151
|
Sooryanarain H, Meng XJ. Swine hepatitis E virus: Cross-species infection, pork safety and chronic infection. Virus Res 2020; 284:197985. [PMID: 32333941 DOI: 10.1016/j.virusres.2020.197985] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
Swine hepatitis E virus (swine HEV) belongs to the species Orthohepevirus A within the genus Orthohepevirus in the family Hepeviridae. Four different genotypes of swine HEV within the species Orthohepevirus A have been identified so far from domesticated and wild swine population: genotypes 3 (HEV-3) and 4 (HEV-4) swine HEVs are zoonotic and infect humans, whereas HEV-5 and HEV-6 are only identified from swine. As a zoonotic agent, swine HEV is an emerging public health concern in many industrialized countries. Pigs are natural reservoir for HEV, consumption of raw or undercooked pork is an important route of foodborne HEV transmission. Occupational risks such as direct contact with infected pigs also increase the risk of HEV transmission in humans. Cross-species infection of HEV-3 and HEV-4 have been documented under experimental and natural conditions. Both swine HEV-3 and swine HEV-4 infect non-human primates, the surrogates of man. Swine HEV, predominantly HEV-3, can establish chronic infection in immunocompromised patients especially in solid organ transplant recipients. The zoonotic HEV-3, and to lesser extent HEV-4, have also been shown to cause neurological diseases and kidney injury. In this review, we focus on the epidemiology of swine HEV, host and viral determinants influencing cross-species HEV infection, zoonotic infection and its associated pork safety concern, as well as swine HEV-associated chronic infection and neurological diseases.
Collapse
Affiliation(s)
- Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
152
|
Hepatitis E: an expanding epidemic with a range of complications. Clin Microbiol Infect 2020; 26:828-832. [PMID: 32251845 DOI: 10.1016/j.cmi.2020.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a common cause of viral hepatitis worldwide. Previously considered a disease of the developing world, it is increasingly recognized that locally acquired HEV infection is common in industrialized countries. OBJECTIVES The aim was to highlight the changing epidemiology of HEV infection, particularly in the developed world, and inform clinicians of the diverse clinical presentations and extra-hepatic complications associated with the virus. SOURCES References for this review were identified through searches of MEDLINE/PubMed, and Google Scholar, up to January 2020. Searches were restricted to articles published in English. CONTENT Hepatitis E virus is an under-recognized, emerging pathogen with important implications for public health in both the developing and developed world. The number of cases reported in resource-rich settings is increasing, in part due to improved case ascertainment but also as a result of increased incidence in some countries. The reasons behind these epidemiological shifts are not currently known. Chronic HEV infection has been reported in immunocompromised patients. A range of extra-hepatic manifestations have also been reported, most notably neurological and renal complications. There is evidence to suggest a causal link with Guillain-Barré syndrome, neuralgic amyotrophy and encephalitis/myelitis. Glomerular disease has been reported in the context of both acute and chronic infection. IMPLICATIONS HEV should be included in non-invasive liver screens and considered in the differentials for patients presenting with alanine aminotransferase elevation, suspected drug-induced liver injury or decompensated liver disease. Any patients with acute neurological injury and deranged liver function should be tested for hepatitis E, and all patients presenting with Guillain-Barré syndrome or neuralgic amyotrophy should be tested regardless of liver enzymes. Immunocompromised patients with persistently raised liver enzymes should be tested with molecular techniques and offered annual routine screening.
Collapse
|
153
|
Abi Nader E, Girard M, Leruez-Ville M, Sissaoui S, Lacaille F, Roque-Afonso AM, Debray D. Seroprevalence of Hepatitis E virus infection in children after liver transplantation: A single-center experience in France. Clin Res Hepatol Gastroenterol 2020; 44:174-180. [PMID: 31266724 DOI: 10.1016/j.clinre.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 05/26/2019] [Accepted: 06/05/2019] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide, usually asymptomatic in children. However, a growing number of publications over the last decade have documented cases of chronic hepatitis related to HEV-genotype 3 infection, and progressing to cirrhosis in immuno-compromised patients, particularly in adult kidney transplant recipients. The aim of our study was to evaluate the prevalence and severity of HEV infection among pediatric liver transplant (PLT) recipients managed in our center. MATERIAL AND METHODS Between November 1st 2014 and January 1st 2016, PLT recipients (less than 18 years-old) were screened for HEV infection [determined by HEV serology, HEV- immunoglobulin M (IgM) and immunoglobulin G (IgG), and HEV-ribonucleic acid (RNA) by reverse transcriptase polymerase chain reaction] at their annual follow-up visit. RESULTS Eighty children were tested for HEV infection a mean of 5.4±5.3 years after liver transplantation (LT). The main indication for LT was biliary atresia (n=47, 59%). The prevalence of HEV-IgG was 8% (n=6; age range 1.3 to 14.2 years-old at the time of HEV testing). Prevalence increased to 30% when considering only the 20 children with a past history of an unexplained episode of elevated transaminases since LT. None had HEV IgM, serum HEV-RNA, or increased transaminases at the time of HEV testing. Among the six IgG seropositive children, two had received intravenous immunoglobulins prior to screening and four children had a negative control (seroreversion) 3 to 42 months after the first testing. CONCLUSION The prevalence of HEV infection in our cohort is low and similar to other pediatric reports. We saw no cases of chronic hepatitis or fibrosis attributable to HEV. The lower immunosuppressive regimen used in PLT children compared to other solid organ transplant recipients may account for this good outcome.
Collapse
Affiliation(s)
- Elie Abi Nader
- Unit of Pediatric Hepatology, Reference Center for Rare Pediatric Liver Diseases, Necker-Enfants-Malades University Hospital, AP-HP, 149, Sèvres Street, 75015 Paris, France; University of Paris-Descartes, Sorbonne Paris-Cité, 75006 Paris, France.
| | - Muriel Girard
- Unit of Pediatric Hepatology, Reference Center for Rare Pediatric Liver Diseases, Necker-Enfants-Malades University Hospital, AP-HP, 149, Sèvres Street, 75015 Paris, France; University of Paris-Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Marianne Leruez-Ville
- Department of Virology, Necker-Enfants-Malades University Hospital, AP-HP, 75015 Paris, France
| | - Samira Sissaoui
- Unit of Pediatric Hepatology, Reference Center for Rare Pediatric Liver Diseases, Necker-Enfants-Malades University Hospital, AP-HP, 149, Sèvres Street, 75015 Paris, France
| | - Florence Lacaille
- Unit of Pediatric Hepatology, Reference Center for Rare Pediatric Liver Diseases, Necker-Enfants-Malades University Hospital, AP-HP, 149, Sèvres Street, 75015 Paris, France
| | - Anne-Marie Roque-Afonso
- Inserm U1993, Department of Virology, National Reference Center for Hepatitis A and Hepatitis E, Paul-Brousse Hospital, AP-HP, 94800 Villejuif, France; University of Paris-Sud, 91405 Paris, France
| | - Dominique Debray
- Unit of Pediatric Hepatology, Reference Center for Rare Pediatric Liver Diseases, Necker-Enfants-Malades University Hospital, AP-HP, 149, Sèvres Street, 75015 Paris, France; University of Paris-Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
154
|
Nitta S, Takahashi K, Kawai-Kitahata F, Tsuchiya J, Sato A, Miyoshi M, Murakawa M, Itsui Y, Nakagawa M, Azuma S, Kakinuma S, Watanabe M, Asahina Y. Time course alterations of virus sequences and immunoglobulin titers in a chronic hepatitis E patient. Hepatol Res 2020; 50:524-531. [PMID: 31883166 DOI: 10.1111/hepr.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 02/08/2023]
Abstract
AIM Hepatitis E virus (HEV) can cause chronic infection in immunocompromised hosts. However, the dynamics of HEV during persistent infection is not well understood. To elucidate time course alterations in virus sequences and anti-HEV antibodies during persistent infection, we analyzed the HEV sequences and titers of anti-HEV antibodies from a chronic hepatitis E patient. METHODS Serum samples were obtained from a chronic hepatitis E patient under corticosteroid therapy for neurological disease. The titers of anti-HEV antibodies (immunoglobulin A, immunoglobulin M, and immunoglobulin G) in serum samples were detected by enzyme immunoassay. The full or near-full nucleotide sequences of HEV isolated from consecutive serum samples were identified and compared. Phylogenetic analysis was also performed. RESULTS Alterations of anti-HEV antibodies from a chronic hepatitis E patient were different from those previously reported in acute hepatitis E patients. The virus sequence was unchanged in the period without treatment, but nucleotide mutations were observed after ribavirin treatment was started. In addition, the sequence of this strain had extremely high identity to that isolated from swine liver in Japan. CONCLUSIONS Virus mutations in HEV emerged after ribavirin treatment was started. Sequence analysis may useful for deciding the treatment strategy for chronic hepatitis E patients who did not eliminate the virus with 3 months of RBV treatment and inferring the origin of the infection. This report provides insights into the chronicity of hepatitis E, and the impact of persistent infection and ribavirin treatment on the emergence of virus mutations.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuaki Takahashi
- Department of Medical Sciences, Tokyo-Shinagawa Hospital, Tokyo, Japan.,Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Fukiko Kawai-Kitahata
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masato Miyoshi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Murakawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Itsui
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mina Nakagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishin Azuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sei Kakinuma
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,TMDU Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Asahina
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Liver Disease Control, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
155
|
Mrzljak A, Novak R, Pandak N, Tabain I, Franusic L, Barbic L, Bogdanic M, Savic V, Mikulic D, Pavicic-Saric J, Stevanovic V, Vilibic-Cavlek T. Emerging and neglected zoonoses in transplant population. World J Transplant 2020; 10:47-63. [PMID: 32257849 PMCID: PMC7109593 DOI: 10.5500/wjt.v10.i3.47] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/15/2020] [Accepted: 03/22/2020] [Indexed: 02/06/2023] Open
Abstract
Zoonoses represent a problem of rising importance in the transplant population. A close relationship and changes between human, animal and environmental health ("One Health" concept) significantly influence the transmission and distribution of zoonotic diseases. The aim of this manuscript is to perform a narrative review of the published literature on emerging and neglected zoonoses in the transplant population. Many reports on donor-derived or naturally acquired (re-)emerging arboviral infections such as dengue, chikungunya, West Nile, tick-borne encephalitis and Zika virus infection have demonstrated atypical or more complicated clinical course in immunocompromised hosts. Hepatitis E virus has emerged as a serious problem after solid organ transplantation (SOT), leading to diverse extrahepatic manifestations and chronic hepatitis with unfavorable outcomes. Some neglected pathogens such as lymphocytic choriomeningitis virus can cause severe infection with multi-organ failure and high mortality. In addition, ehrlichiosis may be more severe with higher case-fatality rates in SOT recipients. Some unusual or severe presentations of borreliosis, anaplasmosis and rickettsioses were also reported among transplant patients. Moreover, toxoplasmosis as infectious complication is a well-recognized zoonosis in this population. Although rabies transmission through SOT transplantation has rarely been reported, it has become a notable problem in some countries. Since the spreading trends of zoonoses are likely to continue, the awareness, recognition and treatment of zoonotic infections among transplant professionals should be imperative.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Rafaela Novak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Nenad Pandak
- Depatment of Medicine, The Royal Hospital Muscat, Muscat 111, Oman
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | | | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Danko Mikulic
- Department of Abdominal and Transplant Surgery, Merkur University Hospital, Zagreb 10000, Croatia
| | - Jadranka Pavicic-Saric
- Department of Anesthesiology and Intensive Medicine, Merkur University Hospital, School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health; School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
156
|
Liver Transudate, a Potential Alternative to Detect Anti-Hepatitis E Virus Antibodies in Pigs and Wild Boars ( Sus scrofa). Microorganisms 2020; 8:microorganisms8030450. [PMID: 32210090 PMCID: PMC7144013 DOI: 10.3390/microorganisms8030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, cases of hepatitis E virus (HEV) infection have increased in Europe in association with the consumption of contaminated food, mainly from pork products but also from wild boars. The animal’s serum is usually tested for the presence of anti-HEV antibodies and viral RNA but, in many cases such as during hunting, an adequate serum sample cannot be obtained. In the present study, liver transudate was evaluated as an alternative matrix to serum for HEV detection. A total of 125 sera and liver transudates were tested by enzyme-linked immunosorbent assay at different dilutions (1:2, 1:10, 1:20), while 58 samples of serum and liver transudate were checked for the presence of HEV RNA by RT-qPCR. Anti- HEV antibodies were detected by ELISA in 68.0% of the serum samples, and in 61.6% of the undiluted transudate, and in 70.4%, 56.8%, and 44.8% of 1:2, 1:10, or 1:20 diluted transudate, respectively. The best results were obtained for the liver transudate at 1:10 dilution, based on the Kappa statistic (0.630) and intraclass correlation coefficient (0.841). HEV RNA was detected by RT-qPCR in 22.4% of the serum samples and 6.9% of the transudate samples, all samples used for RT-qPCR were positive by ELISA. Our results indicate that liver transudate may be an alternative matrix to serum for the detection of anti-HEV antibodies.
Collapse
|
157
|
Hepatitis E Virus Infection in an Italian Cohort of Hematopoietic Stem Cell Transplantation Recipients: Seroprevalence and Infection. Biol Blood Marrow Transplant 2020; 26:1355-1362. [PMID: 32200124 DOI: 10.1016/j.bbmt.2020.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 01/05/2023]
Abstract
Chronic hepatitis E virus (HEV) infection in hematopoietic stem cell transplantation (HSCT) recipients is an emerging threat. The aim of this study was to provide data on the HEV burden in an Italian cohort of HSCT recipients and analyze risk factors for HEV seropositivity. This retrospective study reports data from 596 HSCT recipients compiled between 2010 and 2019. It included patients who underwent transplantation between 2010 and 2015 for whom pretransplantation (n = 419) and post-transplantation (n = 161) serum samples were available and tested retrospectively, as well as patients in whom prospective HEV testing was performed during the standard care: pre-HSCT IgG screening in 144, pre-HSCT HEV-RNA screening in addition to IgG screening in 60, and HEV-RNA testing in case of clinical suspicion of HEV infection in 59 (26 of whom were also included in the IgG screening cohorts). The rate of pre-HSCT HEV-IgG positivity was 6.0% (34 of 563). Older age was an independent risk factor for seropositivity (P = .039). None of the 34 HEV-IgG-positive patients had detectable HEV-RNA. One case of transient HEV-RNA positivity pre-HSCT was identified through screening. Two patients were diagnosed with chronic HEV hepatitis, and 1 patient was successfully treated with ribavirin. The burden of HEV infection in HSCT recipients in Italy is limited, and pre-HSCT screening appears to be of no benefit. Timely diagnosis of HEV infection with HEV-RNA is mandatory in cases of clinical suspicion.
Collapse
|
158
|
Darstein F, Häuser F, Mittler J, Zimmermann A, Lautem A, Hoppe-Lotichius M, Otto G, Lang H, Galle PR, Zimmermann T. Hepatitis E Is a Rare Finding in Liver Transplant Patients With Chronic Elevated Liver Enzymes and Biopsy-Proven Acute Rejection. Transplant Proc 2020; 52:926-931. [PMID: 32139278 DOI: 10.1016/j.transproceed.2020.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/17/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND In past decades, liver transplant (LT) patients were not routinely screened for hepatitis E virus (HEV) infection, and thus it might have been misdiagnosed as an acute rejection episode. Our aim was to analyze a real-world cohort of LT patients who presented with at least 1 episode of biopsy-proven acute rejection (BPAR) and suffered from persistent elevated transaminases, to evaluate the frequency of HEV infection misdiagnosed as a rejection episode. METHODS Data from 306 patients transplanted between 1997 and 2017, including 565 liver biopsies, were analyzed. Biopsies from patients suffering from hepatitis C (n = 79; 25.8%) and from patients who presented with a Rejection Activity Index <5 (n = 134; 43.8%) were excluded. A subgroup of 74 patients (with 134 BPAR) with persistently elevated liver enzymes was chosen for further HEV testing. RESULTS Positive HEV IgG was detectable in 18 of 73 patients (24.7%). Positive HEV RNA was diagnosed in 3 of 73 patients with BPAR (4.1%). Patients with HEV infection showed no difference in etiology of the liver disease, type of immunosuppression, or median Rejection Activity Index. CONCLUSION Few HEV infections were misdiagnosed as acute rejection episodes in this real-world cohort. Thus, HEV infection is an infrequent diagnosis in cases with persistent elevated liver enzymes and BPAR after LT.
Collapse
Affiliation(s)
- F Darstein
- First Department of Internal Medicine, Gastroenterology and Hepatology, Universitätsmedizin Mainz, Mainz, Germany.
| | - F Häuser
- Institute for Clinical Chemistry and Laboratory Medicine, Universitätsmedizin Mainz, Mainz, Germany
| | - J Mittler
- Department of Hepatobiliary and Transplantation Surgery, Universitätsmedizin Mainz, Mainz, Germany
| | - A Zimmermann
- First Department of Internal Medicine, Gastroenterology and Hepatology, Universitätsmedizin Mainz, Mainz, Germany
| | - A Lautem
- Department of Hepatobiliary and Transplantation Surgery, Universitätsmedizin Mainz, Mainz, Germany
| | - M Hoppe-Lotichius
- Department of Hepatobiliary and Transplantation Surgery, Universitätsmedizin Mainz, Mainz, Germany
| | - G Otto
- Department of Hepatobiliary and Transplantation Surgery, Universitätsmedizin Mainz, Mainz, Germany
| | - H Lang
- Department of Hepatobiliary and Transplantation Surgery, Universitätsmedizin Mainz, Mainz, Germany
| | - P R Galle
- First Department of Internal Medicine, Gastroenterology and Hepatology, Universitätsmedizin Mainz, Mainz, Germany
| | - T Zimmermann
- First Department of Internal Medicine, Gastroenterology and Hepatology, Universitätsmedizin Mainz, Mainz, Germany
| |
Collapse
|
159
|
Seth A, Sherman KE. Hepatitis E: What We Think We Know. Clin Liver Dis (Hoboken) 2020; 15:S37-S44. [PMID: 32140212 PMCID: PMC7050948 DOI: 10.1002/cld.858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Aradhna Seth
- Division of Digestive DiseaseUniversity of Cincinnati College of MedicineCincinnatiOH
| | - Kenneth E. Sherman
- Division of Digestive DiseaseUniversity of Cincinnati College of MedicineCincinnatiOH
| |
Collapse
|
160
|
Four-year long (2014-2017) clinical and laboratory surveillance of hepatitis E virus infections using combined antibody, molecular, antigen and avidity detection methods: Increasing incidence and chronic HEV case in Hungary. J Clin Virol 2020; 124:104284. [DOI: 10.1016/j.jcv.2020.104284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
161
|
Ankcorn MJ, Tedder RS, Cairns J, Sandmann FG. Cost-Effectiveness Analysis of Screening for Persistent Hepatitis E Virus Infection in Solid Organ Transplant Patients in the United Kingdom: A Model-Based Economic Evaluation. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2020; 23:309-318. [PMID: 32197726 DOI: 10.1016/j.jval.2019.09.2751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/08/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Despite potentially severe and fatal outcomes, recent studies of solid organ transplant (SOT) recipients in Europe suggest that hepatitis E virus (HEV) infection is underdiagnosed, with a prevalence of active infection of up to 4.4%. OBJECTIVES To determine the cost-effectiveness of introducing routine screening for HEV infection in SOT recipients in the UK. METHODS A Markov cohort model was developed to evaluate the cost-utility of 4 HEV screening options over the lifetime of 1000 SOT recipients. The current baseline of nonsystematic testing was compared with annual screening of all patients by polymerase chain reaction (PCR; strategy A) or HEV-antigen (HEV-Ag) detection (strategy B) and selective screening of patients who have a raised alanine aminotransferase (ALT) value by PCR (strategy C) or HEV-Ag (strategy D). The primary outcome was the incremental cost per quality-adjusted life-year (QALY). We adopted the National Health Service (NHS) perspective and discounted future costs and benefits at 3.5%. RESULTS At a willingness-to-pay of £20 000/QALY gained, systematic screening of SOT patients by any method (strategy A-D) had a high probability (77.9%) of being cost-effective. Among screening strategies, strategy D is optimal and expected to be cost-saving to the NHS; if only PCR testing strategies are considered, then strategy C becomes cost-effective (£660/QALY). These findings were robust against a wide range of sensitivity and scenario analyses. CONCLUSIONS Our model showed that routine screening for HEV in SOT patients is very likely to be cost-effective in the UK, particularly in patients presenting with an abnormal alanine aminotransferase.
Collapse
Affiliation(s)
- Michael J Ankcorn
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, England, UK; Transfusion Microbiology, National Health Service Blood and Transplant, London, England, UK.
| | - Richard S Tedder
- Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, England, UK; Transfusion Microbiology, National Health Service Blood and Transplant, London, England, UK; Department of Medicine, Imperial College London, London, England, UK
| | - John Cairns
- London School of Hygiene and Tropical Medicine, London, England, UK
| | - Frank G Sandmann
- London School of Hygiene and Tropical Medicine, London, England, UK; Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, London, England, UK
| |
Collapse
|
162
|
Mrzljak A, Dinjar-Kujundzic P, Knotek M, Kudumija B, Ilic M, Gulin M, Zibar L, Hrstic I, Jurekovic Z, Kolaric B, Jemersic L, Prpic J, Tomljenovic M, Vilibic-Cavlek T. Seroepidemiology of hepatitis E in patients on haemodialysis in Croatia. Int Urol Nephrol 2020; 52:371-378. [PMID: 31894559 DOI: 10.1007/s11255-019-02363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Data on the seroprevalence of hepatitis E virus (HEV) in heamodialysis (HD) patients are conflicting, ranging from 0 to 44%. The aim of this study was to determine the HEV seroprevalence and risk factors among HD patients in Croatia. METHODS A total of 394 HD patients from six medical facilities in five Croatian cities (three sites in the continental and three sites in the coastal region) were tested for HEV IgM/IgG antibodies using an enzyme-linked immunosorbent assay. Additionally, all samples were tested for HEV RNA by RT-PCR. Sociodemographic data and risk factors were collected using a questionnaire. RESULTS HEV IgG antibodies were detected in 110 (27.9%) patients. The seroprevalence varied significantly between dialysis centres, ranging from 5.2 to 43.4% (p = 0.001). HEV IgM antibodies were found in 0.04% of IgG positive patients. All patients tested negative for HEV RNA. Factors associated with HEV IgG seropositivity were age > 60 years (OR 8.17; 95% CI 1.08-62.14), living in the continental parts of the country (OR 2.58; 95% CI 1.55-4.30), and transfusion of blood products (OR 1.66; 95% CI 1.01-2.73). After adjusting for age and gender, patients from continental regions had higher odds of HEV seropositivity compared to patients from coastal regions (OR 2.88; 95% CI 1.71-4.85) and those who had RBC transfusions (OR 1.70, 95% CI 1.02-2.69) compared to those who did not. CONCLUSION The study showed a high HEV seropositivity among HD patients in Croatia, with significant variations between geographical regions. Continental area of residence and RBC transfusion were the most significant risk factors for HEV seropositivity. Due to the high seroprevalence, routine HEV screening among HD patients, especially in transplant candidates should be considered.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Internal Medicine, Merkur University Hospital, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | | - Mladen Knotek
- Department of Internal Medicine, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Boris Kudumija
- Policlinic for Internal Medicine and Dialysis B. Braun Avitum, Zagreb, Croatia
| | - Mario Ilic
- Department of Internal Medicine, General Hospital Dubrovnik, Dubrovnik, Croatia
| | - Marijana Gulin
- Department of Internal Medicine, General Hospital Sibenik, Sibenik, Croatia
| | - Lada Zibar
- Department of Internal Medicine, University Hospital Centre Osijek, Osijek, Croatia
- Faculty of Medicine, University Josip Juraj Strossmayer in Osijek, Osijek, Croatia
| | - Irena Hrstic
- Department of Internal Medicine, General Hospital Pula, Pula, Croatia
| | - Zeljka Jurekovic
- Department of Internal Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Branko Kolaric
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Jelena Prpic
- Croatian Veterinary Institute, 10000, Zagreb, Croatia
| | - Morana Tomljenovic
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| |
Collapse
|
163
|
Istrate A, Rădulescu AL. A comparison of hepatitis E and A in a teaching hospital in Northwestern Romania. Acute hepatitis E - a mild disease? Med Pharm Rep 2020; 93:30-38. [PMID: 32133444 PMCID: PMC7051815 DOI: 10.15386/mpr-1487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Background and aims The incidence of locally acquired hepatitis E has increased in recent years across Europe. There are only few data on hepatitis E in Romania. The purpose of our research was to describe and compare hepatitis E and hepatitis A in adult patients. Methods We included all consecutive adult patients with hepatitis E and hepatitis A admitted to the Teaching Hospital of Infectious Diseases, Cluj-Napoca, Romania between January 2017 and August 2019. Results Hepatitis E incidence increased in 2018–2019 compared to 2017. The average age in hepatitis E (n=48) patients was 50.6 versus 39.1 years in hepatitis A (n=152, not including 262 minors) and two-thirds of the patients in both groups were men. Compared to hepatitis A, patients with hepatitis E presented significantly less modified AST and ALT, bilirubin, prothrombin index and INR levels. We found more comorbidities in hepatitis E patients adjusted for age and gender. Severe forms were found in 5 (3.3%) hepatitis A patients, compared to 12 (25%) of hepatitis E patients, of which 3 died. Ribavirin treatment was considered in 9 patients with acute-on-chronic hepatitis E, immunosuppression, cancers or neurological manifestations, showing good results. Conclusions We observed an increased number of hepatitis E cases. Although laboratory results were less modified compared to hepatitis A, we found a higher number of severe hepatitis E cases. Ribavirin treatment seems to be beneficial in patients with preexisting conditions.
Collapse
Affiliation(s)
- Alexandru Istrate
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Epidemiology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| | - Amanda Lelia Rădulescu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Epidemiology, Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
| |
Collapse
|
164
|
Lhomme S, Marion O, Abravanel F, Izopet J, Kamar N. Clinical Manifestations, Pathogenesis and Treatment of Hepatitis E Virus Infections. J Clin Med 2020; 9:E331. [PMID: 31991629 PMCID: PMC7073673 DOI: 10.3390/jcm9020331] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis throughout the world. Most infections are acute but they can become chronic in immunocompromised patients, such as solid organ transplant patients, patients with hematologic malignancy undergoing chemotherapy and those with a human immunodeficiency virus (HIV) infection. Extra-hepatic manifestations, especially neurological and renal diseases, have also been described. To date, four main genotypes of HEV (HEV1-4) were described. HEV1 and HEV2 only infect humans, while HEV3 and HEV4 can infect both humans and animals, like pigs, wild boar, deer and rabbits. The real epidemiology of HEV has been underestimated because most infections are asymptomatic. This review focuses on the recent advances in our understanding of the pathophysiology of acute HEV infections, including severe hepatitis in patients with pre-existing liver disease and pregnant women. It also examines the mechanisms leading to chronic infection in immunocompromised patients and extra-hepatic manifestations. Acute infections are usually self-limiting and do not require antiviral treatment. Conversely, a chronic HEV infection can be cleared by decreasing the dose of immunosuppressive drugs or by treating with ribavirin for 3 months. Nevertheless, new drugs are needed for those cases in which ribavirin treatment fails.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Olivier Marion
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Florence Abravanel
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Nassim Kamar
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| |
Collapse
|
165
|
Rossotti R, Puoti M. Sexually Transmitted Hepatitis. Sex Transm Infect 2020. [DOI: 10.1007/978-3-030-02200-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
166
|
Rivero-Juarez A, Vallejo N, Lopez-Lopez P, Díaz-Mareque AI, Frias M, Vallejo A, Caballero-Gómez J, Rodríguez-Velasco M, Molina E, Aguilera A. Ribavirin as a First Treatment Approach for Hepatitis E Virus Infection in Transplant Recipient Patients. Microorganisms 2019; 8:E51. [PMID: 31888090 PMCID: PMC7022260 DOI: 10.3390/microorganisms8010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
The hepatitis E virus (HEV) is the major cause of acute hepatitis of viral origin worldwide. Despite its usual course as an asymptomatic self-limited hepatitis, there are highly susceptible populations, such as those with underlying immunosuppression, which could develop chronic hepatitis. In this situation, implementation of therapy is mandatory in the sense to facilitate viral clearance. Currently, there are no specific drugs approved for HEV infection, but ribavirin (RBV), the drug of choice, is used for off-label treatment. Here, we present two cases of chronic HEV infection in transplant patients, reviewing and discussing the therapeutic approach available in the literature. The use of RBV for the treatment of an HEV infection in organ transplant patients seems to be effective. The recommendation of 12 weeks of therapy is adequate in terms of efficacy. Nevertheless, there are important issues that urgently need to be assessed, such as optimal duration of therapy and drug dosage.
Collapse
Affiliation(s)
- Antonio Rivero-Juarez
- Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14006 Cordoba, Spain; (P.L.-L.); (M.F.); (J.C.-G.)
| | - Nicolau Vallejo
- Digestive Unit, Complexo Hospitalario Universitario de Santiago, 15705 Santiago de Compostela, Spain; (N.V.); (E.M.)
| | - Pedro Lopez-Lopez
- Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14006 Cordoba, Spain; (P.L.-L.); (M.F.); (J.C.-G.)
| | - Ana Isabel Díaz-Mareque
- Nephrology Unit, Complexo Hospitalario Universitario de Santiago, 15705 Santiago de Compostela, Spain;
| | - Mario Frias
- Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14006 Cordoba, Spain; (P.L.-L.); (M.F.); (J.C.-G.)
| | - Aldara Vallejo
- Microbiology Unit, Complexo Hospitalario Universitario de Santiago, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.V.); (M.R.-V.); (A.A.)
| | - Javier Caballero-Gómez
- Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Hospital Universitario Reina Sofía de Córdoba, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, 14006 Cordoba, Spain; (P.L.-L.); (M.F.); (J.C.-G.)
- Animal Health Department, University of Cordoba-Agrifood Excellence International Campus (ceiA3), 15705 Cordoba, Spain
| | - María Rodríguez-Velasco
- Microbiology Unit, Complexo Hospitalario Universitario de Santiago, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.V.); (M.R.-V.); (A.A.)
| | - Esther Molina
- Digestive Unit, Complexo Hospitalario Universitario de Santiago, 15705 Santiago de Compostela, Spain; (N.V.); (E.M.)
| | - Antonio Aguilera
- Microbiology Unit, Complexo Hospitalario Universitario de Santiago, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (A.V.); (M.R.-V.); (A.A.)
| |
Collapse
|
167
|
Controlling hepatitis E virus in the pig production sector: Assessment of the technical and behavioural feasibility of on-farm risk mitigation strategies. Prev Vet Med 2019; 175:104866. [PMID: 31838401 DOI: 10.1016/j.prevetmed.2019.104866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic agent with pigs as the main reservoir in industrialised countries. Recent studies conducted on pig farms, in experimental conditions or through modelling approaches, have led to a better understanding of the spread of HEV on pig farms. The findings have also made it possible to define a set of measures to reduce HEV prevalence and the risk of marketing contaminated products. The objective of this study was to assess the feasibility of a set of HEV control strategies on pig farms. Individual semi-structured interviews were conducted with farmers, veterinarians and farming advisors to collect general data, their level of knowledge of HEV, their opinion on the technical feasibility of certain changes in practices, their perception of the respective responsibilities of the different stakeholders, and their feelings about the importance of the issue, following the framework of the Theory of Planned Behaviour. The interviews made it possible to highlight potential barriers and preferred motivators for the implementation of on-farm risk mitigation strategies. Barriers included lack of knowledge, scientific gaps, perceived inability to control HEV, and low perception of the importance of the issue. Motivators included professional satisfaction, family recognition, and the opportunity to achieve higher quality standards. Three clusters of stakeholders were also identified, with a group of leaders who could help unlock reluctance and disseminate innovations. This type of behavioural approach appeared useful to help risk managers facilitate zoonotic control on pig farms.
Collapse
|
168
|
Mrzljak A, Tabain I, Premac H, Bogdanic M, Barbic L, Savic V, Stevanovic V, Jelic A, Mikulic D, Vilibic-Cavlek T. The Role of Emerging and Neglected Viruses in the Etiology of Hepatitis. Curr Infect Dis Rep 2019; 21:51. [PMID: 31754812 DOI: 10.1007/s11908-019-0709-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW In this review, we present the overview of emerging and neglected viruses associated with liver involvement. RECENT FINDINGS Hepatitis E virus (HEV) emerged in the last two decades, causing hepatitis in many parts of the world. Moreover, liver involvement was also described in some emerging arboviral infections. Many reports showed dengue-associated liver injury; however, chikungunya, West Nile, tick-borne encephalitis, and Zika virus are rarely associated with clinically manifest liver disease. In addition, some neglected highly prevalent viruses such as adenoviruses and parvovirus B19 are capable of causing hepatitis in specific population groups. Anelloviruses (torque teno virus/torque teno mini virus/torque teno midi virus, SEN virus), human bocavirus, pegiviruses, and lymphocytic choriomeningitis virus have shown a little potential for causing hepatitis, but their role in the etiology of liver disease remains to be determined. In addition to the well-known hepatotropic viruses, many emerging and neglected viruses have been associated with liver diseases. The number of emerging zoonotic viruses has been increasingly recognized. While zoonotic potential of HEV is well documented, the recent identification of new hepatitis-related animal viruses such as HEV strains from rabbits and camels, non-primate hepaciviruses in domestic dogs and horses, as well as equine and porcine pegivirus highlights the possible zoonotic transmission in the context of "One Health." However, zoonotic potential and hepatotropism of animal hepatitis viruses remain to be determined.
Collapse
Affiliation(s)
- Anna Mrzljak
- Department of Medicine, Merkur University Hospital, Salata 3b, 10000, Zagreb, Croatia.
- School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Irena Tabain
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Hrvoje Premac
- Department of Medicine, Varazdin General Hospital, Varazdin, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Savic
- Poultry Center, Laboratory for Virology and Serology, Croatian Veterinary Institute, Zagreb, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Jelic
- Department of Medicine, Merkur University Hospital, Salata 3b, 10000, Zagreb, Croatia
| | - Danko Mikulic
- Department of Surgery, Merkur University Hospital, Zagreb, Croatia
| | - Tatjana Vilibic-Cavlek
- School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Virology, Croatian Institute of Public Health, Zagreb, Croatia
| |
Collapse
|
169
|
Harritshøj LH, Hother CE, Sengeløv H, Daugaard G, Sørensen SS, Jacobsen S, Perch M, Holm DK, Sækmose SG, Aagaard B, Erikstrup C, Hogema BM, Lundgren JD, Ullum H. Epidemiology of hepatitis E virus infection in a cohort of 4023 immunocompromised patients. Int J Infect Dis 2019; 91:188-195. [PMID: 31756566 DOI: 10.1016/j.ijid.2019.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES The prevalence of active, chronic, and former hepatitis E virus (HEV) infections was investigated in a cohort of immunocompromised patients. The association with transfusion transmitted HEV was evaluated, and the HEV seroprevalence was compared with that in healthy blood donors. STUDY DESIGN AND METHODS Serum samples from 4023 immunocompromised patients at Rigshospitalet, Denmark were retrospectively tested for HEV RNA and anti-HEV IgG. HEV RNA-positive patients were followed up by HEV testing, clinical symptoms, and transfusion history. Factors associated with anti-HEV were explored by multivariable logistic regression analysis. Samples from 1226 blood donors were retrospectively tested for anti-HEV IgG. RESULTS HEV RNA was detected in six patients (0.15%) with no indications of chronic HEV infection. HEV RNA prevalence rates among recipients of allogeneic haematopoietic stem cell transplantation (allo-HSCT) and solid organ transplantation (SOT) were 0.58% and 0.21%, respectively. Transfusion transmitted infections were refuted, and transfusion history was not associated with anti-HEV positivity. The difference in HEV seroprevalence between patients (22.0%) and blood donors (10.9%) decreased when adjusting for age and sex (odds ratio 1.20, 95% confidence interval 0.97-1.48). CONCLUSIONS HEV viremia among allo-HSCT and SOT recipients suggests that clinicians should be aware of this diagnosis. The lack of association of blood transfusion with anti-HEV positivity supports food-borne transmission as the main transmission route of HEV common to both patients and blood donors.
Collapse
Affiliation(s)
- Lene H Harritshøj
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christoffer E Hother
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Gedske Daugaard
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren S Sørensen
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Department of Nephrology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Jacobsen
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Copenhagen Lupus and Vasculitis Clinic, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Dorte K Holm
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Susanne G Sækmose
- Department of Clinical Immunology, Næstved Hospital, Næstved, Denmark
| | - Bitten Aagaard
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Boris M Hogema
- Sanquin Research and Diagnostic Services, Departments of Blood-borne Infections and Virology, Amsterdam, The Netherlands
| | - Jens D Lundgren
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark; Centre for Health, Immunity and Infectious Diseases (CHIP), Rigshospitalet, Copenhagen University Hospital, Denmark
| | - Henrik Ullum
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
170
|
Agrawal B. Heterologous Immunity: Role in Natural and Vaccine-Induced Resistance to Infections. Front Immunol 2019; 10:2631. [PMID: 31781118 PMCID: PMC6856678 DOI: 10.3389/fimmu.2019.02631] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
The central paradigm of vaccination is to generate resistance to infection by a specific pathogen when the vacinee is re-exposed to that pathogen. This paradigm is based on two fundamental characteristics of the adaptive immune system, specificity and memory. These characteristics come from the clonal specificity of T and B cells and the long-term survival of previously-encountered memory cells which can rapidly and specifically expand upon re-exposure to the same specific antigen. However, there is an increasing awareness of the concept, as well as experimental documentation of, heterologous immunity and cross-reactivity of adaptive immune lymphocytes in protection from infection. This awareness is supported by a number of human epidemiological studies in vaccine recipients and/or individuals naturally-resistant to certain infections, as well as studies in mouse models of infections, and indeed theoretical considerations regarding the disproportional repertoire of available T and B cell clonotypes compared to antigenic epitopes found on pathogens. Heterologous immunity can broaden the protective outcomes of vaccinations, and natural resistance to infections. Besides exogenous microbes/pathogens and/or vaccines, endogenous microbiota can also impact the outcomes of an infection and/or vaccination through heterologous immunity. Moreover, utilization of viral and/or bacterial vaccine vectors, capable of inducing heterologous immunity may also influence the natural course of many infections/diseases. This review article will briefly discuss these implications and redress the central dogma of specificity in the immune system.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
171
|
Chauhan A, Webb G, Ferguson J. Clinical presentations of Hepatitis E: A clinical review with representative case histories. Clin Res Hepatol Gastroenterol 2019; 43:649-657. [PMID: 30808575 PMCID: PMC6864596 DOI: 10.1016/j.clinre.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/03/2019] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
Hepatitis E virus (HEV) typically causes an acute, self-limiting hepatitis and is among the commonest cause of such presentations. Hepatitis E viral infection is also increasingly recognized as a cause of chronic hepatitis amongst the immunocompromised, particularly amongst solid organ transplant recipients. Chronic HEV infection remains an underdiagnosed disease and chronic infection can lead to rapidly progressive liver fibrosis and cirrhosis. This review examines current understanding of the HEV. We illustrate typical clinical presentations, management strategies [(based upon guidelines from both the British Transplant Society (BTS) and European Association for the study of liver (EASL)] and outcomes of HEV infection in different cohorts of patients by highlighting select transplant and non-transplant patient cases, from one of the largest tertiary Hepatology centres in Europe.
Collapse
Affiliation(s)
- Abhishek Chauhan
- NIHR Birmingham Biomedical Research Centre, United Kingdom; Liver unit, University Hospitals Birmingham, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom.
| | - Gwilym Webb
- Liver unit, University Hospitals Birmingham, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, United Kingdom
| | - James Ferguson
- Liver unit, University Hospitals Birmingham, United Kingdom
| |
Collapse
|
172
|
Hepatitis E virus infections in Europe. J Clin Virol 2019; 120:20-26. [PMID: 31536936 DOI: 10.1016/j.jcv.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
|
173
|
Mrzljak A, Dinjar-Kujundzic P, Vilibic-Cavlek T, Jemersic L, Prpic J, Dakovic-Rode O, Kolaric B, Vince A. Hepatitis E seroprevalence and associated risk factors in Croatian liver transplant recipients. Rev Soc Bras Med Trop 2019; 52:e20190302. [PMID: 31618309 DOI: 10.1590/0037-8682-0302-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Solid-organ transplant recipients are at risk of hepatitis E virus (HEV) infection. We analyzed the seroprevalence/risk factors of HEV in Croatian liver transplant recipients. METHODS Two hundred forty-two serum samples were tested for HEV immunoglobuline IgG/IgM and HEV RNA. Sociodemographic data and risk factors were collected using a questionnaire. RESULTS HEV IgG seroprevalence rate was 24.4%. Positive/equivocal HEV IgM were found in two patients. HEV RNA was not detected. Logistic regression showed that older age, female gender, rural area/farm, water well, and septic tank were associated with HEV seropositivity. CONCLUSIONS This study revealed a high exposure rate to HEV in Croatian liver recipients.
Collapse
Affiliation(s)
- Anna Mrzljak
- University Hospital Merkur, Department of Gastroenterology, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | | | - Tatjana Vilibic-Cavlek
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Croatian Institute of Public Health, Department of Virology, Zagreb, Croatia
| | | | | | - Oktavija Dakovic-Rode
- University Hospital for Infectious Diseases "Dr Fran Mihaljevic", Department of Clinical Microbiology, Division of Medical Virology, Zagreb, Croatia
- University of Zagreb, School of Dental Medicine, Zagreb, Croatia
| | - Branko Kolaric
- Andrija Stampar Teaching Institute of Public Health, Zagreb, Croatia
- University of Rijeka, Faculty of Medicine, Rijeka, Croatia
| | - Adriana Vince
- University of Zagreb, School of Medicine, Zagreb, Croatia
- University Hospital for Infectious Diseases "Dr Fran Mihaljevic", Department for Viral Hepatitis, Zagreb, Croatia
| |
Collapse
|
174
|
Beer A, Holzmann H, Pischke S, Behrendt P, Wrba F, Schlue J, Drebber U, Neudert B, Halilbasic E, Kreipe H, Lohse A, Sterneck M, Wedemeyer H, Manns M, Dienes HP. Chronic Hepatitis E is associated with cholangitis. Liver Int 2019; 39:1876-1883. [PMID: 31102493 PMCID: PMC6790616 DOI: 10.1111/liv.14137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 12/21/2018] [Accepted: 02/06/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Sporadic hepatitis E is an emerging indigenous disease in Europe induced by genotype 3 of the virus. While the disease takes an acute self-limited course in immunocompetent individuals, under immunocompromised conditions chronic hepatitis E might develop. The histology of chronic hepatitis E has not been described in detail systematically. METHODS Liver biopsies from 19 immunosuppressed patients with chronic hepatitis E were collected: 17 were organ transplant recipients, one had a CD4-deficiency and one had received steroid therapy because of ulcerative colitis. Biopsies were processed with standard stains. Evaluation of histologic activity and fibrosis was performed according to Ishak. Additionally, immunohistochemistry with antibodies directed against open reading frame 2 and 3 of the virus was performed and liver biopsies were tested for hepatitis E virus RNA. RESULTS Biochemical data showed an increase in alanine transaminase, aspartate transaminase, gamma-glutamyl transferase and total bilirubin. Histopathology displayed typical features of chronic hepatitis with mild to moderate activity. The number of polymorphonuclear leucocytes was considerably increased and all patients had a florid cholangitis that presented as a destructive form in five of them. Hepatocytes and bile duct epithelia stained positive for hepatitis E virus by immunohistochemistry. CONCLUSIONS Chronic hepatitis E in immunocompromised individuals runs a similar course as hepatitis B and C and shows similar histopathology. However, the presence of destructive cholangitis in some cases accompanied by an increased number of polymorphonuclear leucocytes is markedly different. Immunohistochemically the virus is present in bile duct epithelia, seemingly the cause for cholangitis.
Collapse
Affiliation(s)
- Andrea Beer
- Department of PathologyMedical University of ViennaViennaAustria
| | | | | | - Patrick Behrendt
- Department of Gastroenterology, Hepatology and EndocrinologyMedical School of HanoverHanoverGermany
| | - Fritz Wrba
- Department of PathologyMedical University of ViennaViennaAustria
| | - Jerome Schlue
- Institute for PathologyMedical School of HanoverHanoverGermany
| | - Uta Drebber
- Institute of PathologyUniversity Hospital CologneCologneGermany
| | - Barbara Neudert
- Department of PathologyMedical University of ViennaViennaAustria
| | - Emina Halilbasic
- Department of GastroenterologyMedical University of ViennaViennaAustria
| | - Hans Kreipe
- Institute for PathologyMedical School of HanoverHanoverGermany
| | | | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and EndocrinologyMedical School of HanoverHanoverGermany
| | - Michael Manns
- Department of Gastroenterology, Hepatology and EndocrinologyMedical School of HanoverHanoverGermany
| | - Hans P. Dienes
- Department of PathologyMedical University of ViennaViennaAustria
| |
Collapse
|
175
|
Soon CF, Behrendt P, Todt D, Manns MP, Wedemeyer H, Sällberg Chen M, Cornberg M. Defining virus-specific CD8+ TCR repertoires for therapeutic regeneration of T cells against chronic hepatitis E. J Hepatol 2019; 71:673-684. [PMID: 31203151 DOI: 10.1016/j.jhep.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Immunosuppressed patients with chronic hepatitis E virus infection (cHEV), who are ineligible or have failed current treatment with off-label ribavirin, are a potential target population for T cell-based therapy. T cell responses are important for viral control. Herein, we aimed to identify human leukocyte antigen (HLA)-A2 restricted HEV-specific CD8+ T cell epitopes and T cell receptors (TCR) targeting these epitopes, as the basis for a redirected TCR treatment approach for patients with cHEV. METHODS HEV genotype 3 overlapping peptide pools were used to screen HEV-specific CD8+ T cell immune responses in HLA-A2+ patients with acute HEV infection and healthy donors, by intracellular cytokine staining. CD8+ T cells targeting the identified epitopes were sorted for sequencing of the TCR repertoires by next generation sequencing. Messenger RNA encoding these TCRs were introduced into lymphocytes of healthy donors and patients with cHEV through TCR redirection. TCR-engineered lymphocytes were evaluated for Dextramer®-binding capacity, target sensitivity and cytotoxicity against peptide-loaded T2 cells. RESULTS HEV-specific responses were observed across open reading frame (ORF)1 and ORF2 of the HEV genome in patients with acute resolving HEV infection. HLA-A2-restricted HEV-specific CD8+ T cell epitopes targeting the HEV RNA helicase and RNA-dependent RNA polymerase were selected for functional studies. Introduction of HEV-specific TCRs into lymphocytes of immunocompetent donors and patients with chronic hepatitis E enabled the lymphocytes to bind HEV Dextramers, secrete multiple cytokines and exert cytotoxicity in a target-specific manner. CONCLUSION We identified TCRs that target HEV-specific CD8+ T cell epitopes, and characterized their immune properties, which may have clinical potential in future T cell-based therapy. LAY SUMMARY Patients who are immunosuppressed are vulnerable to developing chronic liver disease following infection with hepatitis E virus (HEV). To-date, there is no approved therapy for chronic hepatitis E. Interferon-α and ribavirin are off-label treatment options, but their applications are limited by side effects. Thus, immunotherapy, more specifically T cell-based therapy, may be an alternative approach. We designed T cell receptor-engineered T cells that effectively conferred immune cells, taken from patients with chronic hepatitis E, with the ability to recognize virus-specific epitopes and mediate killing of target cells in vitro.
Collapse
Affiliation(s)
- Chai Fen Soon
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Patrick Behrendt
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, Germany
| | - Daniel Todt
- Department for Molecular and Medical Virology, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Peter Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany
| | - Margaret Sällberg Chen
- Department of Dental Medicine and Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Centre for Individualised Infection Medicine (CIIM), Hannover, Germany; Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| |
Collapse
|
176
|
Yoshida T, Takamura M, Goto R, Takeuchi S, Tsuchiya A, Kamimura K, Tasaki M, Nakagawa Y, Saito K, Tomita Y, Terai S. Efficacy and safety of ribavirin therapy for chronic hepatitis E after kidney transplantation. Hepatol Res 2019; 49:1244-1248. [PMID: 31077507 DOI: 10.1111/hepr.13363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/28/2019] [Accepted: 05/04/2019] [Indexed: 12/16/2022]
Abstract
Hepatitis E virus (HEV) infection has been recognized as an acute condition. However, recent reports have shown that immunocompromised patients, such as those receiving solid-organ transplantation, can develop chronic hepatitis with HEV infection. We report two cases of chronic hepatitis E after kidney transplantation (KT) who were successfully treated with ribavirin monotherapy. Several years after KT, both patients had sustained elevations in the levels of liver enzymes for a period of more than 6 months. Both patients had HEV infection, genotype 3a. Histological studies showed infiltration of inflammatory cells without fibrosis. Treatment included ribavirin monotherapy at a dosage of 600 mg daily for 3 months. One month after therapy initiation, HEV-RNA turned to negative, and remained negative at 24 weeks after ribavirin therapy without severe complications. Although the treatment of chronic hepatitis E is not fully established, ribavirin therapy can be a safe and effective treatment for chronic hepatitis E.
Collapse
Affiliation(s)
- Tomoaki Yoshida
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Masaaki Takamura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Ryo Goto
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Suguru Takeuchi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| | - Masayuki Tasaki
- Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuki Nakagawa
- Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuhide Saito
- Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshihiko Tomita
- Division of Urology, Department of Regenerative and Transplant Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Science, Niigata University, Niigata City, Japan
| |
Collapse
|
177
|
Heo NY. [Hepatitis E Virus: Epidemiology, Diagnosis, and Management]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2019; 74:130-136. [PMID: 31554028 DOI: 10.4166/kjg.2019.74.3.130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023]
Abstract
The HEV is a known cause of water-borne outbreaks of acute non-A non-B hepatitis in developing countries, which affects young people and may result in high mortality in pregnant women. In recent decades, however, HEV genotypes 3 and 4 have been known as a cause of sporadic zoonotic infections in older males from swine HEV worldwide. Most acute HEV infections are self-limited. On the other hand, in immunosuppressed patients, including solid organ transplant recipients, chronic HEV infections may exist and progress to liver cirrhosis or decompensation. Therefore, physicians need to recognize HEV as a major pathogen for acute and chronic hepatitis of unknown causes and investigate this disease.
Collapse
Affiliation(s)
- Nae-Yun Heo
- Division of Gastroenterology, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
178
|
Walker CM. Adaptive Immune Responses in Hepatitis A Virus and Hepatitis E Virus Infections. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033472. [PMID: 29844218 DOI: 10.1101/cshperspect.a033472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both hepatitis A virus (HAV) and hepatitis E virus (HEV) cause self-limited infections in humans that are preventable by vaccination. Progress in characterizing adaptive immune responses against these enteric hepatitis viruses, and how they contribute to resolution of infection or liver injury, has therefore remained largely frozen for the past two decades. How HAV and HEV infections are so effectively controlled by B- and T-cell immunity, and why they do not have the same propensity to persist as HBV and HCV infections, cannot yet be adequately explained. The objective of this review is to summarize our understanding of the relationship between patterns of virus replication, adaptive immune responses, and acute liver injury in HAV and HEV infections. Gaps in knowledge, and recent studies that challenge long-held concepts of how antibodies and T cells contribute to control and pathogenesis of HAV and HEV infections, are highlighted.
Collapse
Affiliation(s)
- Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's, Columbus, Ohio 43004
| |
Collapse
|
179
|
von Felden J, Alric L, Pischke S, Aitken C, Schlabe S, Spengler U, Giordani MT, Schnitzler P, Bettinger D, Thimme R, Xhaard A, Binder M, Ayuk F, Lohse AW, Cornelissen JJ, de Man RA, Mallet V. The burden of hepatitis E among patients with haematological malignancies: A retrospective European cohort study. J Hepatol 2019; 71:465-472. [PMID: 31108159 DOI: 10.1016/j.jhep.2019.04.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/05/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The burden of hepatitis E virus (HEV) infection among patients with haematological malignancy has only been scarcely reported. Therefore, we aimed to describe this burden in patients with haematological malignancies, including those receiving allogeneic haematopoietic stem cell transplantation. METHODS We conducted a retrospective, multicentre cohort study across 11 European centres and collected clinical characteristics of 50 patients with haematological malignancy and RNA-positive, clinically overt hepatitis E between April 2014 and March 2017. The primary endpoint was HEV-associated mortality; the secondary endpoint was HEV-associated liver-related morbidity. RESULTS The most frequent underlying haematological malignancies were aggressive non-Hodgkin lymphoma (NHL) (34%), indolent NHL (iNHL) (24%), and acute leukaemia (36%). Twenty-one (42%) patients had received allogeneic haematopoietic stem cell transplantation (alloHSCT). Death with ongoing hepatitis E occurred in 8 (16%) patients, including 1 patient with iNHL and 1 patient >100 days after alloHSCT in complete remission, and was associated with male sex (p = 0.040), cirrhosis (p = 0.006) and alloHSCT (p = 0.056). Blood-borne transmission of hepatitis E was demonstrated in 5 (10%) patients, and associated with liver-related mortality in 2 patients. Hepatitis E progressed to chronic hepatitis in 17 (34%) patients overall, and in 10 (47.6%) and 6 (50%) alloHSCT and iNHL patients, respectively. Hepatitis E was associated with acute or acute-on-chronic liver failure in 4 (8%) patients with 75% mortality. Ribavirin was administered to 24 (48%) patients, with an HEV clearance rate of 79.2%. Ribavirin treatment was associated with lower mortality (p = 0.037) and by trend with lower rates of chronicity (p = 0.407) when initiated <24 and <12 weeks after diagnosis of hepatitis E, respectively. Immunosuppressive treatment reductions were associated with mortality in 2 patients (28.6%). CONCLUSION Hepatitis E is associated with mortality and liver-related morbidity in patients with haematological malignancy. Blood-borne transmission contributes to the burden. Ribavirin should be initiated early, whereas reduction of immunosuppressive treatment requires caution. LAY SUMMARY Little is known about the burden of hepatitis E among patients with haematological malignancy. We conducted a retrospective European cohort study among 50 patients with haematological malignancy, including haematopoietic stem cell transplant recipients, with clinically significant HEV infection and found that hepatitis E is associated with hepatic and extrahepatic mortality, including among patients with indolent disease or among stem cell transplant recipients in complete remission. Hepatitis E virus infection evolved to chronic hepatitis in 5 (45.5%) patients exposed to a rituximab-containing regimen and 10 (47.6%) stem cell transplant recipients. Reducing immunosuppressive therapy because of hepatitis E was associated with mortality, while early ribavirin treatment was safe and effective.
Collapse
Affiliation(s)
- Johann von Felden
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Divisions of Liver Diseases and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France; UMR 152, IRD Toulouse 3 University, France
| | - Sven Pischke
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Centre for Infection Research (DZIF), Hamburg site, Hamburg, Germany
| | - Celia Aitken
- Virology, NHS Greater Glasgow and Clyde, Glasgow, United Kingdom
| | - Stefan Schlabe
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Maria Teresa Giordani
- Infectious Diseases and Tropical Medicine Unit, San Bortolo Hospital, Vicenza, Italy
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, University of Heidelberg, Germany
| | - Dominik Bettinger
- Department of Medicine II, Medical Center University of Freiburg, Germany; Berta-Ottenstein-Program, Faculty of Medicine, University of Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center University of Freiburg, Germany
| | - Alienor Xhaard
- Service d'hématologie-greffe, Hôpital Saint-Louis, Université Paris Diderot, Paris, France
| | - Mascha Binder
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan J Cornelissen
- Department of Haematology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Centre, Rotterdam, Netherlands
| | - Vincent Mallet
- Hepatology Service, Assistance Publique - Hôpitaux de Paris, Hôpital Cochin, Université Paris Descartes, Paris, France; Institut National de la Santé et de la Recherche Médicale unité 1223, Institut Pasteur, Paris, France.
| |
Collapse
|
180
|
Salines M, Rose N, Andraud M. Tackling hepatitis E virus spread and persistence on farrow-to-finish pig farms: Insights from a stochastic individual-based multi-pathogen model. Epidemics 2019; 30:100369. [PMID: 31526684 DOI: 10.1016/j.epidem.2019.100369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic agent of which domestic pigs have been recognised as the main reservoir in industrialised countries. The great variability in HEV infection dynamics described on different pig farms may be related to the influence of other pathogens, and in particular viruses affecting pigs' immune response. The objective of this study was to develop a multi-pathogen modelling approach to understand the conditions under which HEV spreads and persists on a farrow-to-finish pig farm taking into account the fact that pigs may be co-infected with an intercurrent pathogen. A stochastic individual-based model was therefore designed that combines a population dynamics model, which enables us to take different batch rearing systems into account, with a multi-pathogen model representing at the same time the dynamics of both HEV and the intercurrent pathogen. Based on experimental and field data, the epidemiological parameters of the HEV model varied according to the pig's immunomodulating virus status. HEV spread and persistence was found to be very difficult to control on a farm with a 20-batch rearing system. Housing sows in smaller groups and eradicating immunomodulating pathogens would dramatically reduce the prevalence of HEV-positive livers at slaughter, which would drop from 3.3% to 1% and 0.2% respectively (p-value < 0.01). It would also decrease the probability of HEV on-farm persistence from 0.6 to 0 and 0.34 respectively (p-value < 0.01) on farms with a 7 batch rearing system. A number of farming practices, such as limiting cross-fostering, reducing the size of weaning pens and vaccinating pigs against immunomodulating viruses, were also shown to be pivotal factors for decreasing HEV spread and persistence.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Nicolas Rose
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| | - Mathieu Andraud
- ANSES, Ploufragan-Plouzané-Niort Laboratory, Epidemiology, Health and Welfare research unit, Ploufragan, France; Bretagne-Loire University, Rennes, France.
| |
Collapse
|
181
|
Hartard C, Gantzer C, Bronowicki JP, Schvoerer E. Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Rev Med Virol 2019; 29:e2078. [PMID: 31456241 DOI: 10.1002/rmv.2078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis A (HAV) and E (HEV) viruses are able to cause liver disease in humans. Among the five classical hepatotropic viruses, they are mainly transmitted via the fecal-oral route. Historically, many similarities have thus been described between them according to their incidence and their pathogenicity, especially in countries with poor sanitary conditions. However, recent advances have provided new insights, and the gap is widening between them. Indeed, while HAV infection incidence tends to decrease in developed countries along with public health improvement, HEV is currently considered as an underdiagnosed emerging pathogen. HEV autochthonous infections are increasingly observed and are mainly associated with zoonotic transmissions. Extra hepatic signs resulting in neurological or renal impairments have also been reported for HEV, as well as a chronic carrier state in immunocompromised patients, arguing in favor of differential pathogenesis between those two viruses. Recent molecular tools have allowed studies of viral genome variability and investigation of links between viral plasticity and clinical evolution. The identification of key functional mutations in viral genomes may improve the knowledge of their clinical impact and is analyzed in depth in the present review.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
182
|
Lemon SM, Walker CM. Enterically Transmitted Non-A, Non-B Hepatitis and the Discovery of Hepatitis E Virus. Cold Spring Harb Perspect Med 2019; 9:a033449. [PMID: 29735576 PMCID: PMC6531376 DOI: 10.1101/cshperspect.a033449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recognition of hepatitis E as a discreet disease entity in the late 1970s followed the development of serological tests for hepatitis A and the discovery that large waterborne outbreaks of hepatitis in India were not caused by hepatitis A virus (HAV). These "enterically transmitted non-A, non-B hepatitis" outbreaks had distinctive epidemiologic features, including the highest attack rates among young adults, little secondary household transmission of infection, and severe disease in pregnant women. The responsible agent, hepatitis E virus (HEV), was identified several years later in extracts of feces from a self-inoculated virologist. Multiple genetically related HEV genotypes are now known to exist, two of which are common in domestic swine herds and the cause of sporadic cases of acute hepatitis in economically well-developed countries. HEV genotypes possess impressive genetic and biologic diversity, and present many unanswered questions concerning their natural host range, potential for zoonotic transmission, and disease pathogenesis.
Collapse
Affiliation(s)
- Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center; The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7292
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital and College of Medicine, The Ohio State University, Columbus, Ohio 43205
| |
Collapse
|
183
|
Diebold M, Fischer-Barnicol B, Tsagkas C, Kuhle J, Kappos L, Derfuss T, Décard BF. Hepatitis E virus infections in patients with MS on oral disease-modifying treatment. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:6/5/e594. [PMID: 31454772 PMCID: PMC6705628 DOI: 10.1212/nxi.0000000000000594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Objective To test whether patients with MS on disease-modifying treatments (DMTs) are at a higher risk of acute or chronic hepatitis E virus (HEV) infections or extrahepatic manifestations, we monitored approximately 1,100 persons with MS (pwMS) during 3 years for HEV infection. Methods This is an observational case series study. All pwMS were followed in our MS center between January 2016 and December 2018 with at least annual standardized clinical and laboratory assessments. Patients with unexplained liver enzyme elevations were routinely screened for HEV infection. Results Four cases of acute HEV under DMT (fingolimod [n = 3]; dimethyl fumarate [n = 1]) were identified. Two presented with fulminant icteric hepatitis and one with a HEV-associated neurologic manifestation (neuralgic amyotrophy). No chronic HEV courses were observed. DMT was continued after clearing of HEV or normalization of liver function tests in all cases. Conclusion HEV infection is an important differential diagnosis of drug-induced liver injury in pwMS under DMT. Our data do not suggest an increased incidence of acute HEV infections or chronification in pwMS. However, epidemiologic studies in immunomodulatory-treated patients are needed to further investigate HEV disease courses and extrahepatic manifestations.
Collapse
Affiliation(s)
- Martin Diebold
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Bettina Fischer-Barnicol
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Charidimos Tsagkas
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Jens Kuhle
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Ludwig Kappos
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Tobias Derfuss
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland
| | - Bernhard F Décard
- From the Departments of Medicine, University Hospital Basel, Neurologic Clinic and Policlinic, Clinical Research and Biomedicine, University of Basel, Petersgraben, Switzerland.
| |
Collapse
|
184
|
Xhaard A, Roque-Afonso AM, Mallet V, Ribaud P, Nguyen-Quoc S, Rohrlich PS, Tabrizi R, Konopacki J, Lissandre S, Abravanel F, Latour RPD, Huynh A. Hepatitis E and Allogeneic Hematopoietic Stem Cell Transplantation: A French Nationwide SFGM-TC Retrospective Study. Viruses 2019; 11:v11070622. [PMID: 31284515 PMCID: PMC6669459 DOI: 10.3390/v11070622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022] Open
Abstract
Usually self-limited, hepatitis E virus (HEV) infection may evolve to chronicity and cirrhosis in immunosuppressed patients. HEV infection has been described in solid-organ transplantation and hematology patients, but for allogeneic hematopoietic stem cell transplant (alloHSCT) recipients, only small cohorts are available. This retrospective nationwide multi-center series aimed to describe HEV diagnostic practices in alloHSCT French centers, and the course of infection in the context of alloHSCT. Twenty-nine out of 37 centers participated. HEV search in case of liver function tests (LFT) abnormalities was never performed in 24% of centers, occasionally in 55%, and systematically in 21%. Twenty-five cases of active HEV infection were diagnosed in seven centers, all because of LFT abnormalities, by blood nucleic acid testing. HEV infection was diagnosed in three patients before alloHSCT; HEV infection did not influence transplantation planning, and resolved spontaneously before or after alloHSCT. Twenty-two patients were diagnosed a median of 283 days after alloHSCT. Nine patients (41%) had spontaneous viral clearance, mostly after immunosuppressive treatment decrease. Thirteen patients (59%) received ribavirin, with sustained viral clearance in 11/12 evaluable patients. We observed three HEV recurrences but no HEV-related death or liver failure, nor evolution to cirrhosis.
Collapse
Affiliation(s)
- Aliénor Xhaard
- Service d'hématologie-greffe, Hôpital Saint-Louis, Université Paris-Diderot, 75010 Paris, France.
| | - Anne-Marie Roque-Afonso
- Service de virologie, Hôpital Paul-Brousse, 94804 Villejuif, France
- INSERM 1193 et CNR hépatite A et E, Université Paris-Sud, 94804 Villejuif, France
| | - Vincent Mallet
- Service d'hépatologie, Hôpital Cochin, Université Paris Descartes, INSERM U1223, Institut Pasteur, 75014 Paris, France
| | - Patricia Ribaud
- Service d'hématologie-greffe, Hôpital Saint-Louis, Université Paris-Diderot, 75010 Paris, France
| | | | | | - Reza Tabrizi
- Service d'hématologie, CHU Bordeaux, 33600 Pessac, France
| | | | | | | | - Régis Peffault de Latour
- Service d'hématologie-greffe, Hôpital Saint-Louis, Université Paris-Diderot, 75010 Paris, France
| | - Anne Huynh
- Service d'hématologie, CHU, 31000 Toulouse, France
| |
Collapse
|
185
|
Horvatits T, Schulze Zur Wiesch J, Lütgehetmann M, Lohse AW, Pischke S. The Clinical Perspective on Hepatitis E. Viruses 2019; 11:E617. [PMID: 31284447 PMCID: PMC6669652 DOI: 10.3390/v11070617] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Every year, there are an estimated 20 million hepatitis E virus (HEV) infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV is largely circulating in the west and is associated with several hepatic and extrahepatic diseases. HEV Genotype 1 and 2 infections are waterborne and causative for epidemics in the tropics, while genotype 3 and 4 infections are zoonotic diseases and are mainly transmitted by ingestion of undercooked pork in industrialized nations. The clinical course of these infections differs: genotype 1 and 2 infection can cause acute illness and can lead to acute liver failure (ALF) or acute on chronic liver failure (ACLF) with a high mortality rate of 20% in pregnant women. In contrast, the majority of HEV GT-3 and -4 infections have a clinically asymptomatic course and only rarely lead to acute on chronic liver failure in elderly or patients with underlying liver disease. Immunosuppressed individuals infected with genotype 3 or 4 may develop chronic hepatitis E, which then can lead to life-threatening cirrhosis. Furthermore, several extra-hepatic manifestations affecting various organs have been associated with ongoing or previous HEV infections but the causal link for many of them still needs to be proven. There is no approved specific therapy for the treatment of acute or chronic HEV GT-3 or -4 infections but off-label use of ribavirin has been demonstrated to be safe and effective in the majority of patients. However, in approximately 15% of chronically HEV infected patients, cure is not possible.
Collapse
Affiliation(s)
- Thomas Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Sven Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany.
| |
Collapse
|
186
|
Kamar N, Pischke S. Acute and Persistent Hepatitis E Virus Genotype 3 and 4 Infection: Clinical Features, Pathogenesis, and Treatment. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031872. [PMID: 29735575 DOI: 10.1101/cshperspect.a031872] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatitis E virus (HEV) genotype (gt)3 and 4 infections are prevalent in industrialized and high-income countries. Although most HEV gt3 and gt4 infections are clinically silent, acute infection may be symptomatic in some patients. In persons with underlying liver disease and in elderly men, HEV infections may present as acute or acute-on-chronic liver failure. Chronic hepatitis may develop in immunosuppressed individuals, including transplant recipients, human immunodeficiency virus (HIV)-infected patients, and persons with hematologic malignancy undergoing chemotherapy, and may progress to life-threatening liver cirrhosis. Extrahepatic manifestations of infection may include neurological and renal disease. Although there is no approved specific therapy for the treatment of acute or chronic HEV gt3 or gt4 infection, off-label use of ribavirin appears to be capable of eliminating chronic HEV infection, and may reduce disease severity in patients suffering from acute liver failure.
Collapse
Affiliation(s)
- Nassim Kamar
- Department of Nephrology and Organ Transplantation, Université Paul Sabatier, Toulouse 31059, France
| | - Sven Pischke
- Department of Medicine I, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
187
|
Transfusion-Transmitted Hepatitis E Virus Infection in France. Transfus Med Rev 2019; 33:146-153. [PMID: 31327668 DOI: 10.1016/j.tmrv.2019.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
|
188
|
Estimation of the hepatitis E assay-dependent seroprevalence among Croatian blood donors. Transfus Clin Biol 2019; 26:229-233. [PMID: 31277986 DOI: 10.1016/j.tracli.2019.06.234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/12/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Seroprevalence of hepatitis E virus (HEV) in blood donors presenting to the Croatian Institute of Transfusion Medicine was assessed with 4 available tests (3 ELISA tests and 1 immunoblot (IB) test). MATERIALS AND METHODS In October and November 2014, a total of 1,036 serum samples of blood donors were collected for the study. Samples were primarily tested for total HEV antibodies by Dia.Pro HEV Ab test (a). All reactive samples were tested by ELISA tests: Dia.Pro HEV IgG (b) and IgM (c), Mikrogen recomWell HEV IgG_old (d) and IgM_old (e), recomWell HEV IgG_new (f) and IgM_new (g), and IB Mikrogen recomLine HEV IgG (h) and IgM (i). HEV IgM reactive samples also positive by the IB were further tested for HEV RNA. RESULTS There were 21.5% of samples reactive for total HEV antibodies (a). Seroprevalence of HEV IgG according to the b, d, f and h tests was 20.2%, 9.6%, 18.1% and 17.8%, respectively. Seroprevalence of HEV IgM according to the c, e, g and i tests was 4.4%, 1.5%, 2.0% and 1.7%, respectively. Out of 46 HEV IgM (Dia.Pro HEV IgM) positive samples, 18 (39.1%) were also positive by IB. HEV RNA was not detected in any of those samples. There was a significant association between age and HEV seroprevalence (P<0.001). CONCLUSION Different HEV antibody detection assays showed a high HEV IgG seroprevalence in Croatian blood donors. Among HEV IgG and HEV IgM positive samples HEV RNA was not detected.
Collapse
|
189
|
Hepatitis E Virus Infection in Blood Donors and Risk to Patients in the United States and Canada. Transfus Med Rev 2019; 33:139-145. [PMID: 31324552 DOI: 10.1016/j.tmrv.2019.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute hepatitis worldwide including large water-borne outbreaks, zoonotic infections and transfusion transmissions. Several countries have initiated or are considering blood donor screening in response to high HEV-RNA donation prevalence leading to transfusion-transmission risk. Because HEV transmission is more common through food sources, the efficacy of blood donor screening alone may be limited. HEV-nucleic acids in 101 489 blood donations in the United States and Canada were studied. A risk-based decision-making framework was used to evaluate the quantitative risks and cost-benefit of HEV-blood donation screening in Canada comparing three scenarios: no screening, screening blood for all transfused patients or screening blood for only those at greatest risk. HEV-RNA prevalence in the United States was one per 16 908 (95% confidence interval [CI], 1:5786-1:81987), whereas Canadian HEV-RNA prevalence was one per 4615 (95% CI, 1:2579-1:9244). Although 4-fold greater, Canadian HEV-RNA prevalence was not significantly higher than in the United States. Viral loads ranged from 20 to 3080 international units per mL; all successfully typed infections were genotype 3. No HEV-RNA false-positive donations were identified for 100 percent specificity. Without donation screening, heart and lung transplant recipients had the greatest HEV-infection risk (1:366962) versus kidney transplant recipients with the lowest (1:2.8 million) at costs of $225 546 to $561 810 per quality-adjusted life-year (QALY) gained for partial or universal screening, respectively. Higher cost per QALY would be expected in the United States. Thus, HEV prevalence in North America is lower than in countries performing blood donation screening, and if implemented, is projected to be costly under any scenario.
Collapse
|
190
|
Netzler NE, Enosi Tuipulotu D, Vasudevan SG, Mackenzie JM, White PA. Antiviral Candidates for Treating Hepatitis E Virus Infection. Antimicrob Agents Chemother 2019; 63:e00003-19. [PMID: 30885901 PMCID: PMC6535575 DOI: 10.1128/aac.00003-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/04/2019] [Indexed: 12/14/2022] Open
Abstract
Globally, hepatitis E virus (HEV) causes significant morbidity and mortality each year. Despite this burden, there are no specific antivirals available to treat HEV patients, and the only licensed vaccine is not available outside China. Ribavirin and alpha interferon are used to treat chronic HEV infections; however, severe side effects and treatment failure are commonly reported. Therefore, this study aimed to identify potential antivirals for further development to combat HEV infection. We selected 16 compounds from the nucleoside and nonnucleoside antiviral classes that range in developmental status from late preclinical to FDA approved and evaluated them as potential antivirals for HEV infection, using genotype 1 replicon luminescence studies and replicon RNA quantification. Two potent inhibitors of HEV replication included NITD008 (half-maximal effective concentration [EC50], 0.03 μM; half-maximal cytotoxic concentration [CC50], >100 μM) and GPC-N114 (EC50, 1.07 μM, CC50, >100 μM), and both drugs reduced replicon RNA levels in cell culture (>50% reduction with either 10 μM GPC-N114 or 2.50 μM NITD008). Furthermore, GPC-N114 and NITD008 were synergistic in combinational treatment (combination index, 0.4) against HEV replication, allowing for dose reduction indices of 20.42 and 8.82 at 50% inhibition, respectively. Sofosbuvir has previously exhibited mixed results against HEV as an antiviral, both in vitro and in a few clinical applications; however, in this study it was effective against the HEV genotype 1 replicon (EC50, 1.97 μM; CC50, >100 μM) and reduced replicon RNA levels (47.2% reduction at 10 μM). Together these studies indicate drug repurposing may be a promising pathway for development of antivirals against HEV infection.
Collapse
Affiliation(s)
- Natalie E Netzler
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| | | | - Jason M Mackenzie
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
191
|
Salines M, Dumarest M, Andraud M, Mahé S, Barnaud E, Cineux M, Eveno E, Eono F, Dorenlor V, Grasland B, Bourry O, Pavio N, Rose N. Natural viral co-infections in pig herds affect hepatitis E virus (HEV) infection dynamics and increase the risk of contaminated livers at slaughter. Transbound Emerg Dis 2019; 66:1930-1945. [PMID: 31067014 DOI: 10.1111/tbed.13224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen, in particular genotype 3 HEV is mainly transmitted to humans through the consumption of contaminated pork products. This study aimed at describing HEV infection patterns in pig farms and at assessing the impact of immunomodulating co-infections namely Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Porcine Circovirus Type 2 (PCV2), as well as other individual factors such as piglets' immunity and litters' characteristics on HEV dynamics. A longitudinal follow-up was conducted in three farrow-to-finish farms known to be HEV infected. Overall, 360 piglets were individually monitored from birth to slaughter with regular blood and faecal sampling as well as blood and liver samples collected at slaughterhouse. Virological and serological analyses were performed to detect HEV, PCV2 and PRRSV genome and antibodies. The links between 12 explanatory variables and four outcomes describing HEV dynamics were assessed using cox-proportional hazard models and logistic regression. HEV infection dynamics was found highly variable between farms and in a lower magnitude between batches. HEV positive livers were more likely related to short time-intervals between HEV infection and slaughter time (<40 days, OR = 4.1 [3.7-4.5]). In addition to an influence of piglets' sex and sows' parity, the sequence of co-infections was strongly associated with different HEV dynamics: a PRRSV or PCV2/PRRSV pre- or co-infection was associated with a higher age at HEV shedding (Hazard Ratio = 0.3 [0.2-0.5]), as well as a higher age at HEV seroconversion (HR = 0.5 [0.3-0.9] and HR = 0.4 [0.2-0.7] respectively). A PCV2/PRRSV pre- or co-infection was associated with a longer duration of shedding (HR = 0.5 [0.3-0.8]). Consequently, a PRRSV or PCV2/PRRSV pre- or co-infection was strongly associated with a higher risk of having positive livers at slaughter (OR = 4.1 [1.9-8.9] and OR = 6.5 [3.2-13.2] respectively). In conclusion, co-infections with immunomodulating viruses were found to affect HEV dynamics in the farrow-to-finish pig farms that were followed in this study.
Collapse
Affiliation(s)
- Morgane Salines
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Marine Dumarest
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Mathieu Andraud
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Sophie Mahé
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Elodie Barnaud
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Maelan Cineux
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Eric Eveno
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Florent Eono
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Virginie Dorenlor
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Béatrice Grasland
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Olivier Bourry
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| | - Nicole Pavio
- ANSES, Laboratoire de Santé Animale, UMR 1161 Virology, Maisons-Alfort, France.,INRA, UMR 1161 Virology, Maisons-Alfort, France.,Ecole Nationale Vétérinaire d'Alfort, UMR 1161 Virology, Maisons-Alfort, France
| | - Nicolas Rose
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Ploufragan-Plouzané Laboratory, Ploufragan, France.,Bretagne-Loire University, Rennes, France
| |
Collapse
|
192
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
193
|
Lhomme S, Legrand-Abravanel F, Kamar N, Izopet J. Screening, diagnosis and risks associated with Hepatitis E virus infection. Expert Rev Anti Infect Ther 2019; 17:403-418. [DOI: 10.1080/14787210.2019.1613889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sébastien Lhomme
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Florence Legrand-Abravanel
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Nassim Kamar
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
- Department of Nephrology and Organs Transplantation, CHU Rangueil, Toulouse, France
| | - Jacques Izopet
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| |
Collapse
|
194
|
Abstract
Donor-derived infections are defined as any infection present in the donor that is transmitted to 1 or more recipients. Donor-derived infections can be categorized into 2 groups: "expected" and "unexpected" infections. Expected transmissions occur when the donor is known to have an infection, such as positive serology for cytomegalovirus, Epstein Barr virus, or hepatitis B core antibody, at the time of donation. Unexpected transmissions occur when a donor has no known infection before donation, but 1 or more transplant recipients develop an infection derived from the common donor. Unexpected infections are estimated to occur in far less than 1% of solid organ transplant recipients. We will review the epidemiology, risk factors, and approaches to prevention and management of donor-derived viral infectious disease transmission in liver transplantation.
Collapse
|
195
|
Friebus-Kardash J, Eisenberger U, Ackermann J, Kribben A, Witzke O, Wenzel J, Rohn H, Fiedler M. Prevalence of active hepatitis E virus infection and efficacy of ribavirin treatment in renal allograft recipients. Transpl Infect Dis 2019; 21:e13088. [PMID: 30929308 DOI: 10.1111/tid.13088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 03/17/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) genotype 3 infection frequently progresses to chronic disease with persisting HEV viremia in immunocompromised patients. Here, we evaluated the prevalence of HEV infection in renal allograft recipients and investigated the efficacy and tolerability of ribavirin monotherapy. METHODS A total of 947 recipients on average 8.7 years post transplant were screened for anti-HEV IgG, IgM and HEV-RNA. Sixteen HEV-viremic renal allograft recipients were treated with ribavirin for 12 weeks. HEV-RNA concentration, laboratory and clinical parameters were assessed at baseline, during therapy and 12 weeks after treatment cessation. HEV-genotyping was performed in all HEV-viremic patients. RESULTS Past HEV infection was detected serologically in 18% of the renal allograft recipients. Ongoing HEV replication was found in 16 recipients (all genotype 3). Unanimously, distinct HEV sequences were revealed in all HEV-viremic patients. At the start of ribavirin treatment, median HEV-RNA viral load was 4.3 × 106 (8000-5.0 × 106 ) IU/mL. Ninety-four percentage of HEV-infected allograft recipients showed a sustained virological response 12 weeks after treatment cessation. Ribavirin treatment was associated with rapid decrease in liver enzymes and rare occurrence of anemia. CONCLUSIONS Prevalence of active HEV infection is important in renal transplant patients without signs of nosocomial infection. Ribavirin treatment was safe and effective.
Collapse
Affiliation(s)
- Justa Friebus-Kardash
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Ute Eisenberger
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Jessica Ackermann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Jürgen Wenzel
- Institute for Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Hospital Regensburg, Regensburg, Germany
| | - Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - Melanie Fiedler
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
196
|
Te H, Doucette K. Viral hepatitis: Guidelines by the American Society of Transplantation Infectious Disease Community of Practice. Clin Transplant 2019; 33:e13514. [DOI: 10.1111/ctr.13514] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Helen Te
- Center for Liver Diseases, Section of Gastroenterology, Hepatology and Nutrition University of Chicago Medicine Chicago Illinois
| | - Karen Doucette
- Division of Infectious Diseases University of Alberta Edmonton Alberta Canada
| |
Collapse
|
197
|
McGivern DR, Lin HHS, Wang J, Benzine T, Janssen HLA, Khalili M, Lisker-Melman M, Fontana RJ, Belle SH, Fried MW. Prevalence and Impact of Hepatitis E Virus Infection Among Persons With Chronic Hepatitis B Living in the US and Canada. Open Forum Infect Dis 2019; 6:ofz175. [PMID: 31139669 DOI: 10.1093/ofid/ofz175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/05/2019] [Indexed: 01/02/2023] Open
Abstract
Background Patients with chronic hepatitis B virus (HBV) may experience spontaneous biochemical flares of liver disease activity. This study aimed to determine (i) the prevalence of prior and possible acute hepatitis E virus (HEV) infection among persons with chronic HBV and (ii) whether HEV infection is associated with liver disease flares among persons with chronic HBV. Methods Serum from a random sample of 600 adults in the Hepatitis B Research Network Cohort Study was tested for HEV RNA and anti-HEV IgM and IgG. Logistic regression models were used to estimate crude and adjusted odds ratios of anti-HEV prevalence for participant characteristics. Results Anti-HEV IgG and IgM seroprevalence was 28.5% and 1.7%, respectively. No participants had detectable HEV RNA. Of the 10 anti-HEV IgM+ participants, only 1 had elevated serum ALT at seroconversion. The odds of anti-HEV seropositivity (IgG+ or IgM+) were higher in older participants, males, Asians, less educated people, and those born outside the United States and Canada. Conclusions Acute HEV infection is a rare cause of serum ALT flares among persons with chronic HBV. The high seroprevalence of anti-HEV IgG among the chronic HBV patients is strongly associated with various demographic factors in this largely Asian American cohort.
Collapse
Affiliation(s)
- David R McGivern
- Lineberger Comprehensive Cancer Center and Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Hsing-Hua S Lin
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Junyao Wang
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tiffany Benzine
- Lineberger Comprehensive Cancer Center and Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, University Health Network, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mandana Khalili
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Mauricio Lisker-Melman
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Fontana
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Steven H Belle
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael W Fried
- UNC Liver Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
198
|
Cullen JM, Lemon SM. Comparative Pathology of Hepatitis A Virus and Hepatitis E Virus Infection. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033456. [PMID: 29712683 DOI: 10.1101/cshperspect.a033456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) cause acute, self-limiting hepatic infections that are usually spread by the fecal-oral route in humans. Naturally occurring and experimental infections are possible in a variety of nonhuman primates and, in the case of HEV, a number of other species. Many advances in understanding the pathogenesis of these viruses have come from studies in experimental animals. In general, animals infected with these viruses recapitulate the histologic lesions seen in infected humans, but typically with less severe clinical and histopathological manifestations. This review describes the histopathologic changes associated with HAV and HEV infection in humans and experimental animals.
Collapse
Affiliation(s)
- John M Cullen
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27607
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7030
| |
Collapse
|
199
|
Narayanan S, Abutaleb A, Sherman KE, Kottilil S. Clinical features and determinants of chronicity in hepatitis E virus infection. J Viral Hepat 2019; 26:414-421. [PMID: 30636092 PMCID: PMC6437685 DOI: 10.1111/jvh.13059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) has traditionally been associated with an acute, self-limiting hepatitis and is not known to have any chronic sequelae. HEV genotypes 1 and 2, which are human pathogens, have been associated with this self-limiting presentation, in both sporadic and epidemic settings. HEV genotype 3, which is zoonotically transmitted, is increasingly being reported as a cause of chronic infection in immunocompromised patients. These include patients with solid organ transplants, patients receiving chemotherapy for haematologic malignancies and patients infected with HIV. Chronic infection is associated with rapidly progressing liver disease and extrahepatic manifestations including neurologic disorders. We review the clinical manifestations of chronic HEV infection and discuss factors determining persistence and chronicity of HEV.
Collapse
Affiliation(s)
- Shivakumar Narayanan
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland
| | - Ameer Abutaleb
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland,Division of Gastroenterology & Hepatology, University of Maryland, Baltimore, Maryland
| | - Kenneth E. Sherman
- Division of Digestive Diseases, University of Cincinnati, Cincinnati, Ohio
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland, Baltimore, Maryland
| |
Collapse
|
200
|
Hofmeister MG, Foster MA, Teshale EH. Epidemiology and Transmission of Hepatitis A Virus and Hepatitis E Virus Infections in the United States. Cold Spring Harb Perspect Med 2019; 9:a033431. [PMID: 29712684 PMCID: PMC6444696 DOI: 10.1101/cshperspect.a033431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are many similarities in the epidemiology and transmission of hepatitis A virus (HAV) and hepatitis E virus (HEV) genotype (gt)3 infections in the United States. Both viruses are enterically transmitted, although specific routes of transmission are more clearly established for HAV than for HEV: HAV is restricted to humans and primarily spread through the fecal-oral route, while HEV is zoonotic with poorly understood modes of transmission in the United States. New cases of HAV infection have decreased dramatically in the United States since infant vaccination was recommended in 1996. In recent years, however, outbreaks have occurred among an increasingly susceptible adult population. Although HEV is the most common cause of acute viral hepatitis in developing countries, it is rarely diagnosed in the United States.
Collapse
Affiliation(s)
- Megan G Hofmeister
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Monique A Foster
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| | - Eyasu H Teshale
- Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, Georgia 30329
| |
Collapse
|