151
|
Abstract
Myoglobin is a well-characterized, cytoplasmic hemoprotein that is expressed primarily in cardiomyocytes and oxidative skeletal muscle fibers. However, recent studies also suggest low-level myoglobin expression in various non-muscle tissues. Prior studies incorporating molecular, pharmacological, physiological and transgenic technologies have demonstrated that myoglobin is an essential oxygen-storage hemoprotein capable of facilitating oxygen transport and modulating nitric oxide homeostasis within cardiac and skeletal myocytes. Concomitant with these studies, scientific investigations into the transcriptional regulation of myoglobin expression have been undertaken. These studies have indicated that activation of key transcription factors (MEF2, NFAT and Sp1) and co-activators (PGC-1alpha) by locomotor activity, differential intracellular calcium fluxes and low intracellular oxygen tension collectively regulate myoglobin expression. Future studies focused on tissue-specific transcriptional regulatory pathways and post-translational modifications governing myoglobin expression will need to be undertaken. Finally, further studies investigating the modulation of myoglobin expression under various myopathic processes may identify myoglobin as a novel therapeutic target for the treatment of various cardiac and skeletal myopathies.
Collapse
Affiliation(s)
- Shane B Kanatous
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
152
|
Reeder BJ. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxid Redox Signal 2010; 13:1087-123. [PMID: 20170402 DOI: 10.1089/ars.2009.2974] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pentacoordinate respiratory hemoproteins such as hemoglobin and myoglobin have evolved to supply cells with oxygen. However, these respiratory heme proteins are also known to function as redox enzymes, reacting with compounds such as nitric oxide and peroxides. The recent discoveries of hexacoordinate hemoglobins in vertebrates and nonsymbiotic plants suggest that the redox activity of globins is inherent to the molecule. The uncontrolled formation of radical species resulting from such redox chemistry on respiratory hemoproteins can lead to oxidative damage and cellular toxicity. In this review, we examine the functions of various globins and the mechanisms by which these globins act as redox enzymes under physiologic conditions. Evidence that redox reactions also occur under disease conditions, leading to pathologic complications, also is examined, focusing on recent discoveries showing that the ferryl oxidation state of these hemoproteins is present in these disease states in vivo. In addition, we review the latest advances in the understanding of globin redox mechanisms and how they might affect cellular signaling pathways and how they might be controlled therapeutically or, in the case of hemoglobin-based blood substitutes, through rational design.
Collapse
Affiliation(s)
- Brandon J Reeder
- Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, England.
| |
Collapse
|
153
|
Schubert S, Gerlach F, Stoltenburg-Didinger G, Burmester T, Hankeln T, Boettcher W, Wehsack A, Hübler M, Berger F, Abdul-Khaliq H. Cerebral expression of neuroglobin and cytoglobin after deep hypothermic circulatory arrest in neonatal piglets. Brain Res 2010; 1356:1-10. [DOI: 10.1016/j.brainres.2010.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 06/29/2010] [Accepted: 08/03/2010] [Indexed: 12/26/2022]
|
154
|
Structure and reactivity of hexacoordinate hemoglobins. Biophys Chem 2010; 152:1-14. [PMID: 20933319 DOI: 10.1016/j.bpc.2010.08.008] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/20/2010] [Accepted: 08/21/2010] [Indexed: 01/07/2023]
Abstract
The heme prosthetic group in hemoglobins is most often attached to the globin through coordination of either one or two histidine side chains. Those proteins with one histidine coordinating the heme iron are called "pentacoordinate" hemoglobins, a group represented by red blood cell hemoglobin and most other oxygen transporters. Those with two histidines are called "hexacoordinate hemoglobins", which have broad representation among eukaryotes. Coordination of the second histidine in hexacoordinate Hbs is reversible, allowing for binding of exogenous ligands like oxygen, carbon monoxide, and nitric oxide. Research over the past several years has produced a fairly detailed picture of the structure and biochemistry of hexacoordinate hemoglobins from several species including neuroglobin and cytoglobin in animals, and the nonsymbiotic hemoglobins in plants. However, a clear understanding of the physiological functions of these proteins remains an elusive goal.
Collapse
|
155
|
Emara M, Turner AR, Allalunis-Turner J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int 2010; 10:33. [PMID: 20828399 PMCID: PMC2945342 DOI: 10.1186/1475-2867-10-33] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 09/09/2010] [Indexed: 05/07/2023] Open
Abstract
Background Cytoglobin (Cygb) and neuroglobin (Ngb) are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM) cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX), a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel) showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human tumor tissues suggests that these globin molecules may be part of the repertoire of defense mechanisms that allow cancer cells to survive in hypoxic microenvironments.
Collapse
Affiliation(s)
- Marwan Emara
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University of Alberta, Edmonton, Alberta, T6G 1Z2, Canada.
| | | | | |
Collapse
|
156
|
Effect of paraquat exposure on nitric oxide-responsive genes in rat mesencephalic cells. Nitric Oxide 2010; 23:51-9. [DOI: 10.1016/j.niox.2010.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 02/24/2010] [Accepted: 04/02/2010] [Indexed: 02/04/2023]
|
157
|
Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc Natl Acad Sci U S A 2010; 107:14274-9. [PMID: 20660759 DOI: 10.1073/pnas.1006756107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Natural selection often promotes evolutionary innovation by coopting preexisting genes for new functions, and this process may be greatly facilitated by gene duplication. Here we report an example of cooptive convergence where paralogous members of the globin gene superfamily independently evolved a specialized O(2) transport function in the two deepest branches of the vertebrate family tree. Specifically, phylogenetic evidence demonstrates that erythroid-specific O(2) transport hemoglobins evolved independently from different ancestral precursor proteins in jawed vertebrates (gnathostomes) and jawless fish (cyclostomes, represented by lamprey and hagfish). A comprehensive phylogenetic analysis of the vertebrate globin gene superfamily revealed that the erythroid hemoglobins of cyclostomes are orthologous to the cytoglobin protein of gnathostome vertebrates, a hexacoordinate globin that has no O(2) transport function and that is predominantly expressed in fibroblasts and related cell types. The phylogeny reconstruction also revealed that vertebrate-specific globins are grouped into four main clades: (i) cyclostome hemoglobin + cytoglobin, (ii) myoglobin + globin E, (iii) globin Y, and (iv) the alpha- and beta-chain hemoglobins of gnathostomes. In the hemoglobins of gnathostomes and cyclostomes, multisubunit quaternary structures provide the basis for cooperative O(2) binding and allosteric regulation by coupling the effects of ligand binding at individual subunits with interactions between subunits. However, differences in numerous structural details belie their independent origins. This example of convergent evolution of protein function provides an impressive demonstration of the ability of natural selection to cobble together complex design solutions by tinkering with different variations of the same basic protein scaffold.
Collapse
|
158
|
Lukat-Rodgers GS, Correia C, Botuyan MV, Mer G, Rodgers KR. Heme-based sensing by the mammalian circadian protein CLOCK. Inorg Chem 2010; 49:6349-65. [PMID: 20666392 PMCID: PMC2920140 DOI: 10.1021/ic902388q] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Heme is emerging as a key player in the synchrony of circadian-coupled transcriptional regulation. Current evidence suggests that levels of circadian-linked transcription are regulated in response to both the availability of intracellular heme and heme-based sensing of carbon monoxide (CO) and possibly nitric oxide (NO). The protein CLOCK is central to the regulation and maintenance of circadian rhythms in mammals. CLOCK comprises two PAS domains, each with a heme binding site. Our studies focus on the functionality of the murine CLOCK PAS-A domain (residues 103-265). We show that CLOCK PAS-A binds iron(III) protoporhyrin IX to form a complex with 1:1 stoichiometry. Optical absorbance and resonance Raman studies reveal that the heme of ferric CLOCK PAS-A is a six-coordinate, low-spin complex whose resonance Raman signature is insensitive to pH over the range of protein stability. Ferrous CLOCK PAS-A is a mixture of five-coordinate, high-spin and six-coordinate, low-spin complexes. Ferrous CLOCK PAS-A forms complexes with CO and NO. Ferric CLOCK PAS-A undergoes reductive nitrosylation in the presence of NO to generate a CLOCK PAS-A-NO, which is a five-coordinate {FeNO}(7) complex. Formation of the highly stable {FeNO}(7) heme complex from either ferrous or ferric heme makes possible the binding of NO at very low concentration, a characteristic of NO sensors. Comparison of the spectroscopic properties and CO-binding kinetics of CLOCK PAS-A with other CO sensor proteins reveals that CLOCK PAS-A exhibits chemical properties consistent with a heme-based gas sensor protein.
Collapse
Affiliation(s)
- Gudrun S Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, USA
| | | | | | | | | |
Collapse
|
159
|
Sturms R, Kakar S, Trent J, Hargrove MS. Trema and parasponia hemoglobins reveal convergent evolution of oxygen transport in plants. Biochemistry 2010; 49:4085-93. [PMID: 20377207 DOI: 10.1021/bi1002844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
All plants contain hemoglobins that fall into distinct phylogenetic classes. The subset of plants that carry out symbiotic nitrogen fixation expresses hemoglobins that scavenge and transport oxygen to bacterial symbiotes within root nodules. These "symbiotic" oxygen transport hemoglobins are distinct in structure and function from the nonoxygen transport ("nonsymbiotic") Hbs found in all plants. Hemoglobins found in two closely related plants present a paradox concerning hemoglobin structure and function. Parasponia andersonii is a nitrogen-fixing plant that expresses a symbiotic hemoglobin (ParaHb) characteristic of oxygen transport hemoglobins in having a pentacoordinate ferrous heme iron, moderate oxygen affinity, and a relatively rapid oxygen dissociation rate constant. A close relative that does not fix nitrogen, Trema tomentosa, expresses hemoglobin (TremaHb) sharing 93% amino acid identity to ParaHb, but its phylogeny predicts a typical nonsymbiotic hemoglobin with a hexacoordinate heme iron, high oxygen affinity, and slow oxygen dissociation rate constant. Here we characterize heme coordination and oxygen binding in TremaHb and ParaHb to investigate whether or not two hemoglobins with such high sequence similarity are actually so different in functional behavior. Our results indicate that the two proteins resemble nonsymbiotic hemoglobins in the ferric oxidation state and symbiotic hemoglobins in the ferrous oxidation state. They differ from each other only in oxygen affinity and oxygen dissociation rate constants, two factors key to their different functions. These results demonstrate distinct mechanisms for convergent evolution of oxygen transport in different phylogenetic classes of plant hemoglobins.
Collapse
Affiliation(s)
- Ryan Sturms
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
160
|
Lechauve C, Chauvierre C, Dewilde S, Moens L, Green BN, Marden MC, Célier C, Kiger L. Cytoglobin conformations and disulfide bond formation. FEBS J 2010. [DOI: 10.1111/j.1742-4658.2010.07686.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
161
|
Hundahl CA, Allen GC, Hannibal J, Kjaer K, Rehfeld JF, Dewilde S, Nyengaard JR, Kelsen J, Hay-Schmidt A. Anatomical characterization of cytoglobin and neuroglobin mRNA and protein expression in the mouse brain. Brain Res 2010; 1331:58-73. [DOI: 10.1016/j.brainres.2010.03.056] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/16/2010] [Accepted: 03/16/2010] [Indexed: 11/26/2022]
|
162
|
Beltran-Parrazal L, Acuna D, Ngan AM, Kim E, Ngan A, Kawakami K, Edmond J, Lopez IA. Neuroglobin, cytoglobin, and transcriptional profiling of hypoxia-related genes in the rat cerebellum after prenatal chronic very mild carbon monoxide exposure (25 ppm). Brain Res 2010; 1330:61-71. [PMID: 20230802 DOI: 10.1016/j.brainres.2010.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 10/19/2022]
Abstract
The expression of neuroglobin (Ngb) and cytoglobin (Cygb), two recently discovered globins with a potential neuroprotective activity against hypoxia and oxidative stress, was investigated in the cerebellum of young rats (postnatal day 20) after being exposed to chronic mild carbon monoxide (CO) at 25 ppm during prenatal (group A), prenatal and postnatal (group B), the postnatal period only (group C), and air (group D). The expression of genes associated with hypoxia signaling pathways was also investigated in the rat cerebella by real-time RT-PCR after CO exposure. Ngb and Cygb mRNAs did not change in any CO-exposed group. Quantitative immunohistochemistry showed no significant change in Ngb protein; however, there was a significant increase of Cygb protein in rats from groups A, B, and C when compared with group D. In group B, genes related to the generation of reactive oxygen species (Nos2) and lipid metabolism (Apat2) were upregulated. In contrast, no changes were found in the expression of 8 genes typically upregulated by hypoxic conditions (Angptl4, Arnt2, Casp1, Crebbp, Hif1a, Hif3a, Mt3, or Vegfa) in any CO-exposed group, suggesting that hypoxia-related gene expression is not altered by this mild CO exposure. Cygb but not Ngb may protect cerebellar cells from the chronic presence of CO exposure during prenatal and postnatal development.
Collapse
Affiliation(s)
- Luis Beltran-Parrazal
- Department of Surgery, Division of Head & Neck, UCLA, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Faggiano S, Ronda L, Bruno S, Jankevics H, Mozzarelli A. Polymerized and polyethylene glycol-conjugated hemoglobins: a globin-based calibration curve for dynamic light scattering analysis. Anal Biochem 2010; 401:266-70. [PMID: 20184856 DOI: 10.1016/j.ab.2010.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/19/2010] [Accepted: 02/19/2010] [Indexed: 11/26/2022]
Abstract
Dynamic light scattering (DLS) is a technique capable of determining the hydrodynamic radius of proteins. From this parameter, a molecular weight can be assessed provided that an appropriate calibration curve is available. To this goal, a globin-based calibration curve was used to determine the polymerization state of a recombinant hemoglobin-based oxygen carrier and to assess the equivalent molecular weight of hemoglobins conjugated with polyethylene glycol molecules. The good agreement between DLS values and those obtained from gel filtration chromatography is a consequence of the high similarity in structure, shape, and density within the globin superfamily. Moreover, globins and heme proteins in general share similar spectroscopic properties, thereby reducing possible systematic errors associated with the absorption of the probe radiation by the chromophore.
Collapse
Affiliation(s)
- Serena Faggiano
- Department of Biochemistry and Molecular Biology, University of Parma, 43124 Parma, Italy
| | | | | | | | | |
Collapse
|
164
|
Smagghe BJ, Hoy JA, Percifield R, Kundu S, Hargrove MS, Sarath G, Hilbert JL, Watts RA, Dennis ES, Peacock WJ, Dewilde S, Moens L, Blouin GC, Olson JS, Appleby CA. Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers 2010; 91:1083-96. [PMID: 19441024 DOI: 10.1002/bip.21256] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full-length globins with the classical eight helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobins, the physiological functions of these plant hemoglobins remain unknown. We have reviewed and, in some cases, measured new oxygen binding properties of a large number of Class 1 and 2 plant nonsymbiotic Hbs and leghemoglobins. We found that sequence classification correlates with distinct extents of hexacoordination with the distal histidine and markedly different overall oxygen affinities and association and dissociation rate constants. These results suggest strong selective pressure for the evolution of distinct physiological functions. The leghemoglobins evolved from the Class 2 globins and show no hexacoordination, very high rates of O(2) binding ( approximately 250 muM(-1) s(-1)), moderately high rates of O(2) dissociation ( approximately 5-15 s(-1)), and high oxygen affinity (K(d) or P(50) approximately 50 nM). These properties both facilitate O(2) diffusion to respiring N(2) fixing bacteria and reduce O(2) tension in the root nodules of legumes. The Class 1 plant Hbs show weak hexacoordination (K(HisE7) approximately 2), moderate rates of O(2) binding ( approximately 25 muM(-1) s(-1)), very small rates of O(2) dissociation ( approximately 0.16 s(-1)), and remarkably high O(2) affinities (P(50) approximately 2 nM), suggesting a function involving O(2) and nitric oxide (NO) scavenging. The Class 2 Hbs exhibit strong hexacoordination (K(HisE7) approximately 100), low rates of O(2) binding ( approximately 1 muM(-1) s(-1)), moderately low O(2) dissociation rate constants ( approximately 1 s(-1)), and moderate, Mb-like O(2) affinities (P(50) approximately 340 nM), perhaps suggesting a sensing role for sustained low, micromolar levels of oxygen.
Collapse
Affiliation(s)
- Benoit J Smagghe
- Department of Biochemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Zhang F, Ai YJ, Luo Y, Fang WH. Nonadiabatic Histidine Dissociation of Hexacoordinate Heme in Neuroglobin Protein. J Phys Chem A 2010; 114:1980-4. [DOI: 10.1021/jp909887d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Feng Zhang
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yue-Jie Ai
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Luo
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
166
|
Molecular dynamics simulation of a carboxy murine neuroglobin mutated on the proximal side: heme displacement and concomitant rearrangement in loop regions. J Mol Model 2009; 16:759-70. [DOI: 10.1007/s00894-009-0581-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/17/2009] [Indexed: 11/26/2022]
|
167
|
Moschetti T, Mueller U, Schulze J, Brunori M, Vallone B. The structure of neuroglobin at high Xe and Kr pressure reveals partial conservation of globin internal cavities. Biophys J 2009; 97:1700-8. [PMID: 19751675 PMCID: PMC2741589 DOI: 10.1016/j.bpj.2009.05.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Neuroglobin (Ngb) is a hexacoordinate globin expressed in the brain of vertebrates. Ferrous Ngb binds dioxygen with high affinity and the O(2) adduct is able to scavenge NO. Convincing in vitro and in vivo data indicate that Ngb is involved in neuroprotection during hypoxia and ischemia. The 3D structure of Ngb reveals the presence of a wide internal cavity connecting its heme active site with the bulk. To explore the role of this "tunnel" in the control of ligand binding, we determined the structure of metNgb and NgbCO equilibrated with Xe or Kr. We show four docking sites for Xe (only two for Kr); two of the four Xe sites are within the large cavity. They are only partially conserved in globins, since the two proximal Xe sites identified in myoglobin (Xe1 and Xe2) are absent in Ngb, as well as in cytoglobin. The Xe docking sites in Ngb map a pathway within the protein matrix, leading to the heme, which becomes more accessible in the ligand-bound species. This may be of significance in connection with the redox chemistry that may be the primary function of this hexacoordinate globin.
Collapse
Affiliation(s)
- Tommaso Moschetti
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Uwe Mueller
- Macromolecular Crystallography Group, Helmholtz Zentrum Berlin für Materialien und Energie, BESSY-II, Berlin, Germany
| | - Jörg Schulze
- Macromolecular Crystallography Group, Helmholtz Zentrum Berlin für Materialien und Energie, BESSY-II, Berlin, Germany
| | - Maurizio Brunori
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Beatrice Vallone
- Department of Biochemical Sciences “A.Rossi-Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| |
Collapse
|
168
|
Shaw RJ, Omar MM, Rokadiya S, Kogera FA, Lowe D, Hall GL, Woolgar JA, Homer J, Liloglou T, Field JK, Risk JM. Cytoglobin is upregulated by tumour hypoxia and silenced by promoter hypermethylation in head and neck cancer. Br J Cancer 2009; 101:139-44. [PMID: 19568272 PMCID: PMC2713706 DOI: 10.1038/sj.bjc.6605121] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/07/2009] [Accepted: 05/11/2009] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cytoglobin (Cygb) was first described in 2002 as an intracellular globin of unknown function. We have previously shown the downregulation of cytoglobin as a key event in a familial cancer syndrome of the upper aerodigestive tract. METHODS Cytoglobin expression and promoter methylation were investigated in sporadic head and neck squamous cell carcinoma (HNSCC) using a cross-section of clinical samples. Additionally, the putative mechanisms of Cygb expression in cancer were explored by subjecting HNSCC cell lines to hypoxic culture conditions and 5-aza-2-deoxycitidine treatment. RESULTS In clinically derived HNSCC samples, CYGB mRNA expression showed a striking correlation with tumour hypoxia (measured by HIF1A mRNA expression P=0.013) and consistent associations with histopathological measures of tumour aggression. CYGB expression also showed a marked negative correlation with promoter methylation (P=0.018). In the HNSCC cell lines cultured under hypoxic conditions, a trend of increasing expression of both CYGB and HIF1A with progressive hypoxia was observed. Treatment with 5-aza-2-deoxycitidine dramatically increased CYGB expression in those cell lines with greater baseline promoter methylation. CONCLUSION We conclude that the CYGB gene is regulated by both promoter methylation and tumour hypoxia in HNSCC and that increased expression of this gene correlates with clincopathological measures of a tumour's biological aggression.
Collapse
Affiliation(s)
- R J Shaw
- Molecular Genetics and Oncology Group, School of Dental Sciences, University of Liverpool, Liverpool, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A. Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. ACTA ACUST UNITED AC 2009; 212:627-38. [PMID: 19218513 DOI: 10.1242/jeb.026286] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myoglobin (Mb) is famous as a muscle-specific protein--yet the common carp expresses the gene (cMb1) encoding this protein in a range of non-muscle tissues and also expresses a novel isoform (cMb2) in the brain. Using a homologous antibody and riboprobes, we have established the relative amounts and cellular sites of non-muscle Mb expression in different tissues. The amounts of carp myoglobin (cMb) in supernatants of different tissues were just 0.4-0.7% relative to that of heart supernatants and were upregulated by two-to-four fold in liver, gill and brain following 5 days of hypoxic treatment. Brain exhibited both cMb proteins in western analysis, whereas all other tissues had only cMb1. We have also identified cells expressing cMb protein and cMb mRNA using immunohistology and RNA in situ hybridisation (RNA-ISH), respectively. Mb was strongly expressed throughout all cardiac myocytes and a subset of skeletal muscle fibres, whereas it was restricted to a small range of specific cell types in each of the non-muscle tissues. These include pillar and epithelial cells in secondary gill lamellae, hepatocytes, some neurones, and tubular epithelial cells in the kidney. Capillaries and small blood vessels in all tissues exhibited Mb expression within vascular endothelial cells. The cMb2 riboprobe located expression to a subset of neurones but not to endothelial cells. In zebrafish, which possesses only one Mb gene, a similar expression pattern of Mb protein and mRNA was observed. This establishes a surprisingly cell-specific distribution of Mb within non-muscle tissues in both carp and zebrafish, where it probably plays an important role in the regulation of microvascular, renal and brain function.
Collapse
Affiliation(s)
- Andrew R Cossins
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | | | | | | | |
Collapse
|
170
|
Abstract
SUMMARY
For a long time, haemoglobin and myoglobin had been assumed to represent the only globin types of vertebrates. In 2000, however, we discovered a third globin type by mining the genome sequence data. Based on a preferential expression in the nervous system, this globin is referred to as neuroglobin. Despite nine years of research, its function is still uncertain and a number of hypotheses have been put forward. Neuroglobin enhances cell viability under hypoxia and under various types of oxidative stress in transgenic systems, but does not appear to be strongly upregulated in response to stress. A close phylogenetic relationship with invertebrate nerve globins and its positive correlation with the oxidative metabolism and mitochondria suggest a role in O2 supply. In vitro studies and cell culture experiments imply that neuroglobin may detoxify reactive oxygen or nitric oxide. Still other studies propose neuroglobin as being part of a signalling chain that transmits the redox state of the cell or that inhibits apoptosis. Although some functions are more probable than others, we conclude that it is still too early to definitively decide what may be the physiological role(s) of neuroglobin in vertebrates. Nevertheless, there is no doubt that neuroglobin has an essential, conserved function and is beneficial to neurons.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg,Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg University of Mainz, J. J. Becherweg 30a, D-55099 Mainz, Germany
| |
Collapse
|
171
|
Singh S, Manda SM, Sikder D, Birrer MJ, Rothermel BA, Garry DJ, Mammen PPA. Calcineurin activates cytoglobin transcription in hypoxic myocytes. J Biol Chem 2009; 284:10409-21. [PMID: 19203999 PMCID: PMC2667728 DOI: 10.1074/jbc.m809572200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/30/2009] [Indexed: 01/19/2023] Open
Abstract
Cardiac hypertrophy develops in response to a variety of cardiovascular stresses and results in activation of numerous signaling cascades and proteins. In the present study, we demonstrate that cytoglobin is a stress-responsive hemoprotein in the hypoxia-induced hypertrophic myocardium and it is transcriptionally regulated by calcineurin-dependent transcription factors. The cytoglobin transcript level is abundantly expressed in the adult heart and in response to hypoxia cytoglobin expression is markedly up-regulated within the hypoxia-induced hypertrophic heart. To define the molecular mechanism resulting in the induction of cytoglobin, we undertook a transcriptional analysis of the 5' upstream regulatory region of the cytoglobin gene. Evolutionarily conserved binding elements for transcription factors HIF-1, AP-1, and NFAT are located within the upstream region of the cytoglobin gene. Transcriptional assays demonstrated that calcineurin activity modulates cytoglobin transcription. Increased calcineurin activity enhances the ability of NFAT and AP-1 to bind to the putative cytoglobin promoter, especially under hypoxic conditions. In addition, inhibition of calcineurin, NFAT, and/or AP-1 activities decreases endogenous cytoglobin transcript and protein levels. Thus, the regulation of cytoglobin transcription by calcineurin-dependent transcription factors suggests that cytoglobin may have a functional role in calcium-dependent events accompanying cardiac remodeling.
Collapse
Affiliation(s)
- Sarvjeet Singh
- Departments of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Verde C, Giordano D, Russo R, Riccio A, Vergara A, Mazzarella L, di Prisco G. Hemoproteins in the cold. Mar Genomics 2009; 2:67-73. [DOI: 10.1016/j.margen.2009.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/16/2009] [Accepted: 03/02/2009] [Indexed: 11/25/2022]
|
173
|
Halligan KE, Jourd'heuil FL, Jourd'heuil D. Cytoglobin is expressed in the vasculature and regulates cell respiration and proliferation via nitric oxide dioxygenation. J Biol Chem 2009; 284:8539-47. [PMID: 19147491 DOI: 10.1074/jbc.m808231200] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disposition of the second messenger nitric oxide (NO) in mammalian tissues occurs through multiple pathways including dioxygenation by erythrocyte hemoglobin and red muscle myoglobin. Metabolism by a putative NO dioxygenase activity in non-striated tissues has also been postulated, but the exact nature of this activity is unknown. In the present study, we tested the hypothesis that cytoglobin, a newly discovered hexacoordinated globin, participates in cell-mediated NO consumption. Stable expression of small hairpin RNA targeting cytoglobin in fibroblasts resulted in decreased NO consumption and intracellular nitrate production. These cells were more sensitive to NO-induced inhibition of cell respiration and proliferation, which could be restored by re-expression of human cytoglobin. We also demonstrated cytoglobin expression in adventitial fibroblasts as well as vascular smooth muscle cells from various species including human and found that cytoglobin was expressed in the adventitia and media of intact rat aorta. These results indicate that cytoglobin contributes to cell-mediated NO dioxygenation and represents an important NO sink in the vascular wall.
Collapse
Affiliation(s)
- Katharine E Halligan
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | | | | |
Collapse
|
174
|
Shivapurkar N, Stastny V, Okumura N, Girard L, Xie Y, Prinsen C, Thunnissen FB, Wistuba II, Czerniak B, Frenkel E, Roth JA, Liloglou T, Xinarianos G, Field JK, Minna JD, Gazdar AF. Cytoglobin, the newest member of the globin family, functions as a tumor suppressor gene. Cancer Res 2008; 68:7448-56. [PMID: 18794132 PMCID: PMC2849650 DOI: 10.1158/0008-5472.can-08-0565] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytoglobin (CYGB) is a recently discovered vertebrate globin distantly related to myoglobin with unknown function. CYGB is assigned to chromosomal region 17q25, which is frequently lost in multiple malignancies. Previous studies failed to detect evidence for mutations in the CYGB gene. Recent studies provided preliminary evidence for increased methylation of the gene in lung cancer. Our study was aimed at investigating the role of CYGB as a tumor suppressor gene. By nested methylation-specific DNA sequencing analysis of lung and breast cancer cell lines and bronchial and mammary epithelial cell lines, we identified that methylation of a 110-bp CpG-rich segment of the CYGB promoter was correlated with gene silencing. We specifically targeted this sequence and developed a quantitative methylation-specific PCR assay, suitable for high-throughput analysis. We showed that the tumor specificity of CYGB methylation in discriminating patients with and without lung cancer, using biopsies and sputum samples. We further showed the tumor specificity of this assay with multiple other epithelial and hematologic malignancies. To show tumor suppressor activity of CYGB, we performed the following: (a) RNA interference-mediated knockdown of CYGB gene on colony formation in a CYGB expression-positive lung cancer cell line, resulting in increased colony formation; (b) enforced gene expression in CYGB expression-negative lung and breast cancer cell lines, reducing colony formation; and (c) identification of potential proximate targets down-stream of the CYGB genes. Our data constitute the first direct functional evidence for CYGB, the newest member of the globin family, as a tumor suppressor gene.
Collapse
Affiliation(s)
- Narayan Shivapurkar
- Hamon Center for Therapeutic Oncology Research, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Li J, Ai YJ, Xie ZZ, Fang WH. How CO Binds to Hexacoordinated Heme in Neuroglobin Protein. J Phys Chem B 2008; 112:8715-23. [DOI: 10.1021/jp711919f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yue-Jie Ai
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zhi-Zhong Xie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
176
|
Ostojic J, Grozdanic S, Syed NA, Hargrove MS, Trent JT, Kuehn MH, Kardon RH, Kwon YH, Sakaguchi DS. Neuroglobin and cytoglobin distribution in the anterior eye segment: a comparative immunohistochemical study. J Histochem Cytochem 2008; 56:863-72. [PMID: 18574250 DOI: 10.1369/jhc.2008.951392] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study provides a detailed description of immunolocalization of two oxygen-binding proteins, neuroglobin (Ngb) and cytoglobin (Cygb), in the anterior segment of healthy human and canine eyes. Specific antibodies against Ngb and Cygb were used to examine their distribution patterns in anterior segment structures including the cornea, iris, trabecular meshwork, canal of Schlemm, ciliary body, and lens. Patterns of immunoreactivity (IR) were imaged with confocal scanning laser and conventional microscopy. Analysis of sectioned human and canine eyes showed Ngb and Cygb IR in the corneal epithelium and endothelium. In the iris, Ngb and Cygb IR was localized to the anterior border and the stroma, iridal sphincter, and dilator muscle. In the iridocorneal angle, Ngb and Cygb were detected in endothelial cells of the trabecular meshwork and canal of Schlemm in human. In the ciliary body, Ngb and Cygb IR was localized to the non-pigmented ciliary epithelium of the pars plana and pars plicata and in ciliary body musculature. Ngb and Cygb distribution was similar and colocalized within the same structures of healthy human and canine anterior eye segments. Based on their immunolocalization and previously reported biochemical features, we hypothesize that Ngb and Cygb may function as scavengers of reactive oxygen species. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Jelena Ostojic
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J Inorg Biochem 2008; 102:1777-82. [PMID: 18599123 DOI: 10.1016/j.jinorgbio.2008.05.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 05/01/2008] [Accepted: 05/19/2008] [Indexed: 11/19/2022]
Abstract
Recent evidence suggests that the reaction of nitrite with deoxygenated hemoglobin and myoglobin contributes to the generation of nitric oxide and S-nitrosothiols in vivo under conditions of low oxygen availability. We have investigated whether ferrous neuroglobin and cytoglobin, the two hexacoordinate globins from vertebrates expressed in brain and in a variety of tissues, respectively, also react with nitrite under anaerobic conditions. Using absorption spectroscopy, we find that ferrous neuroglobin and nitrite react with a second-order rate constant similar to that of myoglobin, whereas the ferrous heme of cytoglobin does not react with nitrite. Deconvolution of absorbance spectra shows that, in the course of the reaction of neuroglobin with nitrite, ferric Fe(III) heme is generated in excess of nitrosyl Fe(II)-NO heme as due to the low affinity of ferrous neuroglobin for nitric oxide. By using ferrous myoglobin as scavenger for nitric oxide, we find that nitric oxide dissociates from ferrous neuroglobin much faster than previously appreciated, consistently with the decay of the Fe(II)-NO product during the reaction. Both neuroglobin and cytoglobin are S-nitrosated when reacting with nitrite, with neuroglobin showing higher levels of S-nitrosation. The possible biological significance of the reaction between nitrite and neuroglobin in vivo under brain hypoxia is discussed.
Collapse
|
178
|
Smagghe BJ, Halder P, Hargrove MS. Measurement of distal histidine coordination equilibrium and kinetics in hexacoordinate hemoglobins. Methods Enzymol 2008; 436:359-78. [PMID: 18237643 DOI: 10.1016/s0076-6879(08)36020-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The kinetics of ligand binding to hemoglobins has been measured for decades. Initially, these studies were confined to readily available pentacoordinate oxygen transport proteins like myoglobin, leghemoglobin, and red blood cell hemoglobin. Bimolecular ligand binding to these proteins is relatively simple, as ligand association is largely unimpeded at the heme iron. Although many techniques have been used to examine these reactions in the past, stopped-flow rapid mixing and flash photolysis are the most common ways to measure rate constants for ligand association and dissociation. Expression of recombinant proteins has allowed for examination of many newly discovered hemoglobins. The hexacoordinate hemoglobins are one such group of proteins that exhibit more complex binding kinetics than pentacoordinate hemoglobins due to reversible intramolecular coordination by a histidine side chain. Here, we describe methods for characterizing the kinetics of ligand binding to hexacoordinate hemoglobins with a focus on measurement of histidine coordination and exogenous ligand binding in both the ferrous and the ferric oxidation states.
Collapse
Affiliation(s)
- Benoit J Smagghe
- Immune Disease Institute, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
179
|
Dewilde S, Mees K, Kiger L, Lechauve C, Marden MC, Pesce A, Bolognesi M, Moens L. Expression, purification, and crystallization of neuro- and cytoglobin. Methods Enzymol 2008; 436:341-57. [PMID: 18237642 DOI: 10.1016/s0076-6879(08)36019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Neuroglobin and cytoglobin, members of the globin family, are present in vertebrate cells at very low concentrations. As the function of both proteins is still a matter of debate, it is very important to be able to produce and purify these proteins, and in general all members of the globin family, to homogeneity. For this purpose, this chapter describes the expression of neuro- and cytoglobin by E. coli and its preparative purification. These proteins are then used in crystallization experiments. Also an analytical purification strategy is discussed in detail.
Collapse
Affiliation(s)
- Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Smagghe BJ, Trent JT, Hargrove MS. NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PLoS One 2008; 3:e2039. [PMID: 18446211 PMCID: PMC2323109 DOI: 10.1371/journal.pone.0002039] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 02/03/2008] [Indexed: 12/02/2022] Open
Abstract
Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding.
Collapse
Affiliation(s)
- Benoit J. Smagghe
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - James T. Trent
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
| | - Mark S. Hargrove
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
181
|
Greenberg DA, Jin K, Khan AA. Neuroglobin: an endogenous neuroprotectant. Curr Opin Pharmacol 2008; 8:20-4. [PMID: 17942367 PMCID: PMC2387246 DOI: 10.1016/j.coph.2007.09.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/10/2007] [Indexed: 11/15/2022]
Abstract
Cerebral hypoxia and ischemia trigger endogenous protective mechanisms that can prevent or limit brain damage. Understanding these mechanisms may lead to new therapeutic strategies for stroke and related disorders. Neuroglobin (Ngb), a recently discovered protein that is distantly related to hemoglobin and myoglobin, is expressed predominantly in brain neurons, and appears to modulate hypoxic-ischemic brain injury. Evidence includes the observations that neuronal hypoxia and cerebral ischemia induce Ngb expression, that enhancing Ngb expression reduces--and knocking down Ngb expression increases--hypoxic neuronal injury in vitro and ischemic cerebral injury in vivo, and that Ngb-overexpressing transgenic mice are resistant to cerebral infarction. However, the mechanisms that underlie hypoxic induction of Ngb and neuroprotection by Ngb are still unclear.
Collapse
|
182
|
Ming X, Fang WH. Mechanistic Photodissociation of CO-Ligated Neuroglobin and Subsequent Rebinding Processes: A Theoretical Study. J Phys Chem B 2008; 112:990-6. [DOI: 10.1021/jp076419u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Ming
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
183
|
Yamashita T, Bouzhir-Sima L, Lambry JC, Liebl U, Vos MH. Ligand Dynamics and Early Signaling Events in the Heme Domain of the Sensor Protein Dos from Escherichia coli. J Biol Chem 2008; 283:2344-52. [DOI: 10.1074/jbc.m708123200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
184
|
Angelo M, Hausladen A, Singel DJ, Stamler JS. Interactions of NO with hemoglobin: from microbes to man. Methods Enzymol 2008; 436:131-68. [PMID: 18237631 DOI: 10.1016/s0076-6879(08)36008-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hemoglobins are found in organisms from every major phylum and subserve life-sustaining respiratory functions across a broad continuum. Sustainable aerobic respiration in mammals and birds relies on the regulated delivery of oxygen (O2) and nitric oxide (NO) bioactivity by hemoglobin, through reversible binding of NO and O2 to hemes as well as S-nitrosylation of cysteine thiols (SNO synthase activity). In contrast, bacterial and yeast flavohemoglobins function in vivo as denitrosylases (O2 nitroxylases), and some multimeric, invertebrate hemoglobins function as deoxygenases (Cys-dependent NO dioxygenases), which efficiently consume rather than deliver NO and O2, respectively. Analogous mechanisms may operate in plants. Bacteria and fungi deficient in flavohemoglobin show compromised virulence in animals that results from impaired resistance to NO, whereas animals and humans deficient in S-nitrosylated Hb exhibit altered vasoactivity. NO-related functions of hemoglobins center on reactions with ferric (FeIII) heme iron, which is exploited in enzymatic reactions that address organismal requirements for delivery or detoxification of NO and O2. Delivery versus detoxification of NO/O2 is largely achieved through structural changes and amino acid rearrangements within the heme pockets, thereby influencing the propensity for heme/cysteine thiol redox coupling. Additionally, the behavior exhibited by hemoglobin in vivo may be profoundly dependent both on the abundance of NO and O2 and on the allosteric effects of heterotropic ligands. Here we review well-documented examples of redox interactions between NO and hemoglobin, with an emphasis on biochemical mechanisms and physiological significance.
Collapse
Affiliation(s)
- Michael Angelo
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | | | | | | |
Collapse
|
185
|
Shigematsu A, Adachi Y, Matsubara J, Mukaide H, Koike-Kiriyama N, Minamino K, Shi M, Yanai S, Imamura M, Taketani S, Ikehara S. Analyses of expression of cytoglobin by immunohistochemical studies in human tissues. Hemoglobin 2008; 32:287-296. [PMID: 18473245 DOI: 10.1080/03630260802017261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cytoglobin (Cygb) is a recently discovered member of the vertebrate globin family, which includes probably most extensively studied proteins, hemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb). It has been reported that Cygb is expressed ubiquitously at the mRNA or protein level. However, details of the distribution of Cygb in the various tissues have hitherto been unclear. In this experiment, we clarified the distribution of Cygb in various human tissues by immunohistochemical staining. First, we prepared a rabbit anti human Cygb polyclonal antibody. Using the antibody, we stained a tissue array slide containing 60 normal tissues from 40 human organs. We confirmed the staining patterns of the antibodies in these various tissues using autopsy samples from our university. In general, Cygb is positive in the epithelial cells, hepatocytes, pancreatic acinar cells, cardiomyocytes and skeletal muscle but rarely so in cells in the interstitial tissues. Cytoglobin is usually positive in the cytoplasm, but is also positive in the nucleus in some hepatocytes. In contrast, Cygb is negative in the smooth muscle. The distribution of Cygb could suggest its roles.
Collapse
Affiliation(s)
- Akio Shigematsu
- First Department of Pathology, Kansai Medical University, Moriguchi City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Farrés J, Burckhardt-Herold S, Scherrer J, Frey A, Kallio P. Analysis of the contribution of the globin and reductase domains to the ligand-binding properties of bacterial haemoglobins. Biochem J 2007; 407:15-22. [PMID: 17617059 PMCID: PMC2267399 DOI: 10.1042/bj20070668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacterial Hbs (haemoglobins), like VHb (Vitreoscilla sp. Hb), and flavoHbs (flavohaemoglobins), such as FHP (Ralstonia eutropha flavoHb), have different autoxidation and ligand-binding rates. To determine the influence of each domain of flavoHbs on ligand binding, we have studied the kinetic ligand-binding properties of oxygen, carbon monoxide and nitric oxide to the chimaeric proteins, FHPg (truncated form of FHP comprising the globin domain alone) and VHb-Red (fusion protein between VHb and the C-terminal reductase domain of FHP) and compared them with those of their natural counterparts, FHP and VHb. Moreover, we also analysed polarity and solvent accessibility to the haem pocket of these proteins. The rate constants for the engineered proteins, VHb-Red and FHPg, do not differ significantly from those of their natural counterparts, VHb and FHP respectively. Our results suggest that the globin domain structure controls the reactivity towards oxygen, carbon monoxide and nitric oxide. The presence or absence of a reductase domain does not affect the affinity to these ligands.
Collapse
Affiliation(s)
- Judith Farrés
- *Institute of Biotechnology, ETH Zürich, CH 8093 Zürich, Switzerland
| | | | - Jan Scherrer
- *Institute of Biotechnology, ETH Zürich, CH 8093 Zürich, Switzerland
| | | | - Pauli T. Kallio
- ‡Institute of Microbiology, ETH Zürich, CH 8093 Zürich, Switzerland
- To whom correspondence should be addressed (email )
| |
Collapse
|
187
|
Guo X, Philipsen S, Tan-Un KC. Study of the hypoxia-dependent regulation of human CYGB gene. Biochem Biophys Res Commun 2007; 364:145-50. [PMID: 17936249 DOI: 10.1016/j.bbrc.2007.09.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 09/26/2007] [Indexed: 11/27/2022]
Abstract
Cytoglobin (CYGB) is ubiquitously expressed in all tissues and has been characterized as a respiratory protein in connective tissues. CYGB is up-regulated during hypoxia, implicating its function in maintaining the homeostasis redox of the cell. Here, we study the underlying molecular mechanisms by which hypoxia regulates human CYGB gene expression. When cells were subjected to hypoxia, the expression of endogenous CYGB was up-regulated approximately 1.7-fold in BEAS-2B cells (p < or = 0.05) and approximately 1.6-fold in HeLa cells (p < or = 0.05). Dual-luciferase assays and site directed mutagenesis showed the presence of hypoxia responsive elements (HREs) at positions -141, -144 and -448 that were essential for activation of CYGB expression under hypoxic conditions. The binding of hypoxia inducible factor (HIF-1) protein to the HREs was confirmed by gel shift and chromatin immunoprecipitation (ChIP) assays. These results indicate that HRE motifs are directly involved in the activation of the CYGB transcription under hypoxia.
Collapse
Affiliation(s)
- Xiumei Guo
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
188
|
Weber RE. High-altitude adaptations in vertebrate hemoglobins. Respir Physiol Neurobiol 2007; 158:132-42. [PMID: 17561448 DOI: 10.1016/j.resp.2007.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/01/2007] [Accepted: 05/01/2007] [Indexed: 11/25/2022]
Abstract
Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O(2) transport from the respiratory surfaces to tissues requires matching between the O(2) loading and unloading tensions and the O(2)-affinity of blood, which is an integrated function of hemoglobin's intrinsic O(2)-affinity and its allosteric interaction with cellular effectors (organic phosphates, protons and chloride). Whereas short-term altitudinal adaptations predominantly involve adjustments in allosteric interactions, long-term, genetically-coded adaptations typically involve changes in the structure of the haemoglobin molecules. The latter commonly comprise substitutions of amino acid residues at the effector binding sites, the heme-protein contacts, or at intersubunit contacts that stabilize either the low-affinity ('Tense') or the high-affinity ('Relaxed') structures of the molecules. Molecular heterogeneity (multiple isoHbs with differentiated oxygenation properties) can further broaden the range of physico-chemical conditions where Hb functions under altitudinal hypoxia. This treatise reviews the molecular and cellular mechanisms that adapt haemoglobin-oxygen affinities in mammals, birds and ectothermic vertebrates at high altitude.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Institute of Biological Sciences, Building 1131, University of Aarhus, DK 8000 Aarhus, Denmark.
| |
Collapse
|
189
|
Hoy JA, Robinson H, Trent JT, Kakar S, Smagghe BJ, Hargrove MS. Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport. J Mol Biol 2007; 371:168-79. [PMID: 17560601 DOI: 10.1016/j.jmb.2007.05.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/07/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
The evolution of oxygen transport hemoglobins occurred on at least two independent occasions. The earliest event led to myoglobin and red blood cell hemoglobin in animals. In plants, oxygen transport "leghemoglobins" evolved much more recently. In both events, pentacoordinate heme sites capable of inert oxygen transfer evolved from hexacoordinate hemoglobins that have unrelated functions. High sequence homology between hexacoordinate and pentacoordinate hemoglobins in plants has poised them for potential structural analysis leading to a molecular understanding of this important evolutionary event. However, the lack of a plant hexacoordinate hemoglobin structure in the exogenously ligand-bound form has prevented such comparison. Here we report the crystal structure of the cyanide-bound hexacoordinate hemoglobin from barley. This presents the first opportunity to examine conformational changes in plant hexacoordinate hemoglobins upon exogenous ligand binding, and reveals structural mechanisms for stabilizing the high-energy pentacoordinate heme conformation critical to the evolution of reversible oxygen binding hemoglobins.
Collapse
Affiliation(s)
- Julie A Hoy
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | |
Collapse
|
190
|
Hoy JA, Smagghe BJ, Halder P, Hargrove MS. Covalent heme attachment in Synechocystis hemoglobin is required to prevent ferrous heme dissociation. Protein Sci 2007; 16:250-60. [PMID: 17242429 PMCID: PMC2203299 DOI: 10.1110/ps.062572607] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Synechocystis hemoglobin contains an unprecedented covalent bond between a nonaxial histidine side chain (H117) and the heme 2-vinyl. This bond has been previously shown to stabilize the ferric protein against denaturation, and also to affect the kinetics of cyanide association. However, it is unclear why Synechocystis hemoglobin would require the additional degree of stabilization accompanying the His117-heme 2-vinyl bond because it also displays endogenous bis-histidyl axial heme coordination, which should greatly assist heme retention. Furthermore, the mechanism by which the His117-heme 2-vinyl bond affects ligand binding has not been reported, nor has any investigation of the role of this bond on the structure and function of the protein in the ferrous oxidation state. Here we report an investigation of the role of the Synechocystis hemoglobin His117-heme 2-vinyl bond on structure, heme coordination, exogenous ligand binding, and stability in both the ferrous and ferric oxidation states. Our results reveal that hexacoordinate Synechocystis hemoglobin lacking this bond is less stable in the ferrous oxidation state than the ferric, which is surprising in light of our understanding of pentacoordinate Hb stability, in which the ferric protein is always less stable. It is also demonstrated that removal of the His117-heme 2-vinyl bond increases the affinity constant for intramolecular histidine coordination in the ferric oxidation state, thus presenting greater competition for the ligand binding site and lowering the observed rate and affinity constants for exogenous ligands.
Collapse
Affiliation(s)
- Julie A Hoy
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
191
|
Orlowski S, Nowak W. Locally enhanced sampling molecular dynamics study of the dioxygen transport in human cytoglobin. J Mol Model 2007; 13:715-23. [PMID: 17503097 DOI: 10.1007/s00894-007-0203-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 03/20/2007] [Indexed: 11/28/2022]
Abstract
Cytoglobin (Cyg)--a new member of the vertebrate heme globin family--is expressed in many tissues of the human body but its physiological role is still unclear. It may deliver oxygen under hypoxia, serve as a scavenger of reactive species or be involved in collagen synthesis. This protein is usually six-coordinated and binds oxygen by a displacement of the distal HisE7 imidazole. In this paper, the results of 60 ns molecular dynamics (MD) simulations of dioxygen diffusion inside Cyg matrix are discussed. In addition to a classical MD trajectory, an approximate Locally Enhanced Sampling (LES) method has been employed. Classical diffusion paths were carefully analyzed, five cavities in dynamical structures were determined and at least four distinct ligand exit paths were identified. The most probable exit/entry path is connected with a large tunnel present in Cyg. Several residues that are perhaps critical for kinetics of small gaseous diffusion were discovered. A comparison of gaseous ligand transport in Cyg and in the most studied heme protein myoglobin is presented. Implications of efficient oxygen transport found in Cyg to its possible physiological role are discussed.
Collapse
Affiliation(s)
- Slawomir Orlowski
- Theoretical Molecular Biophysics Group, Institute of Physics, Nicolaus Copernicus University, ul. Grudziadzka 5, 87-100, Torun, Poland
| | | |
Collapse
|
192
|
Xi Y, Obara M, Ishida Y, Ikeda S, Yoshizato K. Gene expression and tissue distribution of cytoglobin and myoglobin in the Amphibia and Reptilia: possible compensation of myoglobin with cytoglobin in skeletal muscle cells of anurans that lack the myoglobin gene. Gene 2007; 398:94-102. [PMID: 17560742 DOI: 10.1016/j.gene.2007.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 11/26/2022]
Abstract
Cytoglobin (Cygb), a recently discovered vertebrate cytoplasmic heme-binding globin, is considered to be in a clade with vertebrate myoglobin (Mb), which is exclusively distributed in the cytoplasm of cardiac and skeletal muscles as an oxygen storage protein. GenBank databases (NCBI and JGI) and gene synteny analyses showed the absence of the Mb gene (mb) in two anuran amphibians, Xenopus laevis and X. tropicalis. Here we conducted comparative studies on the gene expression and tissue distribution of Cygb and Mb in anuran and reptilian tissues. Cygb and Mb genes were cloned from a reptile, iguana (Iguana iguana). Two types of cygb (cygb-1 and -2) were cloned, with lengths of 1066 and 1034 bp, and 196 and 193 amino acid residues, respectively. Their nucleotide and amino acid sequence identities were 90 and 87%, respectively. The Mb gene covered 1416 bp with an open reading frame of 465 bp, giving rise to a 154 amino acid protein. The distal ligand-binding histidine at E7, the proximal heme-binding histidine at F8, and the phenylalanine residue at CD1 were conserved in Mb and Cygb. The nucleotide and amino acid sequence identity of I. iguana cygb-1 and cygb-2 against X. laevis cygb were approximately 67% and 65%, respectively. RT-PCR demonstrated that X. laevis cygb was uniquely expressed in the heart and skeletal muscles, and faintly in the liver and spleen, which was quite contrasted with Iguana and the other vertebrates, where mb is exclusively expressed in the heart and skeletal muscles. Immunohistochemical analyses showed the distribution of Cygb in the cytoplasm of skeletal muscle cells. Interestingly, Cygb in the heart was localized in the nuclei. Considering the absence of mb in the Anura, we hypothesize that Cygb in muscle cells of anurans compensates for the lack of Mb for the storage and intracellular transportation of oxygen.
Collapse
Affiliation(s)
- Yang Xi
- Laboratory of Developmental Biology and Hiroshima University 21st Century COE Program for Advanced Radiation Casualty Medicine, Department of Biological Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Japan
| | | | | | | | | |
Collapse
|
193
|
Hamdane D, Vasseur-Godbillon C, Baudin-Creuza V, Hoa GHB, Marden MC. Reversible Hexacoordination of α-Hemoglobin-stabilizing Protein (AHSP)/α-Hemoglobin Versus Pressure. J Biol Chem 2007; 282:6398-404. [PMID: 17194704 DOI: 10.1074/jbc.m610543200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using high hydrostatic pressure or hydrogen peroxide as perturbing agents, we demonstrate a protective effect of the chaperone AHSP for the alpha-chains of Hb. High pressure induces an irreversible aggregation of the ferrous deoxy alpha-chains, whereas the AHSP/alpha-Hb complex shows reversible hexacoordination of the alpha-Hb without protein aggregation. Upon pressure release, the relaxation kinetics of the transition from the hexacoordinated to pentacoordinated form of alpha-Hb in the presence of AHSP exhibit a biphasic shape. High pressure did not induce dissociation of alpha-Hb from its chaperone, as evidenced by the ligand binding kinetics that show a unique rate for the AHSP/alpha-Hb complex. For both free alpha-Hb and the AHSP/alpha-Hb complex, the bimolecular rate constant of CO binding (k(CO)(on)) versus pressure exhibits a bell shape, attributed to the transition of the rate-determining step from the chemical barrier to the migration of CO within the protein matrix. These results reveal a plasticity of the alpha-Hb active site in the presence of the chaperone and indicate that the AHSP was still active at 300 MPa. The ferric state of the AHSP/alpha-Hb complex shows hexacoordination even at atmospheric pressures, indicating a His-Fe-His binding scheme as previously observed in neuroglobin and cytoglobin. The reaction with hydrogen peroxide of ferric alpha-Hb within the complex also demonstrates a protection against aggregation.
Collapse
Affiliation(s)
- Djemel Hamdane
- INSERM U779, University of Paris XI, 94275 Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
194
|
Halder P, Trent JT, Hargrove MS. Influence of the protein matrix on intramolecular histidine ligation in ferric and ferrous hexacoordinate hemoglobins. Proteins 2007; 66:172-82. [PMID: 17044063 DOI: 10.1002/prot.21210] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Present in most organisms, hexacoordinate hemoglobins (hxHbs) are proteins that have evolved the capacity for reversible bis-histidyl heme coordination. The heme prosthetic group enables diverse protein functionality, such as electron transfer, redox reactions, ligand transport, and enzymatic catalysis. The reactivity of heme is greatly effected by the coordination and noncovalent chemical environment imposed by its connate protein. Of considerable interest is how the hxHb globin fold achieves reversible intramolecular coordination while still enabling high-affinity binding of oxygen, nitric oxide, and other small ligands. Here we explore this question by examining the role of the protein matrix on coordination behavior in a group of hxHbs from animals, plants, and bacteria, including human neuroglobin and cytoglobin, a nonsymbiotic hemoglobin from rice, and a truncated hemoglobin from the cyanobacterium Synechocystis. This is done with a set of experiments measuring the reduction potentials of each wild-type hxHb and its corresponding mutant protein where the reversibly bound histidine (the distal His) has been replaced with a noncoordinating side chain. These reduction potentials, coupled with studies of the mutant proteins saturated with exogenous imidazole, enable us to assess the effects of the protein matrices on histidine coordination. Our results show significant variation among the hxHbs, demonstrating flexibility in the globin moiety's ability to regulate reversible coordination. This regulation is particularly evident in the plant nonsymbiotic hemoglobins, where ferric state histidine coordination affinity is substantially lowered by the protein matrix.
Collapse
Affiliation(s)
- Puspita Halder
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
195
|
Bruno S, Faggiano S, Spyrakis F, Mozzarelli A, Abbruzzetti S, Grandi E, Viappiani C, Feis A, Mackowiak S, Smulevich G, Cacciatori E, Dominici P. The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal HisE7 and internal hydrophobic cavities. J Am Chem Soc 2007; 129:2880-9. [PMID: 17298064 DOI: 10.1021/ja066638d] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nonsymbiotic hemoglobins, AHb1 and AHb2, have recently been isolated from Arabidopsis thaliana. Using steady-state and time-resolved spectroscopic methods, we show that Fe2+ AHb1 contains a mixture of penta- and hexacoordinated heme, while Fe2+ AHb2 is fully hexacoordinated. In the CO complexes, polar interactions and H-bonds with the ligand are stronger for AHb1 than for AHb2. The ligand binding kinetics are substantially different, reflecting the distribution between the penta- and hexacoordinated species, and indicate that protein dynamics and ligand migration pathways are very specific for each of the two proteins. In particular, a very small, non-exponential geminate rebinding observed in AHb1 suggests that the distal heme cavity is connected with the exterior by a relatively open channel. The large, temperature-dependent geminate rebinding observed for AHb2 implies a major role of protein dynamics in the ligand migration from the distal cavity to the solvent. The structures of AHb1 and AHb2, modeled on the basis of the homologous rice hemoglobin, exhibit a different cavity system that is fully compatible with the observed ligand binding kinetics. Overall, these kinetic and structural data are consistent with the putative NO-dioxygenase activity previously attributed to AHb1, whereas the role of AHb2 remains elusive.
Collapse
Affiliation(s)
- Stefano Bruno
- Dipartimento di Biochimica e Biologia Molecolare, UniversitA degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Smagghe BJ, Blervacq AS, Blassiau C, Decottignies JP, Jacquot JP, Hargrove MS, Hilbert JL. Immunolocalization of non-symbiotic hemoglobins during somatic embryogenesis in chicory. PLANT SIGNALING & BEHAVIOR 2007; 2:43-9. [PMID: 19516967 PMCID: PMC2633897 DOI: 10.4161/psb.2.1.3812] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/23/2006] [Indexed: 05/19/2023]
Abstract
Hemoglobins are ancient O(2)-binding proteins, ubiquitously found in eukaryotes. They have been categorized as symbiotic, nonsymbiotic and truncated hemoglobins. We have investigated the cellular localization of nonsymbiotic hemoglobin proteins during somatic embryogenesis in Cichorium hybrid leaves (Cichorium intybus L. var. sativum x C. endivia var. latifolia) using immunolocalization technique. These proteins were detected during the two steps of culture: induction and expression. In leaves, hemoglobins colocalised with plastids, which were dispersed in the parietal cytoplasm as well as in the two guard cells of a stomata, but not in epidermis cells. Upon induction of embryogenesis, in the dark, this pattern disappeared. During the induction phase, where competent cells reinitiate the cell cycle and prepare for mitosis, hemoglobins appeared initially near chloroplasts, and then in the vicinity of vascular vessels especially in the phloem and in cells surrounding the xylem vessels. When leaf fragments were transferred to another medium for the expression phase, hemoglobins were observed in the majority of the leaf blade cells and in small young embryos but not in the older ones. Hemoglobins were also detected in other leaves cells or tissues all along the process. The role of these nonsymbiotic hemoglobins during somatic embryogenesis is discussed.
Collapse
Affiliation(s)
- Benoît J Smagghe
- Université des Sciences et Technologies de Lille; “Stress Abiotiques et Différenciation des Végétaux Cultivés”
- Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, Iowa USA
| | - Anne-Sophie Blervacq
- Université des Sciences et Technologies de Lille; “Stress Abiotiques et Différenciation des Végétaux Cultivés”
| | - Christelle Blassiau
- Université des Sciences et Technologies de Lille; “Stress Abiotiques et Différenciation des Végétaux Cultivés”
| | | | - Jean-Pierre Jacquot
- Université Henri Poincaré; Laboratoire Interaction Arbres Microorganismes; Vandoeuvre, Cedex, France
| | - Mark S Hargrove
- Department of Biochemistry; Biophysics and Molecular Biology; Iowa State University; Ames, Iowa USA
| | - Jean-Louis Hilbert
- Université des Sciences et Technologies de Lille; “Stress Abiotiques et Différenciation des Végétaux Cultivés”
| |
Collapse
|
197
|
Garry DJ, Mammen PPA. Molecular Insights into the Functional Role of Myoglobin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 618:181-93. [DOI: 10.1007/978-0-387-75434-5_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
198
|
Bondarenko V, Dewilde S, Moens L, La Mar GN. Solution 1H NMR characterization of the axial bonding of the two His in oxidized human cytoglobin. J Am Chem Soc 2006; 128:12988-99. [PMID: 17002396 PMCID: PMC2566969 DOI: 10.1021/ja063330d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Department of Chemistry, University of California, Davis, CA 95616
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Belgium, Universiteitsplein 1, B-2610 Wilrijk (Anterwerpen) Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Belgium, Universiteitsplein 1, B-2610 Wilrijk (Anterwerpen) Belgium
| | - Gerd N. La Mar
- Department of Chemistry, University of California, Davis, CA 95616
| |
Collapse
|
199
|
Knappenberger JA, Kuriakose SA, Vu BC, Nothnagel HJ, Vuletich DA, Lecomte JT. Proximal influences in two-on-two globins: effect of the Ala69Ser replacement on Synechocystis sp. PCC 6803 hemoglobin. Biochemistry 2006; 45:11401-13. [PMID: 16981700 PMCID: PMC2533430 DOI: 10.1021/bi060691x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cyanobacterium Synechocystis sp. PCC 6803 (S6803) expresses a two-on-two globin in which His46 (distal side) and His70 (proximal) function as heme iron axial ligands. His46 can be displaced by O2, CO, and CN-, among others, whereas His70 is not labile under native conditions. The residue preceding the proximal histidine has been implicated in controlling globin axial ligand reactivity; the details of the mechanism, however, are not well understood, and little information exists for bis-histidyl hexacoordinate proteins. In many vertebrate hemoglobins and in the Synechocystis protein, the position is occupied by an alanine, whereas, in myoglobins, it is a serine involved in an intricate hydrogen-bond network. We examined the role of Ala69 in S6803 hemoglobin through the effects of an Ala --> Ser replacement. The substitution resulted in minor structural perturbations, but the response of the holoprotein to temperature-, urea-, and acid-induced denaturation was measurably affected. Enhanced three-state behavior was manifested in the decoupling of heme binding and secondary-structure formation. Urea-gradient gel experiments revealed that the stability of the apoprotein was unchanged by the replacement and that a slight alteration of the folding kinetics occurred in the holoproteins. Cyanide-binding experiments were performed to assess trans effects. The apparent rate constant for association decreased 2-fold upon Ala69Ser replacement. This deceleration was attributed to a change in the lifetime of a state containing a decoordinated His46. The results demonstrated that, as in vertebrate globins and leghemoglobin, proximal influences operate to determine fundamental dynamic and thermodynamic properties of the protein.
Collapse
Affiliation(s)
- Jane A. Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | - Henry J. Nothnagel
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - David A. Vuletich
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juliette T.J. Lecomte
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
200
|
Mammen PP, Shelton JM, Ye Q, Kanatous SB, McGrath AJ, Richardson JA, Garry DJ. Cytoglobin is a stress-responsive hemoprotein expressed in the developing and adult brain. J Histochem Cytochem 2006; 54:1349-61. [PMID: 16899760 PMCID: PMC3958125 DOI: 10.1369/jhc.6a7008.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cytoglobin (Cygb) is a novel tissue hemoprotein relatively similar to myoglobin (Mb). Because Cygb shares several structural features with Mb, we hypothesized that Cygb functions in the modulation of oxygen and nitric oxide metabolism or in scavenging free radicals within a cell. In the present study we examined the spatial and temporal expression pattern of Cygb during murine embryogenesis. Using in situ hybridization, RT-PCR, and Northern blot analyses, limited Cygb expression was observed during embryogenesis compared with Mb expression. Cygb expression was primarily restricted to the central nervous system and neural crest derivatives during the latter stages of development. In the adult mouse, Cygb is expressed in distinct regions of the brain as compared with neuroglobin (Ngb), another globin protein, and these regions are responsive to oxidative stress (i.e., hippocampus, thalamus, and hypothalamus). In contrast to Ngb, Cygb expression in the brain is induced in response to chronic hypoxia (10% oxygen). These results support the hypothesis that Cygb is an oxygen-responsive tissue hemoglobin expressed in distinct regions of thenormoxic and hypoxic brain and may play a key role in the response of the brain to ahypoxic insult.
Collapse
Affiliation(s)
- Pradeep P.A. Mammen
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - John M. Shelton
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Qiu Ye
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - Shane B. Kanatous
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - Amanda J. McGrath
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
| | - James A. Richardson
- Pathology University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Biology University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J. Garry
- Departments of Internal Medicine University of Texas Southwestern Medical Center, Dallas, Texas
- Molecular Biology University of Texas Southwestern Medical Center, Dallas, Texas
- Donald W. Reynolds Cardiovascular Clinical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|