151
|
Zuo X, Jia J. Promoter polymorphisms which modulate insulin degrading enzyme expression may increase susceptibility to Alzheimer's disease. Brain Res 2009; 1249:1-8. [DOI: 10.1016/j.brainres.2008.10.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/01/2008] [Accepted: 10/10/2008] [Indexed: 10/21/2022]
|
152
|
Abstract
Cerebral amyloid angiopathy (CAA), which causes intracerebral hemorrhage in the elderly population, is a major hallmark of Alzheimer’s disease. In CAA, amyloid-β (Aβ) deposition is mainly detected in the cortex and leptomeningeal arteries along the interstitial fluid drainage pathway. Failure to eliminate Aβ leads to accumulation of Aβ in the perivascular region and CAA. Several clearance routes of Aβ have been described, including elimination along the perivascular interstitial fluid drainage pathway, elimination through the blood–brain barrier and uptake and degradation by glia and neurons. All of these routes express the low-density lipoprotein receptor-related protein (LRP)1, which plays a critical role in Aβ clearance. Consequently, an impairment of Aβ clearance through LRP1 likely contributes to CAA pathogenesis. This review summarizes what is known about LRP1 and CAA as well as providing insights into the possible roles of LRP1 in Aβ clearance.
Collapse
Affiliation(s)
- Takahisa Kanekiyo
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8208, St Louis, MO 63110, USA
| | - Guojun Bu
- Departments of Pediatrics & Cell Biology & Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8208, St Louis, MO 63110, USA
| |
Collapse
|
153
|
Ciaccio C, Tundo GR, Grasso G, Spoto G, Marasco D, Ruvo M, Gioia M, Rizzarelli E, Coletta M. Somatostatin: a novel substrate and a modulator of insulin-degrading enzyme activity. J Mol Biol 2008; 385:1556-67. [PMID: 19073193 DOI: 10.1016/j.jmb.2008.11.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/15/2008] [Accepted: 11/17/2008] [Indexed: 12/26/2022]
Abstract
Insulin-degrading enzyme (IDE) is an interesting pharmacological target for Alzheimer's disease (AD), since it hydrolyzes beta-amyloid, producing non-neurotoxic fragments. It has also been shown that the somatostatin level reduction is a pathological feature of AD and that it regulates the neprilysin activity toward beta-amyloid. In this work, we report for the first time that IDE is able to hydrolyze somatostatin [k(cat) (s(-1))=0.38 (+/-0.05); K(m) (M)=7.5 (+/-0.9) x 10(-6)] at the Phe6-Phe7 amino acid bond. On the other hand, somatostatin modulates IDE activity, enhancing the enzymatic cleavage of a novel fluorogenic beta-amyloid through a decrease of the K(m) toward this substrate, which corresponds to the 10-25 amino acid sequence of the Abeta(1-40). Circular dichroism spectroscopy and surface plasmon resonance imaging experiments show that somatostatin binding to IDE brings about a concentration-dependent structural change of the secondary and tertiary structure(s) of the enzyme, revealing two possible binding sites. The higher affinity binding site disappears upon inactivation of IDE by ethylenediaminetetraacetic acid, which chelates the catalytic Zn(2+) ion. As a whole, these features suggest that the modulatory effect is due to an allosteric mechanism: somatostatin binding to the active site of one IDE subunit (where somatostatin is cleaved) induces an enhancement of IDE proteolytic activity toward fluorogenic beta-amyloid by another subunit. Therefore, this investigation on IDE-somatostatin interaction contributes to a more exhaustive knowledge about the functional and structural aspects of IDE and its pathophysiological implications in the amyloid deposition and somatostatin homeostasis in the brain.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Kim ML, Zhang B, Mills IP, Milla ME, Brunden KR, Lee VMY. Effects of TNFalpha-converting enzyme inhibition on amyloid beta production and APP processing in vitro and in vivo. J Neurosci 2008; 28:12052-61. [PMID: 19005070 PMCID: PMC2646261 DOI: 10.1523/jneurosci.2913-08.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/21/2008] [Accepted: 10/05/2008] [Indexed: 01/13/2023] Open
Abstract
Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine that is elevated in Alzheimer's disease (AD) brains. Because TNFalpha is released from cell membranes by the TNFalpha-converting enzyme (TACE), inhibition of TACE has the potential to mitigate TNFalpha effects in AD brain. TACE also cleaves amyloid precursor protein (APP) and generates sAPPalpha, precluding the formation of potentially harmful amyloid beta (Abeta) peptides by beta-site APP cleaving enzymes (BACE). Hence, the anti-inflammatory benefits of TACE inhibition might be offset by an increase in Abeta. We have examined the effects of the highly selective TACE inhibitor, BMS-561392, on APP processing in vitro and in vivo. In Chinese hamster ovary cells expressing APP, BMS-561392 significantly reduced secretion of sAPPalpha without a corresponding increase in Abeta production. Conversely, a BACE inhibitor decreased sAPPbeta and Abeta peptides with no change in the secretion of sAPPalpha. These data indicate an absence of TACE and BACE competition for the APP substrate. Despite this, we observed competition for APP when TACE activity was enhanced via phorbol ester treatment or if APP was modified such that it was retained within the trans-Golgi network (TGN). These results suggest that BACE and TACE share a common TGN localization, but under normal conditions do not compete for APP. To confirm this finding in vivo, BMS-561392 was infused into the brains of Tg2576 and wild-type mice. Although decreased brain sAPPalpha levels were observed, steady-state Abeta levels were not significantly changed. Accordingly, it is possible that TACE inhibitors could reduce TNFalpha levels without increasing Abeta levels within the AD brain.
Collapse
Affiliation(s)
- Minkyu L. Kim
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Bin Zhang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Ian P. Mills
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Marcos E. Milla
- In Vitro Pharmacology–Inflammation Discovery, Roche Pharmaceuticals, Palo Alto, California 94304
| | - Kurt R. Brunden
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| |
Collapse
|
155
|
Betts V, Leissring MA, Dolios G, Wang R, Selkoe DJ, Walsh DM. Aggregation and catabolism of disease-associated intra-Abeta mutations: reduced proteolysis of AbetaA21G by neprilysin. Neurobiol Dis 2008; 31:442-50. [PMID: 18602473 PMCID: PMC3160758 DOI: 10.1016/j.nbd.2008.06.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/23/2023] Open
Abstract
Five point mutations within the amyloid beta-protein (Abeta) sequence of the APP gene are associated with hereditary diseases which are similar or identical to Alzheimer's disease and encode: the A21G (Flemish), E22G (Arctic), E22K (Italian), E22Q (Dutch) and the D23N (Iowa) amino acid substitutions. Although a substantial body of data exists on the effects of these mutations on Abeta production, whether or not intra-Abeta mutations alter degradation and how this relates to their aggregation state remain unclear. Here we report that the E22G, E22Q and the D23N substitutions significantly increase fibril nucleation and extension, whereas the E22K substitution exhibits only an increased rate of extension and the A21G substitution actually causes a decrease in the extension rate. These substantial differences in aggregation together with our observation that aggregated wild type Abeta(1-40) was much less well degraded than monomeric wild type Abeta(1-40), prompted us to assess whether or not disease-associated intra-Abeta mutations alter proteolysis independent of their effects on aggregation. Neprilysin (NEP), insulin degrading enzyme (IDE) and plasmin play a major role in Abeta catabolism, therefore we compared the ability of these enzymes to degrade wild type and mutant monomeric Abeta peptides. Experiments investigating proteolysis revealed that all monomeric peptides are degraded similarly by IDE and plasmin, but that the Flemish peptide was degraded significantly more slowly by NEP than wild type Abeta or any of the other mutant peptides. This finding suggests that resistance to NEP-mediated proteolysis may underlie the pathogenicity associated with the A21G mutation.
Collapse
Affiliation(s)
- Vicki Betts
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Malcolm A. Leissring
- The Mayo Clinic, Jacksonville, 4500 San Pablo Road, Birdsall Building, Jacksonville, FL 32224, USA
| | - Georgia Dolios
- Department of Human Genetics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Rong Wang
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dennis J. Selkoe
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, The Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
- Department of Neurology, Harvard Medical School and Center for Neurologic Diseases, Brigham & Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
156
|
Van Vickle GD, Esh CL, Daugs ID, Kokjohn TA, Kalback WM, Patton RL, Luehrs DC, Walker DG, Lue LF, Beach TG, Davis J, Van Nostrand WE, Castaño EM, Roher AE. Tg-SwDI transgenic mice exhibit novel alterations in AbetaPP processing, Abeta degradation, and resilient amyloid angiopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:483-93. [PMID: 18599612 PMCID: PMC2475785 DOI: 10.2353/ajpath.2008.071191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 05/08/2008] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-beta (Abeta) peptides. We characterized the chemical composition of the Abeta peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Abeta accumulation. The processing of the N- and C-terminal regions of mutant AbetaPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AbetaPP transgene expression levels, suggests that inefficient Abeta proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AbetaPP processing and fundamental insights into the faulty degradation and clearance of Abeta in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents.
Collapse
Affiliation(s)
- Gregory D Van Vickle
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, AZ 85351, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Since Alzheimer's disease (AD) has no cure or preventive treatment, an urgent need exists to find a means of preventing, delaying the onset, or reversing the course of the disease. Clinical and epidemiological evidence suggests that lifestyle factors, especially nutrition, may be crucial in controlling AD. Unhealthy lifestyle choices lead to an increasing incidence of obesity, dyslipidemia and hypertension--components of the metabolic syndrome. These disorders can also be linked to AD. Recent research supports the hypothesis that calorie intake, among other non-genetic factors, can influence the risk of clinical dementia. In animal studies, high calorie intake in the form of saturated fat promoted AD-type amyloidosis, while calorie restriction via reduced carbohydrate intake prevented it. Pending further study, it is prudent to recommend to those at risk for AD--e.g. with a family history or features of metabolic syndrome, such as obesity, insulin insensitivity, etc.--to avoid foods and beverages with added sugars; to eat whole, unrefined foods with natural fats, especially fish, nuts and seeds, olives and olive oil; and to minimize foods that disrupt insulin and blood sugar balance.
Collapse
Affiliation(s)
- Giulio Maria Pasinetti
- Center of Excellence for Research in Complementary and Alternative Medicine in Alzheimer's Disease, Department of Psychiatry, The Mount Sinai School of Medicine, New York, New York, USA.
| | | |
Collapse
|
158
|
Malito E, Hulse RE, Tang WJ. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 2008; 65:2574-85. [PMID: 18470479 PMCID: PMC2756532 DOI: 10.1007/s00018-008-8112-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The accumulation of aggregates of amyloidogenic peptides is associated with numerous human diseases. One well studied example is the association between deposition of amyloid beta (Abeta) and Alzheimer's disease. Insulin degrading enzyme and neprilysin are involved in the clearance of Abeta, and presequence peptidase is suggested to play a role in the degradation of mitochondrial Abeta. Recent structural analyses reveal that these three peptidases contain a catalytic chamber (crypt) that selectively encapsulates and cleaves amyloidogenic peptides, hence the name cryptidase. The substrate selectivity of these cryptidases is determined by the size and charge distribution of their crypt as well as the conformational flexibility of substrates. The interaction of Abeta with the catalytic core of these cryptidases is controlled by conformational changes that make the catalytic chambers accessible for Abeta binding. These new structural and biochemical insights into cryptidases provide potential therapeutic strategies for the control of Abeta clearance.
Collapse
Affiliation(s)
- E. Malito
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
| | - R. E. Hulse
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| | - W.-J. Tang
- Ben-May Department for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, IL 60637 United States
- Committee of Neurobiology, The University of Chicago, 947 East 58th Street, Chicago, IL 60637 United States
| |
Collapse
|
159
|
Molecular basis for the thiol sensitivity of insulin-degrading enzyme. Proc Natl Acad Sci U S A 2008; 105:9582-7. [PMID: 18621727 DOI: 10.1073/pnas.0801261105] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitous zinc-metalloprotease that hydrolyzes several pathophysiologically relevant peptides, including insulin and the amyloid beta-protein (Abeta). IDE is inhibited irreversibly by compounds that covalently modify cysteine residues, a mechanism that could be operative in the etiology of type 2 diabetes mellitus (DM2) or Alzheimer's disease (AD). However, despite prior investigation, the molecular basis underlying the sensitivity of IDE to thiol-alkylating agents has not been elucidated. To address this topic, we conducted a comprehensive mutational analysis of the 13 cysteine residues within IDE. Our analysis implicates C178, C812, and C819 as the principal residues conferring thiol sensitivity. The involvement of C812 and C819, residues quite distant from the catalytic zinc atom, provides functional evidence that the active site of IDE comprises two separate domains that are operational only in close apposition. Structural analysis and other evidence predict that alkylation of C812 and C819 disrupts substrate binding, whereas alkylation of C178 interferes with the apposition of active-site domains and subtly repositions zinc-binding residues. Unexpectedly, alkylation of C590 was found to activate hydrolysis of Abeta significantly, while having no effect on insulin, demonstrating that chemical modulation of IDE can be both bidirectional and highly substrate selective. Our findings resolve a long-standing riddle about the basic enzymology of IDE with important implications for the etiology of DM2 and AD. Moreover, this work uncovers key details about the mechanistic basis of the unusual substrate selectivity of IDE that may aid the development of pharmacological agents or IDE mutants with therapeutic value.
Collapse
|
160
|
Thal DR, Griffin WST, de Vos RAI, Ghebremedhin E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol 2008; 115:599-609. [PMID: 18369648 DOI: 10.1007/s00401-008-0366-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 12/29/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by the deposition of the amyloid beta-protein (A beta) within cerebral vessels. The involvement of different brain areas in CAA follows a hierarchical sequence similar to that of Alzheimer-related senile plaques. Alzheimer's disease patients frequently exhibit CAA. The expansion of CAA in AD often shows the pattern of full-blown CAA. The deposition of A beta within capillaries distinguishes two types of CAA. One with capillary A beta-deposition is characterized by a strong association with the apolipoprotein E (APOE) epsilon 4 allele and by its frequent occurrence in Alzheimer's disease cases whereas the other one lacking capillary A beta-deposits is not associated with APOE epsilon 4. Capillary CAA can be seen in every stage of CAA or AD-related A beta-deposition. AD cases with capillary CAA show more widespread capillary A beta-deposition than non-demented cases as well as capillary occlusion. In a mouse model of CAA, capillary CAA was associated with capillary occlusion and cerebral blood flow disturbances. Thus, blood flow alterations with subsequent hypoperfusion induced by CAA-related capillary occlusion presumably point to a second mechanism in which A beta adversely affects the brain in AD in addition to its direct neurotoxic effects.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Laboratory of Neuropathology, Institute of Pathology, University of Ulm, Albert-Einstein-Allee 7, 89081 Ulm, Germany.
| | | | | | | |
Collapse
|
161
|
Llovera RE, de Tullio M, Alonso LG, Leissring MA, Kaufman SB, Roher AE, de Prat Gay G, Morelli L, Castaño EM. The Catalytic Domain of Insulin-degrading Enzyme Forms a Denaturant-resistant Complex with Amyloid β Peptide. J Biol Chem 2008; 283:17039-48. [DOI: 10.1074/jbc.m706316200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
162
|
de Tullio MB, Morelli L, Castaño EM. The irreversible binding of amyloid peptide substrates to insulin-degrading enzyme: a biological perspective. Prion 2008; 2:51-6. [PMID: 19098445 DOI: 10.4161/pri.2.2.6710] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a conserved Zn(2+)metalloendopeptidase involved in insulin degradation and in the maintenance of brain steady-state levels of amyloid beta peptide (Abeta) of Alzheimer's disease (AD). Our recent demonstration that IDE and Abeta are capable of forming a stoichiometric and extremely stable complex raises several intriguing possibilities regarding the role of this unique protein-peptide interaction in physiological and pathological conditions. These include a protective cellular function of IDE as a "dead-end chaperone" alternative to its proteolytic activity and the potential impact of the irreversible binding of Abeta to IDE upon its role as a varicella zoster virus receptor. In a pathological context, the implications for insulin signaling and its relationship to AD pathogenesis are discussed. Moreover, our findings warrant further research regarding a possible general and novel interaction between amyloidogenic peptides and other Zn(2+)metallopeptidases with an IDE-like fold and a substrate conformation-dependent recognition mechanism.
Collapse
Affiliation(s)
- Matías B de Tullio
- Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
163
|
Van Vickle GD, Esh CL, Kokjohn TA, Patton RL, Kalback WM, Luehrs DC, Beach TG, Newel AJ, Lopera F, Ghetti B, Vidal R, Castaño EM, Roher AE. Presenilin-1 280Glu-->Ala mutation alters C-terminal APP processing yielding longer abeta peptides: implications for Alzheimer's disease. Mol Med 2008; 14:184-94. [PMID: 18317569 PMCID: PMC2258166 DOI: 10.2119/2007-00094.vanvickle] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 01/14/2008] [Indexed: 01/17/2023] Open
Abstract
Presenilin (PS) mutations enhance the production of the Abeta42 peptide that is derived from the amyloid precursor protein (APP). The pathway(s) by which the Abeta42 species is preferentially produced has not been elucidated, nor is the mechanism by which PS mutations produce early-onset dementia established. Using a combination of histological, immunohistochemical, biochemical, and mass spectrometric methods, we examined the structural and morphological nature of the amyloid species produced in a patient expressing the PS1 280Glu-->Ala familial Alzheimer's disease mutation. Abundant diffuse plaques were observed that exhibited a staining pattern and morphology distinct from previously described PS cases, as well as discreet amyloid plaques within the white matter. In addition to finding increased amounts of CT99 and Abeta42 peptides, our investigation revealed the presence of a complex array of Abeta peptides substantially longer than 42/43 amino acid residue species. The increased hydrophobic nature of longer Abeta species retained within the membrane walls could impact the structure and function of plasma membrane and organelles. These C-terminally longer peptides may, through steric effects, dampen the rate of turnover by critical amyloid degrading enzymes such as neprilysin and insulin degrading enzyme. A complete understanding of the deleterious side effects of membrane bound Abeta as a consequence of gamma-secretase alterations is needed to understand Alzheimer's disease pathophysiology and will aid in the design of therapeutic interventions.
Collapse
Affiliation(s)
- Gregory D Van Vickle
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Chera L Esh
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Tyler A Kokjohn
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
- Department of Microbiology, Midwestern University, Glendale, Arizona, USA
| | - R Lyle Patton
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Walter M Kalback
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Dean C Luehrs
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| | - Thomas G Beach
- W H Civin Laboratory of Neuropathology, Sun Health Research Institute, Sun City, Arizona, USA
| | - Amanda J Newel
- W H Civin Laboratory of Neuropathology, Sun Health Research Institute, Sun City, Arizona, USA
| | - Francisco Lopera
- Department of Neuropathology Neuroscience Group, University of Antioquia, Colombia
| | - Bernardino Ghetti
- Indiana Alzheimer Disease Center, Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Ruben Vidal
- Indiana Alzheimer Disease Center, Department of Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana, USA
| | | | - Alex E Roher
- The Longtine Center for Molecular Biology and Genetics, Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
164
|
Huet Y, Strassner J, Schaller A. Cloning, expression and characterization of insulin-degrading enzyme from tomato (Solanum lycopersicum). Biol Chem 2008; 389:91-8. [PMID: 18095874 DOI: 10.1515/bc.2008.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cDNA encoding insulin-degrading enzyme (IDE) was cloned from tomato (Solanum lycopersicum) and expressed in Escherichia coli in N-terminal fusion with glutathione S-transferase. GST-SlIDE was characterized as a neutral thiol-dependent metallopeptidase with insulinase activity: the recombinant enzyme cleaved the oxidized insulin B chain at eight peptide bonds, six of which are also targets of human IDE. Despite a certain preference for proline in the vicinity of the cleavage site, synthetic peptides were cleaved at apparently stochastic positions indicating that SlIDE, similar to IDEs from other organisms, does not recognize any particular amino acid motif in the primary structure of its substrates. Under steady-state conditions, an apparent K(m) of 62+/-7 microm and a catalytic efficiency (k(cat)/K(m)) of 62+/-15 mm(-1) s(-1) were determined for Abz-SKRDPPKMQTDLY(NO(3))-NH(2) as the substrate. GST-SlIDE was effectively inhibited by ATP at physiological concentrations, suggesting regulation of its activity in response to the energy status of the cell. While mammalian and plant IDEs share many of their biochemical properties, this similarity does not extend to their function in vivo, because insulin and the beta-amyloid peptide, well-established substrates of mammalian IDEs, as well as insulin-related signaling appear to be absent from plant systems.
Collapse
Affiliation(s)
- Yoann Huet
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, D-70593 Stuttgart, Germany
| | | | | |
Collapse
|
165
|
Venugopal C, Pappolla MA, Sambamurti K. Insulysin cleaves the APP cytoplasmic fragment at multiple sites. Neurochem Res 2007; 32:2225-34. [PMID: 17701350 DOI: 10.1007/s11064-007-9449-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
The amyloid peptide (Abeta) deposited in Alzheimer's disease (AD) is generated by beta- and gamma-secretase processing of a larger integral membrane protein precursor (APP). Intramembrane processing of APP by gamma-secretase also yields an intracellular fragment, CTFgamma (a.k.a. AICD), which is highly conserved and is believed to regulate the transcription of several genes including KAI-1 and GSK3beta. The intracellular domain of APP is also processed by caspase to a 31 aa fragment that was shown to induce apoptosis by several groups. Although large quantities of CTFgamma are generated continuously by neurons, little if any is normally detected in cell lysates, which suggests that it is very rapidly turned over in vivo. Previous studies demonstrated that insulysin (IDE), an Abeta-degrading enzyme, is responsible for cytosol-mediated CTFgamma degradation in vitro. Consistent with this finding, knockout mice lacking IDE accumulate CTFgamma to detectable levels in the brain, although its levels remain lower than its precursor, suggesting that it continues to be turned over in the brain. Moreover, when we treated cultured cells with IDE inhibitors, we did not observe an increase in CTFgamma in cell lysates, suggesting that pathways other than IDE are also involved in CTFgamma turnover. To understand CTFgamma turnover further, we have mapped the IDE cleavage sites with the intention of mutating them to examine alternative pathways in future studies. Edman degradation revealed that IDE cleaves CTFgamma at multiple sites to small peptides ranging from 5 to 14 aa. The cleavage sites do not reveal the existence of any sequence specificity for IDE cleavage. Understanding the turnover mechanisms of CTFgamma is critical to the understanding of the signaling function of APP mediated by this fragment. The current study presents the interesting specificity of CTFgamma turnover by IDE, which has been previously identified as the major degrading enzyme for Abeta as well as CTFgamma. In addition, the study provides evidence for the presence of alternative CTFgamma-degrading pathways in the cell.
Collapse
Affiliation(s)
- Chitra Venugopal
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
166
|
Ahuja N, Schwer B, Carobbio S, Waltregny D, North BJ, Castronovo V, Maechler P, Verdin E. Regulation of Insulin Secretion by SIRT4, a Mitochondrial ADP-ribosyltransferase. J Biol Chem 2007; 282:33583-33592. [PMID: 17715127 DOI: 10.1074/jbc.m705488200] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are homologues of the yeast transcriptional repressor Sir2p and are conserved from bacteria to humans. We report that human SIRT4 is localized to the mitochondria. SIRT4 is a matrix protein and becomes cleaved at amino acid 28 after import into mitochondria. Mass spectrometry analysis of proteins that coimmunoprecipitate with SIRT4 identified insulindegrading enzyme and the ADP/ATP carrier proteins, ANT2 and ANT3. SIRT4 exhibits no histone deacetylase activity but functions as an efficient ADP-ribosyltransferase on histones and bovine serum albumin. SIRT4 is expressed in islets of Langerhans and colocalizes with insulin-expressing beta cells. Depletion of SIRT4 from insulin-producing INS-1E cells results in increased insulin secretion in response to glucose. These observations define a new role for mitochondrial SIRT4 in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Nidhi Ahuja
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158
| | - Bjoern Schwer
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158
| | - Stefania Carobbio
- Department of Cell Physiology and Metabolism, University Medical Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - David Waltregny
- Metastasis Research Laboratory, University of Liege, B-4000 Liege, Belgium
| | - Brian J North
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158
| | | | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University Medical Center, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158.
| |
Collapse
|
167
|
Farris W, Schütz SG, Cirrito JR, Shankar GM, Sun X, George A, Leissring MA, Walsh DM, Qiu WQ, Holtzman DM, Selkoe DJ. Loss of neprilysin function promotes amyloid plaque formation and causes cerebral amyloid angiopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:241-51. [PMID: 17591969 PMCID: PMC1941603 DOI: 10.2353/ajpath.2007.070105] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebral deposition of the amyloid beta protein (Abeta), an invariant feature of Alzheimer's disease, reflects an imbalance between the rates of Abeta production and clearance. The causes of Abeta elevation in the common late-onset form of Alzheimer's disease (LOAD) are largely unknown. There is evidence that the Abeta-degrading protease neprilysin (NEP) is down-regulated in normal aging and LOAD. We asked whether a decrease in endogenous NEP levels can prolong the half-life of Abeta in vivo and promote development of the classic amyloid neuropathology of Alzheimer's disease. We examined the brains and plasma of young and old mice expressing relatively low levels of human amyloid precursor protein and having one or both NEP genes silenced. NEP loss of function 1) elevated whole-brain and plasma levels of human Abeta(40) and Abeta(42), 2) prolonged the half-life of soluble Abeta in brain interstitial fluid of awake animals, 3) raised the concentration of Abeta dimers, 4) markedly increased hippocampal amyloid plaque burden, and 5) led to the development of amyloid angiopathy. A approximately 50% reduction in NEP levels, similar to that reported in some LOAD brains, was sufficient to increase amyloid neuropathology. These findings demonstrate an important role for proteolysis in determining the levels of Abeta and Abeta-associated neuropathology in vivo and support the hypothesis that primary defects in Abeta clearance can cause or contribute to LOAD pathogenesis.
Collapse
Affiliation(s)
- Wesley Farris
- Center for Neurologic Diseases, Department of Neurology, Harvard Institutes of Medicine, Room 730, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Hemming ML, Patterson M, Reske-Nielsen C, Lin L, Isacson O, Selkoe DJ. Reducing amyloid plaque burden via ex vivo gene delivery of an Abeta-degrading protease: a novel therapeutic approach to Alzheimer disease. PLoS Med 2007; 4:e262. [PMID: 17760499 PMCID: PMC1952204 DOI: 10.1371/journal.pmed.0040262] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/18/2007] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Understanding the mechanisms of amyloid-beta protein (Abeta) production and clearance in the brain has been essential to elucidating the etiology of Alzheimer disease (AD). Chronically decreasing brain Abeta levels is an emerging therapeutic approach for AD, but no such disease-modifying agents have achieved clinical validation. Certain proteases are responsible for the catabolism of brain Abeta in vivo, and some experimental evidence suggests they could be used as therapeutic tools to reduce Abeta levels in AD. The objective of this study was to determine if enhancing the clearance of Abeta in the brain by ex vivo gene delivery of an Abeta-degrading protease can reduce amyloid plaque burden. METHODS AND FINDINGS We generated a secreted form of the Abeta-degrading protease neprilysin, which significantly lowers the levels of naturally secreted Abeta in cell culture. We then used an ex vivo gene delivery approach utilizing primary fibroblasts to introduce this soluble protease into the brains of beta-amyloid precursor protein (APP) transgenic mice with advanced plaque deposition. Brain examination after cell implantation revealed robust clearance of plaques at the site of engraftment (72% reduction, p = 0.0269), as well as significant reductions in plaque burden in both the medial and lateral hippocampus distal to the implantation site (34% reduction, p = 0.0020; and 55% reduction, p = 0.0081, respectively). CONCLUSIONS Ex vivo gene delivery of an Abeta-degrading protease reduces amyloid plaque burden in transgenic mice expressing human APP. These results support the use of Abeta-degrading proteases as a means to therapeutically lower Abeta levels and encourage further exploration of ex vivo gene delivery for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Matthew L Hemming
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michaela Patterson
- Neuroregeneration Laboratories, McLean Hospital and Harvard University Udall Parkinson's Disease Research Center of Excellence, Belmont, Massachusetts, United States of America
| | - Casper Reske-Nielsen
- Neuroregeneration Laboratories, McLean Hospital and Harvard University Udall Parkinson's Disease Research Center of Excellence, Belmont, Massachusetts, United States of America
| | - Ling Lin
- Neuroregeneration Laboratories, McLean Hospital and Harvard University Udall Parkinson's Disease Research Center of Excellence, Belmont, Massachusetts, United States of America
| | - Ole Isacson
- Neuroregeneration Laboratories, McLean Hospital and Harvard University Udall Parkinson's Disease Research Center of Excellence, Belmont, Massachusetts, United States of America
| | - Dennis J Selkoe
- Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
169
|
Jean L, Thomas B, Tahiri-Alaoui A, Shaw M, Vaux DJ. Heterologous amyloid seeding: revisiting the role of acetylcholinesterase in Alzheimer's disease. PLoS One 2007; 2:e652. [PMID: 17653279 PMCID: PMC1920558 DOI: 10.1371/journal.pone.0000652] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022] Open
Abstract
Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-beta peptide (Abeta) production via beta and gamma secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Abeta in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Abeta fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE(575-614)) is an exposed amphiphilic alpha-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) beta-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE(586-599)) encompassing the CSR region shares homology with Abeta and forms beta-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE beta-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE(586-599), or versus Abeta, differed. Moreover, IDE digestion of T40 triggered the conformational switch from alpha- to beta-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Abeta fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Abeta deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Abeta in AD, for example) may not be the only important factor in neurodegeneration.
Collapse
Affiliation(s)
- Létitia Jean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | - Michael Shaw
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David J. Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
170
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
171
|
Im H, Manolopoulou M, Malito E, Shen Y, Zhao J, Neant-Fery M, Sun CY, Meredith SC, Sisodia SS, Leissring MA, Tang WJ. Structure of substrate-free human insulin-degrading enzyme (IDE) and biophysical analysis of ATP-induced conformational switch of IDE. J Biol Chem 2007; 282:25453-63. [PMID: 17613531 DOI: 10.1074/jbc.m701590200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid-beta (Abeta) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substrate-bound human 113-kDa IDE reveals that the N- and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that Abeta is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in Vmax with only minimal changes to Km. Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.
Collapse
Affiliation(s)
- Hookang Im
- Ben-May Department for Cancer Research, the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Cole AR, Astell A, Green C, Sutherland C. Molecular connexions between dementia and diabetes. Neurosci Biobehav Rev 2007; 31:1046-63. [PMID: 17544131 DOI: 10.1016/j.neubiorev.2007.04.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/27/2007] [Accepted: 04/11/2007] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that the molecular defects associated with the development of diabetes also contribute to an increased risk of all types of dementia, including Alzheimer's disease, vascular dementia and Pick's disease. Indeed, the presence of type II diabetes mellitus results in a two to three fold higher risk of developing dementia [Fontbonne et al., 2001. Changes in cognitive abilities over a 4-year period are unfavourably affected in elderly diabetic subjects: results of the Epidemiology of Vascular Aging Study. Diabetes Care 24, 366-370; Gregg et al., 2000. Is diabetes associated with cognitive impairment and cognitive decline among older women? Study of Osteoporotic Fractures Research Group. Archives of Internal Medicine 160, 174-180; Peila et al., 2002. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes 51, 1256-1262]. There are currently 250 million people worldwide (>2 million in the UK) diagnosed with diabetes, and this number is predicted to double within the next 20 years, therefore the associated risk translates into a potential explosion in the appearance of dementia in the population. This review primarily focuses on the proposed molecular links between insulin action, Diabetes and Alzheimer's disease, while discussing the potential for therapeutic intervention to alleviate these disorders. In particular, we will review the regulation of glycogen synthase kinase-3 (GSK-3) and its neuronal substrates.
Collapse
Affiliation(s)
- Adam R Cole
- Division of Pathology and Neurosciences, University of Dundee, Ninewells Hospital, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
173
|
Hemming ML, Selkoe DJ, Farris W. Effects of prolonged angiotensin-converting enzyme inhibitor treatment on amyloid beta-protein metabolism in mouse models of Alzheimer disease. Neurobiol Dis 2007; 26:273-81. [PMID: 17321748 PMCID: PMC2377010 DOI: 10.1016/j.nbd.2007.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/12/2007] [Accepted: 01/14/2007] [Indexed: 01/21/2023] Open
Abstract
Genetic and pathologic studies have associated angiotensin-converting enzyme (ACE) with Alzheimer disease. Previously, we and others have reported that ACE degrades in vitro the amyloid beta-protein (Abeta), a putative upstream initiator of Alzheimer disease. These studies support the hypothesis that deficiency in ACE-mediated Abeta proteolysis could increase Alzheimer disease risk and raise the question of whether ACE inhibitors, a commonly prescribed class of anti-hypertensive medications, can elevate Abeta levels in vivo. To test this hypothesis, we administered the ACE inhibitor captopril to two lines of APP transgenic mice harboring either low levels of Abeta or high levels of Abeta with associated plaque deposition. In both models, we show that captopril does not affect cerebral Abeta levels in either soluble or insoluble pools. Furthermore, we find no change in plaque deposition or in peripheral Abeta levels. Data from these Alzheimer models suggest that captopril and similar ACE inhibitors do not cause Abeta accumulation in vivo.
Collapse
Affiliation(s)
- Matthew L. Hemming
- From the Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Dennis J. Selkoe
- From the Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| | - Wesley Farris
- From the Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, 02115
| |
Collapse
|
174
|
Abdollahi MR, Lewis RM, Gaunt TR, Cumming DVE, Rodriguez S, Rose-Zerilli M, Collins AR, Syddall HE, Howell WM, Cooper C, Godfrey KM, Cameron IT, Day INM. Quantitated transcript haplotypes (QTH) of AGTR1, reduced abundance of mRNA haplotypes containing 1166C (rs5186:A>C), and relevance to metabolic syndrome traits. Hum Mutat 2007; 28:365-73. [PMID: 17211857 DOI: 10.1002/humu.20454] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The angiotensin II type 1 receptor (AGTR1) is the main target through which angiotensin II influences cardiovascular tone, cell growth, and fluid and electrolyte balance. AGTR1 polymorphism has been reported to associate with hypertension, myocardial infarction (MI), and metabolic traits. Here we describe a novel approach to quantitation of transcript haplotypes (QTH) of AGTR1. To determine relative allelic expression from haplotypes, within-individual-between-allele ratiometric analyses in placental cDNA were developed for the transcribed SNPs rs5182:C>T (encoding p.L191) and rs5186:A>C (3'-noncoding "A1166C"). Additionally, between-individual comparisons were made using TaqMan assays applied to both homozygous and heterozygous genotypes and haplotypes. In conjunction, linkage disequilibrium (LD) and genomic haplotype associations with metabolic syndrome were examined. There was no significant difference of mRNA level for alleles of rs5182:C>T, but allele and mRNA haplotypes carrying 1166C exhibited reduced abundance. The effect was much greater in CC homozygotes than in heterozygotes. The promoter region was confirmed to be in a separate haplotype block from the AGTR1 3' region containing rs5182:C>T and rs5186:A>C. Metabolic syndrome trait associations were strongest for the 3' block generally and for the C allele of rs5186:A>C specifically. All effects were much more prominent in homozygotes, possibly reflecting interallelic interaction through feedback loops of mRNA regulation. Differential abundance of AGTR1 mRNA haplotypes may mediate clinical phenotypic observations of the AGTR1 genotype.
Collapse
Affiliation(s)
- Mohammad R Abdollahi
- Human Genetics Division, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Kim M, Hersh LB, Leissring MA, Ingelsson M, Matsui T, Farris W, Lu A, Hyman BT, Selkoe DJ, Bertram L, Tanzi RE. Decreased Catalytic Activity of the Insulin-degrading Enzyme in Chromosome 10-Linked Alzheimer Disease Families. J Biol Chem 2007; 282:7825-32. [PMID: 17244626 DOI: 10.1074/jbc.m609168200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a zinc metalloprotease that degrades the amyloid beta-peptide, the key component of Alzheimer disease (AD)-associated senile plaques. We have previously reported evidence for genetic linkage and association of AD on chromosome 10q23-24 in the region harboring the IDE gene. Here we have presented the first functional assessment of IDE in AD families showing the strongest evidence of the genetic linkage. We have examined the catalytic activity and expression of IDE in lymphoblast samples from 12 affected and unaffected members of three chromosome 10-linked AD pedigrees in the National Institute of Mental Health AD Genetics Initiative family sample. We have shown that the catalytic activity of cytosolic IDE to degrade insulin is reduced in affected versus unaffected subjects of these families. Further, we have shown the decrease in activity is not due to reduced IDE expression, suggesting the possible defects in IDE function in these AD families. In attempts to find potential mutations in the IDE gene in these families, we have found no coding region substitutions or alterations in splicing of the canonical exons and exon 15b of IDE. We have also found that total IDE mRNA levels are not significantly different in sporadic AD versus age-matched control brains. Collectively, our data suggest that the genetic linkage of AD in this set of chromosome 10-linked AD families may be the result of systemic defects in IDE activity in the absence of altered IDE expression, further supporting a role for IDE in AD pathogenesis.
Collapse
Affiliation(s)
- Minji Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts 02129, and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40536, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Moreira PI, Santos MS, Seiça R, Oliveira CR. Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes. J Neurol Sci 2007; 257:206-14. [PMID: 17316694 DOI: 10.1016/j.jns.2007.01.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been argued that in late-onset Alzheimer's disease a disturbance in the control of neuronal glucose metabolism consequent to impaired insulin signalling strongly resembles the pathophysiology of type 2 diabetes in non-neural tissue. The fact that mitochondria are the major generators and direct targets of reactive oxygen species led several investigators to foster the idea that oxidative stress and damage in mitochondria are contributory factors to several disorders including Alzheimer's disease and diabetes. Since brain possesses high energetic requirements, any decline in brain mitochondria electron chain could have a severe impact on brain function and particularly on the etiology of neurodegenerative diseases. This review is primarily focused in the discussion of brain mitochondrial dysfunction as a link between diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Paula I Moreira
- Center for Neuroscience and Cell Biology, Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-354 Coimbra, Portugal
| | | | | | | |
Collapse
|
177
|
Abstract
Our ability to genetically manipulate the mouse has had a great impact on medical research over the last few decades. Mouse genetics has developed into a powerful tool for dissecting the genetic causes of human disease and identifying potential targets for pharmaceutical intervention. With the recent sequencing of the human and mouse genomes, a large number of novel genes have been identified whose function in normal and disease physiology remains largely unknown. Government-sponsored multinational efforts are underway to analyze the function of all mouse genes through mutagenesis and phenotyping, making the mouse the interpreter of the human genome. A number of technologies are available for the generation of mutant mice, including gene targeting, gene trapping and transposon, chemical or radiation-induced mutagenesis. In this chapter, we review the current status of gene trapping technology, including its applicability to conditional mutagenesis.
Collapse
Affiliation(s)
- A Abuin
- Lexicon Genetics, 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | |
Collapse
|
178
|
Song ES, Cady C, Fried MG, Hersh LB. Proteolytic fragments of insulysin (IDE) retain substrate binding but lose allosteric regulation. Biochemistry 2006; 45:15085-91. [PMID: 17154546 PMCID: PMC2519894 DOI: 10.1021/bi061298u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatment of an N-terminal-containing His6-tagged insulysin (His6-IDE) with proteinase K led to the initial cleavage of the His tag and linker region. This was followed by C-terminal cleavages resulting in intermediate fragments of approximately 95 and approximately 76 kDa and finally a relatively stable approximately 56 kDa fragment. The approximately 76 and approximately 56 kDa fragments exhibited a low level of catalytic activity but retained the ability to bind the substrate with a similar affinity as the native enzyme. The kinetics of the reaction of the IDE approximately 76 and approximately 56 kDa proteolytic fragments with a synthetic fluorogenic substrate produced hyperbolic substrate versus velocity curves, rather than the sigmoidal curve obtained with His6-IDE. The approximately 76 and approximately 56 kDa IDE proteolytic fragments were active toward the physiological peptides beta-endorphin, insulin, and amyloid beta peptide 1-40. Although activity was reduced by a factor of approximately 103-104 with these substrates, the relative activity and the cleavage sites were unchanged. Both the approximately 76 and approximately 56 kDa fragments retained the regulatory cationic binding site that binds ATP. Thus, the two proteinase K cleavage fragments of IDE retain the substrate- and ATP-binding sites but have low catalytic activity and lose the allosteric kinetic behavior of IDE. These data suggest a role of the C-terminal region of IDE in allosteric regulation.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky
| | - Clint Cady
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky
| | - Michael G. Fried
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky
| | - Louis B. Hersh
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky
| |
Collapse
|
179
|
Affiliation(s)
- T Augy
- Service de Pharmacie, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille, 13395 Marseille cedex 5
| | | | | |
Collapse
|
180
|
Shen Y, Joachimiak A, Rosner MR, Tang WJ. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature 2006; 443:870-4. [PMID: 17051221 PMCID: PMC3366509 DOI: 10.1038/nature05143] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 08/07/2006] [Indexed: 11/10/2022]
Abstract
Insulin-degrading enzyme (IDE), a Zn2+-metalloprotease, is involved in the clearance of insulin and amyloid-beta (refs 1-3). Loss-of-function mutations of IDE in rodents cause glucose intolerance and cerebral accumulation of amyloid-beta, whereas enhanced IDE activity effectively reduces brain amyloid-beta (refs 4-7). Here we report structures of human IDE in complex with four substrates (insulin B chain, amyloid-beta peptide (1-40), amylin and glucagon). The amino- and carboxy-terminal domains of IDE (IDE-N and IDE-C, respectively) form an enclosed cage just large enough to encapsulate insulin. Extensive contacts between IDE-N and IDE-C keep the degradation chamber of IDE inaccessible to substrates. Repositioning of the IDE domains enables substrate access to the catalytic cavity. IDE uses size and charge distribution of the substrate-binding cavity selectively to entrap structurally diverse polypeptides. The enclosed substrate undergoes conformational changes to form beta-sheets with two discrete regions of IDE for its degradation. Consistent with this model, mutations disrupting the contacts between IDE-N and IDE-C increase IDE catalytic activity 40-fold. The molecular basis for substrate recognition and allosteric regulation of IDE could aid in designing IDE-based therapies to control cerebral amyloid-beta and blood sugar concentrations.
Collapse
Affiliation(s)
- Yuequan Shen
- Ben-May Institute for Cancer Research, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
181
|
Leal MC, Dorfman VB, Gamba AF, Frangione B, Wisniewski T, Castaño EM, Sigurdsson EM, Morelli L. Plaque-Associated Overexpression of Insulin-Degrading Enzyme in the Cerebral Cortex of Aged Transgenic Tg2576 Mice With Alzheimer Pathology. J Neuropathol Exp Neurol 2006; 65:976-87. [PMID: 17021402 DOI: 10.1097/01.jnen.0000235853.70092.ba] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
It was proposed that insulin-degrading enzyme (IDE) participates in the clearance of amyloid beta (Abeta) in the brain, and its low expression or activity may be relevant for the progression of Alzheimer disease. We performed a longitudinal study of brain level, activity, and distribution of IDE in transgenic mice (Tg2576) expressing the Swedish mutation in human Abeta precursor protein. At 16 months of age, Tg2576 showed a significant 2-fold increment in IDE protein level as compared with 4.5- and 11-month-old animals. The peak of IDE was in synchrony with the sharp accumulation of sodium dodecyl sulfate-soluble Abeta and massive Abeta deposition into plaques. At this stage, IDE appeared surrounding Abeta fibrillar deposits within glial fibrillar acidic protein-positive astrocytes, suggesting that it was locally overexpressed during the Abeta-mediated inflammation process. When primary astrocytes were exposed to fibrillar Abeta in vitro, IDE protein level increased as compared with control, and this effect was reduced by the addition of U0126, a specific inhibitor of the ERK1/2 mitogen-activated protein kinase cascade. We propose that in Tg2576 mice and in contrast to its behavior in Alzheimer brains, active IDE increases with age around plaques as a component of astrocyte activation as a result of Abeta-triggered inflammation.
Collapse
Affiliation(s)
- María C Leal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Ciudad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Eckman EA, Adams SK, Troendle FJ, Stodola BA, Kahn MA, Fauq AH, Xiao HD, Bernstein KE, Eckman CB. Regulation of Steady-state β-Amyloid Levels in the Brain by Neprilysin and Endothelin-converting Enzyme but Not Angiotensin-converting Enzyme. J Biol Chem 2006; 281:30471-8. [PMID: 16912050 DOI: 10.1074/jbc.m605827200] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The deposition of beta-amyloid in the brain is a pathological hallmark of Alzheimer disease (AD). Normally, the accumulation of beta-amyloid is prevented in part by the activities of several degradative enzymes, including the endothelin-converting enzymes, neprilysin, insulin-degrading enzyme, and plasmin. Recent reports indicate that another metalloprotease, angiotensin-converting enzyme (ACE), can degrade beta-amyloid in vitro and in cellular overexpression experiments. In addition, ACE gene variants are linked to AD risk in several populations. Angiotensin-converting enzyme, neprilysin and endothelin-converting enzyme function as vasopeptidases and are the targets of drugs designed to treat cardiovascular disorders, and ACE inhibitors are commonly prescribed. We investigated the potential physiological role of ACE in regulating endogenous brain beta-amyloid levels for two reasons: first, to determine whether beta-amyloid degradation might be the mechanism by which ACE is associated with AD, and second, to determine whether ACE inhibitor drugs might block beta-amyloid degradation in the brain and potentially increase the risk for AD. We analyzed beta-amyloid accumulation in brains from ACE-deficient mice and in mice treated with ACE inhibitors and found that ACE deficiency did not alter steady-state beta-amyloid concentration. In contrast, beta-amyloid levels are significantly elevated in endothelin-converting enzyme and neprilysin knock-out mice, and inhibitors of these enzymes cause a rapid increase in beta-amyloid concentration in the brain. The results of these studies do not support a physiological role for ACE in the degradation of beta-amyloid in the brain but confirm roles for endothelin-converting enzyme and neprilysin and indicate that reductions in these enzymes result in additive increases in brain amyloid beta-peptide levels.
Collapse
Affiliation(s)
- Elizabeth A Eckman
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug Discov Today 2006; 11:931-8. [PMID: 16997144 DOI: 10.1016/j.drudis.2006.08.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/14/2006] [Accepted: 08/11/2006] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and the fourth highest cause of disability and death in the elderly. Amyloid-beta (Abeta) has been widely implicated in the etiology of AD. Several mechanisms have been proposed for Abeta clearance, including receptor-mediated Abeta transport across the blood-brain barrier and enzyme-mediated Abeta degradation. Moreover, pre-existing immune responses to Abeta might also be involved in Abeta clearance. In AD, such mechanisms appear to have become impaired. Recently, therapeutic approaches for Abeta clearance, targeting immunotherapy and molecules binding Abeta, have been developed. In this review, we discuss recent progress and problems with respect to Abeta clearance mechanisms and propose strategies for the development of therapeutics targeting Abeta clearance.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | | | | |
Collapse
|
184
|
Alper B, Nienow T, Schmidt W. A common genetic system for functional studies of pitrilysin and related M16A proteases. Biochem J 2006; 398:145-52. [PMID: 16722821 PMCID: PMC1525005 DOI: 10.1042/bj20060311] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pitrilysin is a bacterial protease that is similar to the mammalian insulin-degrading enzyme, which is hypothesized to protect against the onset of Alzheimer's disease, and the yeast enzymes Axl1p and Ste23p, which are responsible for production of the a-factor mating pheromone in Saccharomyces cerevisiae. The lack of a phenotype associated with pitrilysin deficiency has hindered studies of this enzyme. Herein, we report that pitrilysin can be heterologously expressed in yeast such that it functionally substitutes for the shared roles of Axl1p and Ste23p in pheromone production, resulting in a readily observable phenotype. We have exploited this phenotype to conduct structure-function analyses of pitrilysin and report that residues within four sequence motifs that are highly conserved among M16A enzymes are essential for its activity. These motifs include the extended metalloprotease motif, a second motif that has been hypothesized to be important for the function of M16A enzymes, and two others not previously recognized as being important for pitrilysin function. We have also established that the two self-folding domains of pitrilysin are both required for its proteolytic activity. However, pitrilysin does not possess all the enzymatic properties of the yeast enzymes since it cannot substitute for the role of Axl1p in the repression of haploid invasive growth. These observations further support the utility of the yeast system for structure-function and comparative studies of M16A enzymes.
Collapse
Affiliation(s)
- Benjamin J. Alper
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
| | - Tatyana E. Nienow
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 30602, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
185
|
Ozturk A, DeKosky ST, Kamboh MI. Lack of association of 5 SNPs in the vicinity of the insulin-degrading enzyme (IDE) gene with late-onset Alzheimer's disease. Neurosci Lett 2006; 406:265-9. [PMID: 16914266 DOI: 10.1016/j.neulet.2006.07.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/27/2006] [Accepted: 07/21/2006] [Indexed: 11/27/2022]
Abstract
Insulin-degrading enzyme (IDE) is a strong biological and positional candidate gene for Alzheimer's disease (AD). Previously some studies have examined the role of common variation in the IDE gene with AD risk but the results have been inconsistent. In this study we examined the role of 5 SNPs that define a linkage disequilibrium (LD) block spanning 276kb around IDE. Our sample comprised up to 1012 late-onset AD (LOAD) cases and 771 older white controls. In addition, we also examined the association of these SNPs with quantitative measures of AD progression, namely age-at-onset (AAO), disease duration and Mini-Mental State Examination (MMSE) score. None of the SNPs examined in this fairly large case-control sample revealed significant association with AD risk. These SNPs also showed no significant association with AD quantitative traits.
Collapse
Affiliation(s)
- Ayla Ozturk
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
186
|
Björk BF, Katzov H, Kehoe P, Fratiglioni L, Winblad B, Prince JA, Graff C. Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol Aging 2006; 28:1374-80. [PMID: 16876916 DOI: 10.1016/j.neurobiolaging.2006.06.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 06/12/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
Insulin degrading enzyme (IDE) is one of the principal proteases involved in the degradation of the beta-amyloid peptide, which is the major constituent of senile plaques in Alzheimer's disease (AD) brains. Previous association studies between AD and IDE have produced inconsistent results which may be indicative of a need for larger case-control series to identify what may be a relatively small effect size. Thus, we performed a large association study using four SNPs in the 276-kb haplotype block in and around IDE (IDE_7, IDE_9, IDE_14 and HHEX_23) in a previously unpublished Swedish and a UK case-control series, and combined our data with a previously reported Swedish case-control sample set from Prince et al., 2003. The combined genotype data from 1269 late-onset AD cases and 980 controls yielded a significant association to IDE_9 located in the 3'-end of the IDE gene after conservative multiple testing Bonferroni correction (p=0.005). The effect seemed to predominate in male cases. However, we did not observe a globally significant association to haplotypes generated from three "tag" SNPs. These findings indicate a role for IDE in AD, and provide models that may improve chances of further independent replication.
Collapse
Affiliation(s)
- Behnosh F Björk
- Karolinska Institutet, Department NVS, Division of KI-Alzheimer Disease Research Center, SE-141 57 Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
187
|
Lynch JA, George AM, Eisenhauer PB, Conn K, Gao W, Carreras I, Wells JM, McKee A, Ullman MD, Fine RE. Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. J Neurosci Res 2006; 83:1262-70. [PMID: 16511862 DOI: 10.1002/jnr.20809] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin degrading enzyme (IDE) is expressed in the brain and may play an important role there in the degradation of the amyloid beta peptide (Abeta). Our results show that cultured human cerebrovascular endothelial cells (HCECs), a primary component of the blood-brain barrier, express IDE and may respond to exposure to low levels of Abeta by upregulating its expression. When radiolabeled Abeta is introduced to the medium of cultured HCECs, it is rapidly degraded to smaller fragments. We believe that this degradation is largely the result of the action of IDE, as it can be substantially blocked by the presence of insulin in the medium, a competitive substrate of IDE. No inhibition is seen when an inhibitor of neprilysin, another protease that may degrade Abeta, is present in the medium. Our evidence suggests that the action of IDE occurs outside the cell, as inhibitors of internalization fail to affect the rate of the observed degradation. Further, our evidence suggests that degradation by IDE occurs on the plasma membrane, as much of the IDE present in HCECs was biotin-labeled by a plasma membrane impermeable reagent. This activity seems to be polarity dependent, as measurement of Abeta degradation by each surface of differentiated HCECs shows greater degradation on the basolateral (brain-facing) surface. Thus, IDE could be an important therapeutic target to decrease the amount of Abeta in the cerebrovasculature.
Collapse
Affiliation(s)
- John A Lynch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L, Ankarcrona M, Glaser E. Degradation of the amyloid beta-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 2006; 281:29096-104. [PMID: 16849325 DOI: 10.1074/jbc.m602532200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Recently we have identified the novel mitochondrial peptidase responsible for degrading presequences and other short unstructured peptides in mitochondria, the presequence peptidase, which we named PreP peptidasome. In the present study we have identified and characterized the human PreP homologue, hPreP, in brain mitochondria, and we show its capacity to degrade the amyloid beta-protein (Abeta). PreP belongs to the pitrilysin oligopeptidase family M16C containing an inverted zinc-binding motif. We show that hPreP is localized to the mitochondrial matrix. In situ immuno-inactivation studies in human brain mitochondria using anti-hPreP antibodies showed complete inhibition of proteolytic activity against Abeta. We have cloned, overexpressed, and purified recombinant hPreP and its mutant with catalytic base Glu(78) in the inverted zinc-binding motif replaced by Gln. In vitro studies using recombinant hPreP and liquid chromatography nanospray tandem mass spectrometry revealed novel cleavage specificities against Abeta-(1-42), Abeta-(1-40), and Abeta Arctic, a protein that causes increased protofibril formation an early onset familial variant of Alzheimer disease. In contrast to insulin degrading enzyme, which is a functional analogue of hPreP, hPreP does not degrade insulin but does degrade insulin B-chain. Molecular modeling of hPreP based on the crystal structure at 2.1 A resolution of AtPreP allowed us to identify Cys(90) and Cys(527) that form disulfide bridges under oxidized conditions and might be involved in redox regulation of the enzyme. Degradation of the mitochondrial Abeta by hPreP may potentially be of importance in the pathology of Alzheimer disease.
Collapse
Affiliation(s)
- Annelie Falkevall
- Department of Biochemistry and Biophysics, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Occurrence and co-localization of amyloid beta-protein and apolipoprotein E in perivascular drainage channels of wild-type and APP-transgenic mice. Neurobiol Aging 2006; 28:1221-30. [PMID: 16815595 DOI: 10.1016/j.neurobiolaging.2006.05.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 05/18/2006] [Accepted: 05/25/2006] [Indexed: 11/26/2022]
Abstract
The deposition of the amyloid beta-protein (Abeta) is a hallmark of Alzheimer's disease (AD). One reason for Abeta-accumulation and deposition in the brain may be an altered drainage along perivascular channels. Extracellular fluid is drained from the brain towards the cervical lymph nodes via perivascular channels. The perivascular space around cerebral arteries is the morphological correlative of these drainage channels. Here, we show that Abeta is immunohistochemically detectable within the perivascular space of 25 months old wild-type and amyloid precursor protein (APP)-transgenic mice harboring the Swedish double mutation driven by a neuron specific promoter. Only small amounts of Abeta can be detected immunohistochemically in the perivascular space of wild-type mice. Cerebrovascular and parenchymal Abeta-deposits were absent. In APP-transgenic mice, large amounts of Abeta were found in the perivascular drainage channels accompanied with cerebrovascular and parenchymal Abeta-deposition. The apolipoprotein E (apoE) immunostaining within the perivascular channels did not vary between wild-type and APP-transgenic mice. Almost 100% of the area that represents the perivascular space was stained with an antibody directed against apoE. Here, Abeta co-localized with apoE indicating an involvement of apoE in the perivascular clearance of Abeta. Fibrillar congophilic amyloid was not seen in wild-type mice. In APP-transgenic animals, congophilic fibrillar amyloid material was seen in the wall of cerebral blood vessels but not in the perivascular space. In conclusion, our results suggest that non-fibrillar forms of Abeta are drained along perivascular channels and that apoE is presumably involved in this clearance mechanism. Overloading such a clearance mechanism in APP-transgenic mice appears to result in insufficient Abeta-clearance, increased Abeta-levels in the brain and the perivascular drainage channels, and finally in Abeta-deposition. In so doing, our results strengthen the hypothesis that an alteration of perivascular drainage supports Abeta-deposition and the development of AD.
Collapse
|
190
|
Mueller JC, Riemenschneider M, Schoepfer-Wendels A, Gohlke H, Konta L, Friedrich P, Illig T, Laws SM, Förstl H, Kurz A. Weak independent association signals between IDE polymorphisms, Alzheimer's disease and cognitive measures. Neurobiol Aging 2006; 28:727-34. [PMID: 16675064 DOI: 10.1016/j.neurobiolaging.2006.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 02/21/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Functional and genetic studies suggest that insulin-degrading enzyme (IDE) may be a strong functional and positional candidate. As there is a lack of consensus in regards to the level and location of IDE association signals we aimed to clarify these discrepancies through genotyping 28 SNPs in a large case-control collective together with quantitative measures of cognitive ability (MMSE). Four SNPs (rs11187007, rs2149632_ide12, rs11187033, rs11187040) were found to be associated with AD (nominal p<0.01). Tests with MMSE scores adjusted for disease duration identified associations, with the most significant result for rs1999763 (nominal p=0.008). Similarly, different reconstructed IDE haplotypes were associated with AD and higher MMSE scores. The association signals are only borderline significant after adjustment for multiple testing, but add further evidence to previous published results on the association between IDE and AD or MMSE. A subgroup analysis indicated more prominent associations with AD in younger, and with MMSE in older patients. There may be two independent effects mediated by IDE variants, risk for AD and modification of disease progression.
Collapse
Affiliation(s)
- Jakob C Mueller
- Neurochemistry and Neurogenetics Laboratory, Department of Psychiatry and Psychotherapy, Technical University Munich (TUM), Ismaningerstr. 22, 81675 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Xie Z, Tanzi RE. Alzheimer's disease and post-operative cognitive dysfunction. Exp Gerontol 2006; 41:346-59. [PMID: 16564662 DOI: 10.1016/j.exger.2006.01.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/27/2006] [Accepted: 01/31/2006] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), an insidious and progressive neurodegenerative disorder accounting for the vast majority of dementia, is characterized by global cognitive decline and the robust accumulation of amyloid deposits and neurofibrillary tangles in the brain. This review article is based on the currently published literature regarding molecular studies of AD and the potential involvement of AD neuropathogenesis in post-operative cognitive dysfunction (POCD). Genetic evidence, confirmed by neuropathological and biochemical studies, indicates that excessive beta-amyloid protein (Abeta) generated from amyloidogenic processing of the beta-amyloid precursor protein (APP) plays a fundamental role in the AD neuropathogenesis. Abeta is produced from APP by beta-secretase, and then gamma-secretase complex, consisting of presenilins, nicastrin (NCSTN), APH-1 and PEN-2. Additionally, Abeta clearance and APP adaptor proteins can contribute to AD neuropathogenesis via affecting Abeta levels. Finally, cellular apoptosis may also be involved in AD neuropathogenesis. Surgery and anesthesia can cause cognitive disorders, especially in elderly patients. Even the molecular mechanisms underlying these disorders are largely unknown; several perioperative factors such as hypoxia, hypocapnia and anesthetics may be associated with AD and render POCD via trigging AD neuropathogenesis. More studies to assess the potential relationship between anesthesia/surgery and AD dementia are, therefore, urgently needed.
Collapse
Affiliation(s)
- Zhongcong Xie
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street M3725, Charlestown, MA 02129-4404, USA.
| | | |
Collapse
|
192
|
Thal DR, Capetillo-Zarate E, Del Tredici K, Braak H. The development of amyloid beta protein deposits in the aged brain. ACTA ACUST UNITED AC 2006; 2006:re1. [PMID: 16525193 DOI: 10.1126/sageke.2006.6.re1] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The deposition of amyloid beta protein (Abeta) in the human brain and the generation of neurofibrillary tangles are the histopathological hallmarks of Alzheimer's disease. Accumulation of Abeta takes place in senile plaques and in cerebrovascular deposits as a result of an imbalance between Abeta production and clearance. This Review describes the different types of Abeta deposits, which can be distinguished by their morphology and by the hierarchical involvement of distinct areas of the brain in Abeta deposition. The role of intracellular Abeta in Abeta deposition and the mechanism of Abeta toxicity are also discussed.
Collapse
Affiliation(s)
- Dietmar R Thal
- Department of Neuropathology, University of Bonn, D-53105 Bonn, Germany.
| | | | | | | |
Collapse
|
193
|
Saido TC, Iwata N. Metabolism of amyloid beta peptide and pathogenesis of Alzheimer's disease. Towards presymptomatic diagnosis, prevention and therapy. Neurosci Res 2006; 54:235-53. [PMID: 16457902 DOI: 10.1016/j.neures.2005.12.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/19/2005] [Accepted: 12/27/2005] [Indexed: 12/29/2022]
Abstract
The conversion of what has been interpreted as "normal brain aging" to Alzheimer's disease (AD) via a transition state, i.e. mild cognitive impairment, appears to be a continuous process caused primarily by aging-dependent accumulation of amyloid beta peptide (Abeta) in the brain. This notion give us a hope that, by manipulating the Abeta levels in the brain, we may be able not only to prevent and cure the disease but also to partially control some very significant aspects of brain aging. Abeta is constantly produced from its precursor and immediately catabolized under normal conditions, whereas dysmetabolism of Abeta seems to lead to pathological deposition upon aging. We have focused our attention on elucidation of the unresolved mechanism of Abeta catabolism in the brain. In this review, we describe a new approach to prevent AD development by reducing Abeta burdens in aging brains through up-regulation the catabolic mechanism involving neprilysin that can degrade both monomeric and oligomeric forms of Abeta. The strategy of combining presymptomatic diagnosis with preventive medicine seems to be the most pragmatic in both medical and socio-economical terms. We also introduce a novel non-invasive amyloid imaging approach using a high-power magnetic resonance imaging (MRI) for the presymptomatic diagnosis of AD.
Collapse
Affiliation(s)
- Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama, Japan.
| | | |
Collapse
|
194
|
Rosenberg RN. Translational research on the way to effective therapy for Alzheimer disease. ARCHIVES OF GENERAL PSYCHIATRY 2005; 62:1186-92. [PMID: 16275806 PMCID: PMC1479851 DOI: 10.1001/archpsyc.62.11.1186] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Alzheimer disease (AD) is a major public health issue with a prediction of 12 million Americans being affected by 2025 from the present 4 million. Molecular and genetic findings have provided significant insights into the roles that amyloid, tau, and apolipoprotein E isoforms have in the causation of AD. A central issue in AD pathogenesis is the amyloid cascade hypothesis. It states that abnormal amyloid processing and accumulation is the primary causative factor of AD and other associated neuropathologic abnormalities are of secondary consequence. It is presented to provide the rationale for novel drug and vaccination therapeutic strategies. Future research directed at prediction and prevention of AD through a genomic and proteomic analysis with identification of multiple polymorphic genes that interact, resulting in increased risk for late-onset AD, are the realistic and ultimate goals. A new approach for drug development is required, one that will emphasize a genomic and proteomic analysis to identify at-risk gene sets whose genetic expression is sufficient to cause late onset, sporadic AD. Prediction and prevention of disease prior to clinical signs and symptoms are the goals. OBJECTIVE A review and analysis from electronic literature databases and subsequent reference searches of the molecular genetic data. including pertinent genetic mutations and abnormal biochemical findings causal of AD, are cited. The amyloid cascade hypothesis, the contributions of apolipoprotein E, and hyperphosphorylated tau are discussed as to their roles in pathogenesis. Molecular targets for potential drug and vaccination therapies are cited from a critical assessment of the molecular and biomedical data. These data form the basis for rational, target-specific drug and vaccination therapies currently employed and planned for the near future. Phase 2 and 3 clinical trial results of drug and vaccination therapies are cited. CONCLUSIONS A new approach is needed as current pharmacologic therapy directed at symptomatic relief has proved to be marginally effective. The genomic and proteomic basis of AD will be defined in the near future, and corresponding molecular therapeutic targets will be identified. Genomic neurology has arrived and its application to resolving AD is our best hope.
Collapse
Affiliation(s)
- Roger N Rosenberg
- Department of Neurology and the Alzheimer's Disease Center, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-9036, USA.
| |
Collapse
|
195
|
Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The accumulation of Aβ (amyloid β-protein) peptides in the brain is a pathological hallmark of all forms of AD (Alzheimer's disease) and reducing Aβ levels can prevent or reverse cognitive deficits in mouse models of the disease. Aβ is produced continuously and its concentration is determined in part by the activities ofseveral degradative enzymes, including NEP (neprilysin), IDE (insulin-degrading enzyme), ECE-1 (endothelinconverting enzyme 1) and ECE-2, and probably plasmin. Decreased activity of any of these enzymes due to genetic mutation, or age- or disease-related alterations in gene expression or proteolytic activity, may increase the risk for AD. Conversely, increased expression of these enzymes may confer a protective effect. Increasing Aβ degradation through gene therapy, transcriptional activation or even pharmacological activation of the Aβ-degrading enzymes represents a novel therapeutic strategy for the treatment of AD that is currently being evaluated in cell-culture and animal models. In this paper, we will review the roles of NEP, IDE, ECE and plasmin in determining endogenous Aβ concentration, highlighting recent results concerning the regulation of these enzymes and their potential as therapeutic targets.
Collapse
|
196
|
Forrai A, Robb L. The gene trap resource: a treasure trove for hemopoiesis research. Exp Hematol 2005; 33:845-56. [PMID: 16038776 DOI: 10.1016/j.exphem.2005.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/23/2005] [Indexed: 11/16/2022]
Abstract
The laboratory mouse is an invaluable tool for functional gene discovery because of its genetic malleability and a biological similarity to human systems that facilitates identification of human models of disease. A number of mutagenic technologies are being used to elucidate gene function in the mouse. Gene trapping is an insertional mutagenesis strategy that is being undertaken by multiple research groups, both academic and private, in an effort to introduce mutations across the mouse genome. Large-scale, publicly funded gene trap programs have been initiated in several countries with the International Gene Trap Consortium coordinating certain efforts and resources. We outline the methodology of mammalian gene trapping and how it can be used to identify genes expressed in both primitive and definitive blood cells and to discover hemopoietic regulator genes. Mouse mutants with hematopoietic phenotypes derived using gene trapping are described. The efforts of the large-scale gene trapping consortia have now led to the availability of libraries of mutagenized ES cell clones. The identity of the trapped locus in each of these clones can be identified by sequence-based searching via the world wide web. This resource provides an extraordinary tool for all researchers wishing to use mouse genetics to understand gene function.
Collapse
Affiliation(s)
- Ariel Forrai
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | |
Collapse
|
197
|
Iwata N, Higuchi M, Saido TC. Metabolism of amyloid-beta peptide and Alzheimer's disease. Pharmacol Ther 2005; 108:129-48. [PMID: 16112736 DOI: 10.1016/j.pharmthera.2005.03.010] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2005] [Indexed: 12/17/2022]
Abstract
The accumulation of amyloid-beta peptide (Abeta), a physiological peptide, in the brain is a triggering event leading to the pathological cascade of Alzheimer's disease (AD) and appears to be caused by an increase in the anabolic activity, as seen in familial AD cases or by a decrease in catabolic activity. Neprilysin is a rate-limiting peptidase involved in the physiological degradation of Abeta in the brain. As demonstrated by reverse genetics studies, disruption of the neprilysin gene causes elevation of endogenous Abeta levels in mouse brain in a gene-dose-dependent manner. Thus, the reduction of neprilysin activity will contribute to Abeta accumulation and consequently to AD development. Evidence that neprilysin in the hippocampus and cerebral cortex is down-regulated with aging and from an early stage of AD development supports a close association of neprilysin with the etiology and pathogenesis of AD. Therefore, the up-regulation of neprilysin represents a promising strategy for therapy and prevention. Recently, somatostatin, which acts via a G-protein-coupled receptor (GPCR), has been identified as a modulator that increases brain neprilysin activity, resulting in a decrease of Abeta levels. Thus, it may be possible to pharmacologically control brain Abeta levels with somatostatin receptor agonists.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
198
|
Higuchi M, Iwata N, Saido TC. Understanding molecular mechanisms of proteolysis in Alzheimer's disease: Progress toward therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:60-7. [PMID: 16054018 DOI: 10.1016/j.bbapap.2005.02.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/04/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
Amyloid beta peptide (Abeta) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Abeta catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Abeta in the brain. Our recent studies have demonstrated that neprilysin is the most potent Abeta-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Abeta in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Abeta catabolism in brains of the elderly. In addition to Abeta deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.
Collapse
Affiliation(s)
- Makoto Higuchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
199
|
Song ES, Hersh LB. Insulysin: an allosteric enzyme as a target for Alzheimer's disease. J Mol Neurosci 2005; 25:201-6. [PMID: 15800373 DOI: 10.1385/jmn:25:3:201] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Accepted: 10/18/2004] [Indexed: 11/11/2022]
Abstract
That the zinc metalloendopeptidase insulysin (insulin-degrading enzyme IDE) is a major b-amyloid (A(beta)) peptide-degrading enzyme in vivo is shown by the higher A(beta) peptide levels in the brain of an insulysin-deficient mouse. Insulysin was shown to initially cleave A(beta)1-40and A(beta)1-42 at His13-Gln14, His14-Gln15, and Phe19-Phe20. The insulysin-dependent cleavage of A(beta) prevents both the neurotoxic effects of the peptide as well as the ability of A(beta) to deposit onto synthetic amyloid plaques. The kinetics of the reaction of insulysin with the synthetic peptide substrate Abz-G-G-F-L-R-K-H-G-Q-EDDnp displays allosteric properties indicative of a regulated enzyme. Small peptide substrates increase the activity of insulysin toward the hydrolysis of A(beta)1-40 without affecting the activity of the enzyme toward insulin. These studies indicate that insulysin is a target for drug development in which small-molecule peptide analogs can be used to increase the rate of A(beta) clearance without affecting insulin levels.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
200
|
Nowotny P, Hinrichs AL, Smemo S, Kauwe JSK, Maxwell T, Holmans P, Hamshere M, Turic D, Jehu L, Hollingworth P, Moore P, Bryden L, Myers A, Doil LM, Tacey KM, Gibson AM, McKeith IG, Perry RH, Morris CM, Thal L, Morris JC, O'Donovan MC, Lovestone S, Grupe A, Hardy J, Owen MJ, Williams J, Goate A. Association studies between risk for late-onset Alzheimer's disease and variants in insulin degrading enzyme. Am J Med Genet B Neuropsychiatr Genet 2005; 136B:62-8. [PMID: 15858813 DOI: 10.1002/ajmg.b.30186] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Linkage studies have suggested there is a susceptibility gene for late onset Alzheimer's disease (LOAD) in a broad region of chromosome 10. A strong positional and biological candidate is the gene encoding the insulin-degrading enzyme (IDE), a protease involved in the catabolism of Abeta. However, previous association studies have produced inconsistent results. To systematically evaluate the role of variation in IDE in the risk for LOAD, we genotyped 18 SNPs spanning a 276 kb region in and around IDE, including three "tagging" SNPs identified in an earlier study. We used four case-control series with a total of 1,217 cases and 1,257 controls. One SNP (IDE_7) showed association in two samples (P-value = 0.0066, and P = 0.026, respectively), but this result was not replicated in the other two series. None of the other SNPs showed association with LOAD in any of the tested samples. Haplotypes, constructed from the three tagging SNPs, showed no globally significant association. In the UK2 series, the CTA haplotype was over-represented in cases (P = 0.046), and in the combined data set, the CCG haplotype was more frequent in controls (P = 0.015). However, these weak associations observed in our series were in the opposite direction to the results in previous studies. Although our results are not universally negative, we were unable to replicate the results of previous studies and conclude that common variants or haplotypes of these variants in IDE are not major risk factors for LOAD.
Collapse
Affiliation(s)
- Petra Nowotny
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|