151
|
Moss B, Shisler JL, Xiang Y, Senkevich TG. Immune-defense molecules of molluscum contagiosum virus, a human poxvirus. Trends Microbiol 2000; 8:473-7. [PMID: 11044683 DOI: 10.1016/s0966-842x(00)01838-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molluscum contagiosum virus encodes more than 150 proteins including some involved in host interactions that might contribute to prolonged viral replication in the skin. These include homologs of a selenocysteine-containing glutathione peroxidase, a death effector domain protein, a chemokine, a major histocompatibility complex class I molecule and an interleukin-18-binding protein.
Collapse
Affiliation(s)
- B Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA.
| | | | | | | |
Collapse
|
152
|
Abstract
Caspases are a family of mammalian proteases related to the ced-3 gene of Caenorhabditis elegans. They mediate many of the morphological and biochemical features of apoptosis, including structural dismantling of cell bodies and nuclei, fragmentation of genomic DNA, destruction of regulatory proteins, and propagation of other pro-apoptotic molecules. Based on their substrate specificities and DNA sequence homologies, the 14 currently identified caspases may be divided into three groups: apoptotic initiators, apoptotic executioners, and inflammatory mediators. Caspases are activated through two principal pathways, known as the "extrinsic pathway," which is initiated by cell surface death receptor ligation, and the intrinsic pathway, which arises from mitochondria. Endogenous inhibitors, such as the inhibitors of apoptosis (IAP) family, modulate caspase activity at various points within these pathways. Upon activation, caspases appear to play an important role in sequelae of traumatic brain injury, spinal cord injury, and cerebral ischemia. In addition, they may also play a role in mediating cell death in chronic neurodegenerative conditions such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. This article reviews the current literature on the role of caspases in acute and chronic CNS injury, and provides evidence for the potential therapeutic use of caspase inhibitors in the setting of these conditions.
Collapse
Affiliation(s)
- B A Eldadah
- Department of Neuroscience, Georgetown University School of Medicine, Washington, DC, USA
| | | |
Collapse
|
153
|
|
154
|
Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM. ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell 2000; 103:99-111. [PMID: 11051551 DOI: 10.1016/s0092-8674(00)00108-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ProIL-1beta is a proinflammatory cytokine that is proteolytically processed to its active form by caspase-1. Upon receipt of a proinflammatory stimulus, an upstream adaptor, RIP2, binds and oligomerizes caspase-1 zymogen, promoting its autoactivation. ICEBERG is a novel protein that inhibits generation of IL-1beta by interacting with caspase-1 and preventing its association with RIP2. ICEBERG is induced by proinflammatory stimuli, suggesting that it may be part of a negative feedback loop. Consistent with this, enforced retroviral expression of ICEBERG inhibits lipopolysaccharide-induced IL-1beta generation. The structure of ICEBERG reveals it to be a member of the death-domain-fold superfamily. The distribution of surface charge is complementary to the homologous prodomain of caspase-1, suggesting that charge-charge interactions mediate binding of ICEBERG to the prodomain of caspase-1.
Collapse
Affiliation(s)
- E W Humke
- Department of Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | |
Collapse
|
155
|
OhYama T, Tsukumo S, Yajima N, Sakamaki K, Yonehara S. Reduction of thymocyte numbers in transgenic mice expressing viral FLICE-inhibitory protein in a Fas-independent manner. Microbiol Immunol 2000; 44:289-97. [PMID: 10832975 DOI: 10.1111/j.1348-0421.2000.tb02498.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A viral FLIP (FLICE/caspase-8-Inhibitory Protein), equine herpesvirus type 2 E8 protein, has been shown to inhibit Death receptor-induced apoptosis by suppressing the activation of FLICE/caspase-8. We generated transgenic mice specifically expressing E8 in thymocytes under the control of lck-proximal promoter. Although E8-expressing thymocytes were resistant to Fas-mediated apoptosis, the total number of thymocytes in 4-8-week-old E8 transgenic mice was more than 3-fold less than that in control littermates. This reduction was also observed in E8 transgenic mice with a Fas-/- background suggesting the reduction to be independent of Fas. The thymocytes of the transgenic mice, however, could similarly respond to CD3-mediated stimulation, indicating that the reduction of thymocyte numbers might be independent of T cell receptor complex-mediated stimulation. Thus, the Death receptor-mediated signaling pathway is too complex to be regarded as only an executor for apoptosis.
Collapse
Affiliation(s)
- T OhYama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
156
|
Ramos JW, Hughes PE, Renshaw MW, Schwartz MA, Formstecher E, Chneiweiss H, Ginsberg MH. Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal receptor-activated kinase by an adhesion-independent mechanism. Mol Biol Cell 2000; 11:2863-72. [PMID: 10982386 PMCID: PMC14961 DOI: 10.1091/mbc.11.9.2863] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Revised: 05/10/2000] [Accepted: 06/16/2000] [Indexed: 01/04/2023] Open
Abstract
PEA-15 is a small, death effector-domain (DED)-containing protein that was recently demonstrated to inhibit tumor necrosis factor-alpha-induced apoptosis and to reverse the inhibition of integrin activation due to H-Ras. This led us to investigate the involvement of PEA-15 in Ras signaling. Surprisingly, PEA-15 activates the extracellular signal receptor-activated kinase (ERK) mitogen-activated protein kinase pathway in a Ras-dependent manner. PEA-15 expression in Chinese hamster ovary cells resulted in an increased mitogen-activated protein kinase kinase and ERK activity. Furthermore, PEA-15 expression leads to an increase in Ras guanosine 5'-triphosphate loading. PEA-15 bypasses the anchorage dependence of ERK activation. Finally, the effects of PEA-15 on integrin signaling are separate from those on ERK activation. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to activate ERK. The ability of PEA-15 to simultaneously inhibit apoptosis and potentiate Ras-to-Erk signaling may be of importance for oncogenic processes.
Collapse
Affiliation(s)
- J W Ramos
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Clarke P, Meintzer SM, Gibson S, Widmann C, Garrington TP, Johnson GL, Tyler KL. Reovirus-induced apoptosis is mediated by TRAIL. J Virol 2000; 74:8135-9. [PMID: 10933724 PMCID: PMC112347 DOI: 10.1128/jvi.74.17.8135-8139.2000] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Members of the tumor necrosis factor (TNF) receptor superfamily and their activating ligands transmit apoptotic signals in a variety of systems. We now show that the binding of TNF-related, apoptosis-inducing ligand (TRAIL) to its cellular receptors DR5 (TRAILR2) and DR4 (TRAILR1) mediates reovirus-induced apoptosis. Anti-TRAIL antibody and soluble TRAIL receptors block reovirus-induced apoptosis by preventing TRAIL-receptor binding. In addition, reovirus induces both TRAIL release and an increase in the expression of DR5 and DR4 in infected cells. Reovirus-induced apoptosis is also blocked following inhibition of the death receptor-associated, apoptosis-inducing molecules FADD (for FAS-associated death domain) and caspase 8. We propose that reovirus infection promotes apoptosis via the expression of DR5 and the release of TRAIL from infected cells. Virus-induced regulation of the TRAIL apoptotic pathway defines a novel mechanism for virus-induced apoptosis.
Collapse
Affiliation(s)
- P Clarke
- Departments of Neurology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
We now know that tumor necrosis factor (TNF) family ligands regulate development of lymphoid tissue and coordinate cellular differentiation to defend against intracellular pathogens. In particular, TNF provides essential signals for the formation of secondary lymphoid tissue structures and plays an important role in several physiological and pathological conditions that relate to its action in inflammation and leukocyte movement. The TNF-related family of membrane-anchored and secreted ligands also represents a major mechanism regulating cell death and cell survival. TNF was first described as an endotoxin-induced and macrophage secreted factor that caused haemorrhagic necrosis of tumor cells. Over the past two decades we have come to appreciate that T lymphocytes and natural killer (NK) cells also produce TNF, yet no clear single role for lymphocyte-derived TNF has emerged. This review describes the key molecular details of the action of TNF and discusses the evidence for TNF-mediated cytotoxicity being critical to lymphocyte function and immunoregulation.
Collapse
Affiliation(s)
- M J Smyth
- Cellular Cytotoxicity Laboratory, Austin Research Institute, Austin.
| | | |
Collapse
|
159
|
Gil J, Esteban M. The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-alpha receptors. Oncogene 2000; 19:3665-74. [PMID: 10951573 DOI: 10.1038/sj.onc.1203710] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon-induced dsRNA-dependent protein kinase (PKR) induces apoptosis of mammalian cells. Apoptosis induction by PKR involves phosphorylation of the translational factor eIF-2alpha and activation of the transcriptional factor NF-kappaB, but caspase pathways activated by PKR are not known. Upregulation of Fas mRNA by PKR has been suggested to play a role in PKR-induced apoptosis. To learn how PKR induces apoptosis, we have analysed the role of molecules in death receptor pathways. We showed the involvement of the FADD-caspase 8 pathway on PKR-induced apoptosis based on four experimental findings: upregulation of caspase 8 activity during PKR-induced apoptosis, blocking of PKR-induced apoptosis by the use of a chemical inhibitor of caspase 8, and inhibition of PKR-induced apoptosis by expression of both a FADD dominant negative or a viral FLIP molecule. Significantly, despite the PKR-mediated upregulation of Fas mRNA expression, the Fas receptor-ligand pathway is not needed for PKR-induced apoptosis. Antibodies that inhibit TNFalpha-TNFR1 or Fas-FasL interactions were not able to block PKR-induced apoptosis. Taken together, our observations establish the involvement of caspase 8 in PKR-induced apoptosis and suggest that death receptors other than Fas or TNFR1 or, alternatively, a novel mechanism involving FADD independently of death receptors, are responsible for PKR-induced apoptosis.
Collapse
Affiliation(s)
- J Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
160
|
Abstract
This review describes the diverse array of pathways and molecular targets that are used by viruses to elude immune detection and destruction. These include targeting of pathways for major histocompatibility complex-restricted antigen presentation, apoptosis, cytokine-mediated signaling, and humoral immune responses. The continuous interactions between host and pathogens during their coevolution have shaped the immune system, but also the counter measures used by pathogens. Further study of their interactions should improve our ability to manipulate and exploit the various pathogens.
Collapse
Affiliation(s)
- D Tortorella
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
161
|
Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 2000; 68:383-424. [PMID: 10872455 DOI: 10.1146/annurev.biochem.68.1.383] [Citation(s) in RCA: 1995] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: (a) Zymogen gene transcription is regulated; (b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and (c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.
Collapse
Affiliation(s)
- W C Earnshaw
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
162
|
Phelps E, Wu P, Bretz J, Baker JR. Thyroid cell apoptosis. A new understanding of thyroid autoimmunity. Endocrinol Metab Clin North Am 2000; 29:375-88, viii. [PMID: 10874535 DOI: 10.1016/s0889-8529(05)70137-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apoptosis is a highly regulated mechanism of cell death involved in normal development, immune regulation, and homeostasis. Abnormal apoptotic activity has been implicated in a variety of diseases including cancer, autoimmunity, and degenerative disorders. In the thyroid, altered cell death may play a role in the pathogenesis of autoimmune disorders such as Hashimoto's thyroiditis and Graves' disease. Apoptosis-signaling pathways can be initiated through activation of death receptors or in response to cellular damage, such as in gamma irradiation. It has been demonstrated that Fas, tumor necrosis factor, and tumor necrosis factor-related apoptosis-inducing ligand pathways are present and functional in the thyroid, although the expression of these molecules and their roles in thyroid autoimmunity have been debated. Thyroid apoptosis is regulated at multiple levels, including receptor and ligand expression, and the expression of antiapoptotic proteins, such as FAP-1 and Bcl-2. These factors may provide potential mechanisms for modifying the pathogenesis of autoimmune thyroid disease.
Collapse
Affiliation(s)
- E Phelps
- Division of Allergy, University of Michigan Medical Center, Ann Arbor, USA
| | | | | | | |
Collapse
|
163
|
Nagaraju K, Casciola-Rosen L, Rosen A, Thompson C, Loeffler L, Parker T, Danning C, Rochon PJ, Gillespie J, Plotz P. The inhibition of apoptosis in myositis and in normal muscle cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5459-65. [PMID: 10799913 DOI: 10.4049/jimmunol.164.10.5459] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanism of injury and death of muscle cells in the inflammatory myopathies (dermatomyositis, polymyositis, and inclusion body myositis) remains obscure. We and others have not detected apoptosis in the muscle biopsies from patients with myositis despite clear evidence of cell damage and loss. We provide evidence in this study that Fas ligand (FasL) as well as Fas is present on muscle cells and inflammatory cells in myositis biopsies: Fas is present on most muscle cells and lymphocytes, and FasL is present on degenerating muscle cells and many infiltrating mononuclear cells. The expression of both Fas and FasL in the inflamed tissue makes the absence of apoptosis more striking. To address the mechanisms of this resistance to classical apoptosis in muscle cells, we have investigated the expression of the antiapoptotic molecule FLICE (Fas-associated death domain-like IL-1-converting enzyme)-inhibitory protein (FLIP) in muscle biopsies of myositis patients and in cultured human skeletal muscle cells. Using laser capture microscopy, we have shown that FLIP is expressed in the muscle fibers and on infiltrating lymphocytes of myositis biopsies. Furthermore, we have shown that FLIP, but not Bcl-2, is expressed in cultured human skeletal muscle cells stimulated with proinflammatory cytokines, and inhibition of FLIP with antisense oligonucleotides promotes significant cleavage of poly(ADP-ribose) polymerase autoantigen, a sensitive indicator of apoptosis. These studies strongly suggest that the resistance of muscle to Fas-mediated apoptosis is due to the expression of FLIP in muscle cells in the inflammatory environment in myositis.
Collapse
Affiliation(s)
- K Nagaraju
- Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, and National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Kam CM, Hudig D, Powers JC. Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:307-23. [PMID: 10708866 DOI: 10.1016/s0167-4838(99)00282-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Natural killer (NK) and cytotoxic T-lymphocytes (CTLs) kill cells within an organism to defend it against viral infections and the growth of tumors. One mechanism of killing involves exocytosis of lymphocyte granules which causes pores to form in the membranes of the attacked cells, fragments nuclear DNA and leads to cell death. The cytotoxic granules contain perforin, a pore-forming protein, and a family of at least 11 serine proteases termed granzymes. Both perforin and granzymes are involved in the lytic activity. Although the biological functions of most granzymes remain to be resolved, granzyme B clearly promotes DNA fragmentation and is directly involved in cell death. Potential natural substrates for Gr B include procaspases and other proteins involved in cell death. Activated caspases are involved in apoptosis. The search continues for natural substrates for the other granzymes. The first granzyme crystal structure remains to be resolved, but in the interim, molecular models of granzymes have provided valuable structural information about their substrate binding sites. The information has been useful to predict the amino acid sequences that immediately flank each side of the scissile peptide bond of peptide and protein substrates. Synthetic substrates, such as peptide thioesters, nitroanilides and aminomethylcoumarins, have also been used to study the substrate specificity of granzymes. The different granzymes have one of four primary substrate specificities: tryptase (cleaving after Arg or Lys), Asp-ase (cleaving after Asp), Met-ase (cleaving after Met or Leu), and chymase (cleaving after Phe, Tyr, or Trp). Natural serpins and synthetic inhibitors (including isocoumarins, peptide chloromethyl ketones, and peptide phosphonates) inhibit granzymes. Studies of substrate and inhibitor kinetics are providing valuable information to identify the most likely natural granzyme substrates and provide tools for the study of key reactions in the cytolytic mechanism.
Collapse
Affiliation(s)
- C M Kam
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | |
Collapse
|
165
|
Abstract
The induction of apoptosis, or controlled cell death, by various stimuli has been shown to activate a cascade of endoproteases, called caspases, that cleave numerous cellular proteins necessary for cellular homeostasis. This review discusses this family of proteases together with a variety of mammalian and viral regulatory proteins that act to control this activation.
Collapse
Affiliation(s)
- D K Miller
- Department of Immunology and Rheumatology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| |
Collapse
|
166
|
Kumar D, Whiteside TL, Kasid U. Identification of a novel tumor necrosis factor-alpha-inducible gene, SCC-S2, containing the consensus sequence of a death effector domain of fas-associated death domain-like interleukin- 1beta-converting enzyme-inhibitory protein. J Biol Chem 2000; 275:2973-8. [PMID: 10644768 DOI: 10.1074/jbc.275.4.2973] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here the isolation and characterization of a novel tumor necrosis factor-alpha (TNF-alpha)-inducible gene, SCC-S2. Based on the nucleotide sequence, the SCC-S2 open reading frame contains a sequence in the amino terminus that shows a significant homology to death effector domain II of cell death regulatory protein, Fas-associated death domain-like interleukin-1beta-converting enzyme-inhibitory protein (FLIP). Unlike FLIP, the SCC-S2 open reading frame contains only one death effector domain and lacks the carboxyl-terminal caspase-like homology domain, raising the possibility that SCC-S2 may be a novel member of the FLIP family. SCC-S2 mRNA expression is found in most normal tissues and malignant cells. The steady state level of SCC-S2 mRNA is significantly induced by TNF-alpha in different tumor cells (TNF-alpha at 20 ng/ml for 3 h: A549, approximately 2-9-fold; SKOV-3, approximately 3-fold; PCI-04A, approximately 3-6-fold). TNF-alpha treatment (100 ng/ml, 4 h) of HeLa cells transiently transfected with FLAG epitope-tagged SCC-S2 cDNA or expression vector alone led to an increase in the number of apoptotic cells as compared with the untreated counterpart. Interestingly, however, SCC-S2 transfectants revealed a significant decrease in the number of apoptotic cells as compared with the vector transfectants (p < 0.001). These data implicate a role of SCC-S2 as a negative mediator of apoptosis in certain cell types.
Collapse
Affiliation(s)
- D Kumar
- Department of Radiation Medicine, Lombardi Cancer Center, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | |
Collapse
|
167
|
Abstract
Fas-mediated apoptosis is an essential mechanism for maintenance of immune homeostasis. The expression of Fas is regulated at transcriptional and protein levels. Furthermore, several death domain molecules and caspases are crucial downstream mediators and executioners of Fas-mediated apoptosis. A tightly regulated interaction of these molecules ensures normal immune functions, including the execution of activation-induced cell death, T-cell mediated cytotoxicity, and surveillance of immune privileged tissues. In contrast, abnormally increased or decreased Fas-mediated apoptosis is a major pathogenic mechanism of several diseases, including systemic or tissue-specific autoimmune diseases and immune deficiency. Two CD2-fas transgenic mouse lines are described here to demonstrate the importance of controlling Fas-mediated apoptosis. Correction of Fas in Fas-mutant mice restored apoptosis function and ameliorated autoimmune symptoms, whereas a long-term enhancement of Fas expression in Fas-normal mice resulted in an increased acute-phase response and renal amyloidosis in aged transgenic mice.
Collapse
Affiliation(s)
- H C Hsu
- Department of Medicine, University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
168
|
|
169
|
Imanishi T, McBride J, Ho Q, O'Brien KD, Schwartz SM, Han DK. Expression of cellular FLICE-inhibitory protein in human coronary arteries and in a rat vascular injury model. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:125-37. [PMID: 10623660 PMCID: PMC1868623 DOI: 10.1016/s0002-9440(10)64712-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We previously isolated MACH-related inducer of toxicity (MRIT), a homolog of caspase 8. MRIT, also known as c-FLICE-inhibitory protein (c-FLIP), is an enzymatically inactive homolog of caspase 8 with homology to viral FLIP (v-FLIP). Because of this homology and resemblance to dominant negative proteins, c-FLIP is widely believed to be an antagonist to the death receptor-initiated apoptotic pathways that use caspase 8. We generated a polyclonal antibody, MAG1, and show that this antibody specifically recognizes two splice forms, long form (c-FLIPL) and short form (c-FLIPS). By in situ hybridization and immunohistochemistry, we demonstrate that c-FLIP is expressed in endothelial cells, macrophages, and smooth muscle cells (SMCs) both in human coronary arteries and in cultured cells. In an uninjured rat carotid arteries, c-FLIP protein is abundant in the vascular media. After balloon angioplasty, c-FLIP protein is rapidly down-regulated in medial SMCs for 2 weeks and regains expression by 4 weeks. In contrast, the neointima is strongly immunoreactive to c-FLIP from day 7 after the initial injury and remains strongly immunoreactive until 4 to 6 weeks. Similarly there is strong c-FLIP immunoreactivity in SMCs from nonatherosclerotic diffuse intimal thickening and in the overlying endothelial cells. In contrast, c-FLIP immunoreactivity is uneven and often absent in SMCs within the atherosclerotic plaque. Double labeling with c-FLIP antibody and terminal deoxynucleotidyltransferase-mediated UDP end labeling (TUNEL) in the injured rat common carotid artery show that TUNEL-positive cells in the first 2 days after injury lack detectable c-FLIP, suggested a role for caspase 8 in this form of death. In contrast, there is no correlation of c-FLIP with the spontaneous elevation in death of intima seen at 7 days after injury. For human atherosclerotic plaques, the majority of TUNEL-positive cells lack detectable c-FLIP. The expression pattern of c-FLIP and the relation between c-FLIP and TUNEL suggest a role for c-FLIP- and caspase 8-driven death in control of viability of the cells of the atherosclerotic intima.
Collapse
Affiliation(s)
- T Imanishi
- Departments of Pathology, Medicine (Cardiology), and Molecular Biotechnology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
170
|
Lurain NS, Kapell KS, Huang DD, Short JA, Paintsil J, Winkfield E, Benedict CA, Ware CF, Bremer JW. Human cytomegalovirus UL144 open reading frame: sequence hypervariability in low-passage clinical isolates. J Virol 1999; 73:10040-50. [PMID: 10559318 PMCID: PMC113055 DOI: 10.1128/jvi.73.12.10040-10050.1999] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) infects a number of organs and cell types in vivo, leading to the hypothesis that HCMV disease and tissue tropism may be related to specific sequence variants. A potential component of HCMV variant strains is the UL144 open reading frame (ORF), which encodes a homologue of the herpesvirus entry mediator, HveA, a member of the tumor necrosis factor receptor superfamily. Sequence analysis of the UL144 ORF in 45 low-passage clinical isolates demonstrated significant strain-specific variability. In individual isolates, nucleotide substitutions occur at up to 21% of the 531 positions, resulting in approximately the same percentage of substitutions in the predicted 176-amino-acid sequence. Phylogenetic analysis indicated that the nucleotide and amino acid sequences diverge into three major groups. For genotypic comparison, the known hypervariable region encompassing the proteolytic cleavage site of the glycoprotein B (gB) gene was also sequenced. All of the isolates could be typed according to the four known gB groups; however, the gB and UL144 sequence groups appeared to be phylogenetically unlinked. The predicted UL144 product homology with tumor necrosis factor receptor family members, along with the unexpectedly high level of sequence variability of the UL144 ORF, suggests that the predicted product may play a role in HCMV infectivity and subsequent host disease.
Collapse
Affiliation(s)
- N S Lurain
- Department of Immunology/Microbiology, Rush Medical College, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
172
|
Stürzl M, Hohenadl C, Zietz C, Castanos-Velez E, Wunderlich A, Ascherl G, Biberfeld P, Monini P, Browning PJ, Ensoli B. Expression of K13/v-FLIP gene of human herpesvirus 8 and apoptosis in Kaposi's sarcoma spindle cells. J Natl Cancer Inst 1999; 91:1725-33. [PMID: 10528022 DOI: 10.1093/jnci/91.20.1725] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human herpesvirus 8 (HHV8) infection is associated with all forms of Kaposi's sarcoma (KS). The HHV8 genome locus ORFK13-72-73 (ORF = open reading frame) encodes proteins that may be important in HHV8-mediated pathogenesis, i.e., the latency-associated nuclear antigen (encoded by ORF73), viral-cyc-D (v-cyc-D), a viral homologue of cellular cyclin D (encoded by ORF72), and viral-FLIP (v-FLIP), a homologue of the cellular FLICE (Fas-associated death domain-like interleukin 1 beta-converting enzyme) inhibitory protein (encoded by ORFK13; is an inhibitor of apoptosis [programmed cell death]). Through differential splicing events, this locus expresses individual RNA transcripts that encode all three proteins (tricistronic transcripts) or just two of them (v-FLIP and v-cyc-D; bicistronic transcripts). We examined expression of these transcripts in KS tissues. METHODS We collected tissues from patients with KS of different stages. By use of an optimized in situ hybridization procedure, we examined different ORFK13-72-73 locus transcripts in HHV8-infected cells in skin lesions and in one adjacent lymph node. Apoptosis in KS lesions was determined by use of an in situ assay. RESULTS AND CONCLUSIONS Our results indicate the following: 1) Transcripts from the ORFK13-72-73 locus appear to be spliced differentially in latently infected KS cells in skin lesions and in HHV8-infected cells in lymph nodes; specifically, ORFK13-ORF72 bicistronic transcripts were expressed abundantly in KS cells, whereas ORFK13-ORF72-ORF73 tricistronic transcripts were detected only in lymph node cells. 2) Sequences encoding the antiapoptotic protein v-FLIP are expressed at very low levels in early KS lesions, but expression increases dramatically in late-stage lesions. 3) The increase in expression of v-FLIP-encoding transcripts is associated with a reduction in apoptosis in KS lesions. IMPLICATIONS These data suggest that functional v-FLIP is produced in vivo and that antiapoptotic mechanisms may be involved in the rapid growth of KS lesions, where only a few cells undergoing mitosis are generally observed.
Collapse
MESH Headings
- Antigens, Viral/analysis
- Antigens, Viral/genetics
- Apoptosis
- CASP8 and FADD-Like Apoptosis Regulating Protein
- Carrier Proteins/analysis
- Carrier Proteins/genetics
- Down-Regulation
- Gene Expression
- Genes, Viral
- Herpesvirus 8, Human/genetics
- Humans
- Immunohistochemistry
- In Situ Hybridization
- In Situ Nick-End Labeling
- Intracellular Signaling Peptides and Proteins
- Lymph Nodes/metabolism
- Lymph Nodes/virology
- Neoplasm Staging
- Nuclear Proteins/analysis
- Nuclear Proteins/genetics
- Open Reading Frames
- RNA Probes
- RNA, Messenger/analysis
- RNA, Neoplasm/analysis
- RNA, Viral/analysis
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Transcription, Genetic
- Up-Regulation
- Viral Proteins/genetics
Collapse
Affiliation(s)
- M Stürzl
- Institute of Molecular Virology, GSF-National Research Center for Environment and Health, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Raftery MJ, Behrens CK, Müller A, Krammer PH, Walczak H, Schönrich G. Herpes simplex virus type 1 infection of activated cytotoxic T cells: Induction of fratricide as a mechanism of viral immune evasion. J Exp Med 1999; 190:1103-14. [PMID: 10523608 PMCID: PMC2195666 DOI: 10.1084/jem.190.8.1103] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1), a large DNA-containing virus, is endemic in all human populations investigated. After infection of mucocutaneous surfaces, HSV1 establishes a latent infection in nerve cells. Recently, it was demonstrated that HSV1 can also infect activated T lymphocytes. However, the consequences of T cell infection for viral pathogenesis and immunity are unknown. We have observed that in contrast to the situation in human fibroblasts, in human T cell lines antigen presentation by major histocompatibility complex class I molecules is not blocked after HSV1 infection. Moreover, HSV1 infection of T cells results in rapid elimination of antiviral T cells by fratricide. To dissect the underlying molecular events, we used a transgenic mouse model of HSV1 infection to demonstrate that CD95 (Apo-1, Fas)-triggered apoptosis is essential for HSV1-induced fratricide, whereas tumor necrosis factor (TNF) also contributes to this phenomenon but to a lesser extent. By contrast, neither TRAIL (TNF-related apoptosis-inducing ligand) nor perforin were involved. Finally, we defined two mechanisms associated with HSV1-associated fratricide of antiviral T cells: (a) T cell receptor-mediated upregulation of CD95 ligand and (b) a viral "competence-to-die" signal that renders activated T lymphocytes susceptible to CD95 signaling. We propose that induction of fratricide is an important immune evasion mechanism of HSV1, helping the virus to persist in the host organism throughout its lifetime.
Collapse
Affiliation(s)
- Martin J. Raftery
- Department of Medical Virology, Institute of Hygiene, University of Heidelberg
| | - Christian K. Behrens
- Tumor Immunology Program, Division of Immunogenetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anke Müller
- Department of Medical Virology, Institute of Hygiene, University of Heidelberg
| | - Peter H. Krammer
- Tumor Immunology Program, Division of Immunogenetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Henning Walczak
- Tumor Immunology Program, Division of Immunogenetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Günther Schönrich
- Department of Medical Virology, Institute of Hygiene, University of Heidelberg
| |
Collapse
|
174
|
Chaudhary PM, Jasmin A, Eby MT, Hood L. Modulation of the NF-kappa B pathway by virally encoded death effector domains-containing proteins. Oncogene 1999; 18:5738-46. [PMID: 10523854 DOI: 10.1038/sj.onc.1202976] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death Effector Domains (DEDs) have been known to mediate the recruitment of Caspase 8 and its homologs to the aggregated death-inducing signaling complex (DISC), consisting of the death domain (DD)-containing receptors and various signaling proteins. In addition, several viruses were recently shown to encode proteins with DEDs (also called FLICE inhibitory proteins or vFLIPs) which have the ability of blocking cell death induced by DD-containing receptors. We provide evidence that vFLIPs can also modulate the NF-kappaB pathway and physically interact with several signaling proteins, such as the TRAFs, RIP, NIK and the IKKs. Modulation of the NF-kappaB pathway may play a role in the natural history of infection by these viruses.
Collapse
Affiliation(s)
- P M Chaudhary
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, TX 75235-8593, USA
| | | | | | | |
Collapse
|
175
|
Fernández-Figueras MT, Armengol P, Puig L, Molinero JL, Esquius M, Sirera G, Ariza A. Absence of Fas (CD95) and FasL (CD95L) immunohistochemical expression suggests Fas/FasL-mediated apoptotic signal is not relevant in cutaneous Kaposi's sarcoma lesions. J Cutan Pathol 1999; 26:417-23. [PMID: 10563496 DOI: 10.1111/j.1600-0560.1999.tb01868.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been suggested that Fas ligand (FasL), expressed by several neoplastic cell lines and some tumors in vivo, is able to trigger the apoptotic process in activated T-lymphocytes and may constitute a key element of the immunological escape mechanisms used by many types of neoplasia. In order to evaluate the possible role of Fas-mediated apoptosis in Kaposi's sarcoma (KS), we have studied the immunocytochemical expression of Fas and FasL in biopsy specimens showing different histopathological stages of classic KS (C-KS) and AIDS-associated KS (AIDS-KS), as well as in cultured cells derived from C-KS lesions. KS biopsy tissue failed to show Fas expression in all epidemiologic forms and histopathologic stages studied, while FasL positivity was present in a small number of cells in just a few cases. Double immunostaining ruled out the lymphocytic nature of these cells, whose morphology in adjacent sections stained with hematoxylin and eosin was consistent with KS cells. In contrast, cultured KS cells exhibited strong immunocytochemical cytoplasmic expression of both Fas and FasL. These findings indicate that the Fas-FasL system does not play a major role as a trigger of apoptosis in KS cells in vivo and that the upregulation of these molecules observed in KS cells in vitro probably is the result of cell stress induced by growth in culture.
Collapse
|
176
|
Xiang Y, Moss B. IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A 1999; 96:11537-42. [PMID: 10500212 PMCID: PMC18069 DOI: 10.1073/pnas.96.20.11537] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Molluscum contagiosum virus (MCV) is a common, human poxvirus that causes small papular skin lesions that persist for long periods without signs of inflammation. Previous studies revealed that MCV encodes a family of proteins with homology to mammalian IL-18 binding proteins. IL-18 is a proinflammatory cytokine that induces synthesis of interferon gamma, activates NK cells, and is required for a T-lymphocyte helper type 1 response. We expressed and purified the proteins encoded by the MC53L and MC54L genes of MCV, as well as their human and murine homologs. All four recombinant proteins were able to bind with high affinity to human and murine IL-18 molecules and inhibited IL-18 mediated interferon gamma production in a dose-dependent manner. The pirating of IL-18 binding proteins by poxviruses and their use as decoy receptors is consistent with the critical role of IL-18 in defense against virus infections and provides a mechanism for evasion of the immune system by MCV.
Collapse
Affiliation(s)
- Y Xiang
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0445, USA
| | | |
Collapse
|
177
|
Modulation of Caspase-8 and FLICE-Inhibitory Protein Expression as a Potential Mechanism of Epstein-Barr Virus Tumorigenesis in Burkitt’s Lymphoma. Blood 1999. [DOI: 10.1182/blood.v94.5.1727] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractLigation of the Fas receptor induces death-inducing signaling complex (DISC) formation, caspase activation, and subsequent apoptotic death of several cell types. Epstein-Barr virus (EBV)-positive group III Burkitt’s lymphoma (BL) cell lines have a marked resistance to Fas-mediated apoptosis, although expressing each of the DISC components, Fas/ APO-1–associated death domain protein (FADD), and caspase-8 (FLICE/MACH/Mch5). The apoptotic pathway distal to the DISC is intact because ceramide analogs, staurosporine, and granzyme B activate caspase-3 and induce apoptosis. Fas resistance was not explained by the putative death-attenuating caspase-8 isoforms. However, while Fas-activated cytosolic extracts from sensitive cells were capable of processing both procaspase-8 and procaspase-3 into active subunit forms, resistant cell extracts did not possess either of these activities. Accordingly, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed higher transcript levels for the FLICE-inhibitory protein (FLIPL) in resistant cells and the ratio of caspase-8 to FLIPLmeasured by competition RT-PCR analysis directly correlated with susceptibility to Fas-mediated apoptosis of all cell lines. In addition, modification of the caspase-8/FLIPL ratio by caspase-8 or FLIPL overexpression was able to alter the susceptibility status of the cell lines tested. Our results imply that the relative levels of caspase-8 and FLIPL are an important determinant of susceptibility to Fas-mediated apoptosis.
Collapse
|
178
|
Modulation of Caspase-8 and FLICE-Inhibitory Protein Expression as a Potential Mechanism of Epstein-Barr Virus Tumorigenesis in Burkitt’s Lymphoma. Blood 1999. [DOI: 10.1182/blood.v94.5.1727.417k03_1727_1737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ligation of the Fas receptor induces death-inducing signaling complex (DISC) formation, caspase activation, and subsequent apoptotic death of several cell types. Epstein-Barr virus (EBV)-positive group III Burkitt’s lymphoma (BL) cell lines have a marked resistance to Fas-mediated apoptosis, although expressing each of the DISC components, Fas/ APO-1–associated death domain protein (FADD), and caspase-8 (FLICE/MACH/Mch5). The apoptotic pathway distal to the DISC is intact because ceramide analogs, staurosporine, and granzyme B activate caspase-3 and induce apoptosis. Fas resistance was not explained by the putative death-attenuating caspase-8 isoforms. However, while Fas-activated cytosolic extracts from sensitive cells were capable of processing both procaspase-8 and procaspase-3 into active subunit forms, resistant cell extracts did not possess either of these activities. Accordingly, reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed higher transcript levels for the FLICE-inhibitory protein (FLIPL) in resistant cells and the ratio of caspase-8 to FLIPLmeasured by competition RT-PCR analysis directly correlated with susceptibility to Fas-mediated apoptosis of all cell lines. In addition, modification of the caspase-8/FLIPL ratio by caspase-8 or FLIPL overexpression was able to alter the susceptibility status of the cell lines tested. Our results imply that the relative levels of caspase-8 and FLIPL are an important determinant of susceptibility to Fas-mediated apoptosis.
Collapse
|
179
|
Chaudhary PM, Eby MT, Jasmin A, Hood L. Activation of the c-Jun N-terminal kinase/stress-activated protein kinase pathway by overexpression of caspase-8 and its homologs. J Biol Chem 1999; 274:19211-9. [PMID: 10383428 DOI: 10.1074/jbc.274.27.19211] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase-8 is the most proximal caspase in the caspase cascade and possesses a prodomain consisting of two homologous death effector domains (DEDs). We have discovered that caspase-8 and its homologs can physically interact with tumor necrosis factor receptor-associated factor family members and activate the c-Jun N-terminal kinase (JNK, or stress-activated protein kinase) pathway. This ability resides in the DED-containing prodomain of these proteins and is independent of their role as cell death proteases. A point mutant in the first DED of caspase-8 can block JNK activation induced by several death domain receptors. Inhibition of JNK activation blocks apoptosis mediated by caspase-10, Mach-related inducer of toxicity/cFLIP, and Fas/CD95, thereby suggesting a cooperative role of this pathway in the mediation of caspase-induced apoptosis.
Collapse
Affiliation(s)
- P M Chaudhary
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas 75235-8593, USA.
| | | | | | | |
Collapse
|
180
|
Sarid R, Olsen SJ, Moore PS. Kaposi's sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv Virus Res 1999; 52:139-232. [PMID: 10384236 DOI: 10.1016/s0065-3527(08)60299-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- R Sarid
- Division of Epidemiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
181
|
Abstract
The immune system relies on cell death to maintain lymphoid homeostasis and avoid disease. Recent evidence has indicated that the caspase family of cysteine proteases is a central effector in apoptotic cell death and is absolutely responsible for many of the morphological features of apoptosis. Cell death, however, can occur through caspase-independent and caspase-dependent pathways. In the case of cells that are irreversibly neglected or damaged, death occurs even in the absence of caspase activity. In contrast, healthy cells require caspase activation to undergo cell death induced by surface receptors. This review summarizes the current understanding of these two pathways of cell death in the immune system.
Collapse
Affiliation(s)
- J C Rathmell
- Gwen Knapp Center for Lupus and Immunology Research, Department of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
182
|
Wallach D, Varfolomeev EE, Malinin NL, Goltsev YV, Kovalenko AV, Boldin MP. Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 1999; 17:331-67. [PMID: 10358762 DOI: 10.1146/annurev.immunol.17.1.331] [Citation(s) in RCA: 965] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Four members of the tumor necrosis factor (TNF) ligand family, TNF-alpha, LT-alpha, LT-beta, and LIGHT, interact with four receptors of the TNF/nerve growth factor family, the p55 TNF receptor (CD120a), the p75 TNF receptor (CD120b), the lymphotoxin beta receptor (LT beta R), and herpes virus entry mediator (HVEM) to control a wide range of innate and adaptive immune response functions. Of these, the most thoroughly studied are cell death induction and regulation of the inflammatory process. Fas/Apo1 (CD95), a receptor of the TNF receptor family activated by a distinct ligand, induces death in cells through mechanisms shared with CD120a. The last four years have seen a proliferation in knowledge of the proteins participating in the signaling by the TNF system and CD95. The downstream signaling molecules identified so far--caspases, phospholipases, the three known mitogen activated protein (MAP) kinase pathways, and the NF-kappa B activation cascade--mediate the effects of other inducers as well. However, the molecules that initiate these signaling events, including the death domain- and TNF receptor associated factor (TRAF) domain-containing adapter proteins and the signaling enzymes associated with them, are largely unique to the TNF/nerve growth factor receptor family.
Collapse
Affiliation(s)
- D Wallach
- Department of Biological Chemistry, Weizmann Institute, Rehovot, Israel.
| | | | | | | | | | | |
Collapse
|
183
|
Jeong EJ, Bang S, Lee TH, Park YI, Sim WS, Kim KS. The solution structure of FADD death domain. Structural basis of death domain interactions of Fas and FADD. J Biol Chem 1999; 274:16337-42. [PMID: 10347191 DOI: 10.1074/jbc.274.23.16337] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A signal of Fas-mediated apoptosis is transferred through an adaptor protein Fas-associated death domain protein (FADD) by interactions between the death domains of Fas and FADD. To understand the signal transduction mechanism of Fas-mediated apoptosis, we solved the solution structure of a murine FADD death domain. It consists of six helices arranged in a similar fold to the other death domains. The interactions between the death domains of Fas and FADD analyzed by site-directed mutagenesis indicate that charged residues in helices alpha2 and alpha3 are involved in death domain interactions, and the interacting helices appear to interact in anti-parallel pattern, alpha2 of FADD with alpha3 of Fas and vice versa.
Collapse
Affiliation(s)
- E J Jeong
- Structural Biology Center, Korea Institute of Science and Technology, Seoul, 130-650, Korea University, Seoul, 136-701, Korea
| | | | | | | | | | | |
Collapse
|
184
|
Boesen-de Cock JG, Tepper AD, de Vries E, van Blitterswijk WJ, Borst J. Common regulation of apoptosis signaling induced by CD95 and the DNA-damaging stimuli etoposide and gamma-radiation downstream from caspase-8 activation. J Biol Chem 1999; 274:14255-61. [PMID: 10318846 DOI: 10.1074/jbc.274.20.14255] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The death receptor CD95 (APO-1/Fas), the anticancer drug etoposide, and gamma-radiation induce apoptosis in the human T cell line Jurkat. Variant clones selected for resistance to CD95-induced apoptosis proved cross-resistant to etoposide- and radiation-induced apoptosis, suggesting that the apoptosis pathways induced by these distinct stimuli have critical component(s) in common. The pathways do not converge at the level of CD95 ligation or caspase-8 signaling. Whereas caspase-8 function was required for CD95-mediated cytochrome c release, effector caspase activation, and apoptosis, these responses were unaffected in etoposide-treated and irradiated cells when caspase-8 was inhibited by FLIPL. Both effector caspase processing and cytochrome c release were inhibited in the resistant variant cells as well as in Bcl-2 transfectants, suggesting that, in Jurkat cells, the apoptosis signaling pathways activated by CD95, etoposide, and gamma-radiation are under common mitochondrial control. All three stimuli induced ceramide production in wild-type cells, but not in resistant variant cells. Exogenous ceramide bypassed apoptosis resistance in the variant cells, but not in Bcl-2-transfected cells, suggesting that apoptosis signaling induced by CD95, etoposide, and gamma-radiation is subject to common regulation at a level different from that targeted by Bcl-2.
Collapse
Affiliation(s)
- J G Boesen-de Cock
- Division of Cellular Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
185
|
Algeciras-Schimnich A, Griffith TS, Lynch DH, Paya CV. Cell Cycle-Dependent Regulation of FLIP Levels and Susceptibility to Fas-Mediated Apoptosis. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Activation-induced cell death of peripheral T cells results from the interaction between Fas and Fas ligand. Resting peripheral T cells are resistant to Fas-induced apoptosis and become susceptible only after their activation. We have investigated the molecular mechanism mediating the sensitization of resting peripheral T cells to Fas-mediated apoptosis following TCR stimulation. TCR activation decreases the steady state protein levels of FLIP (FLICE-like inhibitory protein), an inhibitor of the Fas signaling pathway. Reconstitution of intracellular FLIP levels by the addition of a soluble HIV transactivator protein-FLIP chimera completely restores resistance to Fas-mediated apoptosis in TCR primary T cells. Inhibition of IL-2 production by cyclosporin A, or inhibition of IL-2 signaling by rapamycin or anti-IL-2 neutralizing Abs prevents the decrease in FLIP levels and confers resistance to Fas-mediated apoptosis following T cell activation. Using cell cycle-blocking agents, we demonstrate that activated T cells arrested in G1 phase contain high levels of FLIP protein, whereas activated T cells arrested in S phase have decreased FLIP protein levels. These findings link regulation of FLIP protein levels with cell cycle progression and provide an explanation for the increase in TCR-induced apoptosis observed during the S phase of the cell cycle.
Collapse
Affiliation(s)
| | | | - David H. Lynch
- ‡Department of Immunobiology, Immunex Corp., Seattle, WA 98101
| | - Carlos V. Paya
- *Department of Immunology and
- †Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
186
|
Abstract
T lymphocytes constitute an essential part of the immune system. Their generation, activation, proliferation but also survival is subject to tight regulation by several extracellular factors including cytokines, MHC-antigen complexes and co-stimulatory ligands. The balanced interplay between these factors determines the fate of the T cell. Both in thymic development and in a peripheral immune response, triggering of the T cell antigen receptor (TCR) through interaction with the MHC-antigen complex can result in T cell proliferation. However, in the absence of co-stimulatory signals from antigen-presenting cells a state of non-responsiveness is induced that is called anergy. In addition, stimulation of the TCR on activated T cells or thymocytes can lead to the induction of apoptosis. Here we will give an overview of the intracellular signal transduction pathways that are activated by the stimuli that dictate the fate of a T cell as they were presented at the International Symposium on soluble HLA antigens held in 1997 in Brussels.
Collapse
Affiliation(s)
- J P Medema
- Department of Immunohematology and Bloodbank, Leiden University Medical Center, The Netherlands.
| | | |
Collapse
|
187
|
Thome M, Martinon F, Hofmann K, Rubio V, Steiner V, Schneider P, Mattmann C, Tschopp J. Equine herpesvirus-2 E10 gene product, but not its cellular homologue, activates NF-kappaB transcription factor and c-Jun N-terminal kinase. J Biol Chem 1999; 274:9962-8. [PMID: 10187771 DOI: 10.1074/jbc.274.15.9962] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously reported on the death effector domain containing E8 gene product from equine herpesvirus-2, designated FLICE inhibitory protein (v-FLIP), and on its cellular homologue, c-FLIP, which inhibit the activation of caspase-8 by death receptors. Here we report on the structure and function of the E10 gene product of equine herpesvirus-2, designated v-CARMEN, and on its cellular homologue, c-CARMEN, which contain a caspase-recruiting domain (CARD) motif. c-CARMEN is highly homologous to the viral protein in its N-terminal CARD motif but differs in its C-terminal extension. v-CARMEN and c-CARMEN interact directly in a CARD-dependent manner yet reveal different binding specificities toward members of the tumor necrosis factor receptor-associated factor (TRAF) family. v-CARMEN binds to TRAF6 and weakly to TRAF3 and, upon overexpression, potently induces the c-Jun N-terminal kinase (JNK), p38, and nuclear factor (NF)-kappaB transcriptional pathways. c-CARMEN or truncated versions thereof do not appear to induce JNK and NF-kappaB activation by themselves, nor do they affect the JNK and NF-kappaB activating potential of v-CARMEN. Thus, in contrast to the cellular homologue, v-CARMEN may have additional properties in its unique C terminus that allow for an autonomous activator effect on NF-kappaB and JNK. Through activation of NF-kappaB, v-CARMEN may regulate the expression of the cellular and viral genes important for viral replication.
Collapse
Affiliation(s)
- M Thome
- Institute of Biochemistry, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
The identification of proteins involved in the early phases of cell death has relied primarily on the modular organization of shared sequences and structural motifs of previously identified proteins in the apoptotic machinery. This property has facilitated the isolation of proteins that interact with each other through structural domains using yeast two-hybrid cloning. Likewise, the conservation in primary sequence of the various shared domains has promoted the use of polymerase chain reaction and database search strategies to isolate additional family members. Here, we discuss the use of database search strategies in the isolation of novel death proteins, as well as how similar strategies may be extended to discover additional, novel cell death proteins.
Collapse
Affiliation(s)
- R Gururajan
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
189
|
Kumar S. Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease. Clin Exp Pharmacol Physiol 1999; 26:295-303. [PMID: 10225139 DOI: 10.1046/j.1440-1681.1999.03031.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Apoptosis is an essential process to remove excess, unwanted and harmful cells and maintain homeostasis. One of the key steps in apoptosis is activation of a group of proteases termed caspases. 2. Caspases are cysteine proteases that cleave their substrates after an aspartate residue. Approximately one dozen such proteases have been cloned during the past few years. While some caspases are largely responsible for the proteolytic processing of proinflammatory cytokines, such as interleukin (IL)-1 beta, others are directly involved in the execution of apoptosis. 3. Once apoptotic upstream caspases are activated in response to specific apoptotic stimuli, they can activate the downstream or effector class of caspases. Most proteins that are cleaved during apoptosis leading to the characteristic apoptotic morphology are targeted by the downstream caspases. The cleavage of these proteins by caspases can be either an activating or inactivating event for the function of a protein; however, in most cases, it contributes to the apoptotic phenotype of the cell. 4. Because caspase cleavage is the initiating event in most forms of apoptosis, it is a tightly controlled process with many checks and balances. An understanding of the regulation of caspases is providing novel ways for therapeutic intervention to modulate apoptotic behaviour of cells in many diseases that arise due to inappropriate apoptosis. 5. The present article will endeavour to discuss recent advances in our understanding of caspase regulation and will elaborate on how this knowledge is being used in the development of new classes of therapeutic molecules that can be used for the treatment of human ailments.
Collapse
Affiliation(s)
- S Kumar
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, Australia.
| |
Collapse
|
190
|
Affiliation(s)
- M E Peter
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
191
|
Affiliation(s)
- P H Krammer
- Tumorimmunology Program, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
192
|
Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 1999; 274:1541-8. [PMID: 9880531 DOI: 10.1074/jbc.274.3.1541] [Citation(s) in RCA: 616] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Upon stimulation, CD95 (APO-1/Fas) recruits the adapter molecule Fas-associated death domain protein (FADD)/MORT1 and caspase-8 (FADD-like interleukin-1beta-converting enzyme (FLICE)/MACH/MCH5) into the death-inducing signaling complex (DISC). Recently, a molecule with sequence homology to caspase-8 was identified, termed cellular FLICE-inhibitory protein (c-FLIP). c-FLIP has been controversially reported to possess apoptosis-promoting and -inhibiting functions. Using c-FLIP-specific monoclonal antibodies, we now show that c-FLIP is expressed in two isoforms, both of which, like FADD and caspase-8, are recruited to the CD95 DISC in a stimulation-dependent fashion. In stably transfected BJAB cells, c-FLIP blocks caspase-8 activation at the DISC and thereby inhibits CD95-mediated apoptosis. During this process, both caspase-8 and c-FLIP undergo cleavage between the p18 and p10 subunits, generating two stable intermediates of 43 kDa that stay bound to the DISC. c-FLIP has been suggested to play a role in protecting activated peripheral T cells from CD95-mediated apoptosis (Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J. L. , Schroter, M., Burns, K., Mattmann, C., Rimoldi, D., French, L. E., and Tschopp, J. (1997) Nature 388, 190-195). In contrast to this hypothesis, neither caspase-8 nor c-FLIP were cleaved in these cells, ruling out c-FLIP as the main factor regulating DISC activity. Moreover, recruitment of FADD, caspase-8, and c-FLIP to the DISC was strongly reduced in the apoptosis-resistant but readily detectable in the apoptosis-sensitive T cells.
Collapse
Affiliation(s)
- C Scaffidi
- Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
193
|
Ramos JW, Kojima TK, Hughes PE, Fenczik CA, Ginsberg MH. The death effector domain of PEA-15 is involved in its regulation of integrin activation. J Biol Chem 1998; 273:33897-900. [PMID: 9852038 DOI: 10.1074/jbc.273.51.33897] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased integrin ligand binding affinity (activation) is triggered by intracellular signaling events. A Ras-initiated mitogen-activated protein kinase pathway suppresses integrin activation in fibroblasts. We used expression cloning to isolate cDNAs that prevent Ras suppression of integrin activation. Here, we report that PEA-15, a small death effector domain (DED)-containing protein, blocks Ras suppression. PEA-15 does not block the capacity of Ras to activate the ERK mitogen-activated protein kinase pathway. Instead, it inhibits suppression via a pathway blocked by a dominant-negative form of the distinct small GTPase, R-Ras. Heretofore, all known DEDs functioned in the regulation of apoptosis. In contrast, the DED of PEA-15 is essential for its capacity to reverse suppression of integrin activation. Thus, certain DED-containing proteins can regulate integrin activation as opposed to apoptotic protease cascades.
Collapse
Affiliation(s)
- J W Ramos
- Department of Vascular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
194
|
Sata M, Walsh K. Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. J Biol Chem 1998; 273:33103-6. [PMID: 9837872 DOI: 10.1074/jbc.273.50.33103] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fas (CD-95/APO-1) is a death receptor that initiates an apoptotic signal when activated by its ligand, FasL. Normal vascular endothelial cells are resistant to Fas-mediated apoptosis though they express both Fas and FasL. Oxidized low density lipoprotein (OxLDL) or lysophosphatidylcholine (LPC), a major component of OxLDL, induces endothelial cell suicide by sensitizing endothelial cells to Fas-mediated apoptosis. Here, we show that endothelial cell apoptosis by OxLDL and LPC-C16:0 was dose-dependent and correlated with down-regulation of FLICE-inhibitory protein (FLIP), an intracellular caspase inhibitor. FLIP down-regulation also occurred when endothelial cells were treated with toxic doses of LPC-C18:0 or minimally modified low density lipoprotein (LDL). In contrast, FLIP was not down-regulated by native LDL, acetylated LDL, LPC-C12:0, cholesterol, or 7-ketocholesterol, which are not toxic to endothelial cells. The cytotoxicity of oxidized lipids was reversed by transfecting endothelial cells with a FLIP expression plasmid. The results demonstrate, for the first time, FLIP regulation under conditions that lead to pathological tissue destruction.
Collapse
Affiliation(s)
- M Sata
- Division of Cardiovascular Research, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | |
Collapse
|
195
|
Leo CP, Hsu SY, McGee EA, Salanova M, Hsueh AJ. DEFT, a novel death effector domain-containing molecule predominantly expressed in testicular germ cells. Endocrinology 1998; 139:4839-48. [PMID: 9832420 DOI: 10.1210/endo.139.12.6335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apoptosis is a physiological process by which multicellular organisms eliminate unwanted cells. Death factors such as Fas ligand induce apoptosis by triggering a series of intracellular protein-protein interactions mediated by defined motifs found in the signaling molecules. One of these motifs is the death effector domain (DED), a stretch of about 80 amino acids that is shared by adaptors, regulators, and executors of the death factor pathway. We have identified the human and rat complementary DNAs encoding a novel protein termed DEFT (Death EFfector domain-containing Testicular molecule). The N-terminus of DEFT shows a high degree of homology to the DEDs found in FADD (an adaptor molecule) as well as procaspase-8/FLICE and procaspase-10/Mch4 (executors of the death program). Northern blot hybridization experiments have shown that the DEFT messenger RNA (mRNA) is expressed in a variety of human and rat tissues, with particularly abundant expression in the testis. In situ hybridization analysis further indicated the expression of DEFT mRNA in meiotic male germ cells. In a model of germ cell apoptosis induction, an increase in testis DEFT mRNA was found in immature rats after 2 days of treatment with a GnRH antagonist. Unlike FADD and procaspase-8/FLICE, overexpression of DEFT did not induce apoptosis in Chinese hamster ovary cells. Although cotransfection studies indicated that DEFT is incapable of modulating apoptosis effected by FADD and procaspase-8/FLICE, interactions between DEFT and uncharacterized DED-containing molecules in the testis remain to be studied in the future. In conclusion, we have identified a novel DED-containing protein with high expression in testis germ cells. This protein may be important in the regulation of death factor-induced apoptosis in the testis and other tissues.
Collapse
Affiliation(s)
- C P Leo
- Department of Gynecology and Obstetrics, Stanford University School of Medicine, California 94305-5317, USA
| | | | | | | | | |
Collapse
|
196
|
Shrivastava A, Manna SK, Ray R, Aggarwal BB. Ectopic expression of hepatitis C virus core protein differentially regulates nuclear transcription factors. J Virol 1998; 72:9722-8. [PMID: 9811706 PMCID: PMC110482 DOI: 10.1128/jvi.72.12.9722-9728.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1998] [Accepted: 09/18/1998] [Indexed: 12/29/2022] Open
Abstract
The putative core protein of hepatitis C virus (HCV) regulates cellular growth and a number of cellular promoters. To further understand its effect, we investigated the role of the core protein in the endogenous regulation of two distinct transcription factors, nuclear factor-kappaB (NF-kappaB) and activating protein-1 (AP-1), and the related mitogen-activated protein kinase kinase (MAPKK) and c-Jun N-terminal kinase (JNK). Stable cell transfectants expressing the HCV core protein suppressed tumor necrosis factor (TNF)-induced NF-kappaB activation. Supershift analysis revealed that NF-kappaB consists of p50 and p65 subunits. This correlated with inhibition of the degradation of IkappaBalpha, the inhibitory subunit of NF-kappaB. The effect was not specific to TNF, as suppression in core protein-expressing cells was also observed in response to a number of other inflammatory agents known to activate NF-kappaB. In contrast to the effect on NF-kappaB, the HCV core protein constitutively activated AP-1, which correlated with the activation of JNK and MAPKK, which are known to regulate AP-1. These observations indicated that the core protein targets transcription factors known to be involved in the regulation of inflammatory responses and the immune system.
Collapse
Affiliation(s)
- A Shrivastava
- Cytokine Research Laboratory, Department of Molecular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
197
|
Simon JH, Gaddis NC, Fouchier RA, Malim MH. Evidence for a newly discovered cellular anti-HIV-1 phenotype. Nat Med 1998; 4:1397-400. [PMID: 9846577 DOI: 10.1038/3987] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Animal cells have developed many ways to suppress viral replication, and viruses have evolved diverse strategies to resist these. Here we provide evidence that the virion infectivity factor protein of human immunodeficiency virus type 1 (HIV-1) functions to counteract a newly discovered activity in human cells that otherwise inhibits virus replication. This anti-viral phenotype is shown by human T cells, the principal in vivo targets for HIV-1, and, based on our present understanding of virion infectivity factor action, is presumed to act by interfering with a late step(s) in the virus life cycle. These observations indicate that the inhibition of virion infectivity factor function in vivo may prevent HIV-1 replication by 'unmasking' an innate anti-viral phenotype.
Collapse
Affiliation(s)
- J H Simon
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia 19104-6148, USA
| | | | | | | |
Collapse
|
198
|
Hu S, Snipas SJ, Vincenz C, Salvesen G, Dixit VM. Caspase-14 is a novel developmentally regulated protease. J Biol Chem 1998; 273:29648-53. [PMID: 9792675 DOI: 10.1074/jbc.273.45.29648] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Caspases are a family of cysteine proteases related to interleukin-1 converting enzyme (ICE) and represent the effector arm of the cell death pathway. The zymogen form of all caspases is composed of a prodomain plus large and small catalytic subunits. Herein we report the characterization of a novel caspase, MICE (for mini-ICE), also designated caspase-14, that possesses an unusually short prodomain and is highly expressed in embryonic tissues but absent from all adult tissues examined. In contrast to the other short prodomain caspases (caspase-3, caspase-6, and caspase-7), MICE preferentially associates with large prodomain caspases, including caspase-1, caspase-2, caspase-4, caspase-8, and caspase-10. Also unlike the other short prodomain caspases, MICE was not processed by multiple death stimuli including activation of members of the tumor necrosis factor receptor family and expression of proapoptotic members of the bcl-2 family. Surprisingly, however, overexpression of MICE itself induced apoptosis in MCF7 human breast cancer cells, which was attenuated by traditional caspase inhibitors.
Collapse
Affiliation(s)
- S Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
199
|
Kataoka T, Schröter M, Hahne M, Schneider P, Irmler M, Thome M, Froelich CJ, Tschopp J. FLIP Prevents Apoptosis Induced by Death Receptors But Not by Perforin/Granzyme B, Chemotherapeutic Drugs, and Gamma Irradiation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.3936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
FLICE-inhibitory protein, FLIP (Casper/I-FLICE/FLAME-1/CASH/CLARP/MRIT), which contains two death effector domains and an inactive caspase domain, binds to FADD and caspase-8, and thereby inhibits death receptor-mediated apoptosis. Here, we characterize the inhibitory effect of FLIP on a variety of apoptotic pathways. Human Jurkat T cells undergoing Fas ligand-mediated apoptosis in response to CD3 activation were completely resistant when transfected with FLIP. In contrast, the presence of FLIP did not affect apoptosis induced by granzyme B in combination with adenovirus or perforin. Moreover, the Fas ligand, but not the perforin/granzyme B-dependent lytic pathway of CTL, was inhibited by FLIP. Apoptosis mediated by chemotherapeutic drugs (i.e., doxorubicin, etoposide, and vincristine) and gamma irradiation was not affected by FLIP or the absence of Fas, indicating that these treatments can induce cell death in a Fas-independent and FLIP-insensitive manner.
Collapse
Affiliation(s)
- Takao Kataoka
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Michael Schröter
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Michael Hahne
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Pascal Schneider
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Martin Irmler
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Margot Thome
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| | - Cristopher J. Froelich
- †Department of Medicine, Evanston Hospital, Northwestern University, Evanston, Illinois 60201
| | - Jürg Tschopp
- *Institute of Biochemistry, University of Lausanne, Epalinges, Switzerland; and
| |
Collapse
|
200
|
Meinl E, Fickenscher H, Thome M, Tschopp J, Fleckenstein B. Anti-apoptotic strategies of lymphotropic viruses. IMMUNOLOGY TODAY 1998; 19:474-9. [PMID: 9785672 DOI: 10.1016/s0167-5699(98)01309-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Induction of apoptosis of virus-infected cells is an important host cell defence mechanism. However, some viruses have incorporated genes that encode anti-apoptotic proteins or modulate the expression of cellular regulators of apoptosis. Here, Edgar Meinl and colleagues discuss recent evidence that viral interference with host cell apoptosis leads to enhanced viral replication, and to evasion of cytotoxic T-cell effects.
Collapse
Affiliation(s)
- E Meinl
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Germany.
| | | | | | | | | |
Collapse
|