151
|
Moreira-Coello V, Mouriño-Carballido B, Marañón E, Fernández-Carrera A, Bode A, Sintes E, Zehr JP, Turk-Kubo K, Varela MM. Temporal variability of diazotroph community composition in the upwelling region off NW Iberia. Sci Rep 2019; 9:3737. [PMID: 30842510 PMCID: PMC6403370 DOI: 10.1038/s41598-019-39586-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
Knowledge of the ecology of N2-fixing (diazotrophic) plankton is mainly limited to oligotrophic (sub)tropical oceans. However, diazotrophs are widely distributed and active throughout the global ocean. Likewise, relatively little is known about the temporal dynamics of diazotrophs in productive areas. Between February 2014 and December 2015, we carried out 9 one-day samplings in the temperate northwestern Iberian upwelling system to investigate the temporal and vertical variability of the diazotrophic community and its relationship with hydrodynamic forcing. In downwelling conditions, characterized by deeper mixed layers and a homogeneous water column, non-cyanobacterial diazotrophs belonging mainly to nifH clusters 1G (Gammaproteobacteria) and 3 (putative anaerobes) dominated the diazotrophic community. In upwelling and relaxation conditions, affected by enhanced vertical stratification and hydrographic variability, the community was more heterogeneous vertically but less diverse, with prevalence of UCYN-A (unicellular cyanobacteria, subcluster 1B) and non-cyanobacterial diazotrophs from clusters 1G and 3. Oligotyping analysis of UCYN-A phylotype showed that UCYN-A2 sublineage was the most abundant (74%), followed by UCYN-A1 (23%) and UCYN-A4 (2%). UCYN-A1 oligotypes exhibited relatively low frequencies during the three hydrographic conditions, whereas UCYN-A2 showed higher abundances during upwelling and relaxation. Our findings show the presence of a diverse and temporally variable diazotrophic community driven by hydrodynamic forcing in an upwelling system.
Collapse
Affiliation(s)
| | | | - Emilio Marañón
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Vigo, Spain
| | | | - Antonio Bode
- Instituto Español de Oceanografía, A Coruña, Spain
| | - Eva Sintes
- Instituto Español de Oceanografía, Baleares, Spain
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California, Santa Cruz, California, USA
| | - Kendra Turk-Kubo
- Ocean Sciences Department, University of California, Santa Cruz, California, USA
| | | |
Collapse
|
152
|
Abstract
With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions. Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N2 fixation is the major source of biologically available N, the soil N2-fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene (nifH) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly (P < 0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem.
Collapse
|
153
|
Revillini D, Wilson GWT, Miller RM, Lancione R, Johnson NC. Plant Diversity and Fertilizer Management Shape the Belowground Microbiome of Native Grass Bioenergy Feedstocks. FRONTIERS IN PLANT SCIENCE 2019; 10:1018. [PMID: 31475019 PMCID: PMC6702339 DOI: 10.3389/fpls.2019.01018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/22/2019] [Indexed: 05/04/2023]
Abstract
Plants may actively cultivate microorganisms in their roots and rhizosphere that enhance their nutrition. To develop cropping strategies that substitute mineral fertilizers for beneficial root symbioses, we must first understand how microbial communities associated with plant roots differ among plant taxa and how they respond to fertilization. Arbuscular mycorrhizal (AM) fungi and rhizobacteria are of particular interest because they enhance nutrient availability to plants and perform a suite of nutrient cycling functions. The purpose of this experiment is to examine the root and soil microbiome in a long-term switchgrass (Panicum virgatum) biofuel feedstock experiment and determine how AM fungi and rhizobacteria respond to plant diversity and soil fertility. We hypothesize that intra- and interspecific plant diversity, nitrogen fertilization (+N), and their interaction will influence the biomass and community composition of AM fungi and rhizobacteria. We further hypothesize that +N will reduce the abundance of nitrogenase-encoding nifH genes on the rhizoplane. Roots and soils were sampled from three switchgrass cultivars (Cave-in-Rock, Kanlow, Southlow) grown in monoculture, intraspecific mixture, and interspecific planting mixtures with either Andropogon gerardii or diverse native tallgrass prairie species. Molecular sequencing was performed on root and soil samples, fatty acid extractions were assessed to determine microbial biomass, and quantitative polymerase chain reaction (qPCR) was performed on nifH genes from the rhizoplane. Sequence data determined core AM fungal and bacterial microbiomes and indicator taxa for plant diversity and +N treatments. We found that plant diversity and +N influenced AM fungal biomass and community structure. Across all plant diversity treatments, +N reduced the biomass of AM fungi and nifH gene abundance by more than 40%. The AM fungal genus Scutellospora was an indicator for +N, with relative abundance significantly greater under +N and in monoculture treatments. Community composition of rhizobacteria was influenced by plant diversity but not by +N. Verrucomicrobia and Proteobacteria were the dominant bacterial phyla in both roots and soils. Our findings provide evidence that soil fertility and plant diversity structure the root and soil microbiome. Optimization of soil communities for switchgrass production must take into account differences among cultivars and their unique responses to shifts in soil fertility.
Collapse
Affiliation(s)
- Daniel Revillini
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- Department of Biology, University of Miami, Coral Gables, FL, United States
- *Correspondence: Daniel Revillini,
| | - Gail W. T. Wilson
- Department of Natural Resource Ecology, Management, Oklahoma State University, Stillwater, OK, United States
| | - R. Michael Miller
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Ryan Lancione
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
| | - Nancy Collins Johnson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, United States
- School of Earth, Sustainability, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
154
|
Almendras K, García J, Carú M, Orlando J. Nitrogen-Fixing Bacteria Associated with Peltigera Cyanolichens and Cladonia Chlorolichens. Molecules 2018; 23:E3077. [PMID: 30477264 PMCID: PMC6320784 DOI: 10.3390/molecules23123077] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
Lichens have been extensively studied and described; however, recent evidence suggests that members of the bacterial community associated with them could contribute new functions to the symbiotic interaction. In this work, we compare the nitrogen-fixing guild associated with bipartite terricolous lichens with different types of photobiont: Peltigera cyanolichens and Cladonia chlorolichens. Since cyanobacteria contribute nitrogen to the symbiosis, we propose that chlorolichens have more diverse bacteria with the ability to fix nitrogen compared to cyanolichens. In addition, since part of these bacteria could be recruited from the substrate where lichens grow, we propose that thalli and substrates share some bacteria in common. The structure of the nitrogen-fixing guild in the lichen and substrate bacterial communities of both lichens was determined by terminal restriction fragment length polymorphism (TRFLP) of the nifH gene. Multivariate analyses showed that the nitrogen-fixing bacteria associated with both types of lichen were distinguishable from those present in their substrates. Likewise, the structure of the nitrogen-fixing bacteria present in the cyanolichens was different from that of chlorolichens. Finally, the diversity of this bacterial guild calculated using the Shannon index confirms the hypothesis that chlorolichens have a higher diversity of nitrogen-fixing bacteria than cyanolichens.
Collapse
Affiliation(s)
- Katerin Almendras
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.
| | - Jaime García
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.
| |
Collapse
|
155
|
Meng H, Zhou Z, Wu R, Wang Y, Gu JD. Diazotrophic microbial community and abundance in acidic subtropical natural and re-vegetated forest soils revealed by high-throughput sequencing of nifH gene. Appl Microbiol Biotechnol 2018; 103:995-1005. [PMID: 30474727 DOI: 10.1007/s00253-018-9466-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023]
Abstract
Biological nitrogen fixation (BNF) is an important natural biochemical process converting the inert dinitrogen gas (N2) in the atmosphere to ammonia (NH3) in the N cycle. In this study, the nifH gene was chosen to detect the diazotrophic microorganisms with high-throughput sequencing from five acidic forest soils, including three natural forests and two re-vegetated forests. Soil samples were taken in two seasons (summer and winter) at two depth layers (surface and lower depths). A dataset of 179,600 reads obtained from 20 samples were analyzed to provide the microbial community structure, diversity, abundance, and relationship with physiochemical parameters. Both archaea and bacteria were detected in these samples and diazotrophic bacteria were the dominant members contributing to the biological dinitrogen fixation in the acidic forest soils. Cyanobacteria, Firmicutes, Proteobacteria, Spirocheates, and Verrucomicrobia were observed, especially the Proteobacteria as the most abundant phylum. The core genera were Bradyrhizobium and Methylobacterium from α-Proteobacteia, and Desulfovibrio from δ-Proteobacteia in the phylum of Proteobacteia of these samples. The diversity indices and the gene abundances of all samples were higher in the surface layer than the lower layer. Diversity was apparently higher in re-vegetated forests than the natural forests. Significant positive correlation to the organic matter and nitrogen-related parameters was observed, but there was no significant seasonal variation on the community structure and diversity in these samples between the summer and winter. The application of high-throughput sequencing method provides a better understanding and more comprehensive information of diazotrophs in acidic forest soils than conventional and PCR-based ones.
Collapse
Affiliation(s)
- Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Ruonan Wu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Yongfeng Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, People's Republic of China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
156
|
Nishihara A, Matsuura K, Tank M, McGlynn SE, Thiel V, Haruta S. Nitrogenase Activity in Thermophilic Chemolithoautotrophic Bacteria in the Phylum Aquificae Isolated under Nitrogen-Fixing Conditions from Nakabusa Hot Springs. Microbes Environ 2018; 33:394-401. [PMID: 30473565 PMCID: PMC6307999 DOI: 10.1264/jsme2.me18041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The phylum Aquificae comprises chemolithoautotrophic thermophilic to hyperthermophilic bacteria, in which the nitrogenase reductase gene (nifH) has been reported. However, nitrogen-fixing activity has not yet been demonstrated in members of this deeply branching bacterial phylum. We isolated two thermophilic diazotrophic strains from chemosynthetic microbial communities in slightly alkaline hot springs (≥70°C) in Nakabusa, Nagano Prefecture, Japan. A phylogenetic analysis based on 16S rRNA genes identified these strains as members of the genus Hydrogenobacter within Aquificae. Their NifH sequences showed 96.5 and 97.4% amino acid sequence identities to that from Hydrogenobacter thermophilus TK-6. Nitrogenase activity, measured by acetylene reduction, was confirmed in both strains at 70°C. These novel strains grew under semi-aerobic conditions by using CO2 as the sole carbon source and N2 as the sole nitrogen source in media containing hydrogen and/or thiosulfate. To the best of our knowledge, this is the first demonstration of active nitrogen fixation in thermophilic bacteria at 70°C and in the phylum Aquificae.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
157
|
Pedersen JN, Bombar D, Paerl RW, Riemann L. Diazotrophs and N 2-Fixation Associated With Particles in Coastal Estuarine Waters. Front Microbiol 2018; 9:2759. [PMID: 30505296 PMCID: PMC6250843 DOI: 10.3389/fmicb.2018.02759] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Putative heterotrophic bacteria carrying out N2-fixation, so-called non-cyanobacterial diazotrophs (NCDs), are widely distributed in marine waters, but details of how the O2-inhibited N2-fixation process is promoted in the oxic water column remains ambiguous. Here we carried out two experiments with water from a eutrophic temperate fjord to examine whether low-oxygen microenvironments within particulate organic matter could be loci suitable for N2-fixation. First, water enriched with natural particles or sediment showed higher N2-fixation rates than bulk water, and nitrogenase genes (nifH) revealed that specific diazotrophs were affiliated with the particulate matter. Second, pristine artificial surfaces were rapidly colonized by diverse bacteria, while putative diazotrophs emerged relatively late (after 80 h) during the colonization, and phylotypes related to Pseudomonas and to anaerobic bacteria became dominant with time. Our study pinpoints natural particles as sites of N2-fixation, and indicates that resuspension of sediment material can elevate pelagic N2-fixation. Moreover, we show that diverse natural diazotrophs can colonize artificial surfaces, but colonization by “pioneer” bacterioplankton that more rapidly associate with surfaces appears to be a prerequisite. Whereas our experimental study supports the idea of pelagic particles as sites of N2-fixation by heterotrophic bacteria, future in situ studies are needed in order to establish identity, activity and ecology of particle associated NCDs as a function of individual particle characteristics.
Collapse
Affiliation(s)
- Jeppe N Pedersen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Deniz Bombar
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Ryan W Paerl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Lasse Riemann
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| |
Collapse
|
158
|
Nishihara A, Thiel V, Matsuura K, McGlynn SE, Haruta S. Phylogenetic Diversity of Nitrogenase Reductase Genes and Possible Nitrogen-Fixing Bacteria in Thermophilic Chemosynthetic Microbial Communities in Nakabusa Hot Springs. Microbes Environ 2018; 33:357-365. [PMID: 30404970 PMCID: PMC6307998 DOI: 10.1264/jsme2.me18030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chemosynthetic microbial communities develop and form dense cell aggregates in slightly alkaline sulfidic hot springs in the temperature range of 70–86°C at Nakabusa, Japan. Nitrogenase activity has recently been detected in the microbial communities collected. To identify possible members capable of nitrogen fixation, we examined the diversities of 16S rRNA and nitrogenase reductase (NifH) gene sequences in four types of chemosynthetic communities with visually different colors and thicknesses. The results of a 16S rRNA gene analysis indicated that all four microbial communities had similar bacterial constituents; the phylum Aquificae was the dominant member, followed in abundance by Thermodesulfobacteria, Firmicutes, and Thermotogae. Most of the NifH sequences were related to sequences reported in hydrothermal vents and terrestrial hot springs. The results of a phylogenetic analysis of NifH sequences revealed diversity in this gene among the communities collected, distributed within 7 phylogenetic groups. NifH sequences affiliated with Aquificae (Hydrogenobacter/Thermocrinis) and Firmicutes (Caldicellulosiruptor) were abundant. At least two different energy metabolic pathways appeared to be related to nitrogen fixation in the communities analyzed; aerobic sulfur/hydrogen-oxidizing bacteria in Aquificae and fermentative bacteria in Firmicutes. The metabolic characteristics of these two dominant phyla differed from those previously inferred from nitrogenase activity assays on chemosynthetic communities, which were associated with hydrogen-dependent autotrophic sulfate reduction. These assays may correspond to the observed NifH sequences that are distantly related to the known species of Thermodesulfovibrio sp. (Nitrospirae) detected in the present study. The activities of nitrogen-fixing organisms in communities may depend on redox states as well as the availability of electron donors, acceptors, and carbon sources.
Collapse
Affiliation(s)
- Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Katsumi Matsuura
- Department of Biological Sciences, Tokyo Metropolitan University
| | - Shawn E McGlynn
- Department of Biological Sciences, Tokyo Metropolitan University.,Earth-Life Science Institute, Tokyo Institute of Technology.,Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science.,Blue Marble Space Institute of Science
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University
| |
Collapse
|
159
|
Ke X, Feng S, Wang J, Lu W, Zhang W, Chen M, Lin M. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst Appl Microbiol 2018; 42:248-260. [PMID: 30477902 DOI: 10.1016/j.syapm.2018.10.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/21/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022]
Abstract
Plant growth promoting diazotrophs with the ability to associate with plant roots are in common use as inoculants to benefit crop yield and to mitigate chemical nitrogen fertilization. However, limited information is available in understanding to what extent the plant growth-promoting effect of the inoculum has on the plant's nitrogen acquisition as well as on the impact of inoculation on the indigenous rhizosphere microbial population. Here we reported on experiments that assessed how endophytic Pseudomonas stutzeri A1501 inoculated on maize improved plant growth and plant nitrogen content using a 15N dilution technique under two water regime conditions. The effects of inoculation and different water regimes were also assessed for the maize rhizospheric and surface soil communities by MiSeq community sequencing combined with qPCR of functional genes and transcripts (nifH and amoA) related to nitrogen cycling. Results support maize inoculated with P. stutzeri A1501 grew better and accumulated more nitrogen with a lower δ15N signature after 60 days than did plants inoculated with nifH-mutant and sterilized A1501 cells (non N2-fixing controls). Inoculant contribution to the plant was estimated to range from 0.30 to 0.82g N/plant, depending on water conditions. Inoculation with P. stutzeri A1501 significantly altered the composition of the diazotrophic community that P. stutzeri became dominant in the rhizosphere, and also increased the population of indigenous diazotrophs and ammonia oxidizers and functional genes transcripts. Redundancy analysis revealed that soil compartment and A1501 inoculation treatments were the main factors affecting the distribution of the diazotrophic community.
Collapse
Affiliation(s)
- Xiubin Ke
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Feng
- Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Jin Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Life Science and Engineering College, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ming Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
160
|
Rodrigues AA, Araújo MVF, Soares RS, Oliveira BFRDE, Ribeiro IDA, Sibov ST, Vieira JDG. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. AN ACAD BRAS CIENC 2018; 90:3813-3829. [PMID: 30379271 DOI: 10.1590/0001-3765201820180319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/27/2018] [Indexed: 11/22/2022] Open
Abstract
Microorganisms associated with organic management are essential in nutrient transformation and release for plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly alternatives to improve sugarcane production.
Collapse
Affiliation(s)
- Ariana A Rodrigues
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Marcus Vinícius F Araújo
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Renan S Soares
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| | - Bruno F R DE Oliveira
- Laboratório de Bacteriologia Molecular e Marinha, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rua Professor Rodolpho Paulo Rocco, 373, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Igor D A Ribeiro
- Centro de Microbiologia Agrícola, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91540-000 Porto Alegre, RS, Brazil
| | - Sergio T Sibov
- Laboratório de Cultura de Tecidos, Departamento de Genética e Melhoramento de Plantas, Escola de Agronomia, Universidade Federal de Goiás, Av. Esperança, s/n, 74690-900 Goiânia, GO, Brazil
| | - José Daniel G Vieira
- Laboratório de Microbiologia Ambiental e Biotecnologia, Departamento de Biotecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Av. Universitária, s/n, 74605-050 Goiânia, GO, Brazil
| |
Collapse
|
161
|
Birnbaum C, Bissett A, Teste FP, Laliberté E. Symbiotic N 2-Fixer Community Composition, but Not Diversity, Shifts in Nodules of a Single Host Legume Across a 2-Million-Year Dune Chronosequence. MICROBIAL ECOLOGY 2018; 76:1009-1020. [PMID: 29663039 DOI: 10.1007/s00248-018-1185-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Long-term soil age gradients are useful model systems to study how changes in nutrient limitation shape communities of plant root mutualists because they represent strong natural gradients of nutrient availability, particularly of nitrogen (N) and phosphorus (P). Here, we investigated changes in the dinitrogen (N2)-fixing bacterial community composition and diversity in nodules of a single host legume (Acacia rostellifera) across the Jurien Bay chronosequence, a retrogressive 2 million-year-old sequence of coastal dunes representing an exceptionally strong natural soil fertility gradient. We collected nodules from plants grown in soils from five chronosequence stages ranging from very young (10s of years; associated with strong N limitation for plant growth) to very old (> 2,000,000 years; associated with strong P limitation), and sequenced the nifH gene in root nodules to determine the composition and diversity of N2-fixing bacterial symbionts. A total of 335 unique nifH gene operational taxonomic units (OTUs) were identified. Community composition of N2-fixing bacteria within nodules, but not diversity, changed with increasing soil age. These changes were attributed to pedogenesis-driven shifts in edaphic conditions, specifically pH, exchangeable manganese, resin-extractable phosphate, nitrate and nitrification rate. A large number of common N2-fixing bacteria genera (e.g. Bradyrhizobium, Ensifer, Mesorhizobium and Rhizobium) belonging to the Rhizobiaceae family (α-proteobacteria) comprised 70% of all raw sequences and were present in all nodules. However, the oldest soils, which show some of the lowest soil P availability ever recorded, harboured the largest proportion of unclassified OTUs, suggesting a unique set of N2-fixing bacteria adapted to extreme P limitation. Our results show that N2-fixing bacterial composition varies strongly during long-term ecosystem development, even within the same host, and therefore rhizobia show strong edaphic preferences.
Collapse
Affiliation(s)
- Christina Birnbaum
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Perth, Western Australia, 6150, Australia.
- Department of Ecology and Evolutionary Biology, School of Science and Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA.
| | | | - Francois P Teste
- Grupo de Estudios Ambientales, IMASL-CONICET & Universidad Nacional de San Luis, Av. Ejercito de los Andes 950, 5700, San Luis, Argentina
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, (Perth), Western Australia, 6009, Australia
| | - Etienne Laliberté
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, (Perth), Western Australia, 6009, Australia
- Centre sur la biodiversité, Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 Sherbrooke Est, Montréal, Quebec, H1X 2B2, Canada
| |
Collapse
|
162
|
Che R, Deng Y, Wang F, Wang W, Xu Z, Hao Y, Xue K, Zhang B, Tang L, Zhou H, Cui X. Autotrophic and symbiotic diazotrophs dominate nitrogen-fixing communities in Tibetan grassland soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:997-1006. [PMID: 29929338 DOI: 10.1016/j.scitotenv.2018.05.238] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Biological nitrogen fixation, conducted by soil diazotrophs, is the primary nitrogen source for natural grasslands. However, the diazotrophs in grassland soils are still far from fully investigated. Particularly, their regional-scale distribution patterns have never been systematically examined. Here, soils (0-5 cm) were sampled from 54 grasslands on the Tibetan Plateau to examine the diazotroph abundance, diversity, and community composition, as well as their distribution patterns and driving factors. The diazotroph abundance was expressed as nifH gene copies, measured using real-time PCR. The diversity and community composition of diazotrophs were analyzed through MiSeq sequencing of nifH genes. The results showed that Cyanobacteria (47.94%) and Proteobacteria (45.20%) dominated the soil diazotroph communities. Most Cyanobacteria were classified as Nostocales which are main components of biological crusts. Rhizobiales, most of which were identified as potential symbiotic diazotrophs, were also abundant in approximately half of the soil samples. The soil diazotroph abundance, diversity, and community composition followed the distribution patterns in line with mean annual precipitation. Moreover, they also showed significant correlations with prokaryotic abundance, plant biomass, vegetation cover, soil pH values, and soil nutrient contents. Among these environmental factors, the soil moisture, organic carbon, available phosphorus, and inorganic nitrogen contents could be the main drivers of diazotroph distribution due to their strong correlations with diazotroph indices. These findings suggest that autotrophic and symbiotic diazotrophs are the predominant nitrogen fixers in Tibetan grassland soils, and highlight the key roles of water and nutrient availability in determining the soil diazotroph distribution on the Tibetan Plateau.
Collapse
Affiliation(s)
- Rongxiao Che
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Yongcui Deng
- Nanjing Normal University, Nanjing 210097, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Fang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Weijin Wang
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Zhihong Xu
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Yanbin Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Xue
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Tang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Environmental Futures Research Institute, School of Environment and Science, Griffith University, Brisbane 4111, Australia
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
163
|
Farnelid H, Turk-Kubo K, Ploug H, Ossolinski JE, Collins JR, Van Mooy BAS, Zehr JP. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME JOURNAL 2018; 13:170-182. [PMID: 30116043 PMCID: PMC6299005 DOI: 10.1038/s41396-018-0259-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/26/2018] [Indexed: 11/09/2022]
Abstract
Sinking particles transport carbon and nutrients from the surface ocean into the deep sea and are considered hot spots for bacterial diversity and activity. In the oligotrophic oceans, nitrogen (N2)-fixing organisms (diazotrophs) are an important source of new N but the extent to which these organisms are present and exported on sinking particles is not well known. Sinking particles were collected every 6 h over a 2-day period using net traps deployed at 150 m in the North Pacific Subtropical Gyre. The bacterial community and composition of diazotrophs associated with individual and bulk sinking particles was assessed using 16S rRNA and nifH gene amplicon sequencing. The bacterial community composition in bulk particles remained remarkably consistent throughout time and space while large variations of individually picked particles were observed. This difference suggests that unique biogeochemical conditions within individual particles may offer distinct ecological niches for specialized bacterial taxa. Compared to surrounding seawater, particle samples were enriched in different size classes of globally significant N2-fixing cyanobacteria including Trichodesmium, symbionts of diatoms, and the unicellular cyanobacteria Crocosphaera and UCYN-A. The particles also contained nifH gene sequences of diverse non-cyanobacterial diazotrophs suggesting that particles could be loci for N2 fixation by heterotrophic bacteria. The results demonstrate that diverse diazotrophs were present on particles and that new N may thereby be directly exported from surface waters on sinking particles.
Collapse
Affiliation(s)
- Hanna Farnelid
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA. .,Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden.
| | - Kendra Turk-Kubo
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| | - Helle Ploug
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Justin E Ossolinski
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - James R Collins
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.,MIT/WHOI Joint Program in Oceanography, University of Washington, Seattle, WA, USA.,School of Oceanography and eScience Institute, University of Washington, Seattle, WA, USA
| | - Benjamin A S Van Mooy
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Jonathan P Zehr
- Ocean Sciences Department, University of California at Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
164
|
Bodawatta KH, Sam K, Jønsson KA, Poulsen M. Comparative Analyses of the Digestive Tract Microbiota of New Guinean Passerine Birds. Front Microbiol 2018; 9:1830. [PMID: 30147680 PMCID: PMC6097311 DOI: 10.3389/fmicb.2018.01830] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The digestive tract microbiota (DTM) plays a plethora of functions that enable hosts to exploit novel niches. However, our understanding of the DTM of birds, particularly passerines, and the turnover of microbial communities along the digestive tract are limited. To better understand how passerine DTMs are assembled, and how the composition changes along the digestive tract, we investigated the DTM of seven different compartments along the digestive tract of nine New Guinean passerine bird species using Illumina MiSeq sequencing of the V4 region of the 16S rRNA. Overall, passerine DTMs were dominated by the phyla Firmicutes and Proteobacteria. We found bird species-specific DTM assemblages and the DTM of different compartments from the same species tended to cluster together. We also found a notable relationship between gut community similarity and feeding guilds (insectivores vs. omnivores). The dominant bacterial genera tended to differ between insectivores and omnivores, with insectivores mainly having lactic acid bacteria that may contribute to the breakdown of carbohydrates. Omnivorous DTMs were more diverse than insectivores and dominated by the bacterial phyla Proteobacteria and Tenericutes. These bacteria may contribute to nitrogen metabolism, and the diverse omnivorous DTMs may allow for more flexibility with varying food availability as these species have wider feeding niches. In well-sampled omnivorous species, the dominant bacterial genera changed along the digestive tracts, which was less prominent for insectivores. In conclusion, the DTMs of New Guinean passerines seem to be species specific and, at least in part, be shaped by bird diet. The sampling of DTM along the digestive tract improved capturing of a more complete set of members, with implications for our understanding of the interactions between symbiont and gut compartment functions.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Section for Biosystematics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre AS CR v. v. i., Faculty of Science, Institute of Entomology and University of South Bohemia, Ceske Budejovice, Czechia
| | - Knud A Jønsson
- Section for Biosystematics, Natural History Museum of Denmark, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
165
|
Du P, Wu X, Xu J, Dong F, Liu X, Zheng Y. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:204-213. [PMID: 29674095 DOI: 10.1016/j.jhazmat.2018.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
Large amounts of trifluralin are applied each year for weed control; however, its effects on soil microbial communities and functions are unknown. Two agricultural soils, one silty loam and one silty clay were spiked with TFL (0, 0.84, 8.4, and 84 mg kg-1) and studied the effects using a laboratory microcosm approach. The half-lives were 44.19-61.83 d in all cases. Bacterial abundance increased 1.12-5.56 times by TFL, but the diversity decreased. From the next-generation sequencing results, TFL altered the bacterial community structure, which initially diverged from the control community structure, then recovered, and then diverged again. Linear discriminant analysis effect size indicated that Sphingomonas and Xanthomonadaceae were the predominant species on day 7 and 15 in TFL treatments. N2-fixing bacteria were initially increased, then decreased, and then recovered, and it was positively correlated with NH4+-N content. Compared with the control, ammonia-oxidizing bacteria were decreased by 25.51-92.63%, ammonia-oxidizing archaea were decreased by 17.12-85.21% (except day 7), and the NO3--N concentration was also inhibited. In contrast to bacteria, fungal abundance was inhibited without any observable effects on fungal diversity or community structure. These results suggest that TFL impacts soil bacterial community and alters functional microorganisms involved in soil N processing.
Collapse
Affiliation(s)
- Pengqiang Du
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Yongquan Zheng
- College of Chemistry, Central China Normal University, No. 152 Luoyu Road, Wuhan, 430079, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
166
|
Diversity of key genes for carbon and nitrogen fixation in soils from the Sør Rondane Mountains, East Antarctica. Polar Biol 2018. [DOI: 10.1007/s00300-018-2353-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
167
|
Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, McLellan SL, Lücker S, Eren AM. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat Microbiol 2018; 3:804-813. [PMID: 29891866 PMCID: PMC6792437 DOI: 10.1038/s41564-018-0176-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/15/2018] [Indexed: 01/28/2023]
Abstract
Nitrogen fixation in the surface ocean impacts global marine nitrogen bioavailability and thus microbial primary productivity. Until now, cyanobacterial populations have been viewed as the main suppliers of bioavailable nitrogen in this habitat. Although PCR amplicon surveys targeting the nitrogenase reductase gene have revealed the existence of diverse non-cyanobacterial diazotrophic populations, subsequent quantitative PCR surveys suggest that they generally occur in low abundance. Here, we use state-of-the-art metagenomic assembly and binning strategies to recover nearly one thousand non-redundant microbial population genomes from the TARA Oceans metagenomes. Among these, we provide the first genomic evidence for non-cyanobacterial diazotrophs inhabiting surface waters of the open ocean, which correspond to lineages within the Proteobacteria and, most strikingly, the Planctomycetes. Members of the latter phylum are prevalent in aquatic systems, but have never been linked to nitrogen fixation previously. Moreover, using genome-wide quantitative read recruitment, we demonstrate that the discovered diazotrophs were not only widespread but also remarkably abundant (up to 0.3% of metagenomic reads for a single population) in both the Pacific Ocean and the Atlantic Ocean northwest. Our results extend decades of PCR-based gene surveys, and substantiate the importance of heterotrophic bacteria in the fixation of nitrogen in the surface ocean.
Collapse
Affiliation(s)
- Tom O Delmont
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | | | - Alon Shaiber
- Graduate Program in the Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Özcan C Esen
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Sonny Tm Lee
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Michael S Rappé
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA. .,Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA. .,Committee on Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
168
|
Kox MAR, Aalto SL, Penttilä T, Ettwig KF, Jetten MSM, van Kessel MAHJ. The influence of oxygen and methane on nitrogen fixation in subarctic Sphagnum mosses. AMB Express 2018; 8:76. [PMID: 29730829 PMCID: PMC5936483 DOI: 10.1186/s13568-018-0607-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 04/28/2018] [Indexed: 11/10/2022] Open
Abstract
Biological nitrogen fixation is an important source of bioavailable nitrogen in Sphagnum dominated peatlands. Sphagnum mosses harbor a diverse microbiome including nitrogen-fixing and methane (CH4) oxidizing bacteria. The inhibitory effect of oxygen on microbial nitrogen fixation is documented for many bacteria. However, the role of nitrogen-fixing methanotrophs in nitrogen supply to Sphagnum peat mosses is not well explored. Here, we investigated the role of both oxygen and methane on nitrogen fixation in subarctic Sphagnum peat mosses. Five species of Sphagnum mosses were sampled from two mesotrophic and three oligotrophic sites within the Lakkasuo peatland in Orivesi, central Finland. Mosses were incubated under either ambient or low oxygen conditions in the presence or absence of methane. Stable isotope activity assays revealed considerable nitrogen-fixing and methane-assimilating rates at all sites (1.4 ± 0.2 µmol 15N-N2 g-1 DW day-1 and 12.0 ± 1.1 µmol 13C-CH4 g-1 DW day-1, respectively). Addition of methane did not stimulate incorporation of 15N-nitrogen into biomass, whereas oxygen depletion increased the activity of the nitrogen-fixing community. Analysis of the 16S rRNA genes at the bacterial community level showed a very diverse microbiome that was dominated by Alphaproteobacteria in all sites. Bona fide methane-oxidizing taxa were not very abundant (relative abundance less than 0.1%). Based on our results we conclude that methanotrophs did not contribute significantly to nitrogen fixation in the investigated peatlands.
Collapse
Affiliation(s)
- Martine A. R. Kox
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Sanni L. Aalto
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Timo Penttilä
- Natural Resources Institute Finland, PO Box 2, 00791 Helsinki, Finland
| | | | - Mike S. M. Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | |
Collapse
|
169
|
Caton IR, Caton TM, Schneegurt MA. Nitrogen-fixation activity and the abundance and taxonomy of nifH genes in agricultural, pristine, and urban prairie stream sediments chronically exposed to different levels of nitrogen loading. Arch Microbiol 2018; 200:623-633. [PMID: 29333588 PMCID: PMC5908754 DOI: 10.1007/s00203-018-1475-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Small streams exert great influences on the retention and attenuation of nitrogen (N) within stream networks. Human land use can lead to increased transport of dissolved inorganic N compounds and downstream eutrophication. Microbial activity in streams is important for maintaining an actively functioning N cycle. Chronically high N loading in streams affects the rates of the central processes of the N cycle by increasing rates of nitrification and denitrification, with biota exhibiting decreased efficiency of N use. The LINXII project measured N-cycle parameters in small streams using 15NO3- tracer release experiments. We concurrently measured N2 fixation rates in six streams of three types (agricultural, pristine, and urban prairie streams) as part of this broader study of major N-cycle processes. Nitrogen fixation in streams was significantly negatively correlated with nitrate levels, dissolved inorganic N levels, and denitrification rates. Algal mat and leaf litter samples generally exhibited the highest rates of N2 fixation. The abundance of nifH genes, as measured by real-time PCR, was marginally correlated with N2-fixation rates, but not to other N-cycle processes or stream characteristics. The nifH sequences observed were assigned to cyanobacteria, Deltaproteobacteria, Methylococcus, and Rhizobia. Seasonal changes, disturbances, and varying inputs may encourage a diverse, flexible, stable N2-fixing guild. Patchiness in the streams should be considered when assessing the overall impact of N2 fixation, since algal biomass exhibited high rates of N2 fixation.
Collapse
Affiliation(s)
- Ingrid R Caton
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
- Bio-Rad Laboratories, Vacaville, CA, 95688, USA
| | - Todd M Caton
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA
| | - Mark A Schneegurt
- Department of Biological Sciences, Wichita State University, 1845 Fairmount, Wichita, KS, 67260, USA.
| |
Collapse
|
170
|
Angel R, Nepel M, Panhölzl C, Schmidt H, Herbold CW, Eichorst SA, Woebken D. Evaluation of Primers Targeting the Diazotroph Functional Gene and Development of NifMAP - A Bioinformatics Pipeline for Analyzing nifH Amplicon Data. Front Microbiol 2018; 9:703. [PMID: 29760683 PMCID: PMC5936773 DOI: 10.3389/fmicb.2018.00703] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Diazotrophic microorganisms introduce biologically available nitrogen (N) to the global N cycle through the activity of the nitrogenase enzyme. The genetically conserved dinitrogenase reductase (nifH) gene is phylogenetically distributed across four clusters (I-IV) and is widely used as a marker gene for N2 fixation, permitting investigators to study the genetic diversity of diazotrophs in nature and target potential participants in N2 fixation. To date there have been limited, standardized pipelines for analyzing the nifH functional gene, which is in stark contrast to the 16S rRNA gene. Here we present a bioinformatics pipeline for processing nifH amplicon datasets - NifMAP ("NifH MiSeq Illumina Amplicon Analysis Pipeline"), which as a novel aspect uses Hidden-Markov Models to filter out homologous genes to nifH. By using this pipeline, we evaluated the broadly inclusive primer pairs (Ueda19F-R6, IGK3-DVV, and F2-R6) that target the nifH gene. To evaluate any systematic biases, the nifH gene was amplified with the aforementioned primer pairs in a diverse collection of environmental samples (soils, rhizosphere and roots samples, biological soil crusts and estuarine samples), in addition to a nifH mock community consisting of six phylogenetically diverse members. We noted that all primer pairs co-amplified nifH homologs to varying degrees; up to 90% of the amplicons were nifH homologs with IGK3-DVV in some samples (rhizosphere and roots from tall oat-grass). In regards to specificity, we observed some degree of bias across the primer pairs. For example, primer pair F2-R6 discriminated against cyanobacteria (amongst others), yet captured many sequences from subclusters IIIE and IIIL-N. These aforementioned subclusters were largely missing by the primer pair IGK3-DVV, which also tended to discriminate against Alphaproteobacteria, but amplified sequences within clusters IIIC (affiliated with Clostridia) and clusters IVB and IVC. Primer pair Ueda19F-R6 exhibited the least bias and successfully captured diazotrophs in cluster I and subclusters IIIE, IIIL, IIIM, and IIIN, but tended to discriminate against Firmicutes and subcluster IIIC. Taken together, our newly established bioinformatics pipeline, NifMAP, along with our systematic evaluations of nifH primer pairs permit more robust, high-throughput investigations of diazotrophs in diverse environments.
Collapse
Affiliation(s)
- Roey Angel
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| | | | | | | | | | | | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of Vienna, Vienna, Austria
| |
Collapse
|
171
|
Di Cesare A, Cabello-Yeves PJ, Chrismas NAM, Sánchez-Baracaldo P, Salcher MM, Callieri C. Genome analysis of the freshwater planktonic Vulcanococcus limneticus sp. nov. reveals horizontal transfer of nitrogenase operon and alternative pathways of nitrogen utilization. BMC Genomics 2018; 19:259. [PMID: 29661139 PMCID: PMC5902973 DOI: 10.1186/s12864-018-4648-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). RESULTS The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. CONCLUSIONS In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for nitrogen fixation. The finding that in our experimental conditions V.limneticus sp. nov. did not express the nifHDK genes led us to reconsider the actual ecological meaning of these accessory genes located in genomic island that have possibly been acquired via HGT.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy.,Department of Earth, Environmental, and Life Sciences, University of Genoa, 16132, Genoa, Italy
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Nathan A M Chrismas
- School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK.,Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, UK
| | | | - Michaela M Salcher
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Cristiana Callieri
- National Research Council CNR-ISE, Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
172
|
Boatman TG, Davey PA, Lawson T, Geider RJ. The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101. PLoS One 2018; 13:e0195638. [PMID: 29641568 PMCID: PMC5895029 DOI: 10.1371/journal.pone.0195638] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 11/24/2022] Open
Abstract
Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.
Collapse
Affiliation(s)
- Tobias G. Boatman
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Phillip A. Davey
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Tracy Lawson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Richard J. Geider
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
173
|
Tláskal V, Zrustová P, Vrška T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol Ecol 2018; 93:4604780. [PMID: 29126113 DOI: 10.1093/femsec/fix157] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023] Open
Abstract
Dead wood represents an important pool of organic matter in forests and is one of the sources of soil formation. It has been shown to harbour diverse communities of bacteria, but their roles in this habitat are still poorly understood. Here, we describe the bacterial communities in the dead wood of Abies alba, Picea abies and Fagus sylvatica in a temperate natural forest in Central Europe. An analysis of environmental factors showed that decomposing time along with pH and water content was the strongest drivers of community composition. Bacterial biomass positively correlated with N content and increased with decomposition along with the concurrent decrease in the fungal/bacterial biomass ratio. Rhizobiales and Acidobacteriales were abundant bacterial orders throughout the whole decay process, but many bacterial taxa were specific either for young (<15 years) or old dead wood. During early decomposition, bacterial genera able to fix N2 and to use simple C1 compounds (e.g. Yersinia and Methylomonas) were frequent, while wood in advanced decay was rich in taxa typical of forest soils (e.g. Bradyrhizobium and Rhodoplanes). Although the bacterial contribution to dead wood turnover remains unclear, the community composition appears to reflect the changing conditions of the substrate and suggests broad metabolic capacities of its members.
Collapse
Affiliation(s)
- Vojtech Tláskal
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Petra Zrustová
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| | - Tomáš Vrška
- Silva Tarouca Research Institute for Landscape and Ornamental Gardening, Lidická 25/27, Brno 60200, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídenská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
174
|
García-Amado MA, Shin H, Sanz V, Lentino M, Martínez LM, Contreras M, Michelangeli F, Domínguez-Bello MG. Comparison of gizzard and intestinal microbiota of wild neotropical birds. PLoS One 2018; 13:e0194857. [PMID: 29579092 PMCID: PMC5868825 DOI: 10.1371/journal.pone.0194857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/12/2018] [Indexed: 01/12/2023] Open
Abstract
Gut bacterial communities have been shown to be influenced by diet, host phylogeny and anatomy, but most of these studies have been done in captive animals. Here we compare the bacterial communities in the digestive tract of wild birds. We characterized the gizzard and intestinal microbiota among 8 wild Neotropical bird species, granivorous or frugivorous species of the orders Columbiformes and Passeriformes. We sequenced the V4 region of the 16S rRNA gene in 94 collected samples from 32 wild birds from 5 localities, and compared bacterial communities by foraging guild, organ, locality and bird taxonomy. 16S rRNA gene-based sequencing data were examined using QIIME with linear discriminant analysis effect size (LEfSe) and metabolic pathways were predicted using PICRUSt algorism. We identified 8 bacterial phyla, dominated by Firmicutes, Actinobacteria and Proteobacteria. Beta diversity analyses indicated significant separation of gut communities by bird orders (Columbiformes vs. Passerifomes) and between bird species (p<0.01). In lower intestine, PICRUSt shows a predominance of carbohydrate metabolism in granivorous birds and xenobiotics biodegradation pathways in frugivorous birds. Gizzard microbiota was significantly richer in granivorous, in relation to frugivorous birds (Chao 1; non-parametric t-test, p<0.05), suggesting a microbial gizzard function, beyond grinding food. The results suggest that the most important factor separating the bacterial community structure was bird taxonomy, followed by foraging guild. However, variation between localities is also likely to be important, but this could not been assessed with our study design.
Collapse
MESH Headings
- Algorithms
- Animals
- Animals, Wild/microbiology
- Bacteria/genetics
- Bacteria/isolation & purification
- Biodiversity
- Columbiformes/microbiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Bacterial/metabolism
- Discriminant Analysis
- Gastrointestinal Microbiome
- Gizzard, Avian/microbiology
- Gizzard, Avian/pathology
- Intestines/microbiology
- Passeriformes/microbiology
- Principal Component Analysis
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Sequence Analysis, DNA
- Stomach Diseases/microbiology
- Stomach Diseases/pathology
- Stomach Diseases/veterinary
Collapse
Affiliation(s)
- M. Alexandra García-Amado
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
- * E-mail: (MGDB); (MAGA)
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Virginia Sanz
- Laboratorio de Biología de Organismos, Centro de Ecología, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Miguel Lentino
- Colección Ornitológica Phelps, Apartado, Caracas, Venezuela
| | | | - Monica Contreras
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Fabian Michelangeli
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | |
Collapse
|
175
|
Methanogens Are Major Contributors to Nitrogen Fixation in Soils of the Florida Everglades. Appl Environ Microbiol 2018; 84:AEM.02222-17. [PMID: 29374038 DOI: 10.1128/aem.02222-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/22/2018] [Indexed: 12/31/2022] Open
Abstract
The objective of this study was to investigate the interaction of the nitrogen (N) cycle with methane production in the Florida Everglades, a large freshwater wetland. This study provides an initial analysis of the distribution and expression of N-cycling genes in Water Conservation Area 2A (WCA-2A), a section of the marsh that underwent phosphorus (P) loading for many years due to runoff from upstream agricultural activities. The elevated P resulted in increased primary productivity and an N limitation in P-enriched areas. Results from quantitative real-time PCR (qPCR) analyses indicated that the N cycle in WCA-2A was dominated by nifH and nirK/S, with an increasing trend in copy numbers in P-impacted sites. Many nifH sequences (6 to 44% of the total) and nifH transcript sequences (2 to 49%) clustered with the methanogenic Euryarchaeota, in stark contrast to the proportion of core gene sequences representing Archaea (≤0.27% of SSU rRNA genes) for the WCA-2A microbiota. Notably, archaeal nifH gene transcripts were detected at all sites and comprised a significant proportion of total nifH transcripts obtained from the unimpacted site, indicating that methanogens are actively fixing N2 Laboratory incubations with soils taken from WCA-2A produced nifH transcripts with the production of methane from H2 plus CO2 and acetate as electron donors and carbon sources. Methanogenic N2 fixation is likely to be an important, although largely unrecognized, route through which fixed nitrogen enters the anoxic soils of the Everglades and may have significant relevance regarding methane production in wetlands.IMPORTANCE Wetlands are the most important natural sources of the greenhouse gas methane, and much of that methane emanates from (sub)tropical peatlands. Primary productivity in these peatlands is frequently limited by the availability of nitrogen or phosphorus; however, the response to nutrient limitations of microbial communities that control biogeochemical cycling critical to ecosystem function may be complex and may be associated with a range of processes, including methane production. We show that many, if not most, of the methanogens in the peatlands of the Florida Everglades possess the nifH gene and actively express it for N2 fixation coupled with methanogenesis. These findings indicate that archaeal N2 fixation would play crucial role in methane emissions and overall N cycle in subtropical wetlands suffering N limitation.
Collapse
|
176
|
Espenberg M, Truu M, Mander Ü, Kasak K, Nõlvak H, Ligi T, Oopkaup K, Maddison M, Truu J. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Sci Rep 2018; 8:4742. [PMID: 29549345 PMCID: PMC5856767 DOI: 10.1038/s41598-018-23032-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023] Open
Abstract
Tropical peatlands, which play a crucial role in the maintenance of different ecosystem services, are increasingly drained for agriculture, forestry, peat extraction and human settlement purposes. The present study investigated the differences between natural and drained sites of a tropical peatland in the community structure of soil bacteria and archaea and their potential to perform nitrogen transformation processes. The results indicate significant dissimilarities in the structure of soil bacterial and archaeal communities as well as nirK, nirS, nosZ, nifH and archaeal amoA gene-possessing microbial communities. The reduced denitrification and N2-fixing potential was detected in the drained tropical peatland soil. In undisturbed peatland soil, the N2O emission was primarily related to nirS-type denitrifiers and dissimilatory nitrate reduction to ammonium, while the conversion of N2O to N2 was controlled by microbes possessing nosZ clade I genes. The denitrifying microbial community of the drained site differed significantly from the natural site community. The main reducers of N2O were microbes harbouring nosZ clade II genes in the drained site. Additionally, the importance of DNRA process as one of the controlling mechanisms of N2O fluxes in the natural peatlands of the tropics revealed from the results of the study.
Collapse
Affiliation(s)
- Mikk Espenberg
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia.
| | - Marika Truu
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Ülo Mander
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Kuno Kasak
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Hiie Nõlvak
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Teele Ligi
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Kristjan Oopkaup
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Martin Maddison
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| | - Jaak Truu
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, 46 Vanemuise Street, 51014, Tartu, Estonia
| |
Collapse
|
177
|
Xu J, Kloepper JW, Huang P, McInroy JA, Hu CH. Isolation and characterization of N 2 -fixing bacteria from giant reed and switchgrass for plant growth promotion and nutrient uptake. J Basic Microbiol 2018; 58:459-471. [PMID: 29473969 DOI: 10.1002/jobm.201700535] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
The aims of this study were to isolate and characterize N2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants. All the selected strains promoted plant growth by increasing at least one plant growth parameter or increasing the nutrient concentration of maize or wheat plants. NNA-14 outperformed others in promoting early growth and nutrient uptake by maize. Specifically, NNA-14 significantly increased root length, surface area, and fine roots of maize by 14%, 12%, and 17%, respectively, and enhanced N, Ca, S, B, Cu, and Zn in maize. NNA-19 and NXU-38 outperformed others in promoting both early growth and nutrient uptake by wheat. Specifically, NNA-19 significantly increased root dry weight and number of root tips of wheat by 25% and 96%, respectively, and enhanced Ca in wheat. NXU-38 significantly increased root length, surface area, and fine roots of wheat by 21%, 13%, and 26%, respectively, and enhanced levels of Ca and Mg in wheat. It is concluded that switchgrass and giant reed are colonized by N2 -fixing bacteria that have the potential to contribute to plant growth and nutrient uptake by agricultural crops.
Collapse
Affiliation(s)
- Jia Xu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Ping Huang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - John A McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| | - Chia H Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama
| |
Collapse
|
178
|
|
179
|
Naz I, Bano A, Mirza MS. Assessment of microbial diversity in the rhizosphere of Pinus roxburghii (Sarg.) and bio-inoculant potential of selected pine bacterial isolates for wheat varieties based on cultureindependent and culture-dependent techniques. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:143-150. [PMID: 29032584 DOI: 10.1111/plb.12648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Evidence is lacking regarding compatibility of pine bacteria as bio-inoculants for crops. The diversity and abundance of rhizosphere bacteria of Pinus roxburghii has never been investigated with simultaneous application of culture-dependent and culture-independent techniques. The present study was aimed to isolate, characterise, check the bio-inoculant potential of pine bacteria and assess rhizosphere bacterial diversity using culture-independent advanced approaches. Forty bacteria isolated from the rhizoplane of P. roxburghii growing in a cold climate at high altitude in Murree, were morphologically characterised; nine were identified by 16S rRNA sequence analyses and used in experiments. Diversity and abundance of the 16S rRNA gene and nifH gene in the rhizosphere was assessed by cloning, RFLP analysis, 454-amplicon pyrosequencing and qPCR. The bacterial isolates significantly improved dry weight of shoot, root, root area, IAA and GA3 content, number of grains plant-1 , weight of grains plant-1 in wheat varieties Chakwal-50 and Fareed-06 under axenic and field conditions. The number of 16S rRNA sequences (2979) identified by pyrosequencing shared similarity with 13 phyla of bacteria and archaea. The results confirm the existence of diverse bacteria of agricultural and industrial importance in the rhizosphere and compatibility of rhizoplane bacteria as bio-inoculants for wheat varieties.
Collapse
Affiliation(s)
- I Naz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - A Bano
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Department of BioSciences, University of Wah, Wah Cantt, Pakistan
| | - M S Mirza
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
180
|
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics 2018; 10:523-538. [DOI: 10.1039/c8mt00038g] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most biological nitrogen fixation (BNF) results from the activity of the molybdenum nitrogenase (Mo-nitrogenase, Nif), an oxygen-sensitive metalloenzyme complex found in all known diazotrophs.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| | | | - Natasha Pence
- Department of Chemistry and Biochemistry, Montana State University
- Bozeman
- USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University
- Logan
- USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| |
Collapse
|
181
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
182
|
Srivastava M, Mishra AK. Comparative responses of diazotrophic abundance and community structure to the chemical composition of paddy soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:399-412. [PMID: 29039042 DOI: 10.1007/s11356-017-0375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Diazotrophy is considered as one of the most crucial and dynamic phenomena in the rice field and also a major source of nitrogen input. The objective of this study was to elucidate possible interactions between diverse and dominant diazotrophic bacterial community and organic carbon composition of the paddy soil. Our results suggest that most abundantly found diazotrophs belong to a proteobacteria group and uncultured bacterial forms. A gene abundance study clearly showed significantly higher diazotrophic abundance (P < 0.01) at Chandauli (CHN) as compared to Varanasi (VNS) and Ghazipur (GHJ) districts of Eastern Uttar Pradesh, India, with nitrogenase reductase (nifH) copy number between 1.44 × 103 and 3.34 × 103 copy g-1 soil. Fourier-transform infrared (FT-IR) spectroscopy data identified -CO-, C=O ([Formula: see text] and -NH-), [Formula: see text], and OH- as dominant organic functional groups in the paddy soil. Multivariate analysis was performed to get a clear and more accurate picture of interactions between free-living diazotrophs and abiotic soil factors. Regression analysis suggested a similar trend of distribution of different functional groups along each site. Relative abundance and diversity of diazotrophic population increased in response to FT-IR-based soil organic fractions. Maximum number of FT-IR spectral peak at sites in the Chandauli district augmented its bacterial diazotrophic diversity and abundance. Taken together, the present study sheds light on the substrate-driven composition of the microbial population of selected paddy areas.
Collapse
Affiliation(s)
- Meenakshi Srivastava
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
183
|
Angel R, Panhölzl C, Gabriel R, Herbold C, Wanek W, Richter A, Eichorst SA, Woebken D. Application of stable-isotope labelling techniques for the detection of active diazotrophs. Environ Microbiol 2018; 20:44-61. [PMID: 29027346 PMCID: PMC5814836 DOI: 10.1111/1462-2920.13954] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/02/2022]
Abstract
Investigating active participants in the fixation of dinitrogen gas is vital as N is often a limiting factor for primary production. Biological nitrogen fixation is performed by a diverse guild of bacteria and archaea (diazotrophs), which can be free-living or symbionts. Free-living diazotrophs are widely distributed in the environment, yet our knowledge about their identity and ecophysiology is still limited. A major challenge in investigating this guild is inferring activity from genetic data as this process is highly regulated. To address this challenge, we evaluated and improved several 15 N-based methods for detecting N2 fixation activity (with a focus on soil samples) and studying active diazotrophs. We compared the acetylene reduction assay and the 15 N2 tracer method and demonstrated that the latter is more sensitive in samples with low activity. Additionally, tracing 15 N into microbial RNA provides much higher sensitivity compared to bulk soil analysis. Active soil diazotrophs were identified with a 15 N-RNA-SIP approach optimized for environmental samples and benchmarked to 15 N-DNA-SIP. Lastly, we investigated the feasibility of using SIP-Raman microspectroscopy for detecting 15 N-labelled cells. Taken together, these tools allow identifying and investigating active free-living diazotrophs in a highly sensitive manner in diverse environments, from bulk to the single-cell level.
Collapse
Affiliation(s)
- Roey Angel
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Christopher Panhölzl
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Raphael Gabriel
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
- Present address:
Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Emeryville, CA, USA;Institute for Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Wolfgang Wanek
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Andreas Richter
- Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Stephanie A. Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem ScienceResearch network “Chemistry meets Microbiology,” University of ViennaVienna 1090Austria
| |
Collapse
|
184
|
Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME JOURNAL 2017; 12:813-824. [PMID: 29222444 DOI: 10.1038/s41396-017-0008-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/30/2022]
Abstract
Diazotrophs, both Bacteria and Archaea, capable of fixing nitrogen (N2), are present in the tissues and mucous, of corals and can supplement the coral holobiont nitrogen budget with fixed nitrogen (N) in the form of ammonia (NH3). Stylophora pistillata from Heron Island on the Great Barrier Reef collected at 5 and 15 m, and experimentally manipulated in the laboratory, showed that the rates of net photosynthesis, steady state quantum yields of photosystem II (PSII) fluorescence (∆Fv/Fm') and calcification varied based on irradiance as expected. Rates of N2 fixation were, however, invariant across treatments while the amount of fixed N contributing to Symbiodinium spp. N demand is irradiance dependent. Additionally, both the Symbiodinium and diazotrophic communities are significantly different based on depth, and novel Cluster V nifH gene phylotypes, which are not known to fix nitrogen, were recovered. A functional analysis using PICRUSt also showed that shallow corals were enriched in genes involved in nitrogen metabolism, and N2 fixation specifically. Corals have evolved a number of strategies to derive nitrogen from organic (e.g., heterotrophic feeding) and inorganic sources (e.g., N2 fixation) to maintain critical pathways such as protein synthesis to succeed ecologically in nitrogen-limited habitats.
Collapse
|
185
|
Yu T, Li M, Niu M, Fan X, Liang W, Wang F. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea. Appl Microbiol Biotechnol 2017; 102:447-459. [DOI: 10.1007/s00253-017-8594-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
|
186
|
Li Q, Song A, Peng W, Jin Z, Müller WEG, Wang X. Contribution of aerobic anoxygenic phototrophic bacteria to total organic carbon pool in aquatic system of subtropical karst catchments, Southwest China: evidence from hydrochemical and microbiological study. FEMS Microbiol Ecol 2017; 93:3814243. [PMID: 28498940 DOI: 10.1093/femsec/fix065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/09/2017] [Indexed: 11/13/2022] Open
Abstract
Aerobic anoxygenic phototrophic bacteria may play a particular role in carbon cycling of aquatic systems. However, little is known about the interaction between aerobic anoxygenic phototrophic bacteria and hydrochemistry in groundwater-surface water exchange systems of subtropical karst catchments. We carried out a detailed study on the abundance of aerobic anoxygenic phototrophic bacteria and bacterioplankton, hydrochemistry and taxonomy of bacterioplankton in the Maocun watershed, Southwest China, an area with karst geological background. Our results revealed that bacteria are the important contributors to total organic carbon source/sequestration in the groundwater-surface water of this area. The aerobic anoxygenic phototrophic bacteria, including β-Proteobacteria, also appear in the studied water system. In addition to that, the genus Polynucleobacter of the phototropic β-Proteobacteria shows a close link with those sampling sites by presenting bacterial origin organic carbon on CCA biplot and is found to be positively correlated with total nitrogen, dissolved oxygen and pH (r = 0.860, 0.747 and 0.813, respectively) in the Maocun watershed. The results suggest that Polynucleobacter might be involved in the production of organic carbon and might act as the negative feedback on global warming.
Collapse
Affiliation(s)
- Qiang Li
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, PR China.,International Research Center on Karst under the Auspices of UNESCO, Guilin 541004, China
| | - Ang Song
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, PR China
| | - Wenjie Peng
- Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, PR China.,ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Zhenjiang Jin
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
187
|
Zhang Y, Yang Q, Ling J, Van Nostrand JD, Shi Z, Zhou J, Dong J. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing. Front Microbiol 2017; 8:2032. [PMID: 29093705 PMCID: PMC5651520 DOI: 10.3389/fmicb.2017.02032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022] Open
Abstract
Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.
Collapse
Affiliation(s)
- Yanying Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China.,Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Joy D Van Nostrand
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Zhou Shi
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Tropical Marine Biological Research Station in Hainan, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
188
|
Gaby JC, Buckley DH. The Use of Degenerate Primers in qPCR Analysis of Functional Genes Can Cause Dramatic Quantification Bias as Revealed by Investigation of nifH Primer Performance. MICROBIAL ECOLOGY 2017; 74:701-708. [PMID: 28389727 DOI: 10.1007/s00248-017-0968-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
The measurement of functional gene abundance in diverse microbial communities often employs quantitative PCR (qPCR) with highly degenerate oligonucleotide primers. While degenerate PCR primers have been demonstrated to cause template-specific bias in PCR applications, the effect of such bias on qPCR has been less well explored. We used a set of diverse, full-length nifH gene standards to test the performance of several universal nifH primer sets in qPCR. We found significant template-specific bias in all but the PolF/PolR primer set. Template-specific bias caused more than 1000-fold mis-estimation of nifH gene copy number for three of the primer sets and one primer set resulted in more than 10,000-fold mis-estimation. Furthermore, such template-specific bias will cause qPCR estimates to vary in response to beta-diversity, thereby causing mis-estimation of changes in gene copy number. A reduction in bias was achieved by increasing the primer concentration. We conclude that degenerate primers should be evaluated across a range of templates, annealing temperatures, and primer concentrations to evaluate the potential for template-specific bias prior to their use in qPCR.
Collapse
Affiliation(s)
- John Christian Gaby
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
189
|
Li O, Xiao R, Sun L, Guan C, Kong D, Hu X. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing. PLoS One 2017; 12:e0184717. [PMID: 28931073 PMCID: PMC5607135 DOI: 10.1371/journal.pone.0184717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/29/2017] [Indexed: 01/22/2023] Open
Abstract
As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39-38.42%), Burkholderia (2.71-15.98%), Escherichia/Shigella (4.90-25.12%), Pseudomonas (2.68-30.72%) and Sphingomonas (1.83-2.05%) dominated in four planting bases. Pseudomonas (17.94-22.06%), Escherichia/Shigella (6.59-11.59%), Delftia (9.65-22.14%) and Burkholderia (3.12-11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples.
Collapse
Affiliation(s)
- Ou Li
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Rong Xiao
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Lihua Sun
- Zhejiang Academy of Medical Sciences, Hangzhou, PR China
| | - Chenglin Guan
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| | - Dedong Kong
- Agricultural Experiment Station, Zhejiang Univesity, Hangzhou, PR China
| | - Xiufang Hu
- College of Life Science, Zhejiang Sci-Tech University, Xiasha, Hangzhou, PR China
| |
Collapse
|
190
|
Moisander PH, Benavides M, Bonnet S, Berman-Frank I, White AE, Riemann L. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments. Front Microbiol 2017; 8:1736. [PMID: 28943875 PMCID: PMC5596534 DOI: 10.3389/fmicb.2017.01736] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022] Open
Abstract
Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1). Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.
Collapse
Affiliation(s)
- Pia H Moisander
- Department of Biology, University of Massachusetts DartmouthNorth Dartmouth, MA, United States
| | - Mar Benavides
- Marine Biology Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| | - Sophie Bonnet
- Centre National de la Recherche Scientifique, IRD, Aix-Marseille Université, Université de ToulonMarseille, France
| | - Ilana Berman-Frank
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat Gan, Israel
| | - Angelicque E White
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Lasse Riemann
- Marine Biology Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| |
Collapse
|
191
|
Wilbanks EG, Salman-Carvalho V, Jaekel U, Humphrey PT, Eisen JA, Buckley DH, Zinder SH. The Green Berry Consortia of the Sippewissett Salt Marsh: Millimeter-Sized Aggregates of Diazotrophic Unicellular Cyanobacteria. Front Microbiol 2017; 8:1623. [PMID: 28928719 PMCID: PMC5591377 DOI: 10.3389/fmicb.2017.01623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022] Open
Abstract
Microbial interactions driving key biogeochemical fluxes often occur within multispecies consortia that form spatially heterogeneous microenvironments. Here, we describe the "green berry" consortia of the Sippewissett salt marsh (Falmouth, MA, United States): millimeter-sized aggregates dominated by an uncultured, diazotrophic unicellular cyanobacterium of the order Chroococcales (termed GB-CYN1). We show that GB-CYN1 is closely related to Crocosphaera watsonii (UCYN-B) and "Candidatus Atelocyanobacterium thalassa" (UCYN-A), two groups of unicellular diazotrophic cyanobacteria that play an important role in marine primary production. Other green berry consortium members include pennate diatoms and putative heterotrophic bacteria from the Alphaproteobacteria and Bacteroidetes. Tight coupling was observed between photosynthetic oxygen production and heterotrophic respiration. When illuminated, the green berries became supersaturated with oxygen. From the metagenome, we observed that GB-CYN1 encodes photosystem II genes and thus has the metabolic potential for oxygen production unlike UCYN-A. In darkness, respiratory activity rapidly depleted oxygen creating anoxia within the aggregates. Metagenomic data revealed a suite of nitrogen fixation genes encoded by GB-CYN1, and nitrogenase activity was confirmed at the whole-aggregate level by acetylene reduction assays. Metagenome reads homologous to marker genes for denitrification were observed and suggest that heterotrophic denitrifiers might co-occur in the green berries, although the physiology and activity of facultative anaerobes in these aggregates remains uncharacterized. Nitrogen fixation in the surface ocean was long thought to be driven by filamentous cyanobacterial aggregates, though recent work has demonstrated the importance of unicellular diazotrophic cyanobacteria (UCYN) from the order Chroococcales. The green berries serve as a useful contrast to studies of open ocean UCYN and may provide a tractable model system to investigate microbial dynamics within phytoplankton aggregates, a phenomenon of global importance to the flux of particulate organic carbon and nitrogen in surface waters.
Collapse
Affiliation(s)
- Elizabeth G Wilbanks
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa BarbaraCA, United States
| | - Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep Sea Ecology and Technology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Ulrike Jaekel
- Department for Microbiology, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, United States
| | - Jonathan A Eisen
- Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, DavisCA, United States
| | - Daniel H Buckley
- School of Integrative Plant Science, Cornell University, IthacaNY, United States
| | - Stephen H Zinder
- Department of Microbiology, Cornell University, IthacaNY, United States
| |
Collapse
|
192
|
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Appl Environ Microbiol 2017; 83:AEM.01174-17. [PMID: 28667112 DOI: 10.1128/aem.01174-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4 IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.
Collapse
|
193
|
Yousuf J, Thajudeen J, Rahiman M, Krishnankutty S, P. Alikunj A, A. Abdulla MH. Nitrogen fixing potential of various heterotrophicBacillusstrains from a tropical estuary and adjacent coastal regions. J Basic Microbiol 2017; 57:922-932. [DOI: 10.1002/jobm.201700072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/18/2017] [Accepted: 07/07/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Jesmi Yousuf
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences; Cochin University of Science and Technology; Cochin Kerala India
- School of Environmental Sciences; Mahatma Gandhi University; Kottayam Kerala India
| | - Jabir Thajudeen
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences; Cochin University of Science and Technology; Cochin Kerala India
| | - Mujeeb Rahiman
- Post Graduate and Research Department of Aquaculture and Fishery Microbiology; M.E.S Ponnani College; Ponnani Kerala India
| | - Soumya Krishnankutty
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences; Cochin University of Science and Technology; Cochin Kerala India
| | - Aneesa P. Alikunj
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences; Cochin University of Science and Technology; Cochin Kerala India
| | - Mohamed H. A. Abdulla
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences; Cochin University of Science and Technology; Cochin Kerala India
| |
Collapse
|
194
|
Conroy BJ, Steinberg DK, Song B, Kalmbach A, Carpenter EJ, Foster RA. Mesozooplankton Graze on Cyanobacteria in the Amazon River Plume and Western Tropical North Atlantic. Front Microbiol 2017; 8:1436. [PMID: 28824569 PMCID: PMC5540951 DOI: 10.3389/fmicb.2017.01436] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/14/2017] [Indexed: 11/18/2022] Open
Abstract
Diazotrophic cyanobacteria, those capable of fixing di-nitrogen (N2), are considered one of the major sources of new nitrogen (N) in the oligotrophic tropical ocean, but direct incorporation of diazotrophic N into food webs has not been fully examined. In the Amazon River-influenced western tropical North Atlantic (WTNA), diatom diazotroph associations (DDAs) and the filamentous colonial diazotrophs Trichodesmium have seasonally high abundances. We sampled epipelagic mesozooplankton in the Amazon River plume and WTNA in May-June 2010 to investigate direct grazing by mesozooplankton on two DDA populations: Richelia associated with Rhizosolenia diatoms (het-1) and Hemiaulus diatoms (het-2), and on Trichodesmium using highly specific qPCR assays targeting nitrogenase genes (nifH). Both DDAs and Trichodesmium occurred in zooplankton gut contents, with higher detection of het-2 predominantly in calanoid copepods (2.33-16.76 nifH copies organism-1). Abundance of Trichodesmium was low (2.21-4.03 nifH copies organism-1), but they were consistently detected at high salinity stations (>35) in calanoid copepods. This suggests direct grazing on DDAs, Trichodesmium filaments and colonies, or consumption as part of sinking aggregates, is common. In parallel with the qPCR approach, a next generation sequencing analysis of 16S rRNA genes identified that cyanobacterial assemblage associated with zooplankton guts was dominated by the non-diazotrophic unicellular phylotypes Synechococcus (56%) and Prochlorococcus (26%). However, in two separate calanoid copepod samples, two unicellular diazotrophs Candidatus Atelocyanobacterium thalassa (UCYN-A) and Crocosphaera watsonii (UCYN-B) were present, respectively, as a small component of cyanobacterial assemblages (<2%). This study represents the first evidence of consumption of DDAs, Trichodesmium, and unicellular cyanobacteria by calanoid copepods in an area of the WTNA known for high carbon export. These diazotroph populations are quantitatively important in the global N budget, widespread and hence, the next step is to accurately quantify grazing. Nonetheless, these results highlight a direct pathway of diazotrophic N into the food web and have important implications for biogeochemical cycles, particularly oligotrophic regions where N2 fixation is the main source of new nitrogen.
Collapse
Affiliation(s)
- Brandon J. Conroy
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, WilliamsburgVA, United States
| | - Deborah K. Steinberg
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, WilliamsburgVA, United States
| | - Bongkuen Song
- Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, WilliamsburgVA, United States
| | - Andrew Kalmbach
- Department of Biology, Romberg Tiburon Center for Environmental Studies, San Francisco State University, TiburonCA, United States
| | - Edward J. Carpenter
- Department of Biology, Romberg Tiburon Center for Environmental Studies, San Francisco State University, TiburonCA, United States
| | - Rachel A. Foster
- Ocean Sciences, University of California, Santa Cruz, Santa CruzCA, United States
- Department of Ecology, Environment and Plant Sciences, Stockholm UniversityStockholm, Sweden
| |
Collapse
|
195
|
Calderoli PA, Collavino MM, Behrends Kraemer F, Morrás HJM, Aguilar OM. Analysis of nifH-RNA reveals phylotypes related to Geobacter and Cyanobacteria as important functional components of the N 2 -fixing community depending on depth and agricultural use of soil. Microbiologyopen 2017; 6. [PMID: 28766873 PMCID: PMC5635172 DOI: 10.1002/mbo3.502] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 11/10/2022] Open
Abstract
In this survey, a total of 80 787 reads and 28 171 unique NifH protein sequences were retrieved from soil RNA. This dataset extends our knowledge about the structure and diversity of the functional diazotrophic communities in agricultural soils from Argentinean Pampas. Operational taxonomic unit (OTU)‐based analyses showed that nifH phylotypes related to Geobacter and Anaeromyxobacter (44.8%), Rhizobiales (29%), Cyanobacteria (16.7%), and Verrucomicrobiales (8%) are key microbial components of N2 fixation in soils associated with no‐till management and soil depth. In addition, quantification of nifH gene copies related to Geobacter and Cyanobacteria revealed that these groups are abundant in soils under maize–soybean rotation and soybean monoculture, respectively. The correlation of physicochemical soil parameters with the diazotrophic diversity and composition showed that soil stability and organic carbon might contribute to the functional signatures of particular nifH phylotypes in fields under no‐till management. Because crop production relies on soil‐borne microorganism's activities, such as free N2 fixation, the information provided by our study on the diazotrophic population dynamics, associated with the edaphic properties and land‐use practices, represents a major contribution to gain insight into soil biology, in which functionally active components are identified.
Collapse
Affiliation(s)
- Priscila A Calderoli
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Mónica M Collavino
- Instituto de Botánica del Nordeste (IBONE), Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste-CONICET, Corrientes, Argentina
| | - Filipe Behrends Kraemer
- Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina.,INTA-CIRN, Instituto de Suelos, Hurlingham, Provincia de Buenos Aires, Argentina
| | - Héctor J M Morrás
- INTA-CIRN, Instituto de Suelos, Hurlingham, Provincia de Buenos Aires, Argentina
| | - O Mario Aguilar
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
196
|
Li HB, Singh RK, Singh P, Song QQ, Xing YX, Yang LT, Li YR. Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Front Microbiol 2017; 8:1268. [PMID: 28769881 PMCID: PMC5509769 DOI: 10.3389/fmicb.2017.01268] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023] Open
Abstract
The study was designed to isolate and characterize Pseudomonas spp. from sugarcane rhizosphere, and to evaluate their plant- growth- promoting (PGP) traits and nitrogenase activity. A biological nitrogen-fixing microbe has great potential to replace chemical fertilizers and be used as a targeted biofertilizer in a plant. A total of 100 isolates from sugarcane rhizosphere, belonging to different species, were isolated; from these, 30 isolates were selected on the basis of preliminary screening, for in vitro antagonistic activities against sugarcane pathogens and for various PGP traits, as well as nitrogenase activity. The production of IAA varied from 312.07 to 13.12 μg mL-1 in tryptophan supplemented medium, with higher production in AN15 and lower in CN20 strain. The estimation of ACC deaminase activity, strains CY4 and BA2 produced maximum and minimum activity of 77.0 and 15.13 μmoL mg-1 h-1. For nitrogenase activity among the studied strains, CoA6 fixed higher and AY1 fixed lower in amounts (108.30 and 6.16 μmoL C2H2 h-1 mL-1). All the strains were identified on the basis of 16S rRNA gene sequencing, and the phylogenetic diversity of the strains was analyzed. The results identified all strains as being similar to Pseudomonas spp. Polymerase chain reaction (PCR) amplification of nifH and antibiotic genes was suggestive that the amplified strains had the capability to fix nitrogen and possessed biocontrol activities. Genotypic comparisons of the strains were determined by BOX, ERIC, and REP PCR profile analysis. Out of all the screened isolates, CY4 (Pseudomonas koreensis) and CN11 (Pseudomonas entomophila) showed the most prominent PGP traits, as well as nitrogenase activity. Therefore, only these two strains were selected for further studies; Biolog profiling; colonization through green fluorescent protein (GFP)-tagged bacteria; and nifH gene expression using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The Biolog phenotypic profiling, which comprised utilization of C and N sources, and tolerance to osmolytes and pH, revealed the metabolic versatility of the selected strains. The colonization ability of the selected strains was evaluated by genetically tagging them with a constitutively expressing GFP-pPROBE-pTetr-OT plasmid. qRT-PCR results showed that both strains had the ability to express the nifH gene at 90 and 120 days, as compared to a control, in both sugarcane varieties GT11 and GXB9. Therefore, our isolated strains, P. koreensis and P. entomophila may be used as inoculums or in biofertilizer production for enhancing growth and nutrients, as well as for improving nitrogen levels, in sugarcane and other crops. The present study, to the best of our knowledge, is the first report on the diversity of Pseudomonas spp. associated with sugarcane in Guangxi, China.
Collapse
Affiliation(s)
- Hai-Bi Li
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Rajesh K Singh
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Pratiksha Singh
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Qi-Qi Song
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Yong-Xiu Xing
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Li-Tao Yang
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China
| | - Yang-Rui Li
- Agricultural College, State Key Laboratory of Subtropical Bioresources Conservation and Utilization, Guangxi UniversityNanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement Guangxi, Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Sugarcane Research Institute, Guangxi Academy of Agricultural SciencesNanning, China
| |
Collapse
|
197
|
Gradoville MR, Crump BC, Letelier RM, Church MJ, White AE. Microbiome of Trichodesmium Colonies from the North Pacific Subtropical Gyre. Front Microbiol 2017; 8:1122. [PMID: 28729854 PMCID: PMC5498550 DOI: 10.3389/fmicb.2017.01122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 06/01/2017] [Indexed: 11/13/2022] Open
Abstract
Filamentous diazotrophic Cyanobacteria of the genus Trichodesmium, often found in colonial form, provide an important source of new nitrogen to tropical and subtropical marine ecosystems. Colonies are composed of several clades of Trichodesmium in association with a diverse community of bacterial and eukaryotic epibionts. We used high-throughput 16S rRNA and nifH gene sequencing, carbon (C) and dinitrogen (N2) fixation assays, and metagenomics to describe the diversity and functional potential of the microbiome associated with Trichodesmium colonies collected from the North Pacific Subtropical Gyre (NPSG). The 16S rRNA and nifH gene sequences from hand-picked colonies were predominantly (>99%) from Trichodesmium Clade I (i.e., T. thiebautii), which is phylogenetically and ecologically distinct from the Clade III IMS101 isolate used in most laboratory studies. The bacterial epibiont communities were dominated by Bacteroidetes, Alphaproteobacteria, and Gammaproteobacteria, including several taxa with a known preference for surface attachment, and were relatively depleted in the unicellular Cyanobacteria and small photoheterotrophic bacteria that dominate NPSG surface waters. Sequencing the nifH gene (encoding a subcomponent of the nitrogenase enzyme) identified non-Trichodesmium diazotrophs that clustered predominantly among the Cluster III nifH sequence-types that includes putative anaerobic diazotrophs. Trichodesmium colonies may represent an important habitat for these Cluster III diazotrophs, which were relatively rare in the surrounding seawater. Sequence analyses of nifH gene transcripts revealed several cyanobacterial groups, including heterocystous Richelia, associated with the colonies. Both the 16S rRNA and nifH datasets indicated strong differences between Trichodesmium epibionts and picoplankton in the surrounding seawater, and also between the epibionts inhabiting Trichodesmium puff and tuft colony morphologies. Metagenomic and 16S rRNA gene sequence analyses suggested that lineages typically associated with a copiotrophic lifestyle comprised a large fraction of colony-associated epibionts, in contrast to the streamlined genomes typical of bacterioplankton in these oligotrophic waters. Additionally, epibiont metagenomes were enriched in specific genes involved in phosphate and iron acquisition and denitrification pathways relative to surface seawater metagenomes. We propose that the unique microbial consortium inhabiting colonies has a significant impact on the biogeochemical functioning of Trichodesmium colonies in pelagic environments.
Collapse
Affiliation(s)
- Mary R Gradoville
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Byron C Crump
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Ricardo M Letelier
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| | - Matthew J Church
- Flathead Lake Biological Station, University of MontanaMT, United States
| | - Angelicque E White
- College of Earth, Ocean and Atmospheric Sciences, Oregon State UniversityCorvallis, OR, United States
| |
Collapse
|
198
|
Griffith JC, Lee WG, Orlovich DA, Summerfield TC. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand. PLoS One 2017; 12:e0179652. [PMID: 28658306 PMCID: PMC5489180 DOI: 10.1371/journal.pone.0179652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/01/2017] [Indexed: 11/18/2022] Open
Abstract
The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities at the two sites will result in different responses to environmental change.
Collapse
|
199
|
Messer LF, Brown MV, Furnas MJ, Carney RL, McKinnon AD, Seymour JR. Diversity and Activity of Diazotrophs in Great Barrier Reef Surface Waters. Front Microbiol 2017. [PMID: 28638369 PMCID: PMC5461343 DOI: 10.3389/fmicb.2017.00967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Discrepancies between bioavailable nitrogen (N) concentrations and phytoplankton growth rates in the oligotrophic waters of the Great Barrier Reef (GBR) suggest that undetermined N sources must play a significant role in supporting primary productivity. One such source could be biological dinitrogen (N2) fixation through the activity of “diazotrophic” bacterioplankton. Here, we investigated N2 fixation and diazotroph community composition over 10° S of latitude within GBR surface waters. Qualitative N2 fixation rates were found to be variable across the GBR but were relatively high in coastal, inner and outer GBR waters, reaching 68 nmol L-1 d-1. Diazotroph assemblages, identified by amplicon sequencing of the nifH gene, were dominated by the cyanobacterium Trichodesmium erythraeum, γ-proteobacteria from the Gamma A clade, and δ-proteobacterial phylotypes related to sulfate-reducing genera. However, diazotroph communities exhibited significant spatial heterogeneity, correlated with shifts in dissolved inorganic nutrient concentrations. Specifically, heterotrophic diazotrophs generally increased in relative abundance with increasing concentrations of phosphate and N, while Trichodesmium was proportionally more abundant when concentrations of these nutrients were low. This study provides the first in-depth characterization of diazotroph community composition and N2 fixation dynamics within the oligotrophic, N-limited surface waters of the GBR. Our observations highlight the need to re-evaluate N cycling dynamics within oligotrophic coral reef systems, to include diverse N2 fixing assemblages as a potentially significant source of dissolved N within the water column.
Collapse
Affiliation(s)
- Lauren F Messer
- Climate Change Cluster, School of Life Sciences, University of Technology Sydney, SydneyNSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia
| | - Mark V Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, SydneyNSW, Australia
| | - Miles J Furnas
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| | - Richard L Carney
- Climate Change Cluster, School of Life Sciences, University of Technology Sydney, SydneyNSW, Australia
| | - A D McKinnon
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| | - Justin R Seymour
- Climate Change Cluster, School of Life Sciences, University of Technology Sydney, SydneyNSW, Australia
| |
Collapse
|
200
|
Pankratov TA, Kachalkin AV, Korchikov ES, Dobrovol’skaya TG. Microbial communities of lichens. Microbiology (Reading) 2017. [DOI: 10.1134/s0026261717030134] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|