151
|
Abstract
Prolonged changes in synaptic strength, such as those that occur in LTP and LTD, are thought to contribute to learning and memory processes. These complex phenomena occur in diverse brain structures and use multiple, temporally staged and spatially resolved mechanisms, such as changes in neurotransmitter release, modulation of transmitter receptors, alterations in synaptic structure, and regulation of gene expression and protein synthesis. In the CA1 region of the hippocampus, the combined activation of SRC family tyrosine kinases, protein kinase A, protein kinase C and, in particular, Ca2+/calmodulin-dependent protein kinase II results in phosphorylation of glutamate-receptor-gated ion channels and the enhancement of subsequent postsynaptic current. Crosstalk between these complex biochemical pathways can account for most characteristics of early-phase LTP in this region.
Collapse
Affiliation(s)
- T R Soderling
- Vollum Institute, Oregon Health Sciences University, Portland, OR 97201, USA
| | | |
Collapse
|
152
|
Khan AM, Stanley BG, Bozzetti L, Chin C, Stivers C, Curr�s-Collazo MC. N-methyl-D-aspartate receptor subunit NR2B is widely expressed throughout the rat diencephalon: An immunohistochemical study. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20001218)428:3<428::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
153
|
Maguire C, Casey M, Kelly A, Mullany PM, Lynch MA. Activation of tyrosine receptor kinase plays a role in expression of long-term potentiation in the rat dentate gyrus. Hippocampus 1999; 9:519-26. [PMID: 10560922 DOI: 10.1002/(sici)1098-1063(1999)9:5<519::aid-hipo5>3.0.co;2-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Long-term potentiation (LTP) in perforant path-granule cell synapses has been shown to be accompanied by an increase in glutamate release. The objective of this study was to examine the possibility that nerve growth factor (NGF), by activating tyrosine kinase, modulates glutamate release and, therefore, contributes to expression of LTP in dentate gyrus. The data indicate that NGF, in the presence of trans-1-aminocyclopentyl-1,3-dicarboxylate (ACPD), enhanced KCI-stimulated release and KCI-stimulated calcium influx in vitro and that these effects were blocked by the tyrosine receptor kinase (trk) inhibitor tyrphostin AG879. The data also indicate that NGF increased phosphorylation of trkA and the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) in dentate gyrus in vitro. In addition to its effects in vitro, tyrphostin AG879 inhibited the expression of LTP in perforant path-granule cell synapses and the accompanying increase in transmitter release. Analysis of phosphorylation of the two tyrosine kinase substrates trkA and ERK in synaptosomes prepared from untetanized and tetanized dentate gyrus revealed that LTP was associated with increased phosphorylation of both proteins; no evidence of such a change was observed in either tetanized or untetanized tissue prepared from tyrphostin-pretreated rats. These findings are consistent with the hypothesis that NGF, by interacting with trkA, triggers a sequence of tyrosine kinase-dependent phosphorylation steps that modulate glutamate release and calcium influx and impact on expression of LTP in dentate gyrus.
Collapse
Affiliation(s)
- C Maguire
- Physiology Department, Trinity College, Dublin, Ireland
| | | | | | | | | |
Collapse
|
154
|
Hisatsune C, Umemori H, Mishina M, Yamamoto T. Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase. Genes Cells 1999; 4:657-66. [PMID: 10620012 DOI: 10.1046/j.1365-2443.1999.00287.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The NMDA receptors (NMDARs) are ion channels through which Ca2+ influx triggers various intracellular responses. Tyrosine phosphorylation of NMDARs regulates NMDA channel activities, which may be important in neuronal plasticity. The biological significance of the tyrosine phosphorylation events, however, differs among NMDAR subunits: tyrosine phosphorylation of NMDARepsilon1 increases NMDA channel activities, but that of NMDARepsilon2 does not. Since signal transductions from various cell surface receptors are mediated by protein-protein interaction through phosphotyrosine and the Src homology 2 (SH2) domain, we examined the possibility that phosphotyrosines in NMDARepsilon2 contribute to the intracellular signalling events. RESULTS We first show that Fyn is deeply involved in the phosphorylation of NMDARepsilon2 and second that a phosphotyrosine in NMDARepsilon2 interacts with the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase). Both the level of tyrosine phosphorylation on NMDARepsilon2 and the amounts of the p85 subunit (p85) bound to NMDARepsilon2 are decreased in Fyn-deficient mice. Moreover, we show that ischaemia stimulates the binding of p85 to phosphorylated NMDARepsilon2, suggesting a physiological role of the phosphotyrosine/SH2-based interaction between NMDARepsilon2 and p85 in the brain. CONCLUSIONS The tyrosine phosphorylation event on NMDARs is important in not only the regulation of its channel activity but also intracellular signalling mediated through the interaction of the NMDAR with SH2 domain-containing molecules.
Collapse
Affiliation(s)
- C Hisatsune
- Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
155
|
Abstract
Over the last several years, a number of optical imaging, physiological, and molecular studies have clarified the mechanisms underlying differential calcium signaling in the postsynaptic neuron. These studies have revealed the existence of membrane-associated calcium microdomains, which are often specifically coupled to distinct protein signaling pathways. In this review, we discuss how these signaling microdomains are organized and regulated, emphasizing the structural and molecular features of synaptic protein complexes containing the metabotropic and N-methyl-D-aspartate (NMDA) glutamate receptors and the L-type voltage-dependent calcium channels (VDCCs). We conclude with a discussion of how these different signaling complexes may interact with one another, relationships which may be important in orchestrating the complex calcium signaling underlying developmental and activity-dependent changes in synaptic function.
Collapse
Affiliation(s)
- C Blackstone
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston 02114, USA
| | | |
Collapse
|
156
|
Janz R, Südhof TC, Hammer RE, Unni V, Siegelbaum SA, Bolshakov VY. Essential roles in synaptic plasticity for synaptogyrin I and synaptophysin I. Neuron 1999; 24:687-700. [PMID: 10595519 DOI: 10.1016/s0896-6273(00)81122-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have generated mice lacking synaptogyrin I and synaptophysin I to explore the functions of these abundant tyrosine-phosphorylated proteins of synaptic vesicles. Single and double knockout mice were alive and fertile without significant morphological or biochemical changes. Electrophysiological recordings in the hippocampal CA1 region revealed that short-term and long-term synaptic plasticity were severely reduced in the synaptophysin/synaptogyrin double knockout mice. LTP was decreased independent of the induction protocol, suggesting that the defect in LTP was not caused by insufficient induction. Our data show that synaptogyrin I and synaptophysin I perform redundant and essential functions in synaptic plasticity without being required for neurotransmitter release itself.
Collapse
Affiliation(s)
- R Janz
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical School, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
157
|
Matsuda S, Mikawa S, Hirai H. Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J Neurochem 1999; 73:1765-8. [PMID: 10501226 DOI: 10.1046/j.1471-4159.1999.731765.x] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phosphorylation of the glutamate receptor is an important mechanism of synaptic plasticity. Here, we show that the C terminus of GluR2 of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor is phosphorylated by protein kinase C and that serine-880 is the major phosphorylation site. This phosphorylation also occurs in human embryonic kidney (HEK) cells by addition of 12-O-tetradecanoylphorbol 13-acetate. Our immunoprecipitation experiment revealed that the phosphorylation of serine-880 in GluR2 drastically reduced the affinity for glutamate receptor-interacting protein (GRIP), a synaptic PDZ domain-containing protein, in vitro and in HEK cells. This result suggests that modulation of serine-880 phosphorylation in GluR2 controls the clustering of AMPA receptors at excitatory synapses and consequently contributes to synaptic plasticity.
Collapse
Affiliation(s)
- S Matsuda
- Laboratory for Memory and Learning, RIKEN Brain Science Institute, Saitama, Japan
| | | | | |
Collapse
|
158
|
|
159
|
Takagi N, Cheung HH, Bissoon N, Teves L, Wallace MC, Gurd JW. The effect of transient global ischemia on the interaction of Src and Fyn with the N-methyl-D-aspartate receptor and postsynaptic densities: possible involvement of Src homology 2 domains. J Cereb Blood Flow Metab 1999; 19:880-8. [PMID: 10458595 DOI: 10.1097/00004647-199908000-00007] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transient ischemia increases tyrosine phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits NR2A and NR2B in the rat hippocampus. The authors investigated the effects of this increase on the ability of the receptor subunits to bind to the Src homology 2 (SH2) domains of Src and Fyn expressed as glutathione-S-transferase-SH2 fusion proteins. The NR2A and NR2B bound to each of the SH2 domains and binding was increased approximately twofold after ischemia and reperfusion. Binding was prevented by prior incubation of hippocampal homogenates with a protein tyrosine phosphatase or by a competing peptide for the Src SH2 domain. Ischemia induced a marked increase in the tyrosine phosphorylation of several proteins in the postsynaptic density (PSD), including NR2A and NR2B, but had no effect on the amounts of individual NMDA receptor subunits in the PSD. The level of Src and Fyn in PSDs, but not in other subcellular fractions, was increased after ischemia. The ischemia-induced increase in the interaction of NR2A and NR2B with the SH2 domains of Src and Fyn suggests a possible mechanism for the recruitment of signaling proteins to the PSD and may contribute to altered signal transduction in the postischemic hippocampus.
Collapse
Affiliation(s)
- N Takagi
- Division of Life Sciences, University of Toronto at Scarborough, West Hill, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
160
|
Yu XM, Salter MW. Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc Natl Acad Sci U S A 1999; 96:7697-704. [PMID: 10393883 PMCID: PMC33604 DOI: 10.1073/pnas.96.14.7697] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor is a principal subtype of glutamate receptor mediating fast excitatory transmission at synapses in the dorsal horn of the spinal cord and other regions of the central nervous system. NMDA receptors are crucial for the lasting enhancement of synaptic transmission that occurs both physiologically and in pathological conditions such as chronic pain. Over the past several years, evidence has accumulated indicating that the activity of NMDA receptors is regulated by the protein tyrosine kinase, Src. Recently it has been discovered that, by means of up-regulating NMDA receptor function, activation of Src mediates the induction of the lasting enhancement of excitatory transmission known as long-term potentiation in the CA1 region of the hippocampus. Also, Src has been found to amplify the up-regulation of NMDA receptor function that is produced by raising the intracellular concentration of sodium. Sodium concentration increases in neuronal dendrites during high levels of firing activity, which is precisely when Src becomes activated. Therefore, we propose that the boost in NMDA receptor function produced by the coincidence of activating Src and raising intracellular sodium may be important in physiological and pathophysiological enhancement of excitatory transmission in the dorsal horn of the spinal cord and elsewhere in the central nervous system.
Collapse
Affiliation(s)
- X M Yu
- Molecular Neurobiology Section, Centre for Addiction and Mental Health, Toronto, Ontario M5G 1X8, Canada
| | | |
Collapse
|
161
|
Lin SY, Wu K, Len GW, Xu JL, Levine ES, Suen PC, Mount HT, Black IB. Brain-derived neurotrophic factor enhances association of protein tyrosine phosphatase PTP1D with the NMDA receptor subunit NR2B in the cortical postsynaptic density. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:18-25. [PMID: 10381539 DOI: 10.1016/s0169-328x(99)00122-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our recent studies revealed that brain-derived neurotrophic factor (BDNF) rapidly enhances tyrosine phosphorylation and dephosphorylation of the NMDA receptor subunit, NR2B, in the postsynaptic density (PSD), potentially regulating synaptic plasticity. To explore the molecular mechanisms underlying synaptic NR2B signaling, we examined the protein tyrosine phosphatase, PTP1D; BDNF reportedly increases association of PTP1D with tyrosine phosphorylated proteins in cortical neurons and PC 12 cells. We now report that PTP1D is an intrinsic component of the rat cerebrocortical PSD, based on Western blot analysis using specific anti-PTP1D antibodies. In addition, NR2B was co-immunoprecipitated with PTP1D using anti-NR2B antibodies or anti-PTP1D antibodies, indicating physical association of the subunit with PTP1D. Moreover, treatment of the purified PSD with BDNF for 5 min elicited a two-fold increase in the association of NR2B with PTP1D. The BDNF action appeared to be specific, since nerve growth factor, another member of the neurotrophin gene family, did not alter the association. Finally, an overlay assay revealed that BDNF caused a two-fold increase in binding of blotted PSD NR2B proteins to PTP1D-SH2 domains, revealing molecular mechanisms mediating the PTP1D-NR2B binding. Taken together, our results raise the possibility that PTP1D participates in BDNF-mediated NR2B signaling cascades at the postsynaptic site, thereby regulating synaptic plasticity.
Collapse
Affiliation(s)
- S Y Lin
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Girault JA, Costa A, Derkinderen P, Studler JM, Toutant M. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci 1999; 22:257-63. [PMID: 10354603 DOI: 10.1016/s0166-2236(98)01358-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A major aim of neurobiology today is to improve understanding of the signaling pathways that couple rapid events, such as the action potential and neurotransmitter release, to long-lasting changes in synaptic strength and increased neuronal survival. These adaptations involve interactions of neurons with other cells and with the extracellular matrix. They use, in part, the same molecular machinery that controls adhesion, motility or survival in non-neuronal cells. This machinery includes two homologous non-receptor tyrosine kinases, FAK and PYK2/CAKbeta, and the associated SRC-family tyrosine kinases. Specific brain isoforms of FAK with distinct properties are regulated by neurotransmitters, whereas PYK2/CAKbeta is highly sensitive to depolarization. The multiplicity of the pathways that can be activated by these tyrosine kinases indicates their importance in signal transduction in the adult brain.
Collapse
Affiliation(s)
- J A Girault
- INSERM U114, Collège de France, 75005 Paris, France
| | | | | | | | | |
Collapse
|
163
|
Blockade of NR2B-Containing NMDA Receptors Prevents BDNF Enhancement of Glutamatergic Transmission in Hippocampal Neurons. Learn Mem 1999. [DOI: 10.1101/lm.6.3.257] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission.
Collapse
|
164
|
Crozier RA, Black IB, Plummer MR. Blockade of NR2B-containing NMDA receptors prevents BDNF enhancement of glutamatergic transmission in hippocampal neurons. Learn Mem 1999; 6:257-66. [PMID: 10492007 PMCID: PMC311301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Application of brain-derived neurotrophic factor (BDNF) to hippocampal neurons has profound effects on glutamatergic synaptic transmission. Both pre- and postsynaptic actions have been identified that depend on the age and type of preparation. To understand the nature of this diversity, we have begun to examine the mechanisms of BDNF action in cultured dissociated embryonic hippocampal neurons. Whole-cell patch-clamp recording during iontophoretic application of glutamate revealed that BDNF doubled the amplitude of induced inward current. Coexposure to BDNF and the NMDA receptor antagonist AP-5 markedly reduced, but did not entirely prevent, the increase in current. Coexposure to BDNF and ifenprodil, an NR2B subunit antagonist, reproduced the response observed with AP-5, suggesting BDNF primarily enhanced activity of NR2B-containing NMDA receptors with a lesser effect on non-NMDA receptors. Protein kinase involvement was confirmed with the broad spectrum inhibitor staurosporine, which prevented the response to BDNF. PKCI19-31 and H-89, selective antagonists of PKC and PKA, had no effect on the response to BDNF, whereas autocamtide-2-related inhibitory peptide, an antagonist of CaM kinase II, reduced response magnitude by 60%. These results demonstrate the predominant role of a specific NMDA receptor subtype in BDNF modulation of hippocampal synaptic transmission.
Collapse
Affiliation(s)
- R A Crozier
- Division of Life Sciences, Rutgers University, Nelson Laboratories, Piscataway, New Jersey 08854-8082, USA
| | | | | |
Collapse
|
165
|
McKay SE, Purcell AL, Carew TJ. Regulation of Synaptic Function by Neurotrophic Factors in Vertebrates and Invertebrates: Implications for Development and Learning. Learn Mem 1999. [DOI: 10.1101/lm.6.3.193] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies have demonstrated that neurotrophic factors contribute to the molecular events involved in synaptic plasticity, both during vertebrate development and in the mature nervous system. Although it is well established that many of the cellular and molecular mechanisms underlying synaptic plasticity are conserved between invertebrates and vertebrates, there are, as yet, very few neurotrophic factors identified in invertebrate species. Nonetheless, vertebrate neurotrophins can influence invertebrate neuronal growth and plasticity. In addition, homologs of neurotrophic factor receptors have been identified in several invertebrate species. These studies may indicate that the roles of neurotrophins in both developmental and adult plasticity are highly conserved across diverse phyla.
Collapse
|
166
|
Dunah AW, Yasuda RP, Luo J, Wang Y, Prybylowski KL, Wolfe BB. Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol Neurobiol 1999; 19:151-79. [PMID: 10371467 DOI: 10.1007/bf02743658] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays a key role in synaptic transmission, synaptic plasticity, synaptogenesis, and excitotoxicity in the mammalian central nervous system. The NMDA receptor channel is formed from two gene products from two glutamate receptor subunit families, termed NR1 and NR2. Although the subunit composition of native NMDA receptors is incompletely understood, electrophysiological studies using recombinant receptors suggest that functional NMDA receptors consist of heteromers containing combinations of NR1, which is essential for channel activity, and NR2, which modulates the properties of the channels. The lack of agonists or antagonists selective for a given subunit of NMDA receptors has made it difficult to understand the subunit expression, subunit composition, and posttranslational modification mechanisms of native NMDA receptors. Therefore, most studies on NMDA receptors that examine regional expression and ontogeny have been focused at the level of the mRNAs encoding the different subunits using northern blotting, ribonuclease protection, and in situ hybridization techniques. However, the data from these studies do not provide clear information about the resultant subunit protein. To directly examine the protein product of the NMDA receptor subunit genes, the development of subunit-specific antibodies using peptides and fusion proteins has provided a good approach for localizing, quantifying, and characterizing the receptor subunits in tissues and transfected cell lines, and to study the subunit composition and the functional effects of posttranslational processing of the NMDA subunits, particularly the phosphorylation profiles of NMDA glutamate receptors.
Collapse
Affiliation(s)
- A W Dunah
- Department of Pharmacology, Georgetown University School of Medicine, Washington, DC, USA
| | | | | | | | | | | |
Collapse
|
167
|
Quinlan EM, Philpot BD, Huganir RL, Bear MF. Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo. Nat Neurosci 1999; 2:352-7. [PMID: 10204542 DOI: 10.1038/7263] [Citation(s) in RCA: 457] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sensory experience is crucial in the refinement of synaptic connections in the brain during development. It has been suggested that some forms of experience-dependent synaptic plasticity in vivo are associated with changes in the complement of postsynaptic glutamate receptors, although direct evidence has been lacking. Here we show that visual experience triggers the rapid synaptic insertion of new NMDA receptors in visual cortex. The new receptors have a higher proportion of NR2A subunits and, as a consequence, different functional properties. This effect of experience requires NMDA receptor activation and protein synthesis. Thus, rapid regulation of postsynaptic glutamate receptors is one mechanism for developmental plasticity in the brain. Changes in NMDA receptor expression provide a mechanism by which brief sensory experience can regulate the properties of NMDA receptor-dependent plasticity in visual cortex.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/pharmacology
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Animals, Suckling
- Bicuculline/pharmacology
- Cycloheximide/pharmacology
- Darkness
- Electric Stimulation
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Gene Expression Regulation, Developmental/physiology
- Glycine/pharmacology
- Kynurenic Acid/pharmacology
- Light
- Male
- Models, Neurological
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/drug effects
- Nerve Tissue Proteins/genetics
- Neuronal Plasticity/physiology
- Optic Nerve/radiation effects
- Photic Stimulation
- Piperidines/pharmacology
- Protein Synthesis Inhibitors/pharmacology
- Rats
- Receptors, AMPA/drug effects
- Receptors, N-Methyl-D-Aspartate/biosynthesis
- Receptors, N-Methyl-D-Aspartate/chemistry
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/genetics
- Sensory Deprivation
- Synapses/metabolism
- Vision, Ocular/physiology
- Visual Cortex/metabolism
- Visual Cortex/physiology
- Zinc/pharmacology
Collapse
Affiliation(s)
- E M Quinlan
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
168
|
Oh JD, Vaughan CL, Chase TN. Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res 1999; 821:433-42. [PMID: 10064831 DOI: 10.1016/s0006-8993(99)01121-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sensitization of striatal N-methyl-d-aspartate (NMDA) receptors has been implicated in the pathogenesis of the response alterations associated with dopaminomimetic treatment of parkinsonian animals and patients. To determine whether serine phosphorylation of NMDA receptor subunits by activation of Ca2+/calmodulin-dependent protein-kinase II (CaMKII) contributes to this process, we examined the effects of unilateral nigrostriatal ablation with 6-hydroxydopamine and subsequent treatment with levodopa, SKF 38393 (D1-preferring dopamine agonist), or quinpirole (D2-preferring agonist) on motor responses and phosphorylation states. Three weeks of twice-daily levodopa administration to rats shortened the duration of their rotational response to levodopa or SKF 38393 challenge, but prolonged the duration of quinpirole-induced rotation. At the same time, levodopa treatment elevated serine phosphorylation of striatal NR2A (p<0.02), but not that of NR2B subunits, without associated changes in subunit protein levels. Chronic treatment with SKF 38393 increased NR2A (p<0.0001) but decreased NR2B (p<0.004) serine phosphorylation. In contrast, chronic quinpirole treatment had no effect on NR2A but increased NR2B phosphorylation (p<0.0001). The acute intrastriatal injection of the CaMKII inhibitor KN93 (1.0 micrograms) not only normalized the levodopa-induced motor response alterations but also attenuated the D1 and D2 receptor-mediated serine phosphorylation of NR2A and NR2B subunits, respectively (p<0.02). These results suggest that a CaMKII-mediated rise in serine phosphorylation of NMDA receptor subunits induced by intermittent stimulation of D1 or D2 dopaminergic receptors contributes to the apparent enhancement in striatal NMDA receptor sensitivity and thus to the dopaminergic response plasticity in levodopa-treated parkinsonian rats.
Collapse
Affiliation(s)
- J D Oh
- Experimental Therapeutics Branch, Building 10, Room 5C103, National Institute of Neurological Disorders and Stroke, NIH, 90900 Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
169
|
Bengzon J, Okabe S, Lindvall O, McKay RD. Suppression of epileptogenesis by modification of N-methyl-D-aspartate receptor subunit composition. Eur J Neurosci 1999; 11:916-22. [PMID: 10103085 DOI: 10.1046/j.1460-9568.1999.00500.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of altered N-methyl-D-aspartate (NMDA) receptor subunit composition on seizure development in kindling epilepsy were assessed in transgenic mice expressing high neuronal levels of NR2D under control of the calcium/calmodulin kinase II alpha subunit (alphaCaMKII) promoter. The NR2D subunit is normally present at very low levels in the mature forebrain. Transgenic mice showed a marked reduction of amygdala kindling development. Spread of epileptic activity was retarded and generalized seizures appeared later in animals overexpressing NR2D compared with wild-type mice. The progressive lengthening of epileptiform activity, which normally occurs in kindling, was also dampened in transgenic animals. We conclude that NMDA receptor subunit composition determines the progression of experimental epilepsy.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Brain Chemistry/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- DNA, Complementary
- Epilepsy/genetics
- Epilepsy/physiopathology
- Gene Expression Regulation, Enzymologic/physiology
- In Situ Hybridization
- Kindling, Neurologic/genetics
- Lac Operon
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutagenesis/physiology
- Promoter Regions, Genetic/physiology
- Prosencephalon/chemistry
- Prosencephalon/physiology
- Receptors, N-Methyl-D-Aspartate/analysis
- Receptors, N-Methyl-D-Aspartate/genetics
- Transgenes/physiology
Collapse
Affiliation(s)
- J Bengzon
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, S-221 85 Lund, Sweden.
| | | | | | | |
Collapse
|
170
|
Liesi P, Stewart RR, Akinshola BE, Wright JM. Weaver cerebellar granule neurons show altered expression of NMDA receptor subunits bothin vivo andin vitro. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1097-4695(199903)38:4<441::aid-neu1>3.0.co;2-v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
171
|
Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci U S A 1999; 96:435-40. [PMID: 9892651 PMCID: PMC15154 DOI: 10.1073/pnas.96.2.435] [Citation(s) in RCA: 312] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fyn, a member of the Src-family protein-tyrosine kinase (PTK), is implicated in learning and memory that involves N-methyl-D-aspartate (NMDA) receptor function. In this study, we examined how Fyn participates in synaptic plasticity by analyzing the physical and functional interaction between Fyn and NMDA receptors. Results showed that tyrosine phosphorylation of NR2A, one of the NMDA receptor subunits, was reduced in fyn-mutant mice. NR2A was tyrosine-phosphorylated in 293T cells when coexpressed with Fyn. Therefore, NR2A would be a substrate for Fyn in vivo. Results also showed that PSD-95, which directly binds to and coclusters with NMDA receptors, promotes Fyn-mediated tyrosine phosphorylation of NR2A. Different regions of PSD-95 associated with NR2A and Fyn, respectively, and so PSD-95 could mediate complex formation of Fyn with NR2A. PSD-95 also associated with other Src-family PTKs, Src, Yes, and Lyn. These results suggest that PSD-95 is critical for regulation of NMDA receptor activity by Fyn and other Src-family PTKs, serving as a molecular scaffold for anchoring these PTKs to NR2A.
Collapse
Affiliation(s)
- T Tezuka
- Department of Oncology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
172
|
Sala C, Sheng M. The fyn art of N-methyl-D-aspartate receptor phosphorylation. Proc Natl Acad Sci U S A 1999; 96:335-7. [PMID: 9892633 PMCID: PMC33546 DOI: 10.1073/pnas.96.2.335] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- C Sala
- Howard Hughes Medical Institute and Department of Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
173
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
174
|
Abstract
Current concepts of the mechanisms underlying many of the pharmacological effects of ethanol on the CNS involve disruption of ion channel function via the interaction of ethanol with specific hydrophobic sites on channel subunit proteins. Of particular clinical importance is the development of tolerance and dependence to ethanol, and it is likely that adaptive changes in synaptic function in response to ethanol's actions on ion channels play a role in this process. In this article, Judson Chandler, Adron Harris and Fulton Crews discuss potential mechanisms of ethanol-induced changes in synaptic function that might provide a cellular basis for ethanol tolerance and dependence. It is proposed that multiple mechanisms are involved that include both transcriptional and post-translational modifications in NMDA and GABAA receptors.
Collapse
Affiliation(s)
- L J Chandler
- Department of Pharmacology and Therapeutics, Louisiana State University Medical Center, Shreveport 71130, USA
| | | | | |
Collapse
|
175
|
Oh JD, Russell DS, Vaughan CL, Chase TN, Russell D. Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res 1998; 813:150-9. [PMID: 9824689 DOI: 10.1016/s0006-8993(98)01049-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sensitization of striatal N-methyl-D-aspartate receptors (NMDAR) has been linked to events leading to the motor response changes associated with the administration of dopaminomimetics to parkinsonian animals and patients. To determine whether tyrosine phosphorylation of NMDAR subunits contributes to the apparent long-term enhancement in synaptic efficacy of these receptors, we examined the effect of unilateral nigrostriatal dopamine system ablation with 6-hydroxydopamine followed by twice-daily treatment with l-DOPA on the phosphorylation state of rat striatal NR2A and NR2B subunits. Three weeks of intermittent l-DOPA administration produced a shortening in the duration of the rotational response to dopaminergic challenge and other changes mimicking those occurring in patients with Parkinson's disease. Concurrently, tyrosine phosphorylation of NR2A and especially of NR2B subunits increased ipsilateral to the lesion (20+/-5% and 46+/-7% of intact striatum, respectively; p<0.01) without attendant changes in subunit protein levels. Selective blockade of NR2B subunits with ACEA 10-1244, but not of NR2A subunits with MDL 100,453, reversed the l-DOPA-induced response alterations. The intrastriatal injection of a tyrosine kinase inhibitor, genistein, at a dose (2.0 microg) that normalized the response shortening, attenuated the NR2A and NR2B phosphorylation increase by about 12% and 24%, respectively (p<0.01). Taken together, these results suggest that augmented tyrosine phosphorylation of NR2B subunits, alone or in combination with the smaller rise in NR2A subunit phosphorylation, contributes to the apparent enhancement in striatal NMDAR sensitivity and thus to the plastic alterations in dopaminergic responses in l-DOPA-treated parkinsonian rats.
Collapse
Affiliation(s)
- J D Oh
- Experimental Therapeutics Branch, Bldg. 10, Rm. 5C103, National Institute of Neurological Disorders and Stroke, NIH, Bldg. 10, Rm. 5C211, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
176
|
Kojima N, Ishibashi H, Obata K, Kandel ER. Higher Seizure Susceptibility and Enhanced Tyrosine Phosphorylation of N-Methyl-d-Aspartate Receptor Subunit 2B in fyn Transgenic Mice. Learn Mem 1998. [DOI: 10.1101/lm.5.6.429] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Earlier work has suggested that Fyn tyrosine kinase plays an important role in synaptic plasticity. To understand the downstream targets of Fyn signaling cascade in neurons, we generated transgenic mice expressing either a constitutively activated form of Fyn or native Fyn in neurons of the forebrain. Transgenic mice expressing mutant Fyn exhibited higher seizure activity and were prone to sudden death. Mice overexpressing native Fyn did not show such an obvious epileptic phenotype, but they exhibited accelerated kindling in response to once-daily stimulation of the amygdala. Tyrosine phosphorylation of at least three proteins was enhanced in the forebrains of both native and mutant fyn transgenic mice; tyrosine phosphorylation of these three proteins was reduced infyn knockout mice, suggesting that they are substrates of Fyn. One of these proteins was identified as the subunit 2B (NR2B) of theN-methyl-d-aspartate (NMDA) receptor. Administration of MK-801, a noncompetitive NMDA receptor antagonist, retarded kindling in mice overexpressing native Fyn, as well as wild-type mice, suggests that the accelerated kindling in mice overexpressing Fyn is also mediated by the NMDA receptor activity. Our results thus suggest that tyrosine phosphorylation by Fyn might be involved in regulation of the susceptibility of kindling, one form of the NMDA receptor-mediated neuronal plasticity.
Collapse
|
177
|
Kojima N, Ishibashi H, Obata K, Kandel ER. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn Mem 1998; 5:429-45. [PMID: 10489260 PMCID: PMC311255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Earlier work has suggested that Fyn tyrosine kinase plays an important role in synaptic plasticity. To understand the downstream targets of Fyn signaling cascade in neurons, we generated transgenic mice expressing either a constitutively activated form of Fyn or native Fyn in neurons of the forebrain. Transgenic mice expressing mutant Fyn exhibited higher seizure activity and were prone to sudden death. Mice overexpressing native Fyn did not show such an obvious epileptic phenotype, but they exhibited accelerated kindling in response to once-daily stimulation of the amygdala. Tyrosine phosphorylation of at least three proteins was enhanced in the forebrains of both native and mutant fyn transgenic mice; tyrosine phosphorylation of these three proteins was reduced in fyn knockout mice, suggesting that they are substrates of Fyn. One of these proteins was identified as the subunit 2B (NR2B) of the N-methyl-D-aspartate (NMDA) receptor. Administration of MK-801, a noncompetitive NMDA receptor antagonist, retarded kindling in mice overexpressing native Fyn, as well as wild-type mice, suggests that the accelerated kindling in mice overexpressing Fyn is also mediated by the NMDA receptor activity. Our results thus suggest that tyrosine phosphorylation by Fyn might be involved in regulation of the susceptibility of kindling, one form of the NMDA receptor-mediated neuronal plasticity.
Collapse
Affiliation(s)
- N Kojima
- Laboratory of Neurochemistry, National Institute for Physiological Sciences, Okazaki, Japan
| | | | | | | |
Collapse
|
178
|
Abstract
The protein tyrosine kinase Src is expressed widely in the central nervous system and is abundant in neurons. Over the past several years, evidence has accumulated showing that one function of Src is to regulate the activity of N-methyl-D-aspartate (NMDA) receptors and other ion channels. NMDA receptors are a principal subtype of glutamate receptor that mediates fast excitatory transmission at most central synapses. Recently it has been discovered that, by means of up-regulating the function of NMDA receptors, Src mediates the induction of long-term potentiation (LTP) in the CA1 region of the hippocampus. This finding led to a new model for induction of LTP whereby tetanic stimulation produces a rapid activation of Src, causing enhanced NMDA receptor function. This enhanced NMDA receptor function boosts the entry of Ca2+, which may thereby trigger the downstream signalling cascade, ending in potentiation of non-NMDA receptors. This functional role for Src may be important in physiological and pathophysiological processes in the central nervous system.
Collapse
Affiliation(s)
- M W Salter
- Division of Neuroscience, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
179
|
Williams JM, Mason-Parker SE, Abraham WC, Tate WP. Biphasic changes in the levels of N-methyl-D-aspartate receptor-2 subunits correlate with the induction and persistence of long-term potentiation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:21-7. [PMID: 9748484 DOI: 10.1016/s0169-328x(98)00154-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
N-Methyl-D-aspartate glutamate receptors (NMDAR) form ion channels made up of polypeptides from two classes of subunits; NR1 is obligatory for function whereas members of the NR2 class regulate the properties of the channel. Long-term potentiation (LTP) of synaptic transmission is an event largely dependent on NMDAR activation, and is studied as the primary cellular model of memory in the mammalian brain. While there has been a focus on non-NMDARs in mediating the expression of LTP, we report here biochemical evidence for plasticity of the NMDAR that is associated with LTP persistence in awake animals. Following the establishment of LTP in perforant path synapses of the dentate gyrus, we observed a rise in NR2B protein levels 48 h post-tetanus which was dependent upon activation of NMDARs during the tetanization, and which strongly correlated with the degree of LTP measured at this time-point. We also observed a transient increase in both NR2B and NR2A protein levels 20 min post-tetanus that returned to control levels by 4 h. These early increases were not observed in anaesthetized animals which do not sustain persistent LTP. Our data demonstrate a marked plasticity of NMDAR subunit expression, which may affect LTP persistence, as well as the subsequent ability to induce LTP at previously activated synapses.
Collapse
Affiliation(s)
- J M Williams
- Department of Biochemistry and Centre for Gene Research, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | |
Collapse
|
180
|
Williams JM, Thompson VL, Mason-Parker SE, Abraham WC, Tate WP. Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 60:50-6. [PMID: 9748499 DOI: 10.1016/s0169-328x(98)00165-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In order to identify genes that may underlie the maintenance of long-term potentiation (LTP) at perforant path synapses, complementary DNA libraries were synthesised from dentate gyrus total RNA extracts prepared 48 h after the induction of LTP and from control dentate gyrus extracts. Through differential screening of the LTP library we have identified the mitochondrial 12S rRNA (mt12SrRNA) as a transcript that was elevated at this late time. Northern blot analyses showed that the elevation in mt12SrRNA expression began around 8 h and persisted for at least 2 weeks post-tetanus. We then examined the expression patterns of other mitochondrially-encoded genes and demonstrated a similar elevation in their expression. mt12SrRNA levels were also elevated in other hippocampal regions, including areas CA3 and CA1 and were elevated following low-frequency stimulation or in the presence of an N-methyl-D-aspartate receptor antagonist where induction of LTP was precluded. Taken together, these observations suggest that a long-lasting up-regulation of energy production may be triggered by synaptic activity and this activity need not be of sufficient strength to induce LTP, but may be related to the induction of a metaplastic state.
Collapse
Affiliation(s)
- J M Williams
- Department of Biochemistry and Centre for Gene Research, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
181
|
Levine ES, Crozier RA, Black IB, Plummer MR. Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity. Proc Natl Acad Sci U S A 1998; 95:10235-9. [PMID: 9707630 PMCID: PMC21491 DOI: 10.1073/pnas.95.17.10235] [Citation(s) in RCA: 353] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurotrophins (NTs) have recently been found to regulate synaptic transmission in the hippocampus. Whole-cell and single-channel recordings from cultured hippocampal neurons revealed a mechanism responsible for enhanced synaptic strength. Specifically, brain-derived neurotrophic factor augmented glutamate-evoked, but not acetylcholine-evoked, currents 3-fold and increased N-methyl-D-aspartic acid (NMDA) receptor open probability. Activation of trkB NT receptors was critical, as glutamate currents were not affected by nerve growth factor or NT-3, and increased open probability was prevented by the tyrosine kinase inhibitor K-252a. In addition, the NMDA receptor antagonist MK-801 blocked brain-derived neurotrophic factor enhancement of synaptic transmission, further suggesting that NTs modulate synaptic efficacy via changes in NMDA receptor function.
Collapse
Affiliation(s)
- E S Levine
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School/University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
182
|
Lancaster B, Rogers MV. A peptide activator of endogenous tyrosine kinase enhances synaptic currents mediated by NMDA receptors. Eur J Neurosci 1998; 10:2302-8. [PMID: 9749758 DOI: 10.1046/j.1460-9568.1998.00241.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartic acid (NMDA) receptor currents in cultured cells or expression systems are increased by the addition of purified tyrosine kinases. However, there is no direct demonstration of this effect at NMDA receptors in intact synapses of rat brain slices. Transmitters which might be used to activate tyrosine kinases in situ are unlikely to have a sufficiently selective action to allow a clear interpretation of their effects. Therefore, we used a phosphotyrosine-containing decapeptide which can be included in recording electrodes to activate postsynaptic src-family tyrosine kinases. This peptide enhanced NMDA responses in dissociated hippocampal CA1 neurons. These effects were not reproduced by a non-phosphorylated peptide or a scrambled-sequence phosphopeptide. The enhancement of NMDA responses was blocked by a tyrosine kinase inhibitor. In brain slices the phosphopeptide, but not control peptide, increased NMDA receptor-mediated synaptic current indicating that endogenous tyrosine kinase can upregulate the response of NMDA receptors at glutamatergic synapses in the hippocampus.
Collapse
Affiliation(s)
- B Lancaster
- Cruciform Project, University College London, UK.
| | | |
Collapse
|
183
|
Derkinderen P, Siciliano J, Toutant M, Girault JA. Differential regulation of FAK+ and PYK2/Cakbeta, two related tyrosine kinases, in rat hippocampal slices: effects of LPA, carbachol, depolarization and hyperosmolarity. Eur J Neurosci 1998; 10:1667-75. [PMID: 9751139 DOI: 10.1046/j.1460-9568.1998.00174.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
FAK+, an isoform of focal adhesion kinase preferentially expressed in brain and PYK2/Cakbeta (proline-rich tyrosine kinase 2/cell adhesion kinasebeta) are two related cytoplasmic tyrosine kinases. They are candidates for coupling electrical activity and stimulation of neurotransmitter receptors to short and long-term changes in synaptic properties, cytoskeletal organization and gene expression in neurons. As the same set of stimuli appear capable of stimulating FAK and/or PYK2 in non-neuronal cells and in cell lines with neuronal characteristics, we investigated the selectivity of regulation of these two kinases in mature nervous tissue. Using rat hippocampal slices, we compared the regulation of FAK+ and PYK2 by stimuli known to be active on one or the other of these two kinases in other cell types: lysophosphatidic acid (LPA), carbachol, depolarization, and hyperosmolarity. Phosphorylation of FAK+ was markedly increased by carbachol and LPA. Carbachol effects occurred via activation of M1 muscarinic receptors and nicotinic receptors. The effects of carbachol and LPA were prevented by protein kinase C inhibitors, whereas 8-Br-cAMP attenuated the effects of carbachol but not of LPA. Tyrosine phosphorylation of PYK2 but not of FAK+ was very strongly enhanced by depolarization and hyperosmolarity. This study and our previous results show that FAK+ and PYK2 are regulated differentially in hippocampal slices: FAK+ is phosphorylated on tyrosine in response to stimulation of G protein-coupled receptors, whereas PYK2 is mainly sensitive to depolarization and hyperosmolarity. Thus, FAK+ and PYK2 may provide specific and separate links between activation of neurotransmitters receptors, depolarization and tyrosine phosphorylation in mature hippocampus.
Collapse
Affiliation(s)
- P Derkinderen
- INSERM U 114, Chaire de Neuropharmacologie, Paris, France
| | | | | | | |
Collapse
|
184
|
McGahon B, Lynch MA. Analysis of the interaction between arachidonic acid and metabotropic glutamate receptor activation reveals that phospholipase C acts as a coincidence detector in the expression of long-term potentiation in the rat dentate gyrus. Hippocampus 1998; 8:48-56. [PMID: 9519886 DOI: 10.1002/(sici)1098-1063(1998)8:1<48::aid-hipo5>3.0.co;2-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have reported that arachidonic acid and the metabotropic glutamate receptor agonist, trans-1-amino-cyclopentyl-1,3-dicarboxylate (ACPD), act in synergy to increase release of glutamate from synaptosomes prepared from rat dentate gyrus. The observation that prior induction of LTP in perforant path-granule cell synapses occluded this synergism suggested that the interaction between arachidonic acid and ACPD might trigger the increase in glutamate release that accompanies LTP in dentate gyrus. Our objective was to identify the mechanism underlying the synergism between arachidonic acid and ACPD in LTP. The data indicate that both agents activate phospholipase C(PLC); the arachidonic acid-induced increase in phospholipase C activation was inhibited by the tyrosine kinase inhibitor, genistein, suggesting that PLCgamma, which is stimulated by tyrosine phosphorylation may be activated by arachidonic acid. The ACPD-induced increase was inhibited by neomycin, indicating the involvement of a G-protein and suggesting that PLCbeta may be activated by ACPD. We report that arachidonic acid stimulated phosphorylation of the specific tyrosine kinase substrate, poly(Glu80,Tyr20) and direct analysis indicated that arachidonic acid increased phosphorylation of PLCgamma. PLCgamma phosphorylation was assessed in control dentate gyrus and dentate gyrus in which LTP was induced in vivo. We report that the tyrosine kinase inhibitor, genistein, blocked expression of LTP and also blocked the associated increase in phosphorylation of PLCgamma. The data presented here indicate that tyrosine phosphorylation of PLCgamma was significantly enhanced following induction of LTP, but in separate experiments, in which LTP was inhibited by intraventricular injection of genistein, phosphorylation of PLCgamma was inhibited. The evidence presented is consistent with the hypothesis that PLC acts as a coincidence detector in LTP. The data indicate that PLCbeta is activated by ACPD, PLCgamma is activated by arachidonic acid, and coincident activation of both isoforms is necessary to stimulate an increase in glutamate release.
Collapse
Affiliation(s)
- B McGahon
- Department of Physiology, Trinity College, Dublin, Ireland
| | | |
Collapse
|
185
|
Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:20-7. [PMID: 9645956 DOI: 10.1016/s0169-328x(97)00349-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While neurotrophins are critical for neuronal survival and differentiation, recent work suggests that they acutely regulate synaptic transmission as well. Brain-derived neurotrophic factor (BDNF) enhances excitatory postsynaptic currents in cultured dissociated hippocampal neurons within 2-3 min through postsynaptic, phosphorylation-dependent mechanisms. Moreover, BDNF modulates hippocampal long-term potentiation, in which postsynaptic NMDA (N-methyl-D-aspartate) receptors (NRs) play a key role. We now report that BDNF acutely increases tyrosine phosphorylation of the specific NMDA receptor subunit NR2B, which has recently been shown to play a role in long-term potentiation. Incubation of BDNF with cortical or hippocampal postsynaptic densities for 5 min increased tyrosine phosphorylation of the NR2B subunits in a dose-dependent manner. A maximal increase to 165% of control phosphorylation occurred at a BDNF concentration of 2 ng/ml. The BDNF action appeared to be specific, since nerve growth factor, another member of the neurotrophin gene family, had no effect on NR2B phosphorylation. Further, BDNF action was selective, since it did not alter tyrosine phosphorylation of NR2A subunits. Our results suggest that tyrosine phosphorylation of NR2B subunits of the NMDA receptor may contribute to neurotrophin modulation of postsynaptic responsiveness and long-term potentiation.
Collapse
Affiliation(s)
- S Y Lin
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, USA
| | | | | | | | | | | |
Collapse
|
186
|
Affiliation(s)
- A R Boxall
- Cruciform Project, University College London, UK
| | | |
Collapse
|
187
|
Tokuda M, Hatase O. Regulation of neuronal plasticity in the central nervous system by phosphorylation and dephosphorylation. Mol Neurobiol 1998; 17:137-56. [PMID: 9887450 DOI: 10.1007/bf02802028] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.
Collapse
Affiliation(s)
- M Tokuda
- Department of Physiology, Kagawa Medical University, Japan
| | | |
Collapse
|
188
|
Morris RG, Frey U. Hippocampal synaptic plasticity: role in spatial learning or the automatic recording of attended experience? Philos Trans R Soc Lond B Biol Sci 1997; 352:1489-503. [PMID: 9368938 PMCID: PMC1692060 DOI: 10.1098/rstb.1997.0136] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Allocentric spatial learning can sometimes occur in one trial. The incorporation of information into a spatial representation may, therefore, obey a one-trial correlational learning rule rather than a multi-trial error-correcting rule. It has been suggested that physiological implementation of such a rule could be mediated by N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the hippocampus, as its induction obeys a correlational type of synaptic learning rule. Support for this idea came originally from the finding that intracerebral infusion of the NMDA antagonist AP5 impairs spatial learning, but studies summarized in the first part of this paper have called it into question. First, rats previously given experience of spatial learning in a watermaze can learn a new spatial reference memory task at a normal rate despite an appreciable NMDA receptor blockade. Second, the classical phenomenon of 'blocking' occurs in spatial learning. The latter finding implies that spatial learning can also be sensitive to an animal's expectations about reward and so depend on more than the detection of simple spatial correlations. In this paper a new hypothesis is proposed about the function of hippocampal LTP. This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning. It is suggested that LTP participates in the automatic recording of attended experience': a subsystem of episodic memory in which events are temporarily remembered in association with the contexts in which they occur. An automatic correlational form of synaptic plasticity is ideally suited to the online registration of context event associations. In support, it is reported that the ability of rats to remember the most recent place they have visited in a familiar environment is exquisitely sensitive to AP5 in a delay-dependent manner. Moreover, new studies of the lasting persistence of NMDA-dependent LTP, known to require protein synthesis, point to intracellular mechanisms that enable transient synaptic changes to be stabilized if they occur in close temporal proximity to important events. This new property of hippocampal LTP is a desirable characteristic of an event memory system.
Collapse
Affiliation(s)
- R G Morris
- Centre for Neuroscience, University of Edinburgh, UK.
| | | |
Collapse
|
189
|
Miyakawa T, Yagi T, Kitazawa H, Yasuda M, Kawai N, Tsuboi K, Niki H. Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 1997; 278:698-701. [PMID: 9381182 DOI: 10.1126/science.278.5338.698] [Citation(s) in RCA: 236] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Animals vary in their sensitivity to ethanol, a trait at least partly determined by genetic factors. In order to identify possible responsible genes, mice lacking Fyn, a non-receptor type tyrosine kinase, were investigated. These mice were hypersensitive to the hypnotic effect of ethanol. The administration of ethanol enhanced tyrosine phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) in the hippocampus of control mice but not in Fyn-deficient mice. An acute tolerance to ethanol inhibition of NMDAR-mediated excitatory postsynaptic potentials in hippocampal slices developed in control mice but not in Fyn-deficient mice. These results indicate that Fyn affects behavioral, biochemical, and physiological responses to ethanol.
Collapse
Affiliation(s)
- T Miyakawa
- Laboratory for Neurobiology of Emotion, Brain Science Institute, RIKEN, Hirosawa, Wako-shi, Saitama-ken 351-01, Japan
| | | | | | | | | | | | | |
Collapse
|
190
|
Hisatsune C, Umemori H, Inoue T, Michikawa T, Kohda K, Mikoshiba K, Yamamoto T. Phosphorylation-dependent regulation of N-methyl-D-aspartate receptors by calmodulin. J Biol Chem 1997; 272:20805-10. [PMID: 9252405 DOI: 10.1074/jbc.272.33.20805] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor plays important roles in synaptic plasticity and brain development. The NMDA receptor subunits have large intracellular domains in the COOH-terminal region that may interact with signal-transducing proteins. By using the yeast two-hybrid system, we found that calmodulin interacts with the COOH terminus of the NR1 subunit and inactivates the channels in a Ca2+-dependent manner. Here we show that protein kinase C (PKC)-mediated phosphorylation on serine residues of NR1 decreases its affinity for calmodulin. This suggests that PKC-mediated phosphorylation of NR1 prevents calmodulin from binding to the NR1 subunit and thereby inhibits the inactivation of NMDA receptors by calmodulin. In addition, we show that stimulation of metabotropic glutamate receptor 1alpha, which potentiates NMDA channels through PKC, decreases the ability of NR1 to bind to calmodulin. Thus, our data provide clues to understanding the basis of cross-talk between two types of receptors, metabotropic glutamate receptors and the NR1 subunit, in NMDA channel potentiation.
Collapse
Affiliation(s)
- C Hisatsune
- Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan
| | | | | | | | | | | | | |
Collapse
|
191
|
NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci 1997. [PMID: 9185550 DOI: 10.1523/jneurosci.17-13-05129.1997] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate that the NMDA receptor is involved in taste learning in the insular cortex of the behaving rat and describe two facets of this involvement. Blockage of the NMDA receptor in the insular cortex by the reversible antagonist APV during training in a conditioned taste aversion (CTA) paradigm impaired CTA memory, whereas blockage of the NMDA receptor in an adjacent cortex or before a retrieval test had no effect. When rats sampled an unfamiliar taste and hence learned about it, either incidentally or in the context of CTA training, the tyrosine phosphorylation of the NMDA receptor subunit 2B (NR2B) in the insular cortex was specifically increased. The level of tyrosine phosphorylation on NR2B was a function of the novelty of the taste stimulus and the quantity of the taste substance consumed, properties that also determined the efficacy of the taste stimulus as a conditioned stimulus in CTA; however, blockage of the NMDA receptor by APV during training did not prevent tyrosine phosphorylation of NR2B. We suggest that tyrosine phosphorylation of NR2B subserves encoding of saliency in the insular cortex during the first hours after an unfamiliar taste is sampled and that this encoding is independent of another, necessary role of NMDA receptors in triggering experience-dependent modifications in the insular cortex during taste learning. Because a substantial fraction of the NR2B protein in the insular cortex seems to be expressed in interneurons, saliency and the tyrosine phosphorylation of NR2B correlated with it may modulate inhibition in cortex.
Collapse
|
192
|
Rosenblum K, Berman DE, Hazvi S, Lamprecht R, Dudai Y. NMDA receptor and the tyrosine phosphorylation of its 2B subunit in taste learning in the rat insular cortex. J Neurosci 1997; 17:5129-35. [PMID: 9185550 PMCID: PMC6573317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We demonstrate that the NMDA receptor is involved in taste learning in the insular cortex of the behaving rat and describe two facets of this involvement. Blockage of the NMDA receptor in the insular cortex by the reversible antagonist APV during training in a conditioned taste aversion (CTA) paradigm impaired CTA memory, whereas blockage of the NMDA receptor in an adjacent cortex or before a retrieval test had no effect. When rats sampled an unfamiliar taste and hence learned about it, either incidentally or in the context of CTA training, the tyrosine phosphorylation of the NMDA receptor subunit 2B (NR2B) in the insular cortex was specifically increased. The level of tyrosine phosphorylation on NR2B was a function of the novelty of the taste stimulus and the quantity of the taste substance consumed, properties that also determined the efficacy of the taste stimulus as a conditioned stimulus in CTA; however, blockage of the NMDA receptor by APV during training did not prevent tyrosine phosphorylation of NR2B. We suggest that tyrosine phosphorylation of NR2B subserves encoding of saliency in the insular cortex during the first hours after an unfamiliar taste is sampled and that this encoding is independent of another, necessary role of NMDA receptors in triggering experience-dependent modifications in the insular cortex during taste learning. Because a substantial fraction of the NR2B protein in the insular cortex seems to be expressed in interneurons, saliency and the tyrosine phosphorylation of NR2B correlated with it may modulate inhibition in cortex.
Collapse
Affiliation(s)
- K Rosenblum
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
193
|
Wang JH, Ko GY, Kelly PT. Cellular and molecular bases of memory: synaptic and neuronal plasticity. J Clin Neurophysiol 1997; 14:264-93. [PMID: 9337139 DOI: 10.1097/00004691-199707000-00002] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Discoveries made during the past decade have greatly improved our understanding of how the nervous system functions. This review article examines the relation between memory and the cellular mechanisms of neuronal and synaptic plasticity in the central nervous system. Evidence indicating that activity-dependent short- and long-term changes in strength of synaptic transmission are important for memory processes is examined. Focus is placed on one model of synaptic plasticity called long-term potentiation, and its similarities with memory processes are illustrated. Recent studies show that the regulation of synaptic strength is bidirectional (e.g., synaptic potentiation or depression). Mechanisms involving intracellular signaling pathways that regulate synaptic strength are described, and the specific roles of calcium, protein kinases, protein phosphatases, and retrograde messengers are emphasized. Evidence suggests that changes in synaptic ultrastructure, dendritic ultrastructure, and neuronal gene expression may also contribute to mechanisms of synaptic plasticity. Also discussed are recent findings about postsynaptic mechanisms that regulate short-term synaptic facilitation and neuronal burst-pattern activity, as well as evidence about the subcellular location (presynaptic or postsynaptic) of mechanisms involved in long-term synaptic plasticity.
Collapse
Affiliation(s)
- J H Wang
- Department of Neurobiology and Anatomy, University of Texas Medical School-Houston, 77225, U.S.A
| | | | | |
Collapse
|
194
|
Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997; 276:2042-5. [PMID: 9197267 DOI: 10.1126/science.276.5321.2042] [Citation(s) in RCA: 830] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term potentiation (LTP), a cellular model of learning and memory, requires calcium-dependent protein kinases. Induction of LTP increased the phosphorus-32 labeling of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPA-Rs), which mediate rapid excitatory synaptic transmission. This AMPA-R phosphorylation appeared to be catalyzed by Ca2+- and calmodulin-dependent protein kinase II (CaM-KII): (i) it correlated with the activation and autophosphorylation of CaM-KII, (ii) it was blocked by the CaM-KII inhibitor KN-62, and (iii) its phosphorus-32 peptide map was the same as that of GluR1 coexpressed with activated CaM-KII in HEK-293 cells. This covalent modulation of AMPA-Rs in LTP provides a postsynaptic molecular mechanism for synaptic plasticity.
Collapse
Affiliation(s)
- A Barria
- Vollum Institute, Oregon Health Sciences University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
195
|
Smart TG. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr Opin Neurobiol 1997; 7:358-67. [PMID: 9232798 DOI: 10.1016/s0959-4388(97)80063-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phosphorylation of ligand-gated ion channels is recognised as a potentially important mechanism for short- and long-term modulation of ion-channel function. Following the discovery of numerous sites of phosphorylation on ligand-gated ion channel proteins, recent studies have demonstrated that neurotransmitter-induced activation of serine/threonine, tyrosine and other kinases can result in the modulation of glutamate, type A gamma-aminobutyric acid (GABAA) and glycine receptors. These findings may have important consequences for our understanding of synaptic transmission and neuronal excitability.
Collapse
Affiliation(s)
- T G Smart
- Department of Pharmacology, School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK.
| |
Collapse
|
196
|
Kojima N, Wang J, Mansuy IM, Grant SG, Mayford M, Kandel ER. Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc Natl Acad Sci U S A 1997; 94:4761-5. [PMID: 9114065 PMCID: PMC20798 DOI: 10.1073/pnas.94.9.4761] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To examine the physiological role of the Fyn tyrosine kinase in neurons, we generated transgenic mice that expressed a fyn cDNA under the control of the calcium/calmodulin-dependent protein kinase IIalpha promoter. With this promoter, we detected only low expression of Fyn in the neonatal brain. In contrast, there was strong expression of the fyn-transgene in neurons of the adult forebrain. To determine whether the impairment of long-term potentiation (LTP) observed in adult fyn-deficient mice was caused directly by the lack of Fyn in adult hippocampal neurons or indirectly by an impairment in neuronal development, we generated fyn-rescue mice by introducing the wild-type fyn-transgene into mice carrying a targeted deletion in the endogenous fyn gene. In fyn-rescue mice, Schaffer collateral LTP was restored, even though the morphological abnormalities characteristic of fyn-deficient mice were still present. These results suggest that Fyn contributes, at least in part, to the molecular mechanisms of LTP induction.
Collapse
Affiliation(s)
- N Kojima
- Laboratory of Neurochemistry, National Institute for Physiological Sciences, Okazaki 444, Japan
| | | | | | | | | | | |
Collapse
|
197
|
Rosenblum K, Dudai Y, Richter-Levin G. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Proc Natl Acad Sci U S A 1996; 93:10457-60. [PMID: 8816822 PMCID: PMC38406 DOI: 10.1073/pnas.93.19.10457] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic memory that may subserve developmental and behavioral plasticity. An intensively investigated form of LTP is dependent upon N-methyl-D-aspartate (NMDA) receptors and can be elicited in the dentate gyrus and hippocampal CA1. Induction of this type of LTP is triggered by influx of Ca2+ through activated NMDA receptors, but the downstream mechanisms of induction, and even more so of LTP maintenance, remain controversial. It has been reported that the function of NMDA receptor channel can be regulated by protein tyrosine kinases and protein phosphatases and that inhibition of protein tyrosine kinases impairs induction of LTP. Herein we report that LTP in the dentate gyrus is specifically correlated with tyrosine phosphorylation of the NMDA receptor subunit 2B in an NMDA receptor-dependent manner. The effect is observed with a delay of several minutes after LTP induction and persists in vivo for several hours. The potential relevance of this post-translational modification to mechanisms of LTP and circuit plasticity is discussed.
Collapse
Affiliation(s)
- K Rosenblum
- Department of Neurobiology, Weizmann Institute of Science, Rehovot Israel
| | | | | |
Collapse
|