151
|
Yuan HM, Li KL, Ni RJ, Guo WD, Shen Z, Yang CP, Wang BC, Liu GF, Guo CH, Jiang J. A systemic proteomic analysis of Populus chloroplast by using shotgun method. Mol Biol Rep 2010; 38:3045-54. [DOI: 10.1007/s11033-010-9971-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/19/2010] [Indexed: 10/19/2022]
|
152
|
Jung HS, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? PLANT PHYSIOLOGY 2010; 152:453-9. [PMID: 19933385 PMCID: PMC2815895 DOI: 10.1104/pp.109.149070] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
|
153
|
Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 2010; 9:1063-84. [PMID: 20061580 DOI: 10.1074/mcp.m900325-mcp200] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent advances in the proteomics field have allowed a series of high throughput experiments to be conducted on chloroplast samples, and the data are available in several public databases. However, the accurate localization of many chloroplast proteins often remains hypothetical. This is especially true for envelope proteins. We went a step further into the knowledge of the chloroplast proteome by focusing, in the same set of experiments, on the localization of proteins in the stroma, the thylakoids, and envelope membranes. LC-MS/MS-based analyses first allowed building the AT_CHLORO database (http://www.grenoble.prabi.fr/protehome/grenoble-plant-proteomics/), a comprehensive repertoire of the 1323 proteins, identified by 10,654 unique peptide sequences, present in highly purified chloroplasts and their subfractions prepared from Arabidopsis thaliana leaves. This database also provides extensive proteomics information (peptide sequences and molecular weight, chromatographic retention times, MS/MS spectra, and spectral count) for a unique chloroplast protein accurate mass and time tag database gathering identified peptides with their respective and precise analytical coordinates, molecular weight, and retention time. We assessed the partitioning of each protein in the three chloroplast compartments by using a semiquantitative proteomics approach (spectral count). These data together with an in-depth investigation of the literature were compiled to provide accurate subplastidial localization of previously known and newly identified proteins. A unique knowledge base containing extensive information on the proteins identified in envelope fractions was thus obtained, allowing new insights into this membrane system to be revealed. Altogether, the data we obtained provide unexpected information about plastidial or subplastidial localization of some proteins that were not suspected to be associated to this membrane system. The spectral counting-based strategy was further validated as the compartmentation of well known pathways (for instance, photosynthesis and amino acid, fatty acid, or glycerolipid biosynthesis) within chloroplasts could be dissected. It also allowed revisiting the compartmentation of the chloroplast metabolism and functions.
Collapse
Affiliation(s)
- Myriam Ferro
- INSERM, Laboratoire d'Etude de Dynamique des Protéomes, U880, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
155
|
Fan P, Wang X, Kuang T, Li Y. An efficient method for the extraction of chloroplast proteins compatible for 2-DE and MS analysis. Electrophoresis 2009; 30:3024-3033. [PMID: 19676087 DOI: 10.1002/elps.200900172] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Comparative proteomic analysis of chloroplast by 2-DE has received significant attention in recent years. However, the complication of membrane systems in chloroplast made it challenging to elucidate entire chloroplast proteome by 2-DE. Here, we developed an efficient method for extracting chloroplast proteins, and produced excellent 2-DE profiles from both Arabidopsis thaliana and Salicornia europaea. Comparison of this method with another two protocols for the extraction of A. thaliana chloroplast proteins showed that our method obtained higher protein yields and produced more protein spots on both pH 3-10 and 4-7 2-DE gels. Moreover, this method recovered more proteins in the basic and high M(r) regions, thereby offering the best extraction of chloroplast proteins. Identification of 15 specific chloroplast-targeted proteins on our gels by MALDI-TOF MS revealed that this method was compatible with MS, and recovered more chloroplast membrane proteins than the commonly used methods. This protocol is expected to have a wide application in future chloroplast proteomic analysis.
Collapse
Affiliation(s)
- Pengxiang Fan
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xuchu Wang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Tingyun Kuang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yinxin Li
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
156
|
Schneider T, Keller F. Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope. PLANT & CELL PHYSIOLOGY 2009; 50:2174-82. [PMID: 19880397 DOI: 10.1093/pcp/pcp151] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In chloroplasts, several water-soluble carbohydrates have been suggested to act as stress protectants. The trisaccharide raffinose (alpha-1,6-galactosyl sucrose) is such a carbohydrate but has received little attention. We here demonstrate by compartmentation analysis of leaf mesophyll protoplasts that raffinose is clearly (to about 20%) present in chloroplasts of cold-treated common bugle (Ajuga reptans L.), spinach (Spinacia oleracea L.) and Arabidopsis [Arabidopsis thaliana (L.) Heynh.] plants. The two dedicated enzymes needed for raffinose synthesis, galactinol synthase and raffinose synthase, were found to be extra-chloroplastic (probably cytosolic) in location, suggesting that the chloroplast envelope contains a raffinose transporter. Uptake experiments with isolated Ajuga and Arabidopsis chloroplasts clearly demonstrated that raffinose is indeed transported across the chloroplast envelope by a raffinose transporter, probably actively. Raffinose uptake into Ajuga chloroplasts was a saturable process with apparent K(m) and v(max) values of 27.8 mM and 3.3 micromol mg(-1) Chl min(-1), respectively.
Collapse
Affiliation(s)
- Thomas Schneider
- Molekulare Pflanzenphysiologie, Institut für Pflanzenbiologie, Universität Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | |
Collapse
|
157
|
Natarajan SS, Krishnan HB, Lakshman S, Garrett WM. An efficient extraction method to enhance analysis of low abundant proteins from soybean seed. Anal Biochem 2009; 394:259-68. [PMID: 19651100 DOI: 10.1016/j.ab.2009.07.048] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/24/2022]
Abstract
Large amounts of the major storage proteins, beta-conglycinin and glycinin, in soybean (Glycine max) seeds hinder the isolation and characterization of less abundant seed proteins. We investigated whether isopropanol extraction could facilitate resolution of the low abundant proteins, different from the main storage protein fractions, in one-dimensional polyacrylamide gel electrophoresis (1D-PAGE) and two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). 1D-PAGE of proteins extracted by different concentrations (10%, 20%, 30%, 40%, 50%, 60%, 70% and 80%) of isopropanol showed that greater than 30% isopropanol was suitable for preferential enrichment of low abundant proteins. Analysis of 2D-PAGE showed that proteins which were less abundant or absent by the conventional extraction procedure were clearly seen in the 40% isopropanol extracts. Increasing isopropanol concentration above 40% resulted in a decrease in the number of less abundant protein spots. We have identified a total of 107 protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrophotometry (MALDI-TOF-MS) and liquid chromatography-mass spectrometry (LC-MS/MS). Our results suggest that extraction of soybean seed powder with 40% isopropanol enriches lower abundance proteins and is a suitable method for 2D-PAGE separation and identification. This methodology could potentially allow the extraction and characterization of low abundant proteins of other legume seeds containing highly abundant storage proteins.
Collapse
Affiliation(s)
- Savithiry S Natarajan
- U.S. Department of Agriculture, Agricultural Research Service, Soybean Genomics and Improvement Laboratory, PSI, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
158
|
Armbruster U, Hertle A, Makarenko E, Zühlke J, Pribil M, Dietzmann A, Schliebner I, Aseeva E, Fenino E, Scharfenberg M, Voigt C, Leister D. Chloroplast proteins without cleavable transit peptides: rare exceptions or a major constituent of the chloroplast proteome? MOLECULAR PLANT 2009; 2:1325-35. [PMID: 19995733 DOI: 10.1093/mp/ssp082] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Most chloroplast proteins (cp proteins) are nucleus-encoded, synthesized on cytosolic ribosomes as precursor proteins containing a presequence (cTP), and post-translationally imported via the Tic/Toc complex into the organelle, where the cTP is removed. Only a few unambiguous instances of cp proteins that do not require cTPs (non-canonical cp proteins) have been reported so far. However, the survey of data from large-scale proteomic studies presented here suggests that the fraction of such proteins in the total cp proteome might be as large as approximately 30%. To explore this discrepancy, we chose a representative set of 28 putative non-canonical cp proteins, and used in vitro import and Red Fluorescent Protein (RFP)-fusion assays to determine their sub-cellular destinations. Four proteins, including embryo defective 1211, glycolate oxidase 2, protein disulfide isomerase-like protein (PDII), and a putative glutathione S-transferase, could be unambiguously assigned to the chloroplast. Several others ('potential cp proteins') were found to be imported into chloroplasts in vitro, but failed to localize to the organelle when RFP was fused to their C-terminal ends. Extrapolations suggest that the fraction of cp proteins that enter the inner compartments of the organelle, although they lack a cTP, might be as large as 11.4% of the total cp proteome. Our data also support the idea that cytosolic proteins that associate with the cp outer membrane might account for false positive cp proteins obtained in earlier studies.
Collapse
Affiliation(s)
- Ute Armbruster
- Lehrstuhl für Botanik, Department Biologie I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Boij P, Patel R, Garcia C, Jarvis P, Aronsson H. In vivo studies on the roles of Tic55-related proteins in chloroplast protein import in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:1397-1409. [PMID: 19995737 DOI: 10.1093/mp/ssp079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Tic55 (Translocon at the inner envelope membrane of chloroplasts, 55 kDa) protein was identified in pea as a putative regulator, possibly linking chloroplast protein import to the redox state of the photosynthetic machinery. Two Tic55 homologs have been proposed to exist in Arabidopsis: atTic55-II and AtPTC52 (Protochlorophyllide-dependent Translocon Component, 52 kDa; has also been called atTic55-IV). Our phylogenetic analysis shows that atTic55-II is an ortholog of psTic55 from pea (Pisum sativum), and that AtPTC52 is a more distant homolog of the two. AtPTC52 was included in this study to rule out possible functional links between the proteins in Arabidopsis. No detectable mutant phenotypes were found in two independent T-DNA knockout mutant plant lines for each Arabidopsis protein, when compared with wild-type: visible appearance, chlorophyll content, photosynthetic performance, and chloroplast protein import, for example, were all normal. Both wild-type and tic55-II mutant chloroplasts exhibited deficient protein import when treated with diethylpyrocarbonate, indicating that Tic55 is not the sole target of this reagent in relation to protein import. Furthermore, ptc52 mutant chloroplasts were not defective with respect to pPORA import, which was previously reported to involve PTC52 in barley. Thus, we conclude that atTic55-II and AtPTC52 are not strictly required for functional protein import in Arabidopsis.
Collapse
Affiliation(s)
- Patrik Boij
- Department of Plant and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
160
|
Joyard J, Ferro M, Masselon C, Seigneurin-Berny D, Salvi D, Garin J, Rolland N. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. MOLECULAR PLANT 2009; 2:1154-80. [PMID: 19969518 DOI: 10.1093/mp/ssp088] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.
Collapse
Affiliation(s)
- Jacques Joyard
- Laboratoire de Physiologie Cellulaire Végétale, UMR 5168, CEA, CNRS, INRA, Université Joseph Fourier, iRTSV, CEA-Grenoble, 38054 Grenoble-cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
161
|
Bräutigam A, Weber APM. Proteomic analysis of the proplastid envelope membrane provides novel insights into small molecule and protein transport across proplastid membranes. MOLECULAR PLANT 2009; 2:1247-61. [PMID: 19995728 DOI: 10.1093/mp/ssp070] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Proplastids are undifferentiated plastids of meristematic tissues that synthesize amino acids for protein synthesis, fatty acids for membrane lipid production, and purines and pyrimidines for DNA and RNA synthesis. Unlike chloroplasts, proplastids depend on supply, with reducing power, energy, and precursor metabolites from the remainder of the cell. Comparing proplastid and chloroplast envelope proteomes and the corresponding transcriptomes of leaves and shoot apex revealed a clearly distinct composition of the proplastid envelope. It is geared towards import of metabolic precursors and export of product metabolites for the rapidly dividing cell. The analysis also suggested a new role for the triosephosphate translocator in meristematic tissues, identified the route of organic nitrogen import into proplastids, and detected an adenine nucleotide exporter. The protein import complex contains the import receptors Toc120 and Toc132 and lacks the redox sensing complex subunits of Tic32, Tic55, and Tic62, which mirrors the expression patterns of the corresponding genes in leaves and the shoot apex. We further show that the protein composition of the internal membrane system is similar to etioplasts, as it is dominated by the ATP synthase complex and thus remarkably differs from that of chloroplast thylakoids.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institut für Biochemie der Pflanzen, Heinrich Heine Universität, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | | |
Collapse
|
162
|
Bernard DG, Cheng Y, Zhao Y, Balk J. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:590-602. [PMID: 19710232 PMCID: PMC2754654 DOI: 10.1104/pp.109.143651] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ATP-binding cassette transporters of mitochondria (ATMs) are highly conserved proteins, but their function in plants is poorly defined. Arabidopsis (Arabidopsis thaliana) has three ATM genes, namely ATM1, ATM2, and ATM3. Using a collection of insertional mutants, we show that only ATM3 has an important function for plant growth. Additional atm3 alleles were identified among sirtinol-resistant lines, correlating with decreased activities of aldehyde oxidases, cytosolic enzymes that convert sirtinol into an auxin analog, and depend on iron-sulfur (Fe-S) and molybdenum cofactor (Moco) as prosthetic groups. In the sirtinol-resistant atm3-3 allele, the highly conserved arginine-612 is replaced by a lysine residue, the negative effect of which could be mimicked in the yeast Atm1p ortholog. Arabidopsis atm3 mutants displayed defects in root growth, chlorophyll content, and seedling establishment. Analyses of selected metal enzymes showed that the activity of cytosolic aconitase (Fe-S) was strongly decreased across the range of atm3 alleles, whereas mitochondrial and plastid Fe-S enzymes were unaffected. Nitrate reductase activity (Moco, heme) was decreased by 50% in the strong atm3 alleles, but catalase activity (heme) was similar to that of the wild type. Strikingly, in contrast to mutants in the yeast and mammalian orthologs, Arabidopsis atm3 mutants did not display a dramatic iron homeostasis defect and did not accumulate iron in mitochondria. Our data suggest that Arabidopsis ATM3 may transport (1) at least two distinct compounds or (2) a single compound required for both Fe-S and Moco assembly machineries in the cytosol, but not iron.
Collapse
Affiliation(s)
- Delphine G Bernard
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
163
|
Wudick MM, Luu DT, Maurel C. A look inside: localization patterns and functions of intracellular plant aquaporins. THE NEW PHYTOLOGIST 2009; 184:289-302. [PMID: 19674338 DOI: 10.1111/j.1469-8137.2009.02985.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aquaporins form a superfamily of intrinsic channel proteins in the plasma and intracellular membranes of plant cells. While a lot of research effort has substantiated the importance of plasma membrane aquaporins for the regulation of plant water homeostasis, comparably little is known about the function of intracellular aquaporins. Yet, various low-molecular-weight compounds, in addition to water, were recently shown to permeate some of these aquaporins. In this review, we examine the diversity of transport properties and localization patterns of intracellular aquaporins. The discussed profiles include, for example, water and ammonia transport across the tonoplast or CO2 transport through the chloroplast envelope. Furthermore, we try to assess to what extent the diverse aquaporin distribution patterns, in relation to the high degree of compartmentation of plant cells, can be linked to a wide range of cellular functions.
Collapse
Affiliation(s)
- Michael M Wudick
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Doan-Trung Luu
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| | - Christophe Maurel
- Biochimie et physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 2, France
| |
Collapse
|
164
|
SubChlo: predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm. J Theor Biol 2009; 261:330-5. [PMID: 19679138 DOI: 10.1016/j.jtbi.2009.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/30/2009] [Accepted: 08/01/2009] [Indexed: 11/23/2022]
Abstract
The chloroplast is a type of plant specific subcellular organelle. It is of central importance in several biological processes like photosynthesis and amino acid biosynthesis. Thus, understanding the function of chloroplast proteins is of significant value. Since the function of chloroplast proteins correlates with their subchloroplast locations, the knowledge of their subchloroplast locations can be very helpful in understanding their role in the biological processes. In the current paper, by introducing the evidence-theoretic K-nearest neighbor (ET-KNN) algorithm, we developed a method for predicting the protein subchloroplast locations. This is the first algorithm for predicting the protein subchloroplast locations. We have implemented our algorithm as an online service, SubChlo (http://bioinfo.au.tsinghua.edu.cn/subchlo). This service may be useful to the chloroplast proteome research.
Collapse
|
165
|
Abstract
Chloroplast biogenesis in angiosperm plants requires the light-dependent transition from an etioplast stage. A key factor in this process is NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the light-dependent reduction of protochlorophyllide to chlorophyllide. In a recent study the chloroplast outer envelope channel OEP16 was described to be involved in etioplast to chloroplast transition by forming the translocation pore for the precursor protein of PORA [Pollmann et al. (2007) Proc Natl Acad Sci USA 104:2019-2023]. This hypothesis was based on the finding that a single OEP16.1 knockout mutant in Arabidopsis thaliana was severely affected during seedling de-etiolation and PORA protein was absent in etioplasts. In contrast, in our study the identical T-DNA insertion line greened normally and showed normal etioplast to chloroplast transition, and mature PORA was present in etioplasts [Philippar et al. (2007) Proc Natl Acad Sci USA 104:678-683]. To address these conflicting results regarding the function of OEP16.1 for PORA import, we analyzed several lines segregating from the original OEP16.1 T-DNA insertion line. Thereby we can unequivocally show that the loss of OEP16.1 neither correlates with impaired PORA import nor causes the observed de-etiolation phenotype. Furthermore, we found that the mutant line contains at least 2 additional T-DNA insertions in the genes for the extracellular polygalacturonase converter AroGP1 and the plastid-localized chorismate mutase CM1. However, detailed examination of the de-etiolation phenotype and a genomewide transcriptional analysis revealed no direct influence of these genes on etioplast to chloroplast transition in Arabidopsis cotyledons.
Collapse
|
166
|
Chang CCC, Slesak I, Jordá L, Sotnikov A, Melzer M, Miszalski Z, Mullineaux PM, Parker JE, Karpinska B, Karpinski S. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. PLANT PHYSIOLOGY 2009; 150:670-83. [PMID: 19363092 PMCID: PMC2689974 DOI: 10.1104/pp.109.135566] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 04/06/2009] [Indexed: 05/18/2023]
Abstract
Glutathione peroxidases (GPXs; EC 1.11.1.9) are key enzymes of the antioxidant network in plants and animals. In order to investigate the role of antioxidant systems in plant chloroplasts, we generated Arabidopsis (Arabidopsis thaliana) transgenic lines that are depleted specifically in chloroplastic (cp) forms of GPX1 and GPX7. We show that reduced cpGPX expression, either in transgenic lines with lower total cpGPX expression (GPX1 and GPX7) or in a gpx7 insertion mutant, leads to compromised photooxidative stress tolerance but increased basal resistance to virulent bacteria. Depletion of both GPX1 and GPX7 expression also caused alterations in leaf cell and chloroplast morphology. Leaf tissues were characterized by shorter and more rounded palisade cells, irregular spongy mesophyll cells, and larger intercellular air spaces compared with the wild type. Chloroplasts had larger and more abundant starch grains than in wild-type and gpx7 mutant plants. Constitutively reduced cpGPX expression also led to higher foliar ascorbic acid, glutathione, and salicylic acid levels in plants exposed to higher light intensities. Our results suggest partially overlapping functions of GPX1 and GPX7. The data further point to specific changes in the chloroplast ascorbate-glutathione cycle due to reduced cpGPX expression, initiating reactive oxygen species and salicylic acid pathways that affect leaf development, light acclimation, basal defense, and cell death programs. Thus, cpGPXs regulate cellular photooxidative tolerance and immune responses.
Collapse
Affiliation(s)
- Christine C C Chang
- Department of Botany, Stockholm University, Frescati 10691 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Enrichment and Preparation of Plasma Membrane Proteins from Arabidopsis thaliana for Global Proteomic Analysis Using Liquid Chromatography-Tandem Mass Spectrometry. Proteomics 2009; 564:341-55. [DOI: 10.1007/978-1-60761-157-8_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
168
|
Understanding the regulation of aspartate metabolism using a model based on measured kinetic parameters. Mol Syst Biol 2009; 5:271. [PMID: 19455135 PMCID: PMC2694679 DOI: 10.1038/msb.2009.29] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 04/16/2009] [Indexed: 11/12/2022] Open
Abstract
The aspartate-derived amino-acid pathway from plants is well suited for analysing the function of the allosteric network of interactions in branched pathways. For this purpose, a detailed kinetic model of the system in the plant model Arabidopsis was constructed on the basis of in vitro kinetic measurements. The data, assembled into a mathematical model, reproduce in vivo measurements and also provide non-intuitive predictions. A crucial result is the identification of allosteric interactions whose function is not to couple demand and supply but to maintain a high independence between fluxes in competing pathways. In addition, the model shows that enzyme isoforms are not functionally redundant, because they contribute unequally to the flux and its regulation. Another result is the identification of the threonine concentration as the most sensitive variable in the system, suggesting a regulatory role for threonine at a higher level of integration.
Collapse
|
169
|
Atteia A, Adrait A, Brugière S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-proteobacterial mitochondrial ancestor. Mol Biol Evol 2009; 26:1533-48. [PMID: 19349646 DOI: 10.1093/molbev/msp068] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondria play a key role in the life and death of eukaryotic cells, yet the full spectrum of mitochondrial functions is far from being fully understood, especially in photosynthetic organisms. To advance our understanding of mitochondrial functions in a photosynthetic cell, an extensive proteomic survey of Percoll-purified mitochondria from the metabolically versatile, hydrogen-producing green alga Chlamydomonas reinhardtii was performed. Different fractions of purified mitochondria from Chlamydomonas cells grown under aerobic conditions were analyzed by nano-liquid chromatography-electrospray ionization-mass spectrometry after protein separation on sodium dodecyl sulfate polyacrylamide gel electrophoresis or on blue-native polyacrylamide gel electrophoresis. Of the 496 nonredundant proteins identified, 149 are known or predicted to reside in other cellular compartments and were thus excluded from the molecular and evolutionary analyses of the Chlamydomonas proteome. The mitochondrial proteome of the photosynthetic alga reveals important lineage-specific differences with other mitochondrial proteomes, reflecting the high metabolic diversity of the organelle. Some mitochondrial metabolic pathways in Chlamydomonas appear to combine typical mitochondrial enzymes and bacterial-type ones, whereas others are unknown among mitochondriate eukaryotes. The comparison of the Chlamydomonas proteins to their identifiable homologs predicted from 354 sequenced genomes indicated that Arabidopsis is the most closely related nonalgal eukaryote. Furthermore, this phylogenomic analysis shows that free-living alpha-proteobacteria from the metabolically versatile orders Rhizobiales and Rhodobacterales better reflect the gene content of the ancestor of the chlorophyte mitochondria than parasitic alpha-proteobacteria with reduced and specialized genomes.
Collapse
Affiliation(s)
- Ariane Atteia
- Laboratoire de Physiologie Cellulaire Végétale, Centre Nationale la Recherche Scientifique, UMR 5168, Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Ishikawa M, Fujiwara M, Sonoike K, Sato N. Orthogenomics of photosynthetic organisms: bioinformatic and experimental analysis of chloroplast proteins of endosymbiont origin in Arabidopsis and their counterparts in Synechocystis. PLANT & CELL PHYSIOLOGY 2009; 50:773-788. [PMID: 19224954 DOI: 10.1093/pcp/pcp027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chloroplasts are descendents of a cyanobacterial endosymbiont, but many chloroplast protein genes of endosymbiont origin are encoded by the nucleus. The chloroplast-cyanobacteria relationship is a typical target of orthogenomics, an analytical method that focuses on the relationship of orthologous genes. Here, we present results of a pilot study of functional orthogenomics, combining bioinformatic and experimental analyses, to identify nuclear-encoded chloroplast proteins of endosymbiont origin (CPRENDOs). Phylogenetic profiling based on complete clustering of all proteins in 17 organisms, including eight cyanobacteria and two photosynthetic eukaryotes, was used to deduce 65 protein groups that are conserved in all oxygenic autotrophs analyzed but not in non-oxygenic organisms. With the exception of 28 well-characterized protein groups, 56 Arabidopsis proteins and 43 Synechocystis proteins in the 37 conserved homolog groups were analyzed. Green fluorescent protein (GFP) targeting experiments indicated that 54 Arabidopsis proteins were targeted to plastids. Expression of 39 Arabidopsis genes was promoted by light. Among the 40 disruptants of Synechocystis, 22 showed phenotypes related to photosynthesis. Arabidopsis mutants in 21 groups, including those reported previously, showed phenotypes. Characteristics of pulse amplitude modulation fluorescence were markedly different in corresponding mutants of Arabidopsis and Synechocystis in most cases. We conclude that phylogenetic profiling is useful in finding CPRENDOs, but the physiological functions of orthologous genes may be different in chloroplasts and cyanobacteria.
Collapse
Affiliation(s)
- Masayuki Ishikawa
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
171
|
Guo XH, Jiang J, Lin SJ, Wang BC, Wang YC, Liu GF, Yang CP. A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidiana × P. bolleana). Biotechnol Lett 2009; 31:1079-87. [DOI: 10.1007/s10529-009-9959-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/16/2009] [Accepted: 02/18/2009] [Indexed: 10/21/2022]
|
172
|
Baginsky S. Plant proteomics: concepts, applications, and novel strategies for data interpretation. MASS SPECTROMETRY REVIEWS 2009; 28:93-120. [PMID: 18618656 DOI: 10.1002/mas.20183] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Proteomics is an essential source of information about biological systems because it generates knowledge about the concentrations, interactions, functions, and catalytic activities of proteins, which are the major structural and functional determinants of cells. In the last few years significant technology development has taken place both at the level of data analysis software and mass spectrometry hardware. Conceptual progress in proteomics has made possible the analysis of entire proteomes at previously unprecedented density and accuracy. New concepts have emerged that comprise quantitative analyses of full proteomes, database-independent protein identification strategies, targeted quantitative proteomics approaches with proteotypic peptides and the systematic analysis of an increasing number of posttranslational modifications at high temporal and spatial resolution. Although plant proteomics is making progress, there are still several analytical challenges that await experimental and conceptual solutions. With this review I will highlight the current status of plant proteomics and put it into the context of the aforementioned conceptual progress in the field, illustrate some of the plant-specific challenges and present my view on the great opportunities for plant systems biology offered by proteomics.
Collapse
Affiliation(s)
- Sacha Baginsky
- Institute of Plant Sciences, Swiss Federal Institute of Technology, Universitätsstrasse 2, 8092 Zurich, Switzerland.
| |
Collapse
|
173
|
Rolland N, Ferro M, Seigneurin-Berny D, Garin J, Block M, Joyard J. The Chloroplast Envelope Proteome and Lipidome. PLANT CELL MONOGRAPHS 2008. [DOI: 10.1007/978-3-540-68696-5_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
174
|
Seigneurin-Berny D, Salvi D, Dorne AJ, Joyard J, Rolland N. Percoll-purified and photosynthetically active chloroplasts from Arabidopsis thaliana leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:951-5. [PMID: 18707896 DOI: 10.1016/j.plaphy.2008.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 06/11/2008] [Accepted: 06/14/2008] [Indexed: 05/07/2023]
Abstract
The availability of the complete genome sequence of Arabidopsis thaliana and of large collections of insertion mutants paved the way for systematic studies of gene functions in this organism, thus requiring adapting biochemical and physiological tools to this model plant. For physiological analysis of photosynthesis, methods combining high level of chloroplast purity and preservation of the photosynthetic activity were missing. Here, we describe a rapid method (less than 1h) to obtain Percoll-purified and photosynthetically active chloroplasts from Arabidopsis leaves retaining almost 90% of the Vmax of photosynthesis measured in the starting leaves from plants grown under a light intensity of 150mumolphotonm(-2)s(-1) and 80% of their initial photosynthetic rate after 3h of storage.
Collapse
Affiliation(s)
- Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire Végétale, CNRS (UMR-5168)/CEA/INRA (UMR-1200)/Université Joseph Fourier, iRTSV, CEA-Grenoble, France.
| | | | | | | | | |
Collapse
|
175
|
Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. THE PLANT CELL 2008; 20:3148-62. [PMID: 18996978 PMCID: PMC2613658 DOI: 10.1105/tpc.108.061341] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 10/05/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.
Collapse
Affiliation(s)
- Fumiyoshi Myouga
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Firlej-Kwoka E, Strittmatter P, Soll J, Bölter B. Import of preproteins into the chloroplast inner envelope membrane. PLANT MOLECULAR BIOLOGY 2008; 68:505-519. [PMID: 18704693 DOI: 10.1007/s11103-008-9387-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
The chloroplast inner envelope membrane contains many integral proteins which differ in the number of alpha-helices that anchor the protein into the bilayer. For most of these proteins it is not known which pathway they engage to reach their final localisation within the membrane. In yeast mitochondria, two distinct sorting/insertion pathways have been described for integral inner membrane proteins, involving the Tim22 and Tim23 translocases. These routes involve on the one hand a conservative sorting, on the other hand a stop-transfer pathway. In this study we performed a systematic characterisation of the import behaviour of seven inner envelope proteins representing different numbers of predicted alpha-helices. We investigated their energy dependence, import rate, involvement of components of the chloroplast general import pathway and distribution between soluble and membrane fractions. Our results show the existence of at least two different families of inner envelope proteins that can be classified due to the occurrence of an intermediate processing form. Each of the proteins we investigated seems to use a stop-transfer pathway for insertion into the inner envelope.
Collapse
Affiliation(s)
- Ewa Firlej-Kwoka
- Department Biology I, Plant Biochemistry, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152 Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
177
|
Granot D. Putting plant hexokinases in their proper place. PHYTOCHEMISTRY 2008; 69:2649-54. [PMID: 18922551 DOI: 10.1016/j.phytochem.2008.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 08/28/2008] [Indexed: 05/08/2023]
Abstract
Hexokinases (HXKs), catalysts of the first essential step in glucose metabolism, have emerged as important enzymes that mediate sugar sensing in many organisms, including plants. The presence of several types of plant HXK isozymes, located in different intracellular locations, has been suggested. However, recent studies have indicated that most plants have only two types of HXKs, a plastidic stromal isozyme and membrane-associated isozymes located mainly adjacent to the mitochondria, but also in the nucleus. The membrane-associated isozymes are involved in sugar sensing and regulate gene expression. The central role of HXKs in plant development and the increasing interest in their role necessitate the correction of inaccuracies that have spread concerning the substrate specificity and intracellular localization of HXK isozymes, as these inaccuracies are affecting the hypothesized roles presented for these isozymes and shaping future research in this active field.
Collapse
Affiliation(s)
- David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel.
| |
Collapse
|
178
|
Seigneurin-Berny D, Salvi D, Joyard J, Rolland N. Purification of intact chloroplasts from Arabidopsis and spinach leaves by isopycnic centrifugation. ACTA ACUST UNITED AC 2008; Chapter 3:Unit 3.30. [PMID: 18819091 DOI: 10.1002/0471143030.cb0330s40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chloroplasts are plant-specific organelles. They are the site of photosynthesis but also of many other essential metabolic pathways, such as syntheses of amino acids, vitamins, lipids, and pigments. This unit describes the isolation and purification of chloroplasts from Arabidopsis and spinach leaves. Differential centrifugation is first used to obtain a suspension enriched in chloroplasts (crude chloroplasts extract). In a second step, Percoll density gradient centrifugation is used to recover pure and intact chloroplasts. The Basic Protocol describes the purification of chloroplasts from Arabidopsis leaves. This small flowering plant is now widely used as a model organism in plant biology as it offers important advantages for basic research in genetics and molecular biology. The Alternate Protocol describes the purification of chloroplasts from spinach leaves. Spinach, easily available all through the year, remains a model of choice for the large-scale preparation of pure chloroplasts with a high degree of intactness.
Collapse
Affiliation(s)
- Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire Végétale, CNRS and Université Joseph Fourier, Grenoble, France
| | | | | | | |
Collapse
|
179
|
Guryca V, Kieffer-Jaquinod S, Garin J, Masselon CD. Prospects for monolithic nano-LC columns in shotgun proteomics. Anal Bioanal Chem 2008; 392:1291-7. [PMID: 18949466 DOI: 10.1007/s00216-008-2433-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/18/2008] [Accepted: 09/23/2008] [Indexed: 10/21/2022]
Abstract
We report a premier side-by-side comparison of two leading types of monolithic nano-LC column (silica-C(18), polystyrene) in shotgun proteomics experiments. Besides comparing the columns in terms of the number of peptides from a real-life sample (Arabidopsis thaliana chloroplast) that they identified, we compared the monoliths in terms of peak capacity and retention behavior for standard peptides. For proteomics applications where the mobile phase composition is constrained by electrospray ionization considerations (i.e., there is a restricted choice of ion-pairing modifiers), the polystyrene nano-LC column exhibited reduced identification power. The silica monolith column was superior in all measured values and compared very favorably with traditional packed columns. Finally, we investigated the performances of the monoliths at high flow rates in an attempt to demonstrate their advantages for high-throughput identification.
Collapse
Affiliation(s)
- Vilém Guryca
- CEA, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, Grenoble, 38054, France.
| | | | | | | |
Collapse
|
180
|
|
181
|
Okawa K, Nakayama K, Kakizaki T, Yamashita T, Inaba T. Identification and characterization of Cor413im proteins as novel components of the chloroplast inner envelope. PLANT, CELL & ENVIRONMENT 2008; 31:1470-83. [PMID: 18643950 DOI: 10.1111/j.1365-3040.2008.01854.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plastids are surrounded by two membrane layers, the outer and inner envelope membranes, which have various transport and metabolic activities. A number of envelope membrane proteins have been identified by biochemical approaches and have been assigned to specific functions. Despite those efforts, the chloroplast envelope membrane is expected to contain a number of as yet unidentified proteins that may affect specific aspects of plant growth and development. In this report, we identify and characterize a novel class of inner envelope membrane proteins, designated as Cor413 chloroplast inner envelope membrane group (Cor413im). Both in vivo and in vitro studies indicate that Cor413im proteins are targeted to the chloroplast envelope. Biochemical analyses of Cor413im1 demonstrate that it is an integral membrane protein in the inner envelope of chloroplasts. Quantitative real-time PCR analysis reveals that COR413IM1 is more abundant than COR413IM2 in cold-acclimated Arabidopsis leaves. The analyses of T-DNA insertion mutants indicate that a single copy of COR413IM genes is sufficient to provide normal freezing tolerance to Arabidopsis. Based on these data, we propose that Cor413im proteins are novel components that are targeted to the chloroplast inner envelope in response to low temperature.
Collapse
Affiliation(s)
- Kumiko Okawa
- The 21st Century Centers of Excellence Program, Cryobiofrontier Research Center, IwateUniversity, Morioka 020-8550, Japan
| | | | | | | | | |
Collapse
|
182
|
Sadowski PG, Groen AJ, Dupree P, Lilley KS. Sub-cellular localization of membrane proteins. Proteomics 2008; 8:3991-4011. [PMID: 18780351 DOI: 10.1002/pmic.200800217] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Indexed: 05/30/2025]
Abstract
In eukaryotes, numerous complex sub-cellular structures exist. The majority of these are delineated by membranes. Many proteins are trafficked to these in order to be able to carry out their correct physiological function. Assigning the sub-cellular location of a protein is of paramount importance to biologists in the elucidation of its role and in the refinement of knowledge of cellular processes by tracing certain activities to specific organelles. Membrane proteins are a key set of proteins as these form part of the boundary of the organelles and represent many important functions such as transporters, receptors, and trafficking. They are, however, some of the most challenging proteins to work with due to poor solubility, a wide concentration range within the cell and inaccessibility to many of the tools employed in proteomics studies. This review focuses on membrane proteins with particular emphasis on sub-cellular localization in terms of methodologies that can be used to determine the accurate location of membrane proteins to organelles. We also discuss what is known about the membrane protein cohorts of major organelles.
Collapse
Affiliation(s)
- Pawel G Sadowski
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
183
|
Mulo P, Sirpiö S, Suorsa M, Aro EM. Auxiliary proteins involved in the assembly and sustenance of photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:489-501. [PMID: 18618287 DOI: 10.1007/s11120-008-9320-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 05/20/2023]
Abstract
Chloroplast proteins that regulate the biogenesis, performance and acclimation of the photosynthetic protein complexes are currently under intense research. Dozens, possibly even hundreds, of such proteins in the stroma, thylakoid membrane and the lumen assist the biogenesis and constant repair of the water splitting photosystem (PS) II complex. During the repair cycle, assistance is required at several levels including the degradation of photodamaged D1 protein, de novo synthesis, membrane insertion, folding of the nascent protein chains and the reassembly of released protein subunits and different co-factors into PSII in order to guarantee the maintenance of the PSII function. Here we review the present knowledge of the auxiliary proteins, which have been reported to be involved in the biogenesis and maintenance of PSII.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | | | | | |
Collapse
|
184
|
Guo B, Irigoyen S, Fowler TB, Versaw WK. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. PLANT SIGNALING & BEHAVIOR 2008; 3:784-90. [PMID: 19513231 PMCID: PMC2634373 DOI: 10.4161/psb.3.10.6666] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 05/20/2023]
Abstract
Plastids rely on multiple phosphate (Pi) transport activities to support and control a wide range of metabolic processes, including photosynthesis and carbon partitioning. Five of the six members of the PHT4 family of Pi transporters in Arabidopsis thaliana (PHT4;1-PHT4;5) are confirmed or predicted plastid proteins. As a step towards identifying the roles of individual PHT4 Pi transporters in chloroplast and non-photosynthetic plastid Pi dynamics, we used promoter-reporter gene fusions and quantitative RT-PCR studies, respectively, to determine spatial and diurnal gene expression patterns. PHT4;1 and PHT4;4 were both expressed predominantly in photosynthetic tissues, although expression of PHT4;1 was circadian and PHT4;4 was induced by light. PHT4;3 and PHT4;5 were expressed mainly in leaf phloem. PHT4;2 was expressed throughout the root, and exhibited a diurnal pattern with peak transcript levels in the dark. The remaining member of this gene family, PHT4;6, encodes a Golgi-localized protein and was expressed ubiquitously. The overlapping but distinct expression patterns for these genes suggest specialized roles for the encoded transporters in multiple types of differentiated plastids. Phylogenetic analysis revealed conservation of each of the orthologous members of the PHT4 family in Arabidopsis and rice, which is consistent with specialization, and suggests that the individual members of this transporter family diverged prior to the divergence of monocots and dicots.
Collapse
Affiliation(s)
- Biwei Guo
- Department of Biology; Texas A&M University; College Station, Texas USA
| | | | | | | |
Collapse
|
185
|
Martinez A, Traverso JA, Valot B, Ferro M, Espagne C, Ephritikhine G, Zivy M, Giglione C, Meinnel T. Extent of N-terminal modifications in cytosolic proteins from eukaryotes. Proteomics 2008; 8:2809-31. [PMID: 18655050 DOI: 10.1002/pmic.200701191] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most proteins in all organisms undergo crucial N-terminal modifications involving N-terminal methionine excision, N-alpha-acetylation or N-myristoylation (N-Myr), or S-palmitoylation. We investigated the occurrence of these poorly annotated but essential modifications in proteomes, focusing on eukaryotes. Experimental data for the N-terminal sequences of animal, fungi, and archaeal proteins, were used to build dedicated predictive modules in a new software. In vitro N-Myr experiments were performed with both plant and animal N-myristoyltransferases, for accurate prediction of the modification. N-terminal modifications from the fully sequenced genome of Arabidopsis thaliana were determined by MS. We identified 105 new modified protein N-termini, which were used to check the accuracy of predictive data. An accuracy of more than 95% was achieved, demonstrating (i) overall conservation of the specificity of the modification machinery in higher eukaryotes and (ii) robustness of the prediction tool. Predictions were made for various proteomes. Proteins that had undergone both N-terminal methionine (Met) cleavage and N-acetylation were found to be strongly overrepresented among the most abundant proteins, in contrast to those retaining their genuine unblocked Met. Here we propose that the nature of the second residue of an ORF is a key marker of the abundance of the mature protein in eukaryotes.
Collapse
Affiliation(s)
- Aude Martinez
- Institut des Sciences du Végétal, UPR2355, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Construction of a chloroplast protein interaction network and functional mining of photosynthetic proteins in Arabidopsis thaliana. Cell Res 2008; 18:1007-19. [DOI: 10.1038/cr.2008.286] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
187
|
Bräutigam A, Hoffmann-Benning S, Hofmann-Benning S, Weber APM. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. PLANT PHYSIOLOGY 2008; 148:568-79. [PMID: 18599648 PMCID: PMC2528119 DOI: 10.1104/pp.108.121012] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/23/2008] [Indexed: 05/19/2023]
Abstract
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute for Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | | | | | | |
Collapse
|
188
|
Overmyer K, Kollist H, Tuominen H, Betz C, Langebartels C, Wingsle G, Kangasjärvi S, Brader G, Mullineaux P, Kangasjärvi J. Complex phenotypic profiles leading to ozone sensitivity in Arabidopsis thaliana mutants. PLANT, CELL & ENVIRONMENT 2008; 31:1237-1249. [PMID: 18518918 DOI: 10.1111/j.1365-3040.2008.01837.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genetically tractable model plants offer the possibility of defining the plant O(3) response at the molecular level. To this end, we have isolated a collection of ozone (O(3))-sensitive mutants of Arabidopsis thaliana. Mutant phenotypes and genetics were characterized. Additionally, parameters associated with O(3) sensitivity were analysed, including stomatal conductance, sensitivity to and accumulation of reactive oxygen species, antioxidants, stress gene-expression and the accumulation of stress hormones. Each mutant has a unique phenotypic profile, with O(3) sensitivity caused by a unique set of alterations in these systems. O(3) sensitivity in these mutants is not caused by gross deficiencies in the antioxidant pathways tested here. The rcd3 mutant exhibits misregulated stomata. All mutants exhibited changes in stress hormones consistent with the known hormonal roles in defence and cell death regulation. One mutant, dubbed re-8, is an allele of the classic leaf development mutant reticulata and exhibits phenotypes dependent on light conditions. This study shows that O(3) sensitivity can be determined by deficiencies in multiple interacting plant systems and provides genetic evidence linking these systems.
Collapse
Affiliation(s)
- Kirk Overmyer
- Department of Biological and Environmental Sciences, Plant Biology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Fourrier N, Bédard J, Lopez-Juez E, Barbrook A, Bowyer J, Jarvis P, Warren G, Thorlby G. A role for SENSITIVE TO FREEZING2 in protecting chloroplasts against freeze-induced damage in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:734-45. [PMID: 18466306 DOI: 10.1111/j.1365-313x.2008.03549.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The sensitive to freezing2 (SFR2) gene has an important role in freezing tolerance in Arabidopsis thaliana. We show that homologous genes are present, and expressed, in a wide range of terrestrial plants, including species not able to tolerate freezing. Expression constructs derived from the cDNAs of a number of different plant species, including examples not tolerant to freezing, are able to complement the freezing sensitivity of the Arabidopsis sfr2 mutant. In Arabidopsis the SFR2 protein is localized to the chloroplast outer envelope membrane, as revealed by the analysis of transgenic plants expressing SFR2 fusions to GFP, by confocal microscopy, and by the immunological analysis of isolated chloroplasts treated with thermolysin protease. Moreover, the chloroplasts of the sfr2 mutant show clear evidence of rapid damage after a freezing episode, suggesting a role for SFR2 in the protection of the chloroplast.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/physiology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/physiology
- Chloroplasts/genetics
- Chloroplasts/physiology
- Freezing
- Genes, Plant
- Genes, Reporter
- Genetic Complementation Test
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/physiology
- Intracellular Membranes
- Microscopy, Confocal
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Plant Leaves/genetics
- Plant Leaves/physiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/physiology
- RNA, Plant/genetics
- Recombinant Proteins/genetics
- Sequence Alignment
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- beta-Glucosidase/genetics
- beta-Glucosidase/physiology
Collapse
Affiliation(s)
- Nicolas Fourrier
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Xu C, Fan J, Cornish AJ, Benning C. Lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis requires the extraplastidic TGD4 protein. THE PLANT CELL 2008; 20:2190-204. [PMID: 18689504 PMCID: PMC2553622 DOI: 10.1105/tpc.108.061176] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/19/2008] [Accepted: 07/27/2008] [Indexed: 05/18/2023]
Abstract
The development of chloroplasts in Arabidopsis thaliana requires extensive lipid trafficking between the endoplasmic reticulum (ER) and the plastid. The biosynthetic enzymes for the final steps of chloroplast lipid assembly are associated with the plastid envelope membranes. For example, during biosynthesis of the galactoglycerolipids predominant in photosynthetic membranes, galactosyltransferases associated with these membranes transfer galactosyl residues from UDP-Gal to diacylglycerol. In Arabidopsis, diacylglycerol can be derived from the ER or the plastid. Here, we describe a mutant of Arabidopsis, trigalactosyldiacylglycerol4 (tgd4), in which ER-derived diacylglycerol is not available for galactoglycerolipid biosynthesis. This mutant accumulates diagnostic oligogalactoglycerolipids, hence its name, and triacylglycerol in its tissues. The TGD4 gene encodes a protein that appears to be associated with the ER membranes. Mutant ER microsomes show a decreased transfer of lipids to isolated plastids consistent with in vivo labeling data, indicating a disruption of ER-to-plastid lipid transfer. The complex lipid phenotype of the mutant is similar to that of the tgd1,2,3 mutants disrupted in components of a lipid transporter of the inner plastid envelope membrane. However, unlike the TGD1,2,3 complex, which is proposed to transfer phosphatidic acid through the inner envelope membrane, TGD4 appears to be part of the machinery mediating lipid transfer between the ER and the outer plastid envelope membrane. The extent of direct ER-to-plastid envelope contact sites is not altered in the tgd4 mutant. However, this does not preclude a possible function of TGD4 in those contact sites as a conduit for lipid transfer between the ER and the plastid.
Collapse
Affiliation(s)
- Changcheng Xu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
191
|
Abstract
Plastids are a diverse group of essential organelles in plants that include chloroplasts. The biogenesis and maintenance of these organelles relies on the import of thousands of nucleus-encoded proteins. The complexity of plastid structure has resulted in the evolution of at least four general import pathways that target proteins into and across the double membrane of the plastid envelope. Several of these pathways can be further divided into specialty pathways that mediate and regulate the import of specific classes of proteins. The co-ordination of import by these specialized pathways with changes in gene expression is critical for plastid and plant development. Moreover, protein import is acutely regulated in response to physiological and metabolic changes within the cell. In the present review we summarize the current knowledge of the mechanism of import via these pathways and highlight the regulatory mechanisms that integrate the plastid protein-trafficking pathways with the developmental and metabolic state of the plant.
Collapse
|
192
|
Abstract
Forty years ago, ferredoxin (Fdx) was shown to activate fructose 1,6-bisphosphatase in illuminated chloroplast preparations, thereby laying the foundation for the field now known as "redox biology." Enzyme activation was later shown to require the ubiquitous protein thioredoxin (Trx), reduced photosynthetically by Fdx via an enzyme then unknown-ferredoxin:thioredoxin reductase (FTR). These proteins, Fdx, FTR, and Trx, constitute a regulatory ensemble, the "Fdx/Trx system." The redox biology field has since grown beyond all expectations and now embraces a spectrum of processes throughout biology. Progress has been notable with plants that possess not only the plastid Fdx/Trx system, but also the earlier known NADP/Trx system in the cytosol, endoplasmic reticulum, and mitochondria. Plants contain at least 19 types of Trx (nine in chloroplasts). In this review, we focus on the structure and mechanism of action of members of the photosynthetic Fdx/Trx system and on biochemical processes linked to Trx. We also summarize recent evidence that extends the Fdx/Trx system to amyloplasts-heterotrophic plastids functional in the biosynthesis of starch and other cell components. The review highlights the plant as a model system to uncover principles of redox biology that apply to other organisms.
Collapse
Affiliation(s)
- Peter Schürmann
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Neuchâtel, Neuchâtel, Switzerland.
| | | |
Collapse
|
193
|
Abstract
Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.
Collapse
Affiliation(s)
- Paul Jarvis
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
194
|
Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B. Proteome analysis of non-model plants: a challenging but powerful approach. MASS SPECTROMETRY REVIEWS 2008; 27:354-77. [PMID: 18381744 DOI: 10.1002/mas.20170] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Collapse
|
195
|
Ghannam A, Hammache D, Matias C, Louwagie M, Garin J, Gerlier D. High-density rafts preferentially host the complement activator measles virus F glycoprotein but not the regulators of complement activation. Mol Immunol 2008; 45:3036-44. [DOI: 10.1016/j.molimm.2008.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/26/2008] [Indexed: 12/22/2022]
|
196
|
Tyra HM, Linka M, Weber APM, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 2008; 8:R212. [PMID: 17919328 PMCID: PMC2246286 DOI: 10.1186/gb-2007-8-10-r212] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/23/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
Analysis of plastid transporter proteins in Arabidopsis suggests a host origin and provides new insights into plastid evolution. Background It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re-targeting of existing host solute transporters to the plastid fore-runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production. Results We tested this model of transporter evolution by conducting a comprehensive analysis of the plastid permeome in Arabidopsis thaliana. Of 137 well-annotated transporter proteins that were initially considered, 83 that are broadly distributed in Plantae were submitted to phylogenetic analysis. Consistent with our hypothesis, we find that 58% of Arabidopsis transporters, including all carbohydrate transporters, are of host origin, whereas only 12% arose from the cyanobacterial endosymbiont. Four transporter genes are derived from a Chlamydia-like source, suggesting that establishment of the primary plastid likely involved contributions from at least two prokaryotic sources. Conclusion Our results indicate that the existing plastid solute transport system shared by Plantae is derived primarily from host genes. Important contributions also came from the cyanobacterial endosymbiont and Chlamydia-like bacteria likely co-resident in the first algae.
Collapse
Affiliation(s)
- Heather M Tyra
- Department of Biological Sciences and Roy J Carver Center for Comparative Genomics, 446 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | | | | | |
Collapse
|
197
|
Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Mol Cell Proteomics 2008; 7:1609-38. [PMID: 18453340 DOI: 10.1074/mcp.m800016-mcp200] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloroplasts of maize leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C(4) photosynthesis. Chloroplasts contain thylakoid and envelope membranes that contain the photosynthetic machineries and transporters but also proteins involved in e.g. protein homeostasis. These chloroplast membranes must be specialized within each cell type to accommodate C(4) photosynthesis and regulate metabolic fluxes and activities. This quantitative study determined the differentiated state of BS and M chloroplast thylakoid and envelope membrane proteomes and their oligomeric states using innovative gel-based and mass spectrometry-based protein quantifications. This included native gels, iTRAQ, and label-free quantification using an LTQ-Orbitrap. Subunits of Photosystems I and II, the cytochrome b(6)f, and ATP synthase complexes showed average BS/M accumulation ratios of 1.6, 0.45, 1.0, and 1.33, respectively, whereas ratios for the light-harvesting complex I and II families were 1.72 and 0.68, respectively. A 1000-kDa BS-specific NAD(P)H dehydrogenase complex with associated proteins of unknown function containing more than 15 proteins was observed; we speculate that this novel complex possibly functions in inorganic carbon concentration when carboxylation rates by ribulose-bisphosphate carboxylase/oxygenase are lower than decarboxylation rates by malic enzyme. Differential accumulation of thylakoid proteases (Egy and DegP), state transition kinases (STN7,8), and Photosystem I and II assembly factors was observed, suggesting that cell-specific photosynthetic electron transport depends on post-translational regulatory mechanisms. BS/M ratios for inner envelope transporters phosphoenolpyruvate/P(i) translocator, Dit1, Dit2, and Mex1 were determined and reflect metabolic fluxes in carbon metabolism. A wide variety of hundreds of other proteins showed differential BS/M accumulation. Mass spectral information and functional annotations are available through the Plant Proteome Database. These data are integrated with previous data, resulting in a model for C(4) photosynthesis, thereby providing new rationales for metabolic engineering of C(4) pathways and targeted analysis of genetic networks that coordinate C(4) differentiation.
Collapse
Affiliation(s)
- Wojciech Majeran
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
198
|
Schaller F, Zerbe P, Reinbothe S, Reinbothe C, Hofmann E, Pollmann S. The allene oxide cyclase family of Arabidopsis thaliana: localization and cyclization. FEBS J 2008; 275:2428-41. [PMID: 18393998 DOI: 10.1111/j.1742-4658.2008.06388.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Jasmonates are derived from oxygenated fatty acids (oxylipins) via the octadecanoid pathway and are characterized by a pentacyclic ring structure. They have regulatory functions as signaling molecules in plant development and adaptation to environmental stress. Recently, we solved the structure of allene oxide cyclase 2 (AOC2) of Arabidopsis thaliana, which is, together with the other three AOCs, a key enzyme in the biosynthesis of jasmonates, in that it releases the first cyclic and biologically active metabolite -- 12-oxo-phytodienoic acid (OPDA). On the basis of models for the bound substrate, 12,13(S)-epoxy-9(Z),11,15(Z)-octadecatrienoic acid, and the product, OPDA, we proposed that a conserved Glu promotes the reaction by anchimeric assistance. According to this hypothesis, the transition state with a pentadienyl carbocation and an oxyanion is stabilized by a strongly bound water molecule and favorable pi-pi interactions with aromatic residues in the cavity. Stereoselectivity results from steric restrictions to the necessary substrate isomerizations imposed by the protein environment. Here, site-directed mutagenesis was used to explore and verify the proposed reaction mechanism. In a comparative analysis of the AOC family from A. thaliana involving enzymatic characterization, in vitro import, and transient expression of AOC-enhanced green fluorescent protein fusion proteins for analysis of subcellular targeting, we demonstrate that all four AOC isoenzymes may contribute to jasmonate biosynthesis, as they are all located in chloroplasts and, in concert with the allene oxide synthase, they are all able to convert 13(S)-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid into enantiomerically pure cis(+)-OPDA.
Collapse
Affiliation(s)
- Florian Schaller
- Lehrstuhl für Pflanzenphysiologie, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | |
Collapse
|
199
|
Masselon CD, Kieffer-Jaquinod S, Brugière S, Dupierris V, Garin J. Influence of mass resolution on species matching in accurate mass and retention time (AMT) tag proteomics experiments. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:986-992. [PMID: 18320544 DOI: 10.1002/rcm.3447] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Diverse mass spectrometric instruments have been used to provide data for accurate mass and retention time (AMT) tag proteomics analyses, including ion trap, quadrupole time-of-flight, and Fourier transform mass spectrometry (FTMS). An important attribute of these instruments, beside mass accuracy, is their spectral resolution. In fact, the ability to separate peaks with close m/z values is likely to play a major role in enabling species identification and matching in analyses of very complex proteomics samples. In FTMS, resolution is directly proportional to the detection period and can therefore be easily tuned. We took advantage of this feature to investigate the effect of resolution on species identification and matching in an AMT tag experiment. Using an Arabidopsis thaliana chloroplast protein extract as prototypical 'real-life' sample, we have compared the number of detected features, the optimal mass tolerance for species matching, the number of matched species and the false discovery rate obtained at various resolution settings. It appears that while the total number of matches is not significantly affected by a reduction of resolution in the range investigated, the confidence level of identifications significantly drops as evidenced by the estimated false discovery rate.
Collapse
Affiliation(s)
- Christophe D Masselon
- CEA, DSV, iRTSV, Laboratoire d'Etude de la Dynamique des Protéomes, 38054 Grenoble, France.
| | | | | | | | | |
Collapse
|
200
|
Blomqvist LA, Ryberg M, Sundqvist C. Proteomic analysis of highly purified prolamellar bodies reveals their significance in chloroplast development. PHOTOSYNTHESIS RESEARCH 2008; 96:37-50. [PMID: 18071923 DOI: 10.1007/s11120-007-9281-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 11/29/2007] [Indexed: 05/25/2023]
Abstract
The prolamellar body (PLB) proteome of dark-grown wheat leaves was characterized. PLBs are formed not only in etioplasts but also in chloroplasts in young developing leaves during the night, yet their function is not fully understood. Highly purified PLBs were prepared from 7-day-old dark-grown leaves and identified by their spectral properties as revealed by low-temperature fluorescence spectroscopy. The PLB preparation had no contamination of extra-plastidal proteins, and only two envelope proteins were found. The PLB proteome was analysed by a combination of 1-D SDS-PAGE and nano-LC FTICR MS. The identification of chlorophyll synthase in the PLB fraction is the first time this enzyme protein was found in extracts of dark-grown plants. This finding is in agreement with its previous localization to PLBs using activity studies. NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyses the reduction of protochlorophyllide to chlorophyllide, dominates the proteome of PLBs. Besides the identification of the PORA protein, the PORB protein was identified for the first time in dark-grown wheat. Altogether 64 unique proteins, representing pigment biosynthesis, photosynthetic light reaction, Calvin cycle proteins, chaperones and protein synthesis, were identified. The in number of proteins' largest group was the one involved in photosynthetic light reactions. This fact strengthens the assumption that the PLB membranes are precursors to the thylakoids and used for the formation of the photosynthetic membranes during greening. The present work is important to enhance our understanding of the significance of PLBs in chloroplast development.
Collapse
Affiliation(s)
- Lisa A Blomqvist
- Department of Plant and Environmental Sciences, Göteborg University, P.O. Box 461, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|