151
|
Yuan Y, Yuan H, Yang G, Yun H, Zhao M, Liu Z, Zhao L, Geng Y, Liu L, Wang J, Zhang H, Wang Y, Zhang XD. IFN-α confers epigenetic regulation of HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Clin Epigenetics 2020; 12:135. [PMID: 32894195 PMCID: PMC7487718 DOI: 10.1186/s13148-020-00928-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background Hepatitis B virus covalently closed circular DNA (HBV cccDNA) is assembled by histones and non-histones into a chromatin-like cccDNA minichromosome in the nucleus. The cellular histone acetyltransferase GCN5, displaying succinyltransferase activity, is recruited onto cccDNA to modulate HBV transcription in cells. Clinically, IFN-α is able to repress cccDNA. However, the underlying mechanism of IFN-α in the depression of cccDNA mediated by GCN5 is poorly understood. Here, we explored the effect of IFN-α on GCN5-mediated succinylation in the epigenetic regulation of HBV cccDNA minichromosome. Results Succinylation modification of the cccDNA minichromosome has been observed in HBV-infected human liver-chimeric mice and HBV-expressing cell lines. Moreover, histone H3K79 succinylation by GCN5 was identified in the system. Interestingly, the mutant of histone H3K79 efficiently blocked the replication of HBV, and interference with GCN5 resulted in decreased levels of HBV DNA, HBsAg, and HBeAg in the supernatant from de novo HBV-infected HepaRG cells. Consistently, the levels of histone H3K79 succinylation were significantly elevated in the livers of HBV-infected human liver-chimeric mice. The knockdown or overexpression of GCN5 or the mutant of GCN5 could affect the binding of GCN5 to cccDNA or H3K79 succinylation, leading to a change in cccDNA transcription activity. In addition, Southern blot analysis validated that siGCN5 decreased the levels of cccDNA in the cells, suggesting that GCN5-mediated succinylation of histone H3K79 contributes to the epigenetic regulation of cccDNA minichromosome. Strikingly, IFN-α effectively depressed histone H3K79 succinylation in HBV cccDNA minichromosome in de novo HepG2-NTCP and HBV-infected HepaRG cells. Conclusions IFN-α epigenetically regulates the HBV cccDNA minichromosome by modulating GCN5-mediated succinylation of histone H3K79 to clear HBV cccDNA. Our findings provide new insights into the mechanism by which IFN-α modulate the epigenetic regulation of HBV cccDNA minichromosome.
Collapse
Affiliation(s)
- Ying Yuan
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Hongfeng Yuan
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Guang Yang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Haolin Yun
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Man Zhao
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Zixian Liu
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Lina Zhao
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yu Geng
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Lei Liu
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Jiapei Wang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Huihui Zhang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yufei Wang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Xiao-Dong Zhang
- Nankai University, 94 Weijin Road, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
152
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
153
|
Tsukuda S, Watashi K. Hepatitis B virus biology and life cycle. Antiviral Res 2020; 182:104925. [PMID: 32866519 DOI: 10.1016/j.antiviral.2020.104925] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) specifically infects hepatocytes and causes severe liver diseases. The HBV life cycle is unique in that the genomic DNA (relaxed-circular partially double-stranded DNA: rcDNA) is converted to a molecular template DNA (covalently closed circular DNA: cccDNA) to amplify a viral RNA intermediate, which is then reverse-transcribed back to viral DNA. The highly stable characteristics of cccDNA result in chronic infection and a poor rate of cure. This complex life cycle of HBV offers a variety of targets to develop antiviral agents. We provide here an update on the current knowledge of HBV biology and its life cycle, which may help to identify new antiviral targets.
Collapse
Affiliation(s)
- Senko Tsukuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan; Department of Applied Biological Science, Tokyo University of Science, Noda, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan; MIRAI, JST, Saitama, Japan.
| |
Collapse
|
154
|
Taha TY, Anirudhan V, Limothai U, Loeb DD, Petukhov PA, McLachlan A. Modulation of hepatitis B virus pregenomic RNA stability and splicing by histone deacetylase 5 enhances viral biosynthesis. PLoS Pathog 2020; 16:e1008802. [PMID: 32822428 PMCID: PMC7467325 DOI: 10.1371/journal.ppat.1008802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/02/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) is a worldwide health problem without curative treatments. Investigation of the regulation of HBV biosynthesis by class I and II histone deacetylases (HDACs) demonstrated that catalytically active HDAC5 upregulates HBV biosynthesis. HDAC5 expression increased both the stability and splicing of the HBV 3.5 kb RNA without altering the translational efficiency of the viral pregenomic or spliced 2.2 kb RNAs. Together, these observations point to a broader role of HDAC5 in regulating RNA splicing and transcript stability while specifically identifying a potentially novel approach toward antiviral HBV therapeutic development. This study demonstrates that HDAC5 deacetylation of host cellular factor(s) results in increased HBV biosynthesis by enhancing viral transcript stability and splicing via direct or indirect binding of host factors to viral intron sequences. This represents the first demonstration of this type of post-transcriptional regulation in the liver and is similar to observations seen for cellular transcripts in neural and cardiac cell types. These observations suggest a more general phenomenon which could represent an additional post-transcriptional code governing the regulation of RNA:protein interactions and hence RNA metabolism. Therefore, covalent modifications of RNA binding proteins may modulate post-transcriptional gene expression in an analogous manner to the known histone code that controls gene transcription. Although this analysis primarily relates to the mechanism(s) by which HDAC5 governs HBV RNA metabolism, it does have significant therapeutic implications. The inhibition of HDAC5 in combination with current nucleos(t)ide analog drugs targeting the viral reverse transcriptase/DNA polymerase might aid in the treatment and possible resolution of chronic infections by targeting both host and viral factors.
Collapse
Affiliation(s)
- Taha Y. Taha
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Varada Anirudhan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Umaporn Limothai
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (PAP); (AM)
| |
Collapse
|
155
|
Xia Y, Guo H. Hepatitis B virus cccDNA: Formation, regulation and therapeutic potential. Antiviral Res 2020; 180:104824. [PMID: 32450266 PMCID: PMC7387223 DOI: 10.1016/j.antiviral.2020.104824] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/03/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection remains a major public health concern worldwide with about 257 million individuals chronically infected. Current therapies can effectively control HBV replication and slow down disease progress, but cannot cure HBV infection. Upon infection, HBV establishes a pool of covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The cccDNA exists as a minichromosome and resists to antivirals, thus a therapeutic eradication of cccDNA from the infected cells remains unattainable. In this review, we summarize the state of knowledge on the mechanisms underlying cccDNA formation and regulation, and discuss the possible strategies that may contribute to the eradication of HBV through targeting cccDNA.
Collapse
Affiliation(s)
- Yuchen Xia
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Haitao Guo
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
156
|
Jiang R, Wang T, Yao Y, Zhou F, Huang X. Hepatitis B infection and intrahepatic cholestasis of pregnancy: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21416. [PMID: 32756142 PMCID: PMC7402766 DOI: 10.1097/md.0000000000021416] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral hepatitis type B is caused by hepatitis B virus (HBV) infection. Several studies have linked HBV infection to a higher risk of developing intrahepatic cholestasis of pregnancy (ICP), although some give contradictory results. To investigate the association and estimated risk of ICP in patients with HBV infection, we conducted this meta-analysis to summarize all available evidence. METHODS This study consists of 2 meta-analyses. A literature search was performed using MEDLINE and EMBASE from inception to July 2019. The first study included studies that reported associations between HBV infection and the risk of ICP. The second analysis included studies comparing the risk of HBV infection in ICP patients with those without ICP. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using a random-effect, inverse variance method. RESULTS Four studies were included in both analyses. The OR of ICP in HBV-infected pregnant women compared with non-HBV pregnant women was 1.68 (95% CI 1.43-1.97; I = 0%). The OR of HBV infection among ICP patients compared with non-ICP patients was 1.70 (95% CI 1.44-2.01; I = 0%). CONCLUSIONS Our meta-analysis demonstrates not only a higher risk of ICP among HBV-infected pregnant women but also an increased risk of HBV infection among ICP patients. These findings suggest that HBV is a high-risk factor for ICP and screening for hepatitis B in women with ICP symptoms may be beneficial.
Collapse
|
157
|
An Alternatively Spliced Sirtuin 2 Isoform 5 Inhibits Hepatitis B Virus Replication from cccDNA by Repressing Epigenetic Modifications Made by Histone Lysine Methyltransferases. J Virol 2020; 94:JVI.00926-20. [PMID: 32493816 DOI: 10.1128/jvi.00926-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 2 (Sirt2), an NAD+-dependent protein deacetylase, deacetylates tubulin, AKT, and other proteins. Previously, we showed that Sirt2 isoform 1 (Sirt2.1) increased replication of hepatitis B virus (HBV). Here, we show that HBV replication upregulates the expression of Sirt2 primary and alternatively spliced transcripts and their respective isoforms, 1, 2, and 5. Since Sirt2 isoform 5 (Sirt2.5) is a catalytically inactive nuclear protein with a spliced-out nuclear export signal (NES), we speculated that its different localization affects its activity. The overexpression of Sirt2.5 reduced expression of HBV mRNAs, replicative intermediate DNAs, and covalently closed circular DNA (cccDNA), an activity opposite that of Sirt2.1 and Sirt2.2. Unlike the Sirt2.1-AKT interaction, the Sirt2.5-AKT interaction was weakened by HBV replication. Unlike Sirt2.1, Sirt2.5 activated the AKT/GSK-3β/β-catenin signaling pathway very weakly and independently of HBV replication. When the NES and an N-terminal truncated catalytic domain were added to the Sirt2.5 construct, it localized in the cytoplasm and increased HBV replication (like Sirt2.1 and Sirt2.2). Chromatin immunoprecipitation assays revealed that more Sirt2.5 was recruited to cccDNA than Sirt2.1. The recruitment of histone lysine methyltransferases (HKMTs), such as SETDB1, SUV39H1, EZH2, and PR-Set7, and their respective transcriptional repressive markers, H3K9me3, H3K27me3, and H4K20me1, to cccDNA also increased in Sirt2.5-overexpressing cells. Among these, the Sirt2.5-PR-Set7 and -SETDB1 interactions increased upon HBV replication. These results demonstrate that Sirt2.5 reduces cccDNA levels and viral transcription through epigenetic modification of cccDNA via direct and/or indirect association with HKMTs, thereby exhibiting anti-HBV activity.IMPORTANCE Sirt2, a predominant cytoplasmic α-tubulin deacetylase, promotes the growth of hepatocellular carcinoma; indeed, HBV replication increases Sirt2 expression, and overexpression of Sirt2 is associated with hepatic fibrosis and epithelial-to-mesenchymal transition. Increased amounts of Sirt2 isoforms 1, 2, and 5 upon HBV replication might further upregulate HBV replication, leading to a vicious cycle of virus replication/disease progression. However, we show here that catalytically inactive nuclear Sirt2.5 antagonizes the effects of Sirt2.1 and Sirt2.2 on HBV replication, thereby inhibiting cccDNA level, transcription of cccDNA, and subsequent synthesis of replicative intermediate DNA. More Sirt2.5 was recruited to cccDNA than Sirt2.1, thereby increasing epigenetic modification by depositing transcriptional repressive markers, possibly through direct and/or indirect association with histone lysine methyltransferases, such as SETDB1, SUV39H1, EZH2, and/or PR-Set7, which represses HBV transcription. Thus, Sirt2.5 might provide a functional cure for HBV by silencing the transcription of HBV.
Collapse
|
158
|
Wang Z, Wang W, Wang L. Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
159
|
Yang Y, Ying G, Wu S, Wu F, Chen Z. In vitro inhibition effects of hepatitis B virus by dandelion and taraxasterol. Infect Agent Cancer 2020; 15:44. [PMID: 32647534 PMCID: PMC7336670 DOI: 10.1186/s13027-020-00309-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) causes hepatitis, which progresses to fatal liver diseases and remains a global health problem. Current treatments for chronic hepatitis B are unable to cure hepatitis. Thus, new antiviral drugs must be developed. In this study, the viral inhibition effects of dandelion and taraxasterol were assessed in HepG2.2.15 cell line. Taraxacum officinale F.H.Wigg. (compositae) with English name dandelion is used as a traditional herb for liver disorders and as a common antiviral agent. Taraxasterol is one of the active compounds of dandelion. The secretion of HBV DNA and HBV surface antigen (HBsAg) and HBeAg was detected using fluorescence quantitative PCR (qPCR) and ELISA, respectively. Intracellular HBsAg was detected by immunofluorescence. In order to demonstrate the potential mechanism of anti-viral activity, the expression levels of host factors polypyrimidine tract binding protein 1 (PTBP1) and sirtuin 1 (SIRT1) were detected with Western blotting and qPCR. Dandelion and taraxasterol effectively reduced the secretion of HBsAg, HBeAg and the HBV DNA in cell supernatants, and significantly reduced the intracellular HBsAg as indicated by immunofluorescence results. Taraxasterol may be one of the main effective components of dandelion. It significantly decreased the protein expression levels of PTBP1 and SIRT1. The present study revealed that dandelion and its component taraxasterol could inhibit HBV and may be a potential anti-HBV drug, whose potential targets were the host factors PTBP1 and SIRT1.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Gaoxiang Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Shanshan Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Fengtian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
160
|
Jia L, Gao Y, He Y, Hooper JD, Yang P. HBV induced hepatocellular carcinoma and related potential immunotherapy. Pharmacol Res 2020; 159:104992. [PMID: 32505833 DOI: 10.1016/j.phrs.2020.104992] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Chronic infection of Hepatitis B virus (HBV) has long been recognized as a major risk factor in the initiation and development of hepatocellular carcinoma (HCC), contributing to over half the cases of HCC worldwide. Transformation of the liver with HBV infection to HCC mainly results from long-term interaction between HBV and the host hepatocytes via a variety of mechanisms, including HBV DNA integration, prolonged expression of the viral HBx regulatory protein and/or aberrant preS/S envelope proteins, and epigenetic dysregulation of tumor suppressor genes. While there have been several failures in the development of drugs for HCC, the immune-tolerant microenvironment of this malignancy suggests that immunotherapeutic agents could provide benefits for these patients. This is supported by recent data showing that immunotherapy has promising activity in patients with advanced HCC. In this review, we provide an overview of HBV-induced HCC and recent immune based approaches for the treatment of HCC patients.
Collapse
Affiliation(s)
- Liyang Jia
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yanan Gao
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yaowu He
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John D Hooper
- Mater Research Institute - University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Pengyuan Yang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
161
|
Gao W, Jia Z, Tian Y, Yang P, Sun H, Wang C, Ding Y, Zhang M, Zhang Y, Yang D, Tian Z, Zhou J, Ruan Z, Wu Y, Ni B. HBx Protein Contributes to Liver Carcinogenesis by H3K4me3 Modification Through Stabilizing WD Repeat Domain 5 Protein. Hepatology 2020; 71:1678-1695. [PMID: 31544250 DOI: 10.1002/hep.30947] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Cancer is typically considered as a genetic and epigenetic disease. Although numerous studies have indicated that an aberrant structure, function, or expression level of epigenetic enzymes contribute to many tumor types, precisely how the epigenetic mechanisms are involved in the hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remains unknown. APPROACH AND RESULTS In this study, we found that the WD repeat domain 5 protein (WDR5)-a core subunit of histone H3 lysine 4 methyltransferase complexes, which catalyze the generation of histone H3 lysine 4 trimethylation (H3K4me3) modification-is highly expressed in HBV-related HCC and promotes HCC development. WDR5 plays a critical role in HBV-driven cell proliferation and tumor growth in mice, and the WDR5-0103 small-molecule inhibitor of WDR5 activity compromises HBV- and hepatitis B x protein (HBx)-driven tumor proliferation. The aberrantly high WDR5 protein level was found to involve HBx through its stabilization of the WDR5 protein by inhibiting the interaction between the damage-specific DNA-binding protein 1/cullin-4 and WDR5, causing decreased ubiquitination of the WDR5 protein. HBx was found to colocalize with WDR5 on chromatin genome wide and promotes genome-wide H3K4me3 modification by means of WDR5. Furthermore, the recruitment of HBx to promoters of target genes relied on its interaction with WDR5 through its α-helix domain. WDR5 was also found to promote HBV transcription through H3K4 modification of covalently closed circular DNA minichromosome, and WDR5-0103 was able to inhibit HBV transcription. Finally, the in vitro and in vivo data further proved that HBx exerted its tumor-promoting function in a WDR5-dependent manner. CONCLUSIONS Our data reveals that WDR5 is a key epigenetic determinant of HBV-induced tumorigenesis and that the HBx-WDR5-H3K4me3 axis may be a potential therapeutic target in HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Weiwu Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhengcai Jia
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yi Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | | | - Hui Sun
- Department of Rheumatology and Immunology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chenhui Wang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Yi Ding
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
- Allen Institute for Brain Science, Seattle, WA
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Yi Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
| | - Di Yang
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhiqiang Tian
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Jian Zhou
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Zhihua Ruan
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Chongqing, China
| |
Collapse
|
162
|
Dandri M. Epigenetic modulation in chronic hepatitis B virus infection. Semin Immunopathol 2020; 42:173-185. [PMID: 32185454 PMCID: PMC7174266 DOI: 10.1007/s00281-020-00780-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Abstract
The human hepatitis B virus (HBV) is a small-enveloped DNA virus causing acute and chronic hepatitis. Despite the existence of an effective prophylactic vaccine and the strong capacity of approved antiviral drugs to suppress viral replication, chronic HBV infection (CHB) continues to be a major health burden worldwide. Both the inability of the immune system to resolve CHB and the unique replication strategy employed by HBV, which forms a stable viral covalently closed circular DNA (cccDNA) minichromosome in the hepatocyte nucleus, enable infection persistence. Knowledge of the complex network of interactions that HBV engages with its host is still limited but accumulating evidence indicates that epigenetic modifications occurring both on the cccDNA and on the host genome in the course of infection are essential to modulate viral activity and likely contribute to pathogenesis and cancer development. Thus, a deeper understanding of epigenetic regulatory processes may open new venues to control and eventually cure CHB. This review summarizes major findings in HBV epigenetic research, focusing on the epigenetic mechanisms regulating cccDNA activity and the modifications determined in infected host cells and tumor liver tissues.
Collapse
Affiliation(s)
- Maura Dandri
- I. Department of Internal Medicine, Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems Site, Hamburg, Germany.
| |
Collapse
|
163
|
Minor MM, Hollinger FB, McNees AL, Jung SY, Jain A, Hyser JM, Bissig KD, Slagle BL. Hepatitis B Virus HBx Protein Mediates the Degradation of Host Restriction Factors through the Cullin 4 DDB1 E3 Ubiquitin Ligase Complex. Cells 2020; 9:E834. [PMID: 32235678 PMCID: PMC7226812 DOI: 10.3390/cells9040834] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) regulatory HBx protein is required for infection, and its binding to cellular damaged DNA binding protein 1 (DDB1) is critical for this function. DDB1 is an adaptor protein for the cullin 4A Really Interesting New Gene (RING) E3 ubiquitin ligase (CRL4) complex and functions by binding cellular DDB1 cullin associated factor (DCAF) receptor proteins that recruit substrates for ubiquitination and degradation. We compared the proteins found in the CRL4 complex immunoprecipitated from uninfected versus HBV-infected hepatocytes from human liver chimeric mice for insight into mechanisms by which HBV and the cell interact within the CRL4 complex. Consistent with its role as a viral DCAF, HBx was found in the HBV CRL4 complexes. In tissue culture transfection experiments, we showed that HBx expression led to decreased levels of known restriction factor structural maintenance of chromosomes protein 6 (SMC6) and putative restriction factors stromal interaction molecule 1 (STIM1, zinc finger E-box binding homeobox 2 (ZEB2), and proteasome activator subunit 4 (PSME4). Moreover, silencing of these proteins led to increased HBV replication in the HepG2-sodium taurocholate cotransporting polypeptide (NTCP) infection model. We also identified cellular DCAF receptors in CRL4 complexes from humanized mice. Increasing amounts of HBx did not reveal competitive DCAF binding to cullin4 (CUL4)-DDB1 in plasmid-transfected cells. Our results suggest a model in which HBx benefits virus replication by directly or indirectly degrading multiple cellular restriction factors.
Collapse
Affiliation(s)
- Marissa M. Minor
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - F. Blaine Hollinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - Adrienne L. McNees
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Sung Yun Jung
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
| | - Karl-Dimiter Bissig
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Betty L. Slagle
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (M.M.M.); (F.B.H.); (A.L.M.); (J.M.H.)
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
164
|
Yu DY. Relevance of reactive oxygen species in liver disease observed in transgenic mice expressing the hepatitis B virus X protein. Lab Anim Res 2020; 36:6. [PMID: 32206612 PMCID: PMC7081669 DOI: 10.1186/s42826-020-00037-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus (HBV) infects approximately 240 million people worldwide, causing chronic liver disease (CLD) and liver cancer. Although numerous studies have been performed to date, unfortunately there is no conclusive drug or treatment for HBV induced liver disease. The hepatitis B virus X (HBx) is considered a key player in inducing CLD and hepatocellular carcinoma (HCC). We generated transgenic (Tg) mice expressing HBx protein, inducing HCC at the age of 11–18 months. The incidence of histological phenotype, including liver tumor, differed depending on the genetic background of HBx Tg mice. Fatty change and tumor generation were observed much earlier in livers of HBx Tg hybrid (C57BL/6 and CBA) (HBx-Tg hybrid) mice than in HBx Tg C57BL/6 (HBx-Tg B6) mice. Inflammation was also enhanced in the HBx-Tg B6 mice as compared to HBx-Tg hybrid mice. HBx may be involved in inducing and promoting hepatic steatosis, glycemia, hepatic fibrosis, and liver cancer. Reactive oxygen species (ROS) generation was remarkably increased in livers of HBx Tg young mice compared to young wild type control mice. Previous studies on HBx Tg mice indicate that the HBx-induced ROS plays a role in inducing and promoting CLD and HCC.
Collapse
Affiliation(s)
- Dae-Yeul Yu
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 305-806 South Korea
| |
Collapse
|
165
|
Abstract
Currently, despite the use of a preventive vaccine for several decades as well as the use of effective and well-tolerated viral suppressive medications since 1998, approximately 250 million people remain infected with the virus that causes hepatitis B worldwide. Hepatitis C virus (HCV) and hepatitis B virus (HBV) are the leading causes of liver cancer and overall mortality globally, surpassing malaria and tuberculosis. Linkage to care is estimated to be very poor both in developing countries and in high-income countries, such as the United States, countries in Western Europe, and Japan. In the United States, by CDC estimates, only one-third of HBV-infected patients or less are aware of their infection. Some reasons for these low rates of surveillance, diagnosis, and treatment include the asymptomatic nature of chronic hepatitis B until the very late stages, a lack of curative therapy with a finite treatment duration, a complex natural history, and a lack of knowledge about the disease by both care providers and patients. In the last 5 years, more attention has been focused on the important topics of HBV screening, diagnosis of HBV infection, and appropriate linkage to care. There have also been rapid clinical developments toward a functional cure of HBV infection, with novel compounds currently being in various phases of progress. Despite this knowledge, many of the professional organizations provide guidelines focused only on specific questions related to the treatment of HBV infection. This focus leaves a gap for care providers on the other HBV-related issues, which include HBV's epidemiological profile, its natural history, how it interacts with other viral hepatitis diseases, treatments, and the areas that still need to be addressed in order to achieve HBV elimination by 2030. Thus, to fill these gaps and provide a more comprehensive and relevant document to regions worldwide, we have taken a global approach by using the findings of global experts on HBV as well as citing major guidelines and their various approaches to addressing HBV and its disease burden.
Collapse
|
166
|
Salpini R, Piermatteo L, Battisti A, Colagrossi L, Aragri M, Yu La Rosa K, Bertoli A, Saccomandi P, Lichtner M, Marignani M, Maylin S, Delaugerre C, Morisco F, Coppola N, Marrone A, Iapadre N, Cerva C, Aquaro S, Angelico M, Sarmati L, Andreoni M, Verheyen J, Ceccherini-Silberstein F, Levrero M, Perno CF, Belloni L, Svicher V. A Hyper-Glycosylation of HBV Surface Antigen Correlates with HBsAg-Negativity at Immunosuppression-Driven HBV Reactivation in Vivo and Hinders HBsAg Recognition in Vitro. Viruses 2020; 12:251. [PMID: 32102257 PMCID: PMC7077195 DOI: 10.3390/v12020251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Immune-suppression driven Hepatitis B Virus (HBV)-reactivation poses serious concerns since it occurs in several clinical settings and can result in severe forms of hepatitis. Previous studies showed that HBV strains, circulating in patients with HBV-reactivation, are characterized by an enrichment of immune-escape mutations in HBV surface antigen (HBsAg). Here, we focused on specific immune-escape mutations associated with the acquisition of N-linked glycosylation sites in HBsAg (NLGSs). In particular, we investigated profiles of NLGSs in 47 patients with immunosuppression-driven HBV-reactivation and we evaluated their impact on HBsAg-antigenicity and HBV-replication in vitro. At HBV-reactivation, despite a median serum HBV-DNA of 6.7 [5.3-8.0] logIU/mL, 23.4% of patients remained HBsAg-negative. HBsAg-negativity at HBV-reactivation correlated with the presence of >1 additional NLGSs (p < 0.001). These NLGSs are located in the major hydrophilic region of HBsAg (known to be the target of antibodies) and resulted from the single mutation T115N, T117N, T123N, N114ins, and from the triple mutant S113N+T131N+M133T. In vitro, NLGSs strongly alter HBsAg antigenic properties and recognition by antibodies used in assays for HBsAg-quantification without affecting HBsAg-secretion and other parameters of HBV-replication. In conclusion, additional NLGSs correlate with HBsAg-negativity despite HBV-reactivation, and hamper HBsAg-antigenicity in vitro, supporting the role of NGSs in immune-escape and the importance of HBV-DNA for a proper diagnosis of HBV-reactivation.
Collapse
Affiliation(s)
- Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Lorenzo Piermatteo
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Arianna Battisti
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Luna Colagrossi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Marianna Aragri
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Katia Yu La Rosa
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Ada Bertoli
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Patrizia Saccomandi
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Miriam Lichtner
- Public Health and Infectious Disease Department, Sapienza University, 00185 Rome, Italy;
| | - Massimo Marignani
- Department of Gastroenterology, S.Andrea Hospital, 00189 Rome, Italy;
| | - Sarah Maylin
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Constance Delaugerre
- Laboratoire de Virologie, AP-HP Hopital Saint-Louis, 75010 Paris, France; (S.M.); (C.D.)
| | - Filomena Morisco
- Department of Clinical Medicine and Surgery, Section of Infectious Diseases, University of Naples Federico II, 80138 Naples, Italy;
| | - Nicola Coppola
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, Second University of Naples, 80138 Naples, Italy;
| | - Aldo Marrone
- Internal Medicine and Hepatology Unit, Second University of Naples, 80138 Naples, Italy;
| | - Nerio Iapadre
- Infectious Diseases Unit, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Carlotta Cerva
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mario Angelico
- Hepatology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Loredana Sarmati
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Massimo Andreoni
- Infectious Diseases Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (C.C.); (L.S.); (M.A.)
| | - Jens Verheyen
- Institute of Virology, University-Hospital, University Duisburg-Essen, 47057 Essen, Germany;
| | - Francesca Ceccherini-Silberstein
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| | - Massimo Levrero
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- INSERM U1052-Cancer Research Center of Lyon (CRCL), University of Lyon, UMR_S1052, 69008 Lyon, France
| | - Carlo Federico Perno
- Department of Oncology and Haemato-oncology, University of Milan, 20122 Milan, Italy;
| | - Laura Belloni
- Department of Internal Medicine-DMISM, Sapienza University, 00185 Rome, Italy; (M.L.); (L.B.)
- Center for Life NanoSciences (CLNS), IIT-Sapienza, 00133 Rome, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (R.S.); (L.P.); (A.B.); (L.C.); (M.A.); (K.Y.L.R.); (A.B.); (P.S.); (F.C.-S.)
| |
Collapse
|
167
|
Park S, Ha YN, Dezhbord M, Lee AR, Park ES, Park YK, Won J, Kim NY, Choo SY, Shin JJ, Ahn CH, Kim KH. Suppression of Hepatocyte Nuclear Factor 4 α by Long-term Infection of Hepatitis B Virus Contributes to Tumor Cell Proliferation. Int J Mol Sci 2020; 21:ijms21030948. [PMID: 32023898 PMCID: PMC7037729 DOI: 10.3390/ijms21030948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major factor in the development of various liver diseases such as hepatocellular carcinoma (HCC). Among HBV encoded proteins, HBV X protein (HBx) is known to play a key role in the development of HCC. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear transcription factor which is critical for hepatocyte differentiation. However, the expression level as well as its regulatory mechanism in HBV infection have yet to be clarified. Here, we observed the suppression of HNF4α in cells which stably express HBV whole genome or HBx protein alone, while transient transfection of HBV replicon or HBx plasmid had no effect on the HNF4α level. Importantly, in the stable HBV- or HBx-expressing hepatocytes, the downregulated level of HNF4α was restored by inhibiting the ERK signaling pathway. Our data show that HNF4α was suppressed during long-term HBV infection in cultured HepG2-NTCP cells as well as in a mouse model following hydrodynamic injection of pAAV-HBV or in mice intravenously infected with rAAV-HBV. Importantly, HNF4α downregulation increased cell proliferation, which contributed to the formation and development of tumor in xenograft nude mice. The data presented here provide proof of the effect of HBV infection in manipulating the HNF4α regulatory pathway in HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Kyun-Hwan Kim
- Correspondence: ; Tel.: +82-2-2030-7833; Fax: +82-2-2049-6192
| |
Collapse
|
168
|
Host Transcription Factors in Hepatitis B Virus RNA Synthesis. Viruses 2020; 12:v12020160. [PMID: 32019103 PMCID: PMC7077322 DOI: 10.3390/v12020160] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
The hepatitis B virus (HBV) chronically infects over 250 million people worldwide and is one of the leading causes of liver cancer and hepatocellular carcinoma. HBV persistence is due in part to the highly stable HBV minichromosome or HBV covalently closed circular DNA (cccDNA) that resides in the nucleus. As HBV replication requires the help of host transcription factors to replicate, focusing on host protein–HBV genome interactions may reveal insights into new drug targets against cccDNA. The structural details on such complexes, however, remain poorly defined. In this review, the current literature regarding host transcription factors’ interactions with HBV cccDNA is discussed.
Collapse
|
169
|
HBV X protein mutations affect HBV transcription and association of histone-modifying enzymes with covalently closed circular DNA. Sci Rep 2020; 10:802. [PMID: 31964944 PMCID: PMC6972884 DOI: 10.1038/s41598-020-57637-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B X protein (HBx) plays a role in the epigenetic regulation of hepatitis B virus (HBV) replication. This study investigated the effects of HBx mutations on HBV transcription and the recruitment of HBx, histone acetyl-transferase P300 and histone deacetylase 1 (HDAC1) to circularized HBV DNA (which resembles covalently closed circular DNA [cccDNA]). Compared with wild type, majority of mutants had lower levels of intracellular HBV RNA (44–77% reduction) and secretory HBsAg (25–81% reduction), and 12 mutants had a reduction in intracellular encapsidated HBV DNA (33–64% reduction). Eight mutants with >70% reduction in HBV RNA and/or HBsAg were selected for chromatin immunoprecipitation analysis. Four HBx mutants with mutations in amino acid residues 55–60 and 121–126 had a lower degree of HBx-cccDNA association than wild type HBx (mean % input: 0.02–0.64% vs. 3.08% in wild type). A reduced association between cccDNA and P300 (mean % input: 0.69–1.81% vs. 3.48% in wild type) and an augmented association with HDAC1 (mean % input: 4.01–14.0% vs. 1.53% in wild type) were detected. HBx amino acid residues 55–60 and 121–126 may play an important role in HBV transcription regulation, via their impeded interaction with cccDNA and altered recruitment of histone modifying enzymes to cccDNA.
Collapse
|
170
|
Hayakawa M, Umeyama H, Iwadate M, Taguchi YH, Yano Y, Honda T, Itami-Matsumoto S, Kozuka R, Enomoto M, Tamori A, Kawada N, Murakami Y. Development of a novel anti-hepatitis B virus agent via Sp1. Sci Rep 2020; 10:47. [PMID: 31913341 PMCID: PMC6949255 DOI: 10.1038/s41598-019-56842-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/17/2019] [Indexed: 01/05/2023] Open
Abstract
Nucleos(t)ide analog (NA) therapy has proven effective in treating chronic hepatitis B. However, NAs frequently result in viral relapse after the cessation of therapy. This is because NAs cannot fully eliminate the viral episomal covalently closed circular DNA (cccDNA) in the nucleus. In this study, we identified small molecular compounds that control host factors related to viral replication using in silico screening with simulated annealing based on bioinformatics for protein-ligand flexible docking. Twelve chemical compound candidates for alpha-glucosidase (AG) inhibitors were identified from a library of chemical compounds and used to treat fresh human hepatocytes infected with HBV. They were then monitored for their anti-viral effects. HBV replication was inhibited by one candidate (1-[3-(4-tert-butylcyclohexyl)oxy-2-hydroxypropyl]-2,2,6,6-tetramethylpiperidin-4-ol) in a dose-dependent manner. This compound significantly reduced ccc DNA production, compared to Entecavir (p < 0.05), and had a lower anti-AG effect. Gene expression analysis and structural analysis of this compound showed that its inhibitive effect on HBV was via interaction with Sp1. The nuclear transcription factor Sp1 acts on multiple regions of HBV to suppress HBV replication. Identifying candidates that control nuclear transcription factors facilitate the development of novel therapies. Drugs with a mechanism different from NA are promising for the elimination of HBV.
Collapse
Affiliation(s)
- Michiyo Hayakawa
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Hideaki Umeyama
- Department of Biological Sciences, Chuo University, Tokyo, 112-8551, Japan
| | - Mitsuo Iwadate
- Department of Biological Sciences, Chuo University, Tokyo, 112-8551, Japan
| | - Y-H Taguchi
- Department of Physics, Chuo University, Tokyo, 112-8551, Japan
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal of Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takashi Honda
- Division of Gastroenterology, Department of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Saori Itami-Matsumoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Ritsuzo Kozuka
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Akihiro Tamori
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan
| | - Yoshiki Murakami
- Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, 545-8585, Japan.
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-Ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
171
|
Wang F, Shen F, Wang Y, Li Z, Chen J, Yuan Z. Residues Asn118 and Glu119 of hepatitis B virus X protein are critical for HBx-mediated inhibition of RIG-I-MAVS signaling. Virology 2020; 539:92-103. [PMID: 31706164 DOI: 10.1016/j.virol.2019.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) has been reported to counteract the innate immune responses through interfering with the pattern recognition receptors signaling activated by retinoic acid-inducible gene-I (RIG-I)-mitochondrial antiviral signaling protein (MAVS). Here, we showed that, compared to the HBx derived from genotype (gt) A, C and D, HBx of gtB exhibited more potent inhibitory activity on the RIG-I-MAVS-mediated interferon-β promoter activation. Functional analysis of the genotype-associated differences in amino acid sequence and the reciprocal mutation experiments in transient-transfection and infection cell models revealed that HBx with asparagine (N) and glutamic acid (E) at 118-119 positions inhibited RIG-I signaling and interacted with MAVS more efficiently than that with lysine (K) and aspartic acid (D). An impaired RIG-I-induced MAVS aggregation was observed in the presence of HBx-118N119E while MAVS-TRAF3 interaction was not affected. These results implicated that HBx gene heterogeneity may affect the innate immune responses to HBV infection.
Collapse
Affiliation(s)
- Fan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang Shen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ze Li
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jieliang Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhenghong Yuan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
172
|
Nehme Z, Pasquereau S, Herbein G. Targeting histone epigenetics to control viral infections. HISTONE MODIFICATIONS IN THERAPY 2020. [PMCID: PMC7453269 DOI: 10.1016/b978-0-12-816422-8.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past decades, many studies have significantly broadened our understanding of complex virus-host interactions to control chromatin structure and dynamics.1, 2 However, the role and impact of such modifications during viral infections is not fully revealed. Indeed, this type of regulation is bidirectional between the virus and the host. While viral replication and gene expression are significantly impacted by histone modifications on the viral chromatin,3 studies have shown that some viral pathogens dynamically manipulate cellular epigenetic factors to enhance their own survival and pathogenesis, as well as escape the immune system defense lines.4 In this dynamic, histone posttranslational modifications (PTMs) appear to play fundamental roles in the regulation of chromatin structure and recruitment of other factors.5 Genuinely, those PTMs play a vital role in lytic infection, latency reinforcement, or, conversely, viral reactivation.6 In this chapter, we will examine and review the involvement of histone modifications as well as their potential manipulation to control infections during various viral life cycle stages, highlighting their prospective implications in the clinical management of human immunodeficiency virus (HIV), herpes simplex virus (HSV), human cytomegalovirus (HCMV), hepatitis B and C viruses (HBV and HCV, respectively), Epstein–Barr virus (EBV), and other viral diseases. Targeting histone modifications is critical in setting the treatment of chronic viral infections with both lytic and latent stages (HIV, HCMV, HSV, RSV), virus-induced cancers (HBV, HCV, EBV, KSHV, HPV), and epidemic/emerging viruses (e.g. influenza virus, arboviruses).
Collapse
|
173
|
Rivière L, Quioc-Salomon B, Fallot G, Halgand B, Féray C, Buendia MA, Neuveut C. Hepatitis B virus replicating in hepatocellular carcinoma encodes HBx variants with preserved ability to antagonize restriction by Smc5/6. Antiviral Res 2019; 172:104618. [DOI: 10.1016/j.antiviral.2019.104618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/08/2019] [Accepted: 10/05/2019] [Indexed: 12/26/2022]
|
174
|
Mirzaei H, Ghorbani S, Khanizadeh S, Namdari H, Faghihloo E, Akbari A. Histone deacetylases in virus-associated cancers. Rev Med Virol 2019; 30:e2085. [PMID: 31743548 DOI: 10.1002/rmv.2085] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
Oncogenic viruses are one of the most important causes of cancer worldwide. The pathogens contribute to the establishment of human malignancies by affecting various cellular events. Epigenetic mechanisms, such as histone modification methylation/demethylation, are one of the most critical events manipulated by oncogenic viruses to drive tumorigenesis. Histone modifications are mediated by histone acetylation and deacetylation, regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. Dysregulation of HDACs activity affects viral tumorigenesis in several ways, such as manipulating tumor suppressor and viral gene expression. The present review aims to describe the vital interactions between both cancer-caused/associated viruses and the HDAC machinery, particularly by focusing on those viruses involved in gastrointestinal tumors, as some of the most common viral-mediated cancers.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeed Ghorbani
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Virology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Haideh Namdari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
175
|
Prescott NA, Bram Y, Schwartz RE, David Y. Targeting Hepatitis B Virus Covalently Closed Circular DNA and Hepatitis B Virus X Protein: Recent Advances and New Approaches. ACS Infect Dis 2019; 5:1657-1667. [PMID: 31525994 DOI: 10.1021/acsinfecdis.9b00249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic Hepatitis B virus (HBV) infection remains a worldwide concern and public health problem. Two key aspects of the HBV life cycle are essential for viral replication and thus the development of chronic infections: the establishment of the viral minichromosome, covalently closed circular (ccc) DNA, within the nucleus of infected hepatocytes and the expression of the regulatory Hepatitis B virus X protein (HBx). Interestingly, nuclear HBx redirects host epigenetic machinery to activate cccDNA transcription. In this Perspective, we provide an overview of recent advances in understanding the regulation of cccDNA and the mechanistic and functional roles of HBx. We also describe the progress toward targeting both cccDNA and HBx for therapeutic purposes. Finally, we outline standing questions in the field and propose complementary chemical biology approaches to address them.
Collapse
Affiliation(s)
- Nicholas A. Prescott
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| | - Yael David
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, New York 10065, United States
| |
Collapse
|
176
|
Yuan Y, Zhao K, Yao Y, Liu C, Chen Y, Li J, Wang Y, Pei R, Chen J, Hu X, Zhou Y, Wu C, Chen X. HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. Antiviral Res 2019; 172:104619. [PMID: 31600533 DOI: 10.1016/j.antiviral.2019.104619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV) infection remains an important public health problem worldwide. Covalently closed circular DNA (cccDNA) exhibits as an individual minichromosome and is the molecular basis of HBV infection persistence and antiviral treatment failure. In the current study, we demonstrated that histone deacetylase 11 (HDAC11) inhibits HBV transcription and replication in HBV-transfected Huh7 cells. By using an HBV in vitro infection system, HDAC11 was found to affect the transcriptional activity of cccDNA but did not affect cccDNA production. Chromatin immunoprecipitation (ChIP) assays were utilized to analyze the epigenetic modifications of cccDNA. The results show that HDAC11 specifically reduced the acetylation level of cccDNA-bound histone H3 but did not affect that of histone H4. Furthermore, HDAC11 overexpression decreased the levels of cccDNA-bound acetylated H3K9 (H3K9ac) and H3K27 (H3K27ac). In conclusion, HDAC11 restricts HBV replication through epigenetic repression of cccDNA transcription. These findings reveal the novel role of HDAC11 in HBV infection, further broadening our knowledge regarding the functions of HDAC11 and the roles of HDACs in the epigenetic regulation of HBV cccDNA.
Collapse
Affiliation(s)
- Yifei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kaitao Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yongxuan Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Canyu Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingshan Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; School of Pharmacy, Nankai University, Tianjin, China
| | - Yun Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jizheng Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunchen Wu
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | - Xinwen Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
177
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
178
|
Yang G, Feng J, Liu Y, Zhao M, Yuan Y, Yuan H, Yun H, Sun M, Bu Y, Liu L, Liu Z, Niu JQ, Yin M, Song X, Miao Z, Lin Z, Zhang X. HAT1 signaling confers to assembly and epigenetic regulation of HBV cccDNA minichromosome. Theranostics 2019; 9:7345-7358. [PMID: 31695772 PMCID: PMC6831306 DOI: 10.7150/thno.37173] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hepatitis B virus (HBV) is a leading cause of liver diseases. HBV covalently closed circular DNA (cccDNA) is a critical obstacle of complete elimination by anti-HBV therapy. HBV cccDNA accumulates in nucleus as a chromatin-like cccDNA minichromosome assembled by histones and non-histones. However, the underlying mechanism of modulation of cccDNA minichromosome in hepatocytes is poorly understood. Methods: A human liver-chimeric mouse model was established. The cccDNA-ChIP, Southern blot analysis, confocal assays, RIP assays and RNA pull-down assays, et al. were performed to assess the mechanism of assembly and epigenetic regulation of cccDNA minichromosome in human liver-chimeric mouse model, human primary hepatocytes (PHH), dHepaRG, HepG2-NTCP cell lines and clinical liver tissues. Results: Importantly, the expression levels of HAT1, CAF-1 and lncRNA HULC were significantly elevated in the liver from HBV-infected human liver-chimeric mice. Strikingly, the depletion of HAT1 reduced HBV replication and cccDNA accumulation, and impaired the assembly of histone H3/H4 and the deposition of HBx and p300 onto cccDNA to form cccDNA minichromosome in the cells. Mechanically, chromatin assembly factor-1 (CAF-1) was involved in the events. Interestingly, HAT1 modified the acetylation of histone H3K27/H4K5/H4K12 on cccDNA minichromosome. Moreover, lncRNA HULC-scaffold HAT1/HULC/HBc complex was responsible for the modification on cccDNA minichromosome. Additionally, HBV activated HAT1 through HBx-co-activated transcriptional factor Sp1 in a positive feedback manner. Conclusion: HAT1 signaling contributes to assembly and epigenetic regulation of HBV cccDNA minichromosome.
Collapse
|
179
|
Bloom K, Kaldine H, Cathomen T, Mussolino C, Ely A, Arbuthnot P. Inhibition of replication of hepatitis B virus using transcriptional repressors that target the viral DNA. BMC Infect Dis 2019; 19:802. [PMID: 31510934 PMCID: PMC6739920 DOI: 10.1186/s12879-019-4436-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic infection with hepatitis B virus (HBV) is a serious global health problem. Persistence of the virus occurs as a result of stability of the replication intermediate comprising covalently closed circular DNA (cccDNA). Development of drugs that are capable of disabling this cccDNA is vital. METHODS To investigate an epigenetic approach to inactivating viral DNA, we engineered transcriptional repressors that comprise an HBV DNA-binding domain of transcription activator like effectors (TALEs) and a fused Krüppel Associated Box (KRAB). These repressor TALEs (rTALEs) targeted the viral surface open reading frame and were placed under transcription control of constitutively active or liver-specific promoters. RESULTS Evaluation in cultured cells and following hydrodynamic injection of mice revealed that the rTALEs significantly inhibited production of markers of HBV replication without evidence of hepatotoxicity. Increased methylation of HBV DNA at CpG island II showed that the rTALEs caused intended epigenetic modification. CONCLUSIONS Epigenetic modification of HBV DNA is a new and effective means of inactivating the virus in vivo. The approach has therapeutic potential and avoids potentially problematic unintended mutagenesis of gene editing.
Collapse
Affiliation(s)
- Kristie Bloom
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Haajira Kaldine
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
| | - Abdullah Ely
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa
| | - Patrick Arbuthnot
- Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Science, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050, South Africa.
| |
Collapse
|
180
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
181
|
Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 2019; 18:827-844. [PMID: 31455905 DOI: 10.1038/s41573-019-0037-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a common cause of liver disease globally, with a disproportionately high burden in South-East Asia. Vaccines and nucleoside or nucleotide drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons who adhere to long-term suppressive treatment. Although there is still considerable value in optimizing access to virus-suppressing regimens, the scientific and medical communities have embarked on a concerted journey to identify new antiviral drugs and immune interventions aimed at curing infection. The mechanisms and drug targets being explored are diverse; however, the field universally recognizes the importance of addressing the persistence of episomal covalently closed circular DNA, the existence of integrated HBV DNA in the host genome and the large antigen load, particularly of hepatitis B surface antigen. Another major challenge is to reinvigorate the exhausted immune response within the liver microenvironment. Ultimately, combinations of new drugs will be required to cure infection. Here we critically review the recent literature that describes the rationale for curative therapies and the resulting compounds that are being tested in clinical trials for hepatitis B.
Collapse
Affiliation(s)
- Gregory C Fanning
- Janssen Pharmaceuticals, China Research & Development, Shanghai, China.
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, INSERM U1052, Lyon University, Hospices Civils de Lyon, Lyon, France
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
182
|
Lazarevic I, Banko A, Miljanovic D, Cupic M. Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses 2019; 11:v11090778. [PMID: 31450544 PMCID: PMC6784188 DOI: 10.3390/v11090778] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation occurs as a major complication of immunosuppressive therapy among persons who have recovered from acute hepatitis and those who have controlled chronic infection. Recent literature data emphasize the presence of a high degree of S gene variability in HBV isolates from patients who developed reactivation. In reactivated HBV, the most frequently detected mutations belong to the second loop of “a” determinant in HBsAg. These mutations were identified to be immune escape and responsible for vaccine- and diagnostic-escape phenomena. Their emergence clearly provides survival in the presence of a developed humoral immune response and is often associated with impaired serological diagnosis of HBV reactivation. The knowledge of their existence and roles can elucidate the process of reactivation and strongly highlights the importance of HBV DNA detection in monitoring all patients with a history of HBV infection who are undergoing immunosuppression. This review discusses the possible influence of the most frequently found immune-escape mutations on HBV reactivation.
Collapse
Affiliation(s)
- Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia.
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| | - Maja Cupic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
183
|
Hepatitis B Virus X Protein Function Requires Zinc Binding. J Virol 2019; 93:JVI.00250-19. [PMID: 31167910 PMCID: PMC6675892 DOI: 10.1128/jvi.00250-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The host structural maintenance of chromosomes 5/6 complex (Smc5/6) suppresses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing the X protein (HBx), which redirects the cellular DNA damage-binding protein 1 (DDB1)-containing E3 ubiquitin ligase to target Smc5/6 for degradation. However, the details of how HBx modulates the interaction between DDB1 and Smc5/6 remain to be determined. In this study, we performed biophysical analyses of recombinant HBx and functional analysis of HBx mutants in HBV-infected primary human hepatocytes (PHH) to identify key regions and residues that are required for HBx function. We determined that recombinant HBx is soluble and exhibits stoichiometric zinc binding when expressed in the presence of DDB1. Mass spectrometry-based hydrogen-deuterium exchange and cysteine-specific chemical footprinting of the HBx:DDB1 complex identified several HBx cysteine residues (located between amino acids 61 and 137) that are likely involved in zinc binding. These cysteine residues did not form disulfide bonds in HBx expressed in human cells. In line with the biophysical data, functional analysis demonstrated that HBx amino acids 45 to 140 are required for Smc6 degradation and HBV transcription in PHH. Furthermore, site-directed mutagenesis determined that C61, C69, C137, and H139 are necessary for HBx function, although they are likely not essential for DDB1 binding. This CCCH motif is highly conserved in HBV as well as in the X proteins from various mammalian hepadnaviruses. Collectively, our data indicate that the essential HBx cysteine and histidine residues form a zinc-binding motif that is required for HBx function.IMPORTANCE The structural maintenance of chromosomes 5/6 complex (Smc5/6) is a host restriction factor that suppresses HBV transcription. HBV counters this restriction by expressing HBV X protein (HBx), which redirects a host ubiquitin ligase to target Smc5/6 for degradation. Despite this recent advance in understanding HBx function, the key regions and residues of HBx required for Smc5/6 degradation have not been determined. In the present study, we performed biochemical, biophysical, and cell-based analyses of HBx. By doing so, we mapped the minimal functional region of HBx and identified a highly conserved CCCH motif in HBx that is likely responsible for coordinating zinc and is essential for HBx function. We also developed a method to produce soluble recombinant HBx protein that likely adopts a physiologically relevant conformation. Collectively, this study provides new insights into the HBx structure-function relationship and suggests a new approach for structural studies of this enigmatic viral regulatory protein.
Collapse
|
184
|
Zhang TY, Chen HY, Cao JL, Xiong HL, Mo XB, Li TL, Kang XZ, Zhao JH, Yin B, Zhao X, Huang CH, Yuan Q, Xue D, Xia NS, Yuan YA. Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nat Commun 2019; 10:3192. [PMID: 31324803 PMCID: PMC6642116 DOI: 10.1038/s41467-019-11173-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) X protein, HBx, interacts with anti-apoptotic Bcl-2 and Bcl-xL proteins through its BH3-like motif to promote HBV replication and cytotoxicity. Here we report the crystal structure of HBx BH3-like motif in complex with Bcl-xL where the BH3-like motif adopts a short α-helix to snuggle into a hydrophobic pocket in Bcl-xL via its noncanonical Trp120 residue and conserved Leu123 residue. This binding pocket is ~2 Å away from the canonical BH3-only binding pocket in structures of Bcl-xL with proapoptotic BH3-only proteins. Mutations altering Trp120 and Leu123 in HBx impair its binding to Bcl-xL in vitro and HBV replication in vivo, confirming the importance of this motif to HBV. A HBx BH3-like peptide, HBx-aa113-135, restores HBV replication from a HBx-null HBV replicon, while a shorter peptide, HBx-aa118-127, inhibits HBV replication. These results provide crucial structural and functional insights into drug designs for inhibiting HBV replication and treating HBV patients.
Collapse
Affiliation(s)
- Tian-Ying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hong-Ying Chen
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Jia-Li Cao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Hua-Long Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Xiao-Bing Mo
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Tian-Liang Li
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Xiao-Zhen Kang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Jing-Hua Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Bo Yin
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China
| | - Xiang Zhao
- School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China
| | - Cheng-Hao Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Ding Xue
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, 80309, USA. .,School of Life Sciences and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, 100084, Beijing, China.
| | - Ning-Shao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China. .,National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health and School of Life Sciences, Xiamen University, 361102, Xiamen, China.
| | - Y Adam Yuan
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, 215123, Jiangsu, China.,Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
185
|
Qu C, Zhang S, Li Y, Wang Y, Peppelenbosch MP, Pan Q. Mitochondria in the biology, pathogenesis, and treatment of hepatitis virus infections. Rev Med Virol 2019; 29:e2075. [PMID: 31322806 PMCID: PMC6771966 DOI: 10.1002/rmv.2075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/19/2022]
Abstract
Hepatitis virus infections affect a large proportion of the global population. The host responds rapidly to viral infection by orchestrating a variety of cellular machineries, in particular, the mitochondrial compartment. Mitochondria actively regulate viral infections through modulation of the cellular innate immunity and reprogramming of metabolism. In turn, hepatitis viruses are able to modulate the morphodynamics and functions of mitochondria, but the mode of actions are distinct with respect to different types of hepatitis viruses. The resulting mutual interactions between viruses and mitochondria partially explain the clinical presentation of viral hepatitis, influence the response to antiviral treatment, and offer rational avenues for novel therapy. In this review, we aim to consider in depth the multifaceted interactions of mitochondria with hepatitis virus infections and emphasize the implications for understanding pathogenesis and advancing therapeutic development.
Collapse
Affiliation(s)
- Changbo Qu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.,The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Shaoshi Zhang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Yijin Wang
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
186
|
Elizalde MM, Speroni M, Campos RH, Flichman DM. Hepatitis B Virus X Gene Differentially Modulates Subgenotype F1b and F4 Replication. Viruses 2019; 11:v11070655. [PMID: 31323763 PMCID: PMC6669721 DOI: 10.3390/v11070655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) is classified into ten genotypes and numerous subgenotypes (sgt). In particular, sgt F1b and sgt F4, native of Latin America, have been associated with differences in clinical and virological characteristics. Hepatitis B virus X protein (HBx) is a multifunctional regulatory protein associated with the modulation of viral transcription and replication. In this work, we analyzed the role of the X gene and the encoded X protein in sgtF1b and sgtF4 replication. Transfection with HBx deficient genomes revealed remarkable differences in the replicative capacity of sgtF1b and sgtF4 mutants. The silencing of HBx increased sgtF1b X(-) transcription and replication by more than 2.5 fold compared to the wild type variant, while it decreased sgtF4 X(-) transcription and replication by more than 3 fold. Trans-complementation of HBx restore sgtF1b and sgtF4 wild type transcription and replication levels. In addition, transfection with chimeric variants, carrying wild type (F1b/XF4 and F4/XF1b) or mutated (F1b/X(-)F4 and F4/X(-)F1b) X gene of one sgt in the backbone of the other sgt, showed that the nucleotide sequence of the X gene, that includes regulatory elements that modulate pgRNA transcription, was responsible for the disparity observed between sgtF1b X(-) and sgtF4 X(-). These results showed that sgtF1b and sgtF4 X gene play a central role in regulating HBV transcription and replication, which eventually lead to a common purpose, to reach wild type replication levels of sgtF1b and sgtF4 viruses.
Collapse
Affiliation(s)
- María Mercedes Elizalde
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina.
| | - Micaela Speroni
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Rodolfo Héctor Campos
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| | - Diego Martín Flichman
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires 1113, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1425, Argentina
| |
Collapse
|
187
|
Moon IY, Choi JH, Chung JW, Jang ES, Jeong SH, Kim JW. MicroRNA‑20 induces methylation of hepatitis B virus covalently closed circular DNA in human hepatoma cells. Mol Med Rep 2019; 20:2285-2293. [PMID: 31257511 PMCID: PMC6691198 DOI: 10.3892/mmr.2019.10435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation was suggested to suppress the transcriptional activity of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in hepatocytes. This may be associated with its low replicative activity during the inactive stage of chronic HBV infection; however, the exact mechanisms of methylation in HBV infection remain unknown. We have previously shown that short hairpin RNAs induced the methylation of the HBV genome in hepatoma cell lines. We also reported that the microRNA (miR) 17–92 cluster negatively regulates HBV replication in human hepatoma cells. In addition, miR-20a, a member of the miR 17–92 cluster, has sequence homology with the short hairpin RNA that induces HBV methylation. In the present study, we investigated whether miR-20a can function as an endogenous effector of HBV DNA methylation. The results indicated that overexpression of miR-20a could suppress the replicative activity of HBV and increased the degree of methylation of HBV cccDNA in the HepAD38 hepatoma cell line. Argonaute (AGO)1 and AGO2, effectors of the RNA-induced silencing complex, were detected in the nucleus of HepAD38 cells; however, only AGO2 was bound to HBV cccDNA. In addition, intranuclear AGO2 was determined to be bound with miR-20a. In conclusion, miR-20a may be loaded onto AGO2, prior to its translocation into the nucleus, inducing the methylation of HBV DNA in human hepatoma cells, leading to the suppression of HBV replication.
Collapse
Affiliation(s)
- In Young Moon
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jae Hee Choi
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jung Wha Chung
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Eun Sun Jang
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sook-Hyang Jeong
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Jin-Wook Kim
- Department of Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi 13620, Republic of Korea
| |
Collapse
|
188
|
Lei C, Fan Y, Peng X, Gong X, Shao L. P2Y 11R regulates cytotoxicity of HBV X protein (HBx) in human normal hepatocytes. Am J Transl Res 2019; 11:2765-2774. [PMID: 31217852 PMCID: PMC6556625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Hepatitis B infection is a major global health problem and a primary cause of hepatocellular carcinoma (HCC). While various antiviral treatments have been explored, there is not yet a reliable method for preventing the progression of chronic hepatitis B infection into HCC. Hepatitis B virus X protein (HBx) plays a major role in viral replication, chronic inflammation and the pathogenicity of chronic liver disease. Modulation of purinergic receptors using their specific agonists has become a popular new strategy for modifying disease processes. In the present study, we investigated the involvement of the P2Y11 receptor using its specific antagonist NF157 in some key aspects of HBx-induced liver disease in human MIHA hepatocytes, including mitochondrial dysfunction due to compromised mitochondrial membrane potential (MMP), oxidative stress resulting from overproduction of reactive oxygen species (ROS) and decreased antioxidant glutathione (GSH), production of proinflammatory cytokines and chemokines such as interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, and chemokine (C-X-C motif) ligand 2 (CXCL2), as well as activation of cellular signaling pathways including the p38/mitogen-activated protein kinase (p38/MAPK) and nuclear factor-κB (NF-κB) pathways. Our findings present a novel new strategy for the treatment and prevention of chronic liver infection and subsequent morbidities induced by HBx via specific antagonism of the P2Y11 purinergic receptor.
Collapse
Affiliation(s)
- Changjiang Lei
- Department of General Surgery, The Fifth Hospital of WuhanWuhan 430000, Hubei, China
| | - Ying Fan
- Department of Cardiology, The Fifth Hospital of WuhanWuhan 430000, Hubei, China
| | - Xiulan Peng
- Department of Oncology, The Fifth Hospital of WuhanWuhan 430000, Hubei, China
| | - Xiaojun Gong
- Department of General Surgery, The Fifth Hospital of WuhanWuhan 430000, Hubei, China
| | - Liwei Shao
- Department of General Surgery, The Fifth Hospital of WuhanWuhan 430000, Hubei, China
| |
Collapse
|
189
|
Hu J, Cheng J, Tang L, Hu Z, Luo Y, Li Y, Zhou T, Chang J, Guo JT. Virological Basis for the Cure of Chronic Hepatitis B. ACS Infect Dis 2019; 5:659-674. [PMID: 29893548 DOI: 10.1021/acsinfecdis.8b00081] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) has infected one-third of world population, and 240 million people are chronic carriers, to whom a curative therapy is still not available. Similar to other viruses, persistent HBV infection relies on the virus to exploit host cell functions to support its replication and efficiently evade host innate and adaptive antiviral immunity. Understanding HBV replication and concomitant host cell interactions is thus instrumental for development of therapeutics to disrupt the virus-host interactions critical for its persistence and cure chronic hepatitis B. Although the currently available cell culture systems of HBV infection are refractory to genome-wide high throughput screening of key host cellular factors essential for and/or regulating HBV replication, classic one-gene (or pathway)-at-a-time studies in the last several decades have already revealed many aspects of HBV-host interactions. An overview of the landscape of HBV-hepatocyte interaction indicates that, in addition to more tightly suppressing viral replication by directly targeting viral proteins, disruption of key viral-host cell interactions to eliminate or inactivate the covalently closed circular (ccc) DNA, the most stable HBV replication intermediate that exists as an episomal minichromosome in the nucleus of infected hepatocyte, is essential to achieve a functional cure of chronic hepatitis B. Moreover, therapeutic targeting of integrated HBV DNA and their transcripts may also be required to induce hepatitis B virus surface antigen (HBsAg) seroclearance and prevent liver carcinogenesis.
Collapse
Affiliation(s)
- Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Liudi Tang
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Yue Luo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
- Institute of Hepatology, Second Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yuhuan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, 1 Tian-tan Xi-li, Beijing, 100050, China
| | - Tianlun Zhou
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
190
|
Abstract
Hepatitis B virus (HBV) affects more than 257 million people globally, resulting in progressively worsening liver disease, manifesting as fibrosis, cirrhosis, and hepatocellular carcinoma. The exceptionally narrow species tropism of HBV restricts its natural hosts to humans and non-human primates, including chimpanzees, gorillas, gibbons, and orangutans. The unavailability of completely immunocompetent small-animal models has contributed to the lack of curative therapeutic interventions. Even though surrogates allow the study of closely related viruses, their host genetic backgrounds, immune responses, and molecular virology differ from those of HBV. Various different models, based on either pure murine or xenotransplantation systems, have been introduced over the past years, often making the choice of the optimal model for any given question challenging. Here, we offer a concise review of in vivo model systems employed to study HBV infection and steps in the HBV life cycle or pathogenesis.
Collapse
Affiliation(s)
| | - Catherine Cherry
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Harry Gunn
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, W2 1PGLondon, U.K
| |
Collapse
|
191
|
Yang L, Liu F, Tong X, Hoffmann D, Zuo J, Lu M. Treatment of Chronic Hepatitis B Virus Infection Using Small Molecule Modulators of Nucleocapsid Assembly: Recent Advances and Perspectives. ACS Infect Dis 2019; 5:713-724. [PMID: 30896149 DOI: 10.1021/acsinfecdis.8b00337] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
On the basis of the recent advance of basic research on molecular biology of hepatitis B virus (HBV) infection, novel antiviral drugs targeting various steps of the HBV life cycle have been developed in recent years. HBV nucleocapsid assembly is now recognized as a hot target for anti-HBV drug development. Structural and functional analysis of HBV nucleocapsid allowed rational design and improvement of small molecules with the ability to interact with the components of HBV nucleocapsid and modulate the viral nucleocapsid assembly process. Prototypes of small molecule modulators targeting HBV nucleocapsid assembly are being preclinically tested or have moved forward in clinical trials, with promising results. This Review summarizes the recent advances in the approach to develop antiviral drugs based on the modulation of HBV nucleocapsid assembly. The antiviral mechanisms of small molecule modulators beyond the capsid formation and the potential implications will be discussed.
Collapse
Affiliation(s)
- Li Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Feifei Liu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xiankun Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Daniel Hoffmann
- Institute of Bioinformatics, University Duisburg Essen, Universitätsstraße 1, Essen 45117, Germany
| | - Jianping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech
Park, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University Duisburg Essen, Hufelandstrasse 55, Essen 45122, Germany
| |
Collapse
|
192
|
A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol 2019; 4:545-558. [PMID: 30981686 DOI: 10.1016/s2468-1253(19)30119-0] [Citation(s) in RCA: 362] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a global public health challenge on the same scale as tuberculosis, HIV, and malaria. The International Coalition to Eliminate HBV (ICE-HBV) is a coalition of experts dedicated to accelerating the discovery of a cure for chronic hepatitis B. Following extensive consultation with more than 50 scientists from across the globe, as well as key stakeholders including people affected by HBV, we have identified gaps in our current knowledge and new strategies and tools that are required to achieve HBV cure. We believe that research must focus on the discovery of interventional strategies that will permanently reduce the number of productively infected cells or permanently silence the covalently closed circular DNA in those cells, and that will stimulate HBV-specific host immune responses which mimic spontaneous resolution of HBV infection. There is also a pressing need for the establishment of repositories of standardised HBV reagents and protocols that can be accessed by all HBV researchers throughout the world. The HBV cure research agenda outlined in this position paper will contribute markedly to the goal of eliminating HBV infection worldwide.
Collapse
|
193
|
Gu C, Tao S, Hu K, Ming L, Luo M, Guo H, Su Y, Liu J, Xie Y. Establishment of an in vitro reporter system for screening HBx-targeting molecules. Acta Biochim Biophys Sin (Shanghai) 2019; 51:431-440. [PMID: 30811522 DOI: 10.1093/abbs/gmz016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a global public health problem. HBV-encoded X protein (HBx) is a multifunctional regulator that is required to initiate and maintain productive HBV infection, and is involved in HBV-related hepatocellular carcinoma (HCC). Inhibitors that interfere with the functions of HBx could be useful not only for the inhibition of HBV replication but also for the prevention or treatment of HBV-related HCC. To screen molecules that target HBx on a large scale remains a technical challenge due to a lack of sensitive and high-throughput system. In this work, we established an in vitro bioluminescent reporter system for screening HBx-targeting molecules. The system is based on a secretory fusion protein that combines HBx and NanoLuc (HBx-Nluc). The measured activity of NanoLuc in the culture supernatant of HBx-Nluc-expressing cells directly reflects the level of secreted HBx-Nluc. HBx protein-targeting intracellular anti-HBx single-chain variable fragment and RNA-targeting shRNA significantly reduced the secreted NanoLuc activity in HBx-Nluc-expressing cells. This system is simple and sensitive, and compatible with continuous non-disruptive screening, suggesting its potential usefulness for high-throughput screening and evaluating HBx-targeting molecules.
Collapse
Affiliation(s)
- Chenjian Gu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Tao
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kongying Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lijun Ming
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mengjun Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huimin Guo
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC), Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Children’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
194
|
Nehme Z, Pasquereau S, Herbein G. Control of viral infections by epigenetic-targeted therapy. Clin Epigenetics 2019; 11:55. [PMID: 30917875 PMCID: PMC6437953 DOI: 10.1186/s13148-019-0654-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is defined as the science that studies the modifications of gene expression that are not owed to mutations or changes in the genetic sequence. Recently, strong evidences are pinpointing toward a solid interplay between such epigenetic alterations and the outcome of human cytomegalovirus (HCMV) infection. Guided by the previous possibly promising experimental trials of human immunodeficiency virus (HIV) epigenetic reprogramming, the latter is paving the road toward two major approaches to control viral gene expression or latency. Reactivating HCMV from the latent phase ("shock and kill" paradigm) or alternatively repressing the virus lytic and reactivation phases ("block and lock" paradigm) by epigenetic-targeted therapy represent encouraging options to overcome latency and viral shedding or otherwise replication and infectivity, which could lead eventually to control the infection and its complications. Not limited to HIV and HCMV, this concept is similarly studied in the context of hepatitis B and C virus, herpes simplex virus, and Epstein-Barr virus. Therefore, epigenetic manipulations stand as a pioneering research area in modern biology and could constitute a curative methodology by potentially consenting the development of broad-spectrum antivirals to control viral infections in vivo.
Collapse
Affiliation(s)
- Zeina Nehme
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Université Libanaise, Beirut, Lebanon
| | - Sébastien Pasquereau
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB, UPRES EA4266, University of Franche-Comté, University of Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon cedex, France
- Department of Virology, CHRU Besancon, F-25030 Besançon, France
| |
Collapse
|
195
|
HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J Virol 2019; 93:JVI.01607-18. [PMID: 30674631 DOI: 10.1128/jvi.01607-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.
Collapse
|
196
|
Zhang D, Wang Y, Zhang HY, Jiao FZ, Zhang WB, Wang LW, Zhang H, Gong ZJ. Histone deacetylases and acetylated histone H3 are involved in the process of hepatitis B virus DNA replication. Life Sci 2019; 223:1-8. [PMID: 30862568 DOI: 10.1016/j.lfs.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
AIMS The aim of this study was to investigate the relationship between anti-HBV treatment and the regulation of HDACs during HBV DNA replication. METHODS HDAC activities and HBV DNA levels in CHB patients' sera were measured and correlation analysis was made. The changes of HDAC2, HDAC6, AH3 and histone H3 levels in normal control and 4 CHB patient liver tissue samples before and after antiviral treatment were examined. The HDAC inhibitor, TSA, anti-HBV agents, ETV and IFN-α were used to stimulate HepG2.2.15 cells. The levels of HBV DNA, pgRNA in supernatants, and cccDNA in the cells were determined by PCR. The HDAC activity, HDAC6, HDAC2, AH3 and H3 protein levels in cells were tested at days 3, 6, and 9 after treatments. KEY FINDINGS HDAC activity was positively correlated with HBV DNA in the HBV patients' sera. The levels of HDAC2, HDAC6 and AH3 were notably decreased after antiviral treatment. When compared with antiviral treatment group, the normal liver tissue showed obviously decreased HDAC2, HDAC6 and AH3 protein levels. In vitro study, the level of HBV DNA, the HDAC activity, and the HDAC2, HDAC6 and AH3 protein levels decreased in the ETV, IFN-α and TSA groups compared with the control group. The pgRNA level in supernatants was declined in the IFN-α group and increased in the ETV and TSA groups. cccDNA expression was suppressed by IFN-α. SIGNIFICANCE The changes of HBV replicative products during antiviral treatment are associated with histone deacetylation. Acetylated histone H3 is involved in the process of hepatitis B virus DNA replication.
Collapse
Affiliation(s)
- Di Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Hai-Yue Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Fang-Zhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Wen-Bin Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Hong Zhang
- Department of Pharmaceutical, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
197
|
Parvulin 14 and Parvulin 17 Bind to HBx and cccDNA and Upregulate Hepatitis B Virus Replication from cccDNA to Virion in an HBx-Dependent Manner. J Virol 2019; 93:JVI.01840-18. [PMID: 30567987 DOI: 10.1128/jvi.01840-18] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
The parvulin 14 (Par14) and parvulin 17 (Par17) proteins, which are both encoded by the PIN4 gene, play roles in protein folding, chromatin remodeling, DNA binding, ribosome biogenesis, and cell cycle progression. However, the effects of Par14 and Par17 on viral replication have never been explored. In this study, we found that, in the presence of HBx, either Par14 or Par17 could upregulate hepatitis B virus (HBV) replication, whereas in the absence of HBx, neither Par14 nor Par17 had any effect on replication. Overexpression of Par14/Par17 markedly increased the formation of covalently closed circular DNA (cccDNA), synthesis of HBV RNA and DNA, and virion secretion. Conversely, PIN4 knockdown significantly decreased HBV replication in HBV-transfected and -infected cells. Coimmunoprecipitation revealed that Par14/Par17 engaged in direct physical interactions with HBx in the cytoplasm, nucleus, and mitochondria, possibly mediated through substrate-binding residues on Par14/Par17 (E46/D74 and E71/D99, respectively) and conserved 19R20P-28R29P motifs on HBx. Furthermore, these interactions enhanced HBx stability, promoted HBx translocation to the nuclear and mitochondrial fractions, and increased HBV replication. Chromatin immunoprecipitation assays revealed that, in the presence of HBx, Par14/Par17 were efficiently recruited to cccDNA and promoted transcriptional activation via specific DNA-binding residues (S19/44). In contrast, in the absence of HBx, Par14/Par17 bound cccDNA only at the basal level and did not promote transcriptional activation. Taken together, our results demonstrate that Par14 and Par17 upregulate HBV RNA transcription and DNA synthesis, thereby increasing the HBV cccDNA level, through formation of the cccDNA-Par14/17-HBx complex.IMPORTANCE The HBx protein plays an essential regulatory role in HBV replication. We found that substrate-binding residues on the human parvulin peptidylprolyl cis/trans isomerase proteins Par14 and Par17 bound to conserved arginine-proline (RP) motifs on HBx in the cytoplasm, nucleus, and mitochondria. The HBx-Par14/Par17 interaction stabilized HBx; promoted its translocation to the nucleus and mitochondria; and stimulated multiple steps of HBV replication, including cccDNA formation, HBV RNA and DNA synthesis, and virion secretion. In addition, in the presence of HBx, the Par14 and Par17 proteins bound to cccDNA and promoted its transcriptional activation. Our results suggest that inhibition or knockdown of Par14 and Par17 may represent a novel therapeutic option against HBV infection.
Collapse
|
198
|
Wang Z, Kawaguchi K, Honda M, Hashimoto S, Shirasaki T, Okada H, Orita N, Shimakami T, Yamashita T, Sakai Y, Mizukoshi E, Murakami S, Kaneko S. Notch signaling facilitates hepatitis B virus covalently closed circular DNA transcription via cAMP response element-binding protein with E3 ubiquitin ligase-modulation. Sci Rep 2019; 9:1621. [PMID: 30733490 PMCID: PMC6367350 DOI: 10.1038/s41598-018-38139-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Notch1 is regulated by E3 ubiquitin ligases, with proteasomal degradation of the Notch intracellular domain affecting the transcription of target genes. cAMP response element-binding protein (CREB) mediates the transcription of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA). We assessed the relationship between HBV cccDNA and Notch signaling activities. HBV cccDNA levels and relative gene expression were evaluated in HBV-replicating cells treated with Jagged1 shRNA and a γ-secretase inhibitor. The effects of these factors in surgically resected clinical samples were also assessed. Notch inhibition suppressed HBV cccDNA and CREB-related expression but increased ITCH and NUMB levels. Proteasome inhibitor augmented HBV cccDNA, restored Notch and CREB expression, and inhibited ITCH and NUMB function. Increased HBV cccDNA was observed after ITCH and NUMB blockage, even after treatment with the adenylate cyclase activator forskolin; protein kinase A (PKA) inhibitor had the opposite effect. Notch activation and E3 ligase inactivation were observed in HBV-positive cells in clinical liver tissue. Collectively, these findings reveal that Notch signaling activity facilitates HBV cccDNA transcription via CREB to trigger the downstream PKA-phospho-CREB cascade and is regulated by E3 ubiquitin ligase-modulation of the Notch intracellular domain.
Collapse
Affiliation(s)
- Zijing Wang
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazunori Kawaguchi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shinichi Hashimoto
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Takayoshi Shirasaki
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hikari Okada
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Noriaki Orita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tetsuro Shimakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshio Sakai
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Eishiro Mizukoshi
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Seishi Murakami
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
199
|
Lee H, Jeong H, Lee SY, Kim SS, Jang KL. Hepatitis B Virus X Protein Stimulates Virus Replication Via DNA Methylation of the C-1619 in Covalently Closed Circular DNA. Mol Cells 2019; 42:67-78. [PMID: 30518174 PMCID: PMC6354056 DOI: 10.14348/molcells.2018.0255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/06/2023] Open
Abstract
Methylation of HBV cccDNA has been detected in vivo and in vitro; however, the mechanism and its effects on HBV replication remain unclear. HBx derived from a 1.2-mer HBV replicon upregulated protein levels and enzyme activities of DNA methyltransferase 1 (DNMT1), 3a, and 3b, resulting in methylation of the negative regulatory region (NRE) in cccDNA, while none of these effects were observed with an HBx-null mutant. The HBx-positive HBV cccDNA expressed higher levels of HBc and produced about 4-fold higher levels of HBV particles than those from the HBx-null counterpart. For these effects, HBx interrupted the action of NRE binding protein via methylation of the C-1619 within NRE, resulting in activation of the core promoter. Treatment with 5-Aza-2'dC or DNMT1 knock-down drastically impaired the ability of HBx to activate the core promoter and stimulate HBV replication in 1.2-mer HBV replicon and in vitro infection systems, indicating the positive role of HBx-mediated cccDNA methylation in HBV replication.
Collapse
Affiliation(s)
- Hyehyeon Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241,
Korea
| | - Hyerin Jeong
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241,
Korea
| | - Sun Young Lee
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241,
Korea
| | - Soo Shin Kim
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241,
Korea
| | - Kyung Lib Jang
- Department of Microbiology, College of Natural Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
200
|
Xia Y, Liang TJ. Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology 2019; 156:311-324. [PMID: 30243618 PMCID: PMC6340783 DOI: 10.1053/j.gastro.2018.07.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) infection affects approximately 300 million people worldwide. Although antiviral therapies have improved the long-term outcomes, patients often require life-long treatment and there is no cure for HBV infection. New technologies can help us learn more about the pathogenesis of HBV infection and develop therapeutic agents to reduce its burden. We review recent advances in development of direct-acting antiviral and host-targeting agents, some of which have entered clinical trials. We also discuss strategies for unbiased high-throughput screens to identify compounds that inhibit HBV and for repurposing existing drugs.
Collapse
Affiliation(s)
- Yuchen Xia
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20892.
| |
Collapse
|