capacity in mice. Transl Psychiatry 2020; 10:431. [PMID: 33319773 PMCID: PMC7738675 DOI: 10.1038/s41398-020-01120-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
A decline in working memory (WM) capacity is suggested to be one of the earliest symptoms observed in Alzheimer's disease (AD). Although WM capacity is widely studied in healthy subjects and neuropsychiatric patients, few tasks are developed to measure this variation in rodents. The present study describes a novel olfactory working memory capacity (OWMC) task, which assesses the ability of mice to remember multiple odours. The task was divided into five phases: context adaptation, digging training, rule-learning for non-matching to a single-sample odour (NMSS), rule-learning for non-matching to multiple sample odours (NMMS) and capacity testing. During the capacity-testing phase, the WM capacity (number of odours that the mice could remember) remained stable (average capacity ranged from 6.11 to 7.00) across different testing sessions in C57 mice. As the memory load increased, the average errors of each capacity level increased and the percent correct gradually declined to chance level, which suggested a limited OWMC in C57 mice. Then, we assessed the OWMC of 5 × FAD transgenic mice, an animal model of AD. We found that the performance displayed no significant differences between young adult (3-month-old) 5 × FAD mice and wild-type (WT) mice during the NMSS phase and NMMS phase; however, during the capacity test with increasing load, we found that the OWMC of young adult 5 × FAD mice was significantly decreased compared with WT mice, and the average error was significantly increased while the percent correct was significantly reduced, which indicated an impairment of WM capacity at the early stage of AD in the 5 × FAD mice model. Finally, we found that FOS protein levels in the medial prefrontal cortex and entorhinal cortex after the capacity test were significantly lower in 5 × FAD than WT mice. In conclusion, we developed a novel paradigm to assess the capacity of olfactory WM in mice, and we found that OWMC was impaired in the early stage of AD.
Collapse
Affiliation(s)
- Geng-Di Huang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Li-Xin Jiang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Feng Su
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China
| | - Hua-Li Wang
- Peking University Sixth Hospital, 100191, Beijing, China
- Peking University Institute of Mental Health, 100191, Beijing, China
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, 100191, Beijing, China.
- Peking University Institute of Mental Health, 100191, Beijing, China.
- NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China.
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China.
- Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China.
| |
Collapse
|
168
|
Rocha NKR, Themoteo R, Brentani H, Forlenza OV, De Paula VDJR. Neuronal-Glial Interaction in a Triple-Transgenic Mouse Model of Alzheimer's Disease: Gene Ontology and Lithium Pathways. Front Neurosci 2020; 14:579984. [PMID: 33335468 PMCID: PMC7737403 DOI: 10.3389/fnins.2020.579984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Neuronal-glial interactions are critical for brain homeostasis, and disruption of this process may lead to excessive glial activation and inadequate pro-inflammatory responses. Abnormalities in neuronal-glial interactions have been reported in the pathophysiology of Alzheimer’s disease (AD), where lithium has been shown to exert neuroprotective effects, including the up-regulation of cytoprotective proteins. In the present study, we characterize by Gene Ontology (GO) the signaling pathways related to neuronal-glial interactions in response to lithium in a triple-transgenic mouse model of AD (3×-TgAD). Mice were treated for 8 months with lithium carbonate (Li) supplemented to chow, using two dose ranges to yield subtherapeutic working concentrations (Li1, 1.0 g/kg; and Li2, 2.0 g/kg of chow), or with standard chow (Li0). The hippocampi were removed and analyzed by proteomics. A neuronal-glial interaction network was created by a systematic literature search, and the selected genes were submitted to STRING, a functional network to analyze protein interactions. Proteomics data and neuronal-glial interactomes were compared by GO using ClueGo (Cytoscape plugin) with p ≤ 0.05. The proportional effects of neuron-glia interactions were determined on three GO domains: (i) biological process; (ii) cellular component; and (iii) molecular function. The gene ontology of this enriched network of genes was further stratified according to lithium treatments, with statistically significant effects observed in the Li2 group (as compared to controls) for the GO domains biological process and cellular component. In the former, there was an even distribution of the interactions occurring at the following functions: “positive regulation of protein localization to membrane,” “regulation of protein localization to cell periphery,” “oligodendrocyte differentiation,” and “regulation of protein localization to plasma membrane.” In cellular component, interactions were also balanced for “myelin sheath” and “rough endoplasmic reticulum.” We conclude that neuronal-glial interactions are implicated in the neuroprotective response mediated by lithium in the hippocampus of AD-transgenic mice. The effect of lithium on homeostatic pathways mediated by the interaction between neurons and glial cells are implicated in membrane permeability, protein synthesis and DNA repair, which may be relevant for the survival of nerve cells amidst AD pathology.
Collapse
Affiliation(s)
- Nicole Kemberly R Rocha
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Themoteo
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Orestes V Forlenza
- Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa De Jesus Rodrigues De Paula
- Laboratório de Psicobiologia (LIM23), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.,Laboratorio de Neurociencias (LIM27), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
169
|
Zou C, Mifflin L, Hu Z, Zhang T, Shan B, Wang H, Xing X, Zhu H, Adiconis X, Levin JZ, Li F, Liu CF, Liu JS, Yuan J. Reduction of mNAT1/hNAT2 Contributes to Cerebral Endothelial Necroptosis and Aβ Accumulation in Alzheimer's Disease. Cell Rep 2020; 33:108447. [PMID: 33296651 DOI: 10.1016/j.celrep.2020.108447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/06/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
The contribution and mechanism of cerebrovascular pathology in Alzheimer's disease (AD) pathogenesis are still unclear. Here, we show that venular and capillary cerebral endothelial cells (ECs) are selectively vulnerable to necroptosis in AD. We identify reduced cerebromicrovascular expression of murine N-acetyltransferase 1 (mNat1) in two AD mouse models and hNat2, the human ortholog of mNat1 and a genetic risk factor for type-2 diabetes and insulin resistance, in human AD. mNat1 deficiency in Nat1-/- mice and two AD mouse models promotes blood-brain barrier (BBB) damage and endothelial necroptosis. Decreased mNat1 expression induces lysosomal degradation of A20, an important regulator of necroptosis, and LRP1β, a key component of LRP1 complex that exports Aβ in cerebral ECs. Selective restoration of cerebral EC expression of mNAT1 delivered by adeno-associated virus (AAV) rescues cerebromicrovascular levels of A20 and LRP1β, inhibits endothelial necroptosis and activation, ameliorates mitochondrial fragmentation, reduces Aβ deposits, and improves cognitive function in the AD mouse model.
Collapse
Affiliation(s)
- Chengyu Zou
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Lauren Mifflin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Zhirui Hu
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Tian Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, 201210 Shanghai, China
| | - Huibing Wang
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Xin Xing
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Hong Zhu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Xian Adiconis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joshua Z Levin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fupeng Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chuan-Fa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jun S Liu
- Department of Statistics, Harvard University, 1 Oxford St., Cambridge, MA 02138, USA
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| |
Collapse
|
170
|
Boccardi V, Paolacci L, Remondini D, Giampieri E, Poli G, Curti N, Cecchetti R, Villa A, Ruggiero C, Brancorsini S, Mecocci P. Cognitive Decline and Alzheimer's Disease in Old Age: A Sex-Specific Cytokinome Signature. J Alzheimers Dis 2020; 72:911-918. [PMID: 31658056 DOI: 10.3233/jad-190480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Elevated peripheral levels of different cytokines and chemokines in subjects with Alzheimer's disease (AD), as compared with healthy controls (HC), have emphasized the role of inflammation in such a disease. Considering the cross-talking between the central nervous system and the periphery, the inflammatory analytes may provide utility as biomarkers to identify AD at earlier stages. OBJECTIVE Using an advanced statistical approach, we can discriminate the interactive network of cytokines/chemokines and propose a useful tool to follow the progression and evolution of AD, also in light of sex differences. METHODS A cohort of 289 old-age subjects was screened for cytokine and chemokine profiling, measured in plasma, after a thorough clinical and neuropsychological evaluation. A custom algorithm based on Fisher linear discriminant analysis was applied to ascertain a classification signature able to discriminate HC from mild cognitive impairment (MCI) and AD. RESULTS We observed that a joint expression of three proteins (a "signature" composed by IFN-α2, IL-1α, TNFα) can discriminate HC from AD with an accuracy of 65.24%. Using this signature on MCI samples, 84.93% of them were classified as "non-HC". Stratifying MCI samples by sex, we observed that 87.23% of women were classified as "non-HC", and only 57.69% of males. Indeed, in a scatter plot of IFN-α2 and IL-1α, the HC group was better separated from MCI and AD in women as compared with men. CONCLUSION These findings suggest that AD is accompanied by a peripheral inflammatory response that can already be present in MCI subjects, thus providing a mean for detecting this at-risk status and allow an anticipated intervention.
Collapse
Affiliation(s)
- Virginia Boccardi
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Lucia Paolacci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Enrico Giampieri
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Giulia Poli
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Nico Curti
- Department of Physics and Astronomy, University of Bologna, and INFN Bologna, Bologna, Italy
| | - Roberta Cecchetti
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Villa
- Department of Clinical Pathology, S.M. della Misericordia Hospital, Perugia, Italy
| | - Carmelinda Ruggiero
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
171
|
Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020; 10:E902. [PMID: 33255414 PMCID: PMC7761504 DOI: 10.3390/brainsci10120902] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signalling system is essential for both the developing and adult central nervous system. It regulates numerous cellular functions ranging from neurogenesis to blood brain barrier biology. Dysregulated Wnt signalling can thus have significant consequences for normal brain function, which is becoming increasingly clear in Alzheimer's disease (AD), an age-related neurodegenerative disorder that is the most prevalent form of dementia. AD exhibits a range of pathophysiological manifestations including aberrant amyloid precursor protein processing, tau pathology, synapse loss, neuroinflammation and blood brain barrier breakdown, which have been associated to a greater or lesser degree with abnormal Wnt signalling. Here we provide a comprehensive overview of the role of Wnt signalling in the CNS, and the research that implicates dysregulated Wnt signalling in the ageing brain and in AD pathogenesis. We also discuss the opportunities for therapeutic intervention in AD via modulation of the Wnt signalling pathway, and highlight some of the challenges and the gaps in our current understanding that need to be met to enable that goal.
Collapse
Affiliation(s)
- Nozie D. Aghaizu
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Hanqing Jin
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
| | - Paul J. Whiting
- UK Dementia Research Institute at University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK;
- ARUK Drug Discovery Institute (DDI), University College London, Cruciform Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
172
|
How Repair-or-Dispose Decisions Under Stress Can Initiate Disease Progression. iScience 2020; 23:101701. [PMID: 33235980 PMCID: PMC7670198 DOI: 10.1016/j.isci.2020.101701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Glia, the helper cells of the brain, are essential in maintaining neural resilience across time and varying challenges: By reacting to changes in neuronal health glia carefully balance repair or disposal of injured neurons. Malfunction of these interactions is implicated in many neurodegenerative diseases. We present a reductionist model that mimics repair-or-dispose decisions to generate a hypothesis for the cause of disease onset. The model assumes four tissue states: healthy and challenged tissue, primed tissue at risk of acute damage propagation, and chronic neurodegeneration. We discuss analogies to progression stages observed in the most common neurodegenerative conditions and to experimental observations of cellular signaling pathways of glia-neuron crosstalk. The model suggests that the onset of neurodegeneration can result as a compromise between two conflicting goals: short-term resilience to stressors versus long-term prevention of tissue damage.
Collapse
|
173
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
174
|
Fang J, Pieper AA, Nussinov R, Lee G, Bekris L, Leverenz JB, Cummings J, Cheng F. Harnessing endophenotypes and network medicine for Alzheimer's drug repurposing. Med Res Rev 2020; 40:2386-2426. [PMID: 32656864 PMCID: PMC7561446 DOI: 10.1002/med.21709] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
Following two decades of more than 400 clinical trials centered on the "one drug, one target, one disease" paradigm, there is still no effective disease-modifying therapy for Alzheimer's disease (AD). The inherent complexity of AD may challenge this reductionist strategy. Recent observations and advances in network medicine further indicate that AD likely shares common underlying mechanisms and intermediate pathophenotypes, or endophenotypes, with other diseases. In this review, we consider AD pathobiology, disease comorbidity, pleiotropy, and therapeutic development, and construct relevant endophenotype networks to guide future therapeutic development. Specifically, we discuss six main endophenotype hypotheses in AD: amyloidosis, tauopathy, neuroinflammation, mitochondrial dysfunction, vascular dysfunction, and lysosomal dysfunction. We further consider how this endophenotype network framework can provide advances in computational and experimental strategies for drug-repurposing and identification of new candidate therapeutic strategies for patients suffering from or at risk for AD. We highlight new opportunities for endophenotype-informed, drug discovery in AD, by exploiting multi-omics data. Integration of genomics, transcriptomics, radiomics, pharmacogenomics, and interactomics (protein-protein interactions) are essential for successful drug discovery. We describe experimental technologies for AD drug discovery including human induced pluripotent stem cells, transgenic mouse/rat models, and population-based retrospective case-control studies that may be integrated with multi-omics in a network medicine methodology. In summary, endophenotype-based network medicine methodologies will promote AD therapeutic development that will optimize the usefulness of available data and support deep phenotyping of the patient heterogeneity for personalized medicine in AD.
Collapse
Affiliation(s)
- Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospital Case Medical Center; Department of Psychiatry, Case Western Reserve University, Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Garam Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - Lynn Bekris
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jeffrey Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
- Department of Brain Health, School of Integrated Health Sciences, UNLV, Las Vegas, NV 89154, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| |
Collapse
|
175
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
176
|
Abstract
Yongjun Wang and colleagues discuss the definition of brain health and the opportunities and challenges of future research
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
177
|
Affiliation(s)
- Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences and UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
178
|
Tejwani L, Lim J. Pathogenic mechanisms underlying spinocerebellar ataxia type 1. Cell Mol Life Sci 2020; 77:4015-4029. [PMID: 32306062 PMCID: PMC7541529 DOI: 10.1007/s00018-020-03520-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The family of hereditary cerebellar ataxias is a large group of disorders with heterogenous clinical manifestations and genetic etiologies. Among these, over 30 autosomal dominantly inherited subtypes have been identified, collectively referred to as the spinocerebellar ataxias (SCAs). Generally, the SCAs are characterized by a progressive gait impairment with classical cerebellar features, and in a subset of SCAs, accompanied by extra-cerebellar features. Beyond the common gait impairment and cerebellar atrophy, the wide range of additional clinical features observed across the SCAs is likely explained by the diverse set of mutated genes that encode proteins with seemingly disparate functional roles in nervous system biology. By synthesizing knowledge obtained from studies of the various SCAs over the past several decades, convergence onto a few key cellular changes, namely ion channel dysfunction and transcriptional dysregulation, has become apparent and may represent central mechanisms of cerebellar disease pathogenesis. This review will detail our current understanding of the molecular pathogenesis of the SCAs, focusing primarily on the first described autosomal dominant spinocerebellar ataxia, SCA1, as well as the emerging common core mechanisms across the various SCAs.
Collapse
Affiliation(s)
- Leon Tejwani
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Janghoo Lim
- Interdepartmental Neuroscience Program, Yale School of Medicine, 295 Congress Avenue, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, 06510, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
179
|
Brahimi F, Galan A, Jmaeff S, Barcelona PF, De Jay N, Dejgaard K, Young JC, Kleinman CL, Thomas DY, Saragovi HU. Alternative Splicing of a Receptor Intracellular Domain Yields Different Ectodomain Conformations, Enabling Isoform-Selective Functional Ligands. iScience 2020; 23:101447. [PMID: 32829283 PMCID: PMC7452315 DOI: 10.1016/j.isci.2020.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
Events at a receptor ectodomain affect the intracellular domain conformation, activating signal transduction (out-to-in conformational effects). We investigated the reverse direction (in-to-out) where the intracellular domain may impact on ectodomain conformation. The primary sequences of naturally occurring TrkC receptor isoforms (TrkC-FL and TrkC.T1) only differ at the intracellular domain. However, owing to their differential association with Protein Disulfide Isomerase the isoforms have different disulfide bonding and conformations at the ectodomain. Conformations were exploited to develop artificial ligands, mAbs, and small molecules, with isoform-specific binding and biased activation. Consistent, the physiological ligands NT-3 and PTP-sigma bind both isoforms, but NT-3 activates all signaling pathways, whereas PTP-sigma activates biased signals. Our data support an "in-to-out" model controlling receptor ectodomain conformation, a strategy that enables heterogeneity in receptors, ligands, and bioactivity. These concepts may be extended to the many wild-type or oncogenic receptors with known isoforms.
Collapse
Affiliation(s)
- Fouad Brahimi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Alba Galan
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Sean Jmaeff
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
| | - Pablo F. Barcelona
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
| | - Nicolas De Jay
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Kurt Dejgaard
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jason C. Young
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Y. Thomas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - H. Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, McGill University, 3755 Côte St. Catherine, E-535, Montreal, QC H3T 1E2, Canada
- Department of Pharmacology, McGill University, Montreal, QC, Canada
- Department of Ophthalmology and Visual Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
180
|
Berry AJ, Zubko O, Reeves SJ, Howard RJ. Endocannabinoid system alterations in Alzheimer's disease: A systematic review of human studies. Brain Res 2020; 1749:147135. [PMID: 32980333 DOI: 10.1016/j.brainres.2020.147135] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 08/31/2020] [Accepted: 09/19/2020] [Indexed: 02/07/2023]
Abstract
Studies investigating alterations of the endocannabinoid system (ECS) in Alzheimer's disease (AD) in humans have reported inconsistent findings so far. We performed a systematic review of studies examining alterations of the ECS specifically within humans with AD or mild cognitive impairment (MCI), including neuroimaging studies, studies of serum and cerebrospinal fluid biomarkers, and post-mortem studies. We attempted to identify reported changes in the expression and activity of: cannabinoid receptors 1 and 2; anandamide (AEA); 2-arachidonoylglycerol (2-AG); monoacylglycerol lipase (MAGL); fatty acid amide hydrolase (FAAH); and transient receptor potential cation channel V1 (TRPV1). Twenty-two studies were identified for inclusion. Mixed findings were reported for most aspects of the ECS in AD, making it difficult to identify a particular profile of ECS alterations characterising AD. The included studies tended to be small, methodologically heterogeneous, and frequently did not control for important potential confounders, such as pathological progression of AD. Eight studies correlated ECS alterations with neuropsychometric performance measures, though studies infrequently examined behavioural and neuropsychiatric correlates. PROSPERO database identifier: CRD42018096249.
Collapse
Affiliation(s)
- Alex J Berry
- Division of Psychiatry, University College London, London, UK.
| | - Olga Zubko
- Division of Psychiatry, University College London, London, UK
| | | | - Robert J Howard
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
181
|
Wilson CA, Fouda S, Sakata S. Effects of optogenetic stimulation of basal forebrain parvalbumin neurons on Alzheimer's disease pathology. Sci Rep 2020; 10:15456. [PMID: 32963298 PMCID: PMC7508947 DOI: 10.1038/s41598-020-72421-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Neuronal activity can modify Alzheimer's disease pathology. Overexcitation of neurons can facilitate disease progression whereas the induction of cortical gamma oscillations can reduce amyloid load and improve cognitive functions in mouse models. Although previous studies have induced cortical gamma oscillations by either optogenetic activation of cortical parvalbumin-positive (PV+) neurons or sensory stimuli, it is still unclear whether other approaches to induce gamma oscillations can also be beneficial. Here we show that optogenetic activation of PV+ neurons in the basal forebrain (BF) increases amyloid burden, rather than reducing it. We applied 40 Hz optical stimulation in the BF by expressing channelrhodopsin-2 (ChR2) in PV+ neurons of 5xFAD mice. After 1-h induction of cortical gamma oscillations over three days, we observed the increase in the concentration of amyloid-β42 in the frontal cortical region, but not amyloid-β40. Amyloid plaques were accumulated more in the medial prefrontal cortex and the septal nuclei, both of which are targets of BF PV+ neurons. These results suggest that beneficial effects of cortical gamma oscillations on Alzheimer's disease pathology can depend on the induction mechanisms of cortical gamma oscillations.
Collapse
Affiliation(s)
- Caroline A Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Sarah Fouda
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
182
|
Fernandez-Valenzuela JJ, Sanchez-Varo R, Muñoz-Castro C, De Castro V, Sanchez-Mejias E, Navarro V, Jimenez S, Nuñez-Diaz C, Gomez-Arboledas A, Moreno-Gonzalez I, Vizuete M, Davila JC, Vitorica J, Gutierrez A. Enhancing microtubule stabilization rescues cognitive deficits and ameliorates pathological phenotype in an amyloidogenic Alzheimer's disease model. Sci Rep 2020; 10:14776. [PMID: 32901091 PMCID: PMC7479116 DOI: 10.1038/s41598-020-71767-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/18/2020] [Indexed: 01/10/2023] Open
Abstract
In Alzheimer's disease (AD), and other tauopathies, microtubule destabilization compromises axonal and synaptic integrity contributing to neurodegeneration. These diseases are characterized by the intracellular accumulation of hyperphosphorylated tau leading to neurofibrillary pathology. AD brains also accumulate amyloid-beta (Aβ) deposits. However, the effect of microtubule stabilizing agents on Aβ pathology has not been assessed so far. Here we have evaluated the impact of the brain-penetrant microtubule-stabilizing agent Epothilone D (EpoD) in an amyloidogenic model of AD. Three-month-old APP/PS1 mice, before the pathology onset, were weekly injected with EpoD for 3 months. Treated mice showed significant decrease in the phospho-tau levels and, more interesting, in the intracellular and extracellular hippocampal Aβ accumulation, including the soluble oligomeric forms. Moreover, a significant cognitive improvement and amelioration of the synaptic and neuritic pathology was found. Remarkably, EpoD exerted a neuroprotective effect on SOM-interneurons, a highly AD-vulnerable GABAergic subpopulation. Therefore, our results suggested that EpoD improved microtubule dynamics and axonal transport in an AD-like context, reducing tau and Aβ levels and promoting neuronal and cognitive protection. These results underline the existence of a crosstalk between cytoskeleton pathology and the two major AD protein lesions. Therefore, microtubule stabilizers could be considered therapeutic agents to slow the progression of both tau and Aβ pathology.
Collapse
Affiliation(s)
- Juan Jose Fernandez-Valenzuela
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Clara Muñoz-Castro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Vanessa De Castro
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain
| | - Elisabeth Sanchez-Mejias
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victoria Navarro
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Sebastian Jimenez
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Nuñez-Diaz
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Angela Gomez-Arboledas
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ines Moreno-Gonzalez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain.,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Jose Carlos Davila
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Dpto. Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, C/Prof. Garcia Gonzalez 2, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocio/CSIC, Universidad de Sevilla, Sevilla, Spain.
| | - Antonia Gutierrez
- Dpto. Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica de Málaga-IBIMA, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos, 29071, Málaga, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
183
|
von Saucken VE, Jay TR, Landreth GE. The effect of amyloid on microglia-neuron interactions before plaque onset occurs independently of TREM2 in a mouse model of Alzheimer's disease. Neurobiol Dis 2020; 145:105072. [PMID: 32890775 PMCID: PMC7808254 DOI: 10.1016/j.nbd.2020.105072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022] Open
Abstract
Genetic studies identified mutations in several immune-related genes that confer increased risk for developing Alzheimer’s disease (AD), suggesting a key role for microglia in AD pathology. Microglia are recruited to and actively modulate the local toxicity of amyloid plaques in models of AD through these cells’ transcriptional and functional reprogramming to a disease-associated phenotype. However, it remains unknown whether microglia actively respond to amyloid accumulation before plaque deposition in AD. We compared microglial interactions with neurons that exhibit amyloid accumulation to those that do not in 1-month-old 5XFAD mice to determine which aspects of microglial morphology and function are altered by early 6E10+ amyloid accumulation. We provide evidence of preferential microglial process engagement of amyloid laden neurons. Microglia, on exposure to amyloid, also increase their internalization of neurites even before plaque onset. Unexpectedly, we found that triggering receptor expressed on myeloid cells 2 (TREM2), which is critical for microglial responses to amyloid plaque pathology later in disease, is not required for enhanced microglial interactions with neurons or neurite internalization early in disease. However, TREM2 was still required for early morphological changes exhibited by microglia. These data demonstrate that microglia sense and respond to amyloid accumulation before plaques form using a distinct mechanism from the TREM2-dependent pathway required later in disease.
Collapse
Affiliation(s)
- Victoria E von Saucken
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Taylor R Jay
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gary E Landreth
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
184
|
Migoń D, Wasilewski T, Suchy D. Application of QCM in Peptide and Protein-Based Drug Product Development. Molecules 2020; 25:E3950. [PMID: 32872496 PMCID: PMC7504752 DOI: 10.3390/molecules25173950] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
AT-cut quartz crystals vibrating in the thickness-shear mode (TSM), especially quartz crystal resonators (QCRs), are well known as very efficient mass sensitive systems because of their sensitivity, accuracy, and biofunctionalization capacity. They are highly reliable in the measurement of the mass of deposited samples, in both gas and liquid matrices. Moreover, they offer real-time monitoring, as well as relatively low production and operation costs. These features make mass sensitive systems applicable in a wide range of different applications, including studies on protein and peptide primary packaging, formulation, and drug product manufacturing process development. This review summarizes the information on some particular implementations of quartz crystal microbalance (QCM) instruments in protein and peptide drug product development as well as their future prospects.
Collapse
Affiliation(s)
- Dorian Migoń
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
- Polpharma Biologics S.A., Trzy Lipy 3, 80-172 Gdańsk, Poland;
| | - Tomasz Wasilewski
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Dariusz Suchy
- Polpharma Biologics S.A., Trzy Lipy 3, 80-172 Gdańsk, Poland;
| |
Collapse
|
185
|
Koller EJ, Chakrabarty P. Tau-Mediated Dysregulation of Neuroplasticity and Glial Plasticity. Front Mol Neurosci 2020; 13:151. [PMID: 32973446 PMCID: PMC7472665 DOI: 10.3389/fnmol.2020.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
The inability of individual neurons to compensate for aging-related damage leads to a gradual loss of functional plasticity in the brain accompanied by progressive impairment in learning and memory. Whereas this loss in neuroplasticity is gradual during normal aging, in neurodegenerative diseases such as Alzheimer’s disease (AD), this loss is accelerated dramatically, leading to the incapacitation of patients within a decade of onset of cognitive symptoms. The mechanisms that underlie this accelerated loss of neuroplasticity in AD are still not completely understood. While the progressively increasing proteinopathy burden, such as amyloid β (Aβ) plaques and tau tangles, definitely contribute directly to a neuron’s functional demise, the role of non-neuronal cells in controlling neuroplasticity is slowly being recognized as another major factor. These non-neuronal cells include astrocytes, microglia, and oligodendrocytes, which through regulating brain homeostasis, structural stability, and trophic support, play a key role in maintaining normal functioning and resilience of the neuronal network. It is believed that chronic signaling from these cells affects the homeostatic network of neuronal and non-neuronal cells to an extent to destabilize this harmonious milieu in neurodegenerative diseases like AD. Here, we will examine the experimental evidence regarding the direct and indirect pathways through which astrocytes and microglia can alter brain plasticity in AD, specifically as they relate to the development and progression of tauopathy. In this review article, we describe the concepts of neuroplasticity and glial plasticity in healthy aging, delineate possible mechanisms underlying tau-induced plasticity dysfunction, and discuss current clinical trials as well as future disease-modifying approaches.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL, United States.,Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
186
|
Tulloch J, Netsyk O, Pickett EK, Herrmann AG, Jain P, Stevenson AJ, Oren I, Hardt O, Spires-Jones TL. Maintained memory and long-term potentiation in a mouse model of Alzheimer's disease with both amyloid pathology and human tau. Eur J Neurosci 2020; 53:637-648. [PMID: 33169893 DOI: 10.1111/ejn.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
One of the key knowledge gaps in the field of Alzheimer's disease research is the lack of understanding of how amyloid beta and tau cooperate to cause neurodegeneration. We recently generated a mouse model (APP/PS1 + Tau) that develops amyloid plaque pathology and expresses human tau in the absence of endogenous murine tau. These mice exhibit an age-related behavioural hyperactivity phenotype and transcriptional deficits which are ameliorated by tau transgene suppression. We hypothesized that these mice would also display memory and hippocampal synaptic plasticity deficits as has been reported for many plaque bearing mouse models which express endogenous mouse tau. We observed that our APP/PS1 + Tau model does not exhibit novel object memory or robust long-term potentiation deficits with age, whereas the parent APP/PS1 line with mouse tau did develop the expected deficits. These data are important as they highlight potential functional differences between mouse and human tau and the need to use multiple models to fully understand Alzheimer's disease pathogenesis and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Olga Netsyk
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Eleanor K Pickett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Abigail G Herrmann
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Pooja Jain
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Iris Oren
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Oliver Hardt
- Department of Psychology, McGill University, Montreal, QC, Canada.,The Simons Initiative for the Developing Brain and The Patrick Wild Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
187
|
TAŞKIN T, YILMAZ B, DOĞAN A. Antioxidant, Enzyme Inhibitory and Calcium Oxalate Anti-crystallization Activities of Equisetum telmateia Ehrn. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2020. [DOI: 10.21448/ijsm.706514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
188
|
Tran TS, Le MT, Tran TD, Tran TH, Thai KM. Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches. Molecules 2020; 25:molecules25163644. [PMID: 32785161 PMCID: PMC7464027 DOI: 10.3390/molecules25163644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are the two crucial enzymes involved in the pathology of Alzheimer's disease. The former is responsible for many defects in cholinergic signaling pathway and the latter is the primary enzyme in the biosynthesis of beta-amyloid as the main component of the amyloid plaques. These both abnormalities are found in the brains of Alzheimer's patients. In this study, in silico models were developed, including 3D-pharmacophore, 2D-QSAR (two-dimensional quantitative structure-activity relationship), and molecular docking, to screen virtually a database of compounds for AChE and BACE-1 inhibitory activities. A combinatorial library containing more than 3 million structures of curcumin and flavonoid derivatives was generated and screened for drug-likeness and enzymatic inhibitory bioactivities against AChE and BACE-1 through the validated in silico models. A total of 47 substances (two curcumins and 45 flavonoids), with remarkable predicted pIC50 values against AChE and BACE-1 ranging from 4.24-5.11 (AChE) and 4.52-10.27 (BACE-1), were designed. The in vitro assays on AChE and BACE-1 were performed and confirmed the in silico results. The study indicated that, by using in silico methods, a series of curcumin and flavonoid structures were generated with promising predicted bioactivities. This would be a helpful foundation for the experimental investigations in the future. Designed compounds which were the most feasible for chemical synthesis could be potential candidates for further research and lead optimization.
Collapse
Affiliation(s)
- Thai-Son Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam;
| | - Minh-Tri Le
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
- Correspondence: or (M.-T.L.); or (K.-M.T.); Tel.: +84-903-718-190 (M-T.L.); +84-28-3855-2225 or +84-909-680-385 (K-M.T.); Fax: +84-28-3822-5435 (K-M.T.)
| | - Thanh-Dao Tran
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
| | - The-Huan Tran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, College of Medicine and Pharmacy, Hue University, Hue City 530000, Vietnam;
| | - Khac-Minh Thai
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam or (T.-S.T.); (T.-D.T.)
- Correspondence: or (M.-T.L.); or (K.-M.T.); Tel.: +84-903-718-190 (M-T.L.); +84-28-3855-2225 or +84-909-680-385 (K-M.T.); Fax: +84-28-3822-5435 (K-M.T.)
| |
Collapse
|
189
|
Tau induces PSD95-neuronal NOS uncoupling and neurovascular dysfunction independent of neurodegeneration. Nat Neurosci 2020; 23:1079-1089. [PMID: 32778793 PMCID: PMC7896353 DOI: 10.1038/s41593-020-0686-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Cerebrovascular abnormalities have emerged as a preclinical manifestation of Alzheimer’s disease and frontotemporal dementia, diseases characterized by accumulation of hyperphosphorylated forms of the microtubule associated protein tau. However, it is unclear if tau contributes to these neurovascular alterations independent of neurodegeneration. We report that mice expressing mutated tau exhibit a selective suppression of neural activity-induced cerebral blood flow increases that precedes tau pathology and cognitive impairment. The dysfunction is attributable to reduced vasodilatation of intracerebral arterioles and is reversible by turning down tau production. Mechanistically, the failure of neurovascular coupling involves tau-induced dissociation of neuronal nitric oxide synthase from post synaptic-density-95 and reduced production of the potent vasodilator nitric oxide during glutamatergic synaptic activity. The data identify glutamatergic signaling dysfunction and nitric oxide deficiency as yet-undescribed early manifestations of tau pathobiology independent of neurodegeneration, and provide a mechanism for the neurovascular alterations observed in the preclinical stages of tauopathies.
Collapse
|
190
|
Zhao J, Liu X, Xia W, Zhang Y, Wang C. Targeting Amyloidogenic Processing of APP in Alzheimer's Disease. Front Mol Neurosci 2020; 13:137. [PMID: 32848600 PMCID: PMC7418514 DOI: 10.3389/fnmol.2020.00137] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of senile dementia, characterized by neurofibrillary tangle and amyloid plaque in brain pathology. Major efforts in AD drug were devoted to the interference with the production and accumulation of amyloid-β peptide (Aβ), which plays a causal role in the pathogenesis of AD. Aβ is generated from amyloid precursor protein (APP), by consecutive cleavage by β-secretase and γ-secretase. Therefore, β-secretase and γ-secretase inhibition have been the focus for AD drug discovery efforts for amyloid reduction. Here, we review β-secretase inhibitors and γ-secretase inhibitors/modulators, and their efficacies in clinical trials. In addition, we discussed the novel concept of specifically targeting the γ-secretase substrate APP. Targeting amyloidogenic processing of APP is still a fundamentally sound strategy to develop disease-modifying AD therapies and recent advance in γ-secretase/APP complex structure provides new opportunities in designing selective inhibitors/modulators for AD.
Collapse
Affiliation(s)
- Jing Zhao
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Xinyue Liu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Weiming Xia
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA, United States
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, Boston University, Boston, MA, United States
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, United States
| | - Chunyu Wang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
191
|
Rosito M, Testi C, Parisi G, Cortese B, Baiocco P, Di Angelantonio S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants (Basel) 2020; 9:antiox9080700. [PMID: 32756501 PMCID: PMC7465338 DOI: 10.3390/antiox9080700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
The maintenance of redox homeostasis in the brain is critical for the prevention of the development of neurodegenerative diseases. Drugs acting on brain redox balance can be promising for the treatment of neurodegeneration. For more than four decades, dimethyl fumarate (DMF) and other derivatives of fumaric acid ester compounds have been shown to mitigate a number of pathological mechanisms associated with psoriasis and relapsing forms of multiple sclerosis (MS). Recently, DMF has been shown to exert a neuroprotective effect on the central nervous system (CNS), possibly through the modulation of microglia detrimental actions, observed also in multiple brain injuries. In addition to the hypothesis that DMF is linked to the activation of NRF2 and NF-kB transcription factors, the neuroprotective action of DMF may be mediated by the activation of the glutathione (GSH) antioxidant pathway and the regulation of brain iron homeostasis. This review will focus on the role of DMF as an antioxidant modulator in microglia processes and on its mechanisms of action in the modulation of different pathways to attenuate neurodegenerative disease progression.
Collapse
Affiliation(s)
- Maria Rosito
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
| | - Barbara Cortese
- Nanotechnology Institute, CNR-Nanotechnology Institute, Sapienza University, 00185 Rome, Italy;
| | - Paola Baiocco
- Department of Biochemical Sciences “A. Rossi Fanelli” Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| | - Silvia Di Angelantonio
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161 Rome, Italy; (M.R.); (C.T.); (G.P.)
- Department of Physiology and Pharmacology, Sapienza University, 00185 Rome, Italy
- Correspondence: (P.B.); (S.D.A.)
| |
Collapse
|
192
|
Phytochemical screening and evaluation of antioxidant, enzyme inhibition, anti-proliferative and calcium oxalate anti-crystallization activities of Micromeria fruticosa spp. brachycalyx and Rhus coriaria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
193
|
Kim R, Yamamoto N, Kitamura T. Extra neural ensemble disrupts memory recall. Nat Neurosci 2020; 23:905-907. [DOI: 10.1038/s41593-020-0673-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
194
|
Microglia Do Not Take Up Soluble Amyloid-beta Peptides, But Partially Degrade Them by Secreting Insulin-degrading Enzyme. Neuroscience 2020; 443:30-43. [PMID: 32697980 DOI: 10.1016/j.neuroscience.2020.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Microglia play important roles in the pathogenesis of Alzheimer's disease (AD), in part, by affecting the clearance of amyloid-β (Aβ) peptides. Most studies, however, used synthetic soluble Aβ (sAβ) at higher concentrations. The exact mechanisms underlying microglia-mediated clearance of physiological sAβ at very low concentrations remain unclear. Here we reported that there were much more Iba-1- and CD68-positive microglia and significantly less sAβ left in the brain of adult mice 5 days after the surgery of sAβ microinjection compared to 2 h after the surgery (p < 0.05). However, very few Iba-1- and CD68-positive microglia co-localized with microinjected fluorescently labeled sAβ (FLsAβ42) 5 days after the surgery. Also, there was no co-localization of FLsAβ42 with a lysosomal marker (LAMP-1) 5 days after the surgery. There was no significant difference in the percentage of Aβ+/PE-CD11b+/APC-CD45low microglia between the control group and the group microinjected with TBS-soluble Aβ extracted from the brains of AD patients (p > 0.05). The degradation of physiological sAβ was prevented by a highly selective insulin-degrading enzyme inhibitor (Ii1) but not by a phagocytosis inhibitor (polyinosinic acid) or pinocytosis inhibitor (cytochalasin B) in vitro. Furthermore, the reduction of synthetic and physiological sAβ in the brain was partially prevented by the co-injection of Ii1 in vivo (p < 0.05). Our results demonstrate that microglia do not take up synthetic or physiological sAβ, but partially degrade it via the secretion of insulin-degrading enzyme, which will be beneficial for understanding how sAβ is removed from the brain by microglia.
Collapse
|
195
|
Pratap AA, Holsinger RMD. Altered Brain Adiponectin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E150. [PMID: 32664663 PMCID: PMC7407895 DOI: 10.3390/ph13070150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes share common pathologies with Alzheimer's disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer's, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
196
|
Beggiato S, Cassano T, Ferraro L, Tomasini MC. Astrocytic palmitoylethanolamide pre-exposure exerts neuroprotective effects in astrocyte-neuron co-cultures from a triple transgenic mouse model of Alzheimer's disease. Life Sci 2020; 257:118037. [PMID: 32622942 DOI: 10.1016/j.lfs.2020.118037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/27/2022]
Abstract
Palmitoylethanolamide (PEA) is an endogenous lipid mediator that, also by blunting astrocyte activation, demonstrated beneficial properties in several in vitro and in vivo models of Alzheimer's disease (AD). In the present study, we used astrocyte-neuron co-cultures from 3xTg-AD mouse (i.e. an animal model of AD) cerebral cortex to further investigate on the role of astrocytes in PEA-induced neuroprotection. To this aim, we evaluated the number of viable cells, apoptotic nuclei, microtubule-associated protein-2 (MAP2) positive cells and morphological parameters in cortical neurons co-cultured with cortical astrocytes pre-exposed, or not, to Aβ42 (0.5 μM; 24 h) or PEA (0.1 μM; 24 h). Pre-exposure of astrocytes to Aβ42 failed to affect the viability, the number of neuronal apoptotic nuclei, MAP2 positive cell number, neuritic aggregations/100 μm, dendritic branches per neuron, the neuron body area, the length of the longest dendrite and number of neurites/neuron in 3xTg-AD mouse astrocyte-neuron co-cultures. Compared to neurons from wild-type (non-Tg) mouse co-cultures, 3xTg-AD mouse neurons co-cultured with astrocytes from this mutant mice displayed higher number of apoptotic nuclei, lower MAP2 immunoreactivity and several morphological changes. These signs of neuronal suffering were significantly counteracted when the 3xTg-AD mouse cortical neurons were co-cultured with 3xTg-AD mouse astrocytes pre-exposed to PEA. The present data suggest that in astrocyte-neuron co-cultures from 3xTg-AD mice, astrocytes contribute to neuronal damage and PEA, by possibly counteracting reactive astrogliosis, improved neuronal survival. These findings further support the role of PEA as a possible new therapeutic opportunity in AD treatment.
Collapse
Affiliation(s)
- Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini, 31-66100 Chieti, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy
| | - Luca Ferraro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy; Department of Clinical and Experimental Medicine, University of Foggia, viale Pinto, 1-71122 Foggia, Italy; IRET Foundation, Via Tolara di Sopra 41 - 40064 Ozzano dell'Emilia, Bologna, Italy; Technopole of Ferrara, LTTA Laboratory for the Technologies for Advanced Therapies, Via Fossato di Mortara 70, 44121 Ferrara, Italy.
| | - Maria C Tomasini
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari, 36-44121 Ferrara, Italy
| |
Collapse
|
197
|
Lee YF, Gerashchenko D, Timofeev I, Bacskai BJ, Kastanenka KV. Slow Wave Sleep Is a Promising Intervention Target for Alzheimer's Disease. Front Neurosci 2020; 14:705. [PMID: 32714142 PMCID: PMC7340158 DOI: 10.3389/fnins.2020.00705] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the major cause of dementia, characterized by the presence of amyloid-beta plaques and neurofibrillary tau tangles. Plaques and tangles are associated with sleep-wake cycle disruptions, including the disruptions in non-rapid eye movement (NREM) slow wave sleep (SWS). Alzheimer's patients spend less time in NREM sleep and exhibit decreased slow wave activity (SWA). Consistent with the critical role of SWS in memory consolidation, reduced SWA is associated with impaired memory consolidation in AD patients. The aberrant SWA can be modeled in transgenic mouse models of amyloidosis and tauopathy. Animal models exhibited slow wave impairments early in the disease progression, prior to the deposition of amyloid-beta plaques, however, in the presence of abundant oligomeric amyloid-beta. Optogenetic rescue of SWA successfully halted the amyloid accumulation and restored intraneuronal calcium levels in mice. On the other hand, optogenetic acceleration of slow wave frequency exacerbated amyloid deposition and disrupted neuronal calcium homeostasis. In this review, we summarize the evidence and the mechanisms underlying the existence of a positive feedback loop between amyloid/tau pathology and SWA disruptions that lead to further accumulations of amyloid and tau in AD. Moreover, since SWA disruptions occur prior to the plaque deposition, SWA disruptions may provide an early biomarker for AD. Finally, we propose that therapeutic targeting of SWA in AD might lead to an effective treatment for Alzheimer's patients.
Collapse
Affiliation(s)
- Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Dmitry Gerashchenko
- Harvard Medical School/VA Boston Healthcare System, West Roxbury, MA, United States
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, School of Medicine, Université Laval, Québec, QC, Canada
- CERVO Brain Research Center, Québec, QC, Canada
| | - Brian J. Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
198
|
Bi D, Wen L, Wu Z, Shen Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease. Alzheimers Dement 2020; 16:1312-1329. [PMID: 32543726 DOI: 10.1002/alz.12088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To propose a new hypothesis that GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer's disease (AD). BACKGROUND Synaptic dysfunction and E/I imbalance emerge decades before the appearance of cognitive decline in AD patients, which contribute to neurodegeneration. Initially, E/I imbalance was thought to occur first, due to dysfunction of the glutamatergic and cholinergic systems. However, new evidence has demonstrated that the GABAergic system, the counterpart of E/I balance and the major inhibitory neurotransmitter system in the central nervous system, is altered enormously and that this contributes to E/I imbalance and further AD pathogenesis. NEW HYPOTHESIS Alterations to the GABAergic system, induced by multiple AD pathogenic or risk factors, contribute to E/I imbalance and AD pathogenesis. MAJOR CHALLENGES FOR THE HYPOTHESIS This GABAergic hypothesis accounts for many critical questions and common challenges confronting a new hypothesis of AD pathogenesis. More specifically, it explains why amyloid beta (Aβ), β-secretase (BACE1), apolipoprotein E4 gene (APOE ε4), hyperactive glia cells, contributes to AD pathogenesis and why age and sex are the risk factors of AD. GABAergic dysfunction promotes the spread of Aβ pathology throughout the AD brain and associated cognitive impairments, and the induction of dysfunction induced by these varied risk factors shares this common neurobiology leading to E/I imbalance. In turn, some of these factors exacerbate GABAergic dysfunction and E/I imbalance. Moreover, the GABAergic system modulates various brain functions and thus, the GABAergic hypothesis accounts for nonamnestic manifestations. Furthermore, corrections of E/I balance through manipulation of GABAergic functions have shown positive outcomes in preclinical and clinical studies, suggesting the potential of the GABAergic system as a therapeutic target in AD. LINKAGE TO OTHER MAJOR THEORIES Dysfunction of the GABAergic system is induced by multiple critical signaling pathways, which include the existing major theories of AD pathogenesis, such as the Aβ and neuroinflammation hypotheses. In a new perspective, this GABAergic hypothesis accounts for the E/I imbalance and related excitotoxicity, which contribute to cognitive decline and AD pathogenesis. Therefore, the GABAergic system could be a key target to restore, at least partially, the E/I balance and cognitive function in AD patients.
Collapse
Affiliation(s)
- Danlei Bi
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lang Wen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zujun Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Institute on Aging and Brain Disorders, University of Sciences and Technology of China, Hefei, China.,Neurodegenerative Disease Research Center, University of Science and Technology of China, Hefei, China.,Hefei National Laboratory for Physical Sciences at the Microscale, Neurodegenerative Disorder Research Center, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
199
|
Weng MH, Chen SY, Li ZY, Yen GC. Camellia oil alleviates the progression of Alzheimer's disease in aluminum chloride-treated rats. Free Radic Biol Med 2020; 152:411-421. [PMID: 32294510 DOI: 10.1016/j.freeradbiomed.2020.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is associated with oxidative stress, inflammation, and gut microbiota (GM) imbalance. Recent studies have demonstrated that camellia oil has antioxidant and anti-inflammatory activity and modulates the immune system and GM. However, the effect of camellia oil in alleviating AD pathogenesis remains unclear. An SD rat model of cognitive decline was established by the daily oral administration of aluminum chloride. The results revealed that the aluminum chloride-treated group exhibited deteriorated memory capacity and increased expression of AD-related proteins, whereas these features were mitigated in camellia oil-treated groups. Treatment with camellia oil increased antioxidant enzyme levels and decreased MDA levels. Additionally, camellia oil modulated the expression of cytokines by inhibiting RAGE/NF-κB signaling and microglial activation. Interestingly, autophagy-related proteins were increased in the camellia oil-treated groups. Moreover, camellia oil increased the abundance of probiotics in the GM. Camellia oil can reverse AD brain pathology by alleviating deficits in memory, increasing learning capacity, increasing antioxidant activity, modulating the expression of immune-related cytokines, enhancing autophagy and improving the composition of GM in aluminum chloride-treated rats, implying that AD pathogenesis may be mitigated by treatment with camellia oil through the microbiome-gut-brain axis.
Collapse
Affiliation(s)
- Ming-Hong Weng
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Zih-Ying Li
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
200
|
Ahmad S, Milan MDC, Hansson O, Demirkan A, Agustin R, Sáez ME, Giagtzoglou N, Cabrera-Socorro A, Bakker MHM, Ramirez A, Hankemeier T, Stomrud E, Mattsson-Carlgren N, Scheltens P, van der Flier WM, Ikram MA, Malarstig A, Teunissen CE, Amin N, van Duijn CM. CDH6 and HAGH protein levels in plasma associate with Alzheimer's disease in APOE ε4 carriers. Sci Rep 2020; 10:8233. [PMID: 32427856 PMCID: PMC7237496 DOI: 10.1038/s41598-020-65038-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Many Alzheimer’s disease (AD) genes including Apolipoprotein E (APOE) are found to be expressed in blood-derived macrophages and thus may alter blood protein levels. We measured 91 neuro-proteins in plasma from 316 participants of the Rotterdam Study (incident AD = 161) using Proximity Extension Ligation assay. We studied the association of plasma proteins with AD in the overall sample and stratified by APOE. Findings from the Rotterdam study were replicated in 186 AD patients of the BioFINDER study. We further evaluated the correlation of these protein biomarkers with total tau (t-tau), phosphorylated tau (p-tau) and amyloid-beta (Aβ) 42 levels in cerebrospinal fluid (CSF) in the Amsterdam Dementia Cohort (N = 441). Finally, we conducted a genome-wide association study (GWAS) to identify the genetic variants determining the blood levels of AD-associated proteins. Plasma levels of the proteins, CDH6 (β = 0.638, P = 3.33 × 10−4) and HAGH (β = 0.481, P = 7.20 × 10−4), were significantly elevated in APOE ε4 carrier AD patients. The findings in the Rotterdam Study were replicated in the BioFINDER study for both CDH6 (β = 1.365, P = 3.97 × 10−3) and HAGH proteins (β = 0.506, P = 9.31 × 10−7) when comparing cases and controls in APOE ε4 carriers. In the CSF, CDH6 levels were positively correlated with t-tau and p-tau in the total sample as well as in APOE ε4 stratum (P < 1 × 10−3). The HAGH protein was not detected in CSF. GWAS of plasma CDH6 protein levels showed significant association with a cis-regulatory locus (rs111283466, P = 1.92 × 10−9). CDH6 protein is implicated in cell adhesion and synaptogenesis while HAGH protein is related to the oxidative stress pathway. Our findings suggest that these pathways may be altered during presymptomatic AD and that CDH6 and HAGH may be new blood-based biomarkers.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Marta Del Campo Milan
- Neurochemistry laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers (AUMC), Vrije Universiteit, Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ruiz Agustin
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Maria E Sáez
- Centro Andaluz de Estudios Bioinformáticos CAEBi, Sevilla, Spain
| | | | | | - Margot H M Bakker
- Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Alfredo Ramirez
- Department of Neurodegeneration and Geriatric Psychiatry, University of Bonn, 53127, Bonn, Germany.,Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik Stomrud
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Philip Scheltens
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, UMC, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, UMC, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anders Malarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Pfizer Worldwide R&D, Stockholm, Sweden
| | - Charlotte E Teunissen
- Neurochemistry laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers (AUMC), Vrije Universiteit, Amsterdam, The Netherlands
| | - Najaf Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. .,Nuffield Department of Population Health, Oxford University, Oxford, UK.
| |
Collapse
|