151
|
Rafiee-Yarandi H, Ghorbani GR, Alikhani M, Sadeghi-Sefidmazgi A, Drackley JK. A comparison of the effect of soybeans roasted at different temperatures versus calcium salts of fatty acids on performance and milk fatty acid composition of mid-lactation Holstein cows. J Dairy Sci 2016; 99:5422-5435. [PMID: 27085410 DOI: 10.3168/jds.2015-10546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
To evaluate the effect of soybeans roasted at different temperatures on milk yield and milk fatty acid composition, 8 (4 multiparous and 4 primiparous) mid-lactation Holstein cows (42.9±3 kg/d of milk) were assigned to a replicated 4×4 Latin square design. The control diet (CON) contained lignosulfonate-treated soybean meal (as a source of rumen-undegradable protein) and calcium salts of fatty acids (Ca-FA, as a source of energy). Diets 2, 3, and 4 contained ground soybeans roasted at 115, 130, or 145°C, respectively (as the source of protein and energy). Dry matter intake (DMI) tended to be greater for CON compared with the roasted soybean diets (24.6 vs. 23.3 kg/d). Apparent total-tract digestibilities of dry matter, organic matter, and crude protein were not different among the treatments. Actual and 3.5% fat-corrected milk yield were greater for CON than for the roasted soybean diets. Milk fat was higher for soybeans roasted at 130°C than for those roasted at either 115 or 145°C. No differences were observed between the CON and the roasted soybean diets, or among roasting temperatures, on feed efficiency and nitrogen concentrations in rumen, milk, and plasma. Milk from cows fed roasted soybeans had more long-chain fatty acids and fewer medium-chain fatty acids than milk from cows fed Ca-FA. Compared with milk from cows fed the CON diet, total milk fat contents of conjugated linoleic acid, cis-9,trans-11 conjugated linoleic acid, cis-C18:2, cis-C18:3, and C22:0 were higher for cows fed the roasted soybean diets. Polyunsaturated fatty acids and total unsaturated fatty acids were greater in milk from cows fed roasted soybean diets than in milk from cows fed CON. Concentrations of C16:0 and saturated fatty acids in milk fat were greater for CON than for the roasted soybean diets. Cows fed roasted soybean diets had lower atherogenic and thrombogenic indices than cows fed CON. Milk fatty acid composition did not differ among different roasting temperatures. In summary, results showed that cows fed CON had higher DMI and milk yield than cows fed roasted soybean diets. Among different roasting temperatures (115, 130, and 145°C), soybeans roasted at 115°C led to higher milk production and lower DMI. Cows fed roasted soybeans, regardless of the roasting temperature, had more unsaturated fatty acids in milk. Using roasted soybeans in dairy cow rations could, therefore, improve the health indices of milk for human nutrition.
Collapse
Affiliation(s)
- H Rafiee-Yarandi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - G R Ghorbani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Alikhani
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - A Sadeghi-Sefidmazgi
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - J K Drackley
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
152
|
Pegolo S, Cecchinato A, Mele M, Conte G, Schiavon S, Bittante G. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J Dairy Sci 2016; 99:4558-4573. [DOI: 10.3168/jds.2015-10420] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
|
153
|
Shi Y, Wang SJ, Tu ZC, Wang H, Li RY, Zhang L, Huang T, Su T, Li C. Quality evaluation of peony seed oil spray-dried in different combinations of wall materials during encapsulation and storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:2597-605. [PMID: 27478215 PMCID: PMC4951412 DOI: 10.1007/s13197-016-2225-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 10/21/2022]
Abstract
This study aimed at evaluating the performance of peony seed oil microencapsulated by spray drying during encapsulation and storage. Four different combinations of gum arabic (GA), corn syrup (CS), whey protein concentrate (WPC) and sodium caseinate (CAS) were used to encapsulate peony seed oil. The best encapsulation efficiency was obtained for CAS/CS followed by the CAS/GA/CS combination with the encapsulation ratio of 93.71 and 92.80 %, respectively, while the lowest encapsulation efficiency was obtained for WPC/GA/CS (85.96 %). Scanning electron microscopy and confocal laser scanning microscopy revealed that the particles were spherical in shape and did not exhibit apparent cracks or fissures, and gum arabic was uniformly distributed across the wall of the microcapsules. Oxidative stability study indicated that the CAS/GA/CS combination presented the best protection against lipid oxidation and the smallest loss of polyunsaturated fatty acid content among all of the formulas as measured by gas chromatography. Therefore, CAS/GA/CS could be promising materials encapsulate peony seed oil with high encapsulation efficiency and minimal lipid oxidation.
Collapse
Affiliation(s)
- Yan Shi
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Shu-jie Wang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Zong-cai Tu
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
- />College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022 China
| | - Hui Wang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Ru-yi Li
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Lu Zhang
- />College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022 China
| | - Tao Huang
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Ting Su
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| | - Cui Li
- />State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047 China
| |
Collapse
|
154
|
Hussain SKA, Srivastava A, Tyagi A, Shandilya UK, Kumar A, Kumar S, Panwar S, Tyagi AK. Characterization of CLA-producing Butyrivibrio spp. reveals strain-specific variations. 3 Biotech 2016; 6:90. [PMID: 28330160 PMCID: PMC4786556 DOI: 10.1007/s13205-016-0401-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/22/2016] [Indexed: 01/18/2023] Open
Abstract
Conjugated Linoleic Acid (CLA), a fatty acid with high nutraceutical value is produced in rumen by resident bacterial species, especially Butyrivibrio spp. The present study was undertaken to examine the diversity of indigenous Butyrivibrio spp. from rumen liquor of Indian ruminants. The isolates were screened for their CLA production capability at different level of linoleic acid (LA) (0, 200, 400, 600, 800 μg/ml) at different time intervals (0, 2, 4, 6, 12, and 24 h). A total of more than 300 anaerobic cultures were isolated and 31 of them were identified as Butyrivibrio spp. based on morphological, biochemical and molecular characterization. Further, molecular characterization revealed that a large portion (67.7 %) of isolated Butyrivibrio belonged to Butyrivibrio fibrisolvens (B. fibrisolvens) species which is considered to be the most active bacteria amongst the rumen bacteria populace in terms of CLA production. Bacterial isolate VIII (strain 4a) showed highest CLA production ability (140.77 μg/ml) when incubated at 200 μg/ml LA for 2 h, which is 240 % higher than the isolate XXVII, Butyrivibrio proteoclasticus (B. proteoclasticus) showing lowest CLA production (57.28 μg/ml) amongst the screened isolates. It was evident from the observations recorded during the course of experiments that CLA production ability is strain specific and thus did not follow a single pattern. CLA production also varied with time of incubation and concentration of free linoleic acid supplemented in the growth medium. The results of these findings put forward a strain that is high CLA producer and can be further exploited as an additive for enhancing meat and milk quality in ruminants.
Collapse
Affiliation(s)
- S K Asraf Hussain
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Anima Srivastava
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashish Tyagi
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Umesh Kumar Shandilya
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Ashwani Kumar
- Seth Jai Parkash Mukand Lal Institute of Engineering and Technology (JMIT), Radaur, 135133, Haryana, India
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, 123029, Haryana, India
| | - Sachin Kumar
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Surbhi Panwar
- Seth Jai Parkash Mukand Lal Institute of Engineering and Technology (JMIT), Radaur, 135133, Haryana, India
| | - Amrish Kumar Tyagi
- Dairy Cattle Nutrition Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
155
|
Coleman H, Quinn P, Clegg ME. Medium-chain triglycerides and conjugated linoleic acids in beverage form increase satiety and reduce food intake in humans. Nutr Res 2016; 36:526-33. [DOI: 10.1016/j.nutres.2016.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
|
156
|
Vahmani P, Jon Meadus W, Uttaro B, López-Campos Ó, Mapiye C, Rolland DC, Caine WR, Aalhus JL, Dugan ME. Effects of feeding beef fat enriched with polyunsaturated fatty acid biohydrogenation products to pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.1139/cjas-2015-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A total of sixteen barrows were randomly assigned to diets containing 5% biohydrogenation product (BHP)-enriched or control beef fat for 7 weeks. On completion of 7 weeks, we found that feeding enriched fat led to deposition of BHP and isomer-specific metabolism of trans-18:1 in adipose tissue. It was also noticed that total and HDL-cholesterol were decreased; however, LDL-cholesterol and triglycerides were not affected.
Collapse
Affiliation(s)
- Payam Vahmani
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - W. Jon Meadus
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - Bethany Uttaro
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - Óscar López-Campos
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - David C. Rolland
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - William R. Caine
- Caine Research Consulting, P.O. Box 1124, Nisku, AB T9E 8A8, Canada
| | - Jennifer L. Aalhus
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| | - Michael E.R. Dugan
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB T4L 1W1, Canada
| |
Collapse
|
157
|
Zhang L, Hu X, Miao X, Chen X, Nan S, Fu H. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala. PLoS One 2016; 11:e0154300. [PMID: 27115614 PMCID: PMC4846011 DOI: 10.1371/journal.pone.0154300] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Artemisia sphaerocephala, a semi-shrub belonging to the Artemisia genus of the Compositae family, is an important pioneer plant that inhabits moving and semi-stable sand dunes in the deserts and steppes of northwest and north-central China. It is very resilient in extreme environments. Additionally, its seeds have excellent nutritional value, and the abundant lipids and polysaccharides in the seeds make this plant a potential valuable source of bio-energy. However, partly due to the scarcity of genetic information, the genetic mechanisms controlling the traits and environmental adaptation capacity of A. sphaerocephala are unknown. RESULTS Here, we present the first in-depth transcriptomic analysis of A. sphaerocephala. To maximize the representation of conditional transcripts, mRNA was obtained from 17 samples, including living tissues of desert-growing A. sphaerocephala, seeds germinated in the laboratory, and calli subjected to no stress (control) and high and low temperature, high and low osmotic, and salt stresses. De novo transcriptome assembly performed using an Illumina HiSeq 2500 platform resulted in the generation of 68,373 unigenes. We analyzed the key genes involved in the unsaturated fatty acid synthesis pathway and identified 26 A. sphaerocephala fad2 genes, which is the largest fad2 gene family reported to date. Furthermore, a set of genes responsible for resistance to extreme temperatures, salt, drought and a combination of stresses was identified. CONCLUSION The present work provides abundant genomic information for functional dissection of the important traits of A. sphaerocephala and contributes to the current understanding of molecular adaptive mechanisms of A. sphaerocephala in the desert environment. Identification of the key genes in the unsaturated fatty acid synthesis pathway could increase understanding of the biological regulatory mechanisms of fatty acid composition traits in plants and facilitate genetic manipulation of the fatty acid composition of oil crops.
Collapse
Affiliation(s)
- Lijing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaowei Hu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaolong Chen
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shuzhen Nan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hua Fu
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
158
|
Ulven T, Christiansen E. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120. Annu Rev Nutr 2016; 35:239-63. [PMID: 26185978 DOI: 10.1146/annurev-nutr-071714-034410] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides acting as precursors of potent signaling molecules, dietary fatty acids act directly on intracellular and cell surface receptors. The free fatty acid receptor 4 (FFA4, previously GPR120) is linked to the regulation of body weight, inflammation, and insulin resistance and represents a potential target for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also discuss the possibility of dietary schemes that implement activation of FFA4.
Collapse
Affiliation(s)
- Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark;
| | | |
Collapse
|
159
|
Woo H, Chung MY, Kim J, Kong D, Min J, Choi HD, Choi IW, Kim IH, Noh SK, Kim BH. Conjugated Linoleic Triacylglycerols Exhibit Superior Lymphatic Absorption Than Free Conjugate Linoleic Acids and Have Antiobesity Properties. J Med Food 2016; 19:486-94. [PMID: 27081749 DOI: 10.1089/jmf.2015.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aimed to compare lymphatic absorption of conjugated linoleic acids (CLAs) in the triacylglycerol (TAG) or free fatty acid (FFA) form and to examine the antiobesity effects of different doses of CLAs in the TAG form in animals. Conjugated linoleic TAGs (containing 70.3 wt% CLAs; CLA-TAG) were prepared through lipase-catalyzed esterification of glycerol with commercial CLA mixtures (CLA-FFA). Lymphatic absorption of CLA-TAG and CLA-FFA was compared in a rat model of lymphatic cannulation. Greater amounts of cis-9,trans-11 and trans-10,cis-12 CLAs were detected in the collected lymph from a lipid emulsion containing CLA-TAG. This result suggests that CLA-TAG has greater capacity for lymphatic absorption than does CLA-FFA. The antiobesity efficacy of CLA-TAG at different doses was examined in mice with diet-induced obesity. A high-fat diet (HFD) for 12 weeks caused a significant increase in body weight and epididymal and retroperitoneal fat weights, which were significantly decreased by 2% dietary supplementation (w/w) with CLA-TAG. CLA-TAG at 2% significantly attenuated the HFD-induced upregulation of serum TAG, but led to hepatomegaly and exacerbated HFD-induced hypercholesterolemia. CLA-TAG at 1% significantly attenuated upregulation of retroperitoneal fat weight and significantly increased liver weight, which was decreased by the HFD. Nonetheless, the liver weight in group "HFD +1% CLA-TAG" was not significantly different from that of normal diet controls. CLA-TAG at 1% significantly reduced serum TAG levels and did not exacerbate HFD-induced hypercholesterolemia. Thus, 1% dietary supplementation with CLA-TAG reduces retroperitoneal fat weight without apparent hepatomegaly, a known side-effect of CLAs in mouse models of obesity.
Collapse
Affiliation(s)
- Hyunjoon Woo
- 1 Department of Food Science and Technology, Chung-Ang University , Anseong, Korea
| | - Min-Yu Chung
- 2 Korea Food Research Institute , Seongnam, Korea
| | - Juyeon Kim
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Daecheol Kong
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Jinyoung Min
- 2 Korea Food Research Institute , Seongnam, Korea
| | - Hee-Don Choi
- 2 Korea Food Research Institute , Seongnam, Korea
| | - In-Wook Choi
- 2 Korea Food Research Institute , Seongnam, Korea
| | - In-Hwan Kim
- 4 Department of Food and Nutrition, Korea University , Seoul, Korea
| | - Sang K Noh
- 3 Department of Food and Nutrition, Changwon National University , Changwon, Korea
| | - Byung Hee Kim
- 5 Department of Food and Nutrition, Sookmyung Women's University , Seoul, Korea
| |
Collapse
|
160
|
Welter KC, Martins CMDMR, de Palma ASV, Martins MM, dos Reis BR, Schmidt BLU, Saran Netto A. Canola Oil in Lactating Dairy Cow Diets Reduces Milk Saturated Fatty Acids and Improves Its Omega-3 and Oleic Fatty Acid Content. PLoS One 2016; 11:e0151876. [PMID: 27015405 PMCID: PMC4807834 DOI: 10.1371/journal.pone.0151876] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
To produce milk that is healthier for human consumption, the present study evaluated the effect of including canola oil in the diet of dairy cows on milk production and composition as well as the nutritional quality of this milk fat. Eighteen Holstein cows with an average daily milk yield of 22 (± 4) kg/d in the middle stage of lactation were used. The cows were distributed in 6 contemporary 3x3 Latin squares consisting of 3 periods and 3 treatments: control diet (without oil), 3% inclusion of canola oil in the diet and 6% inclusion of canola oil in the diet (dry matter basis). The inclusion of 6% canola oil in the diet of lactating cows linearly reduced the milk yield by 2.51 kg/d, short-chain fatty acids (FA) by 41.42%, medium chain FA by 27.32%, saturated FA by 20.24%, saturated/unsaturated FA ratio by 39.20%, omega-6/omega-3 ratio by 39.45%, and atherogenicity index by 48.36% compared with the control treatment. Moreover, with the 6% inclusion of canola oil in the diet of cows, there was an increase in the concentration of long chain FA by 45.91%, unsaturated FA by 34.08%, monounsaturated FA by 40.37%, polyunsaturated FA by 17.88%, milk concentration of omega-3 by 115%, rumenic acid (CLA) by 16.50%, oleic acid by 44.87% and h/H milk index by 94.44% compared with the control treatment. Thus, the inclusion of canola oil in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human diet; however, the lactating performance of dairy cows is reduce.
Collapse
Affiliation(s)
- Katiéli Caroline Welter
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - André Soligo Vizeu de Palma
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Mellory Martinson Martins
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Bárbara Roqueto dos Reis
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Bárbara Laís Unglaube Schmidt
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Arlindo Saran Netto
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
161
|
Sources and Bioactive Properties of Conjugated Dietary Fatty Acids. Lipids 2016; 51:377-97. [PMID: 26968402 DOI: 10.1007/s11745-016-4135-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.
Collapse
|
162
|
Heo W, Kim ET, Cho SD, Kim JH, Kwon SM, Jeong HY, Ki KS, Yoon HB, Ahn YD, Lee SS, Kim YJ. The In vitro Effects of Nano-encapsulated Conjugated Linoleic Acid on Stability of Conjugated Linoleic Acid and Fermentation Profiles in the Rumen. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:365-71. [PMID: 26950867 PMCID: PMC4811787 DOI: 10.5713/ajas.15.0626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/25/2015] [Accepted: 09/09/2015] [Indexed: 11/27/2022]
Abstract
This study was aimed to evaluate the stability of conjugated linoleic acids (CLAs) by nano-encapsulation against in vitro ruminal biohydrogenation by microbial enzymatic conversion. CLAs (free fatty acid form of CLA [CLA-FFA], nano-encapsulated CLA-FFA, triglyceride form of CLA [CLA-TG], and nano-encapsulated CLA-TG) were used in the in vitro fermentation experiments. When Butyrivibrio fibrisolvens (B. fibrisolvens) was incubated with CLA-FFAs, the concentrations of cis-9, trans-11 CLA and vaccenic acid (VA) slightly was decreased and increased by nano-encapsulation, respectively. When B. fibrisolvens was incubated with CLA-TG, the concentrations of cis-9, trans-11 CLA and VA decreased, but these were increased when B. fibrisolvens was incubated with nano-encapsulated CLA-TG. The nano-encapsulation was more effective against the in vitro biohydrogenation activity of B.fibrisolvens incubated with CLA-FFA than with CLA-TG. In the in vitro ruminal incubation test, the total gas production and concentration of total volatile fatty acids incubated with nano-encapsulated CLA-FFA and CLA-TG were increased significantly after 24 h incubation (p<0.05). Nano-encapsulated CLA-FFA might, thus, improve the ruminal fermentation characteristics without adverse effects on the incubation process. In addition, nano-encapsulated CLA-FFA increased the population of Fibrobacter succinogenes and decreased the population of B. fibrisolvens population. These results indicate that nano-encapsulation could be applied to enhance CLA levels in ruminants by increasing the stability of CLA without causing adverse effects on ruminal fermentation.
Collapse
Affiliation(s)
- Wan Heo
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Eun Tae Kim
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Sung Do Cho
- Policy Research and Planning Team, Korea Institute for Advancement of Technology, Seoul 135-513, Korea
| | - Jun Ho Kim
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Seong Min Kwon
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Ha Yeon Jeong
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Kwang Seok Ki
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | - Ho Baek Yoon
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| | | | - Sung Sill Lee
- Division of Applied Life Science (BK21 , IALS), Gyeongsang National University, Jinju 660-701, Korea
| | - Young Jun Kim
- National Institute of Animal Science, RDA, Cheonan 331-808, Korea
| |
Collapse
|
163
|
Kim JH, Kim Y, Kim YJ, Park Y. Conjugated Linoleic Acid: Potential Health Benefits as a Functional Food Ingredient. Annu Rev Food Sci Technol 2016; 7:221-44. [DOI: 10.1146/annurev-food-041715-033028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yoo Kim
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 339-700, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
164
|
Davies IG, Blackham T, Jaworowska A, Taylor C, Ashton M, Stevenson L. Saturated and trans-fatty acids in UK takeaway food. Int J Food Sci Nutr 2016; 67:217-24. [PMID: 26911372 DOI: 10.3109/09637486.2016.1144723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the study was to analyze the saturated fatty acid (SFA) and trans-fatty acid (TFA) contents of popular takeaway foods in the UK (including English, pizza, Chinese, Indian and kebab cuisine). Samples of meals were analyzed by an accredited public analyst laboratory for SFA and TFA. The meals were highly variable for SFA and TFA. English and Pizza meals had the highest median amount of SFA with 35.7 g/meal; Kebab meals were high in TFA with up to 5.2 g/meal. When compared to UK dietary reference values, some meals exceeded SFA and TFA recommendations from just one meal. Takeaway food would be an obvious target to reduce SFA and TFA contents and increase the potential of meeting UK recommendations. Strategies such as reformulation and smaller takeaway portion sizes warrant investigation.
Collapse
Affiliation(s)
- Ian Glynn Davies
- a School of Sports Studies, Leisure and Nutrition, Faculty of Education , Health and Community, Liverpool John Moores University , Liverpool , UK
| | - Toni Blackham
- a School of Sports Studies, Leisure and Nutrition, Faculty of Education , Health and Community, Liverpool John Moores University , Liverpool , UK
| | - Agnieszka Jaworowska
- b Department of Life and Sports Science; School of Engineering and Science , University of Greenwich , London , UK
| | | | - Matthew Ashton
- c Trading Standards, Knowsley Council/NHS , Liverpool , UK
| | - Leonard Stevenson
- a School of Sports Studies, Leisure and Nutrition, Faculty of Education , Health and Community, Liverpool John Moores University , Liverpool , UK
| |
Collapse
|
165
|
Heo W, Kim JH, Pan JH, Kim YJ. Lecithin-Based Nano-emulsification Improves the Bioavailability of Conjugated Linoleic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1355-1360. [PMID: 26822835 DOI: 10.1021/acs.jafc.5b05397] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we investigated the effects of lecithin-based nano-emulsification on the heat stability and bioavailability of conjugated linoleic acid (CLA) in different free fatty acid (FFA) and triglyceride (TG) forms. CLA nano-emulsion in TG form exhibited a small droplet size (70-120 nm) compared to CLA nano-emulsion in FFA form (230-260 nm). Nano-emulsification protected CLA isomers in TG form, but not in free form, against thermal decomposition during the heat treatment. The in vitro bioavailability test using monolayers of Caco-2 human intestinal cells showed that nano-emulsification increased the cellular uptake of CLA in both FFA and TG forms. More importantly, a rat feeding study showed that CLA content in small intestinal tissues or plasma was higher when CLA was emulsified, indicating an enhanced oral bioavailability of CLA by nano-emulsification. These results provide important information for development of nano-emulsion-based delivery systems that improve thermal stability and bioavailability of CLA.
Collapse
Affiliation(s)
- Wan Heo
- Department of Food and Biotechnology, Korea University , Sejong 30019, Republic of Korea
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University , Sejong 30019, Republic of Korea
| | - Jeong Hoon Pan
- Department of Food and Biotechnology, Korea University , Sejong 30019, Republic of Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University , Sejong 30019, Republic of Korea
| |
Collapse
|
166
|
Weatherly CA, Zhang Y, Smuts JP, Fan H, Xu C, Schug KA, Lang JC, Armstrong DW. Analysis of Long-Chain Unsaturated Fatty Acids by Ionic Liquid Gas Chromatography. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1422-1432. [PMID: 26852774 DOI: 10.1021/acs.jafc.5b05988] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four ionic liquid (IL) columns, SLB-IL59, SLB-IL60, SLB-IL65, and SLB-IL111, were evaluated for more rapid analysis or improved resolution of long-chain methyl and ethyl esters of omega-3, omega-6, and additional positional isomeric and stereoisomeric blends of fatty acids found in fish oil, flaxseed oil, and potentially more complicated compositions. The three structurally distinct IL columns provided shorter retention times and more symmetric peak shapes for the fatty acid methyl or ethyl esters than a conventional polyethylene glycol column (PEG), resolving cis- and trans-fatty acid isomers that coeluted on the PEG column. The potential for improved resolution of fatty acid esters is important for complex food and supplement applications, where different forms of fatty acid can be incorporated. Vacuum ultraviolet detection contributed to further resolution for intricate mixtures containing cis- and trans-isomers, as exemplified in a fatty acid blend of shorter chain C18:1 esters with longer chain polyunsaturated fatty acid (PUFA) esters.
Collapse
Affiliation(s)
- Choyce A Weatherly
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Ying Zhang
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Jonathan P Smuts
- VUV Analytics, Inc. , 715 Discovery Boulevard Suite 502, Cedar Park, Texas 78613, United States
| | - Hui Fan
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | | | - Kevin A Schug
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - John C Lang
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
167
|
Colmenares D, Sun Q, Shen P, Yue Y, McClements DJ, Park Y. Delivery of dietary triglycerides to Caenorhabditis elegans using lipid nanoparticles: Nanoemulsion-based delivery systems. Food Chem 2016; 202:451-7. [PMID: 26920318 DOI: 10.1016/j.foodchem.2016.02.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 01/16/2023]
Abstract
The nematode Caenorhabditis elegans is a powerful tool for studying food bioactives on specific biochemical pathways. However, many food bioactives are highly hydrophobic with extremely low water-solubilities, thereby making them difficult to study using C. elegans. The purpose of this study was to develop nanoemulsion-based systems to deliver hydrophobic molecules in a form that could be ingested by C. elegans. Optical microscopy showed that oil-in-water nanoemulsions with a range of particle diameters (40-500nm) could be ingested by C. elegans. The amount of lipid ingested depended on the size and concentration of the nanoparticles. Fatty acid analysis showed incorporation of conjugated linoleic acid and there was a significant reduction in the fat levels of C. elegans when they were incubated with nanoemulsions containing conjugated linoleic acid, which suggested that this hydrophobic lipid was successfully delivered to the nematodes. The incorporation of hydrophobic molecules into nanoemulsion based-delivery systems may therefore enable their activities to be studied using C. elegans.
Collapse
Affiliation(s)
- Daniel Colmenares
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Quancai Sun
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Peiyi Shen
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - D Julian McClements
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA 01003, USA.
| |
Collapse
|
168
|
Wang T, Lee HG. Advances in research on cis-9, trans-11 conjugated linoleic acid: a major functional conjugated linoleic acid isomer. Crit Rev Food Sci Nutr 2016; 55:720-31. [PMID: 24915361 DOI: 10.1080/10408398.2012.674071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugated linoleic acid (CLA) consists of a group of positional and geometric conjugated isomers of linoleic acid. Since the identification of CLA as a factor that can inhibit mutagenesis and carcinogenesis, thousands of studies have been conducted in the last several decades. Among the many isomers discovered, cis-9, trans-11 CLA is the most intensively studied because of its multiple, isomer-specific effects in humans and animals. This paper provides an overview of the available data on cis-9, trans-11 CLA, including its isomer-specific effects, biosynthesis, in vivo/in vitro research models, quantification, and the factors influencing its content in ruminant products.
Collapse
Affiliation(s)
- Tao Wang
- a Department of Animal Science, and Technology, College of Animal Bioscience & Technology , Konkuk University , 120 Neungdong-ro, Gwangjin-gu , Seoul 143-701 , Republic of Korea
| | | |
Collapse
|
169
|
Kim Y, Kim J, Whang KY, Park Y. Impact of Conjugated Linoleic Acid (CLA) on Skeletal Muscle Metabolism. Lipids 2016; 51:159-78. [PMID: 26729488 DOI: 10.1007/s11745-015-4115-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/16/2015] [Indexed: 12/17/2022]
Abstract
Conjugated linoleic acid (CLA) has garnered special attention as a food bioactive compound that prevents and attenuates obesity. Although most studies on the effects of CLA on obesity have focused on the reduction of body fat, a number of studies have demonstrated that CLA also increases lean body mass and enhances physical performances. It has been suggested that these effects may be due in part to physiological changes in the skeletal muscle, such as changes in the muscle fiber type transformation, alteration of the intracellular signaling pathways in muscle metabolism, or energy metabolism. However, the mode of action for CLA in muscle metabolism is not completely understood. The purpose of this review is to summarize the current knowledge of the effects of CLA on skeletal muscle metabolism. Given that CLA not only reduces body fat, but also improves lean mass, there is great potential for the use of CLA to improve muscle metabolism, which would have a significant health impact.
Collapse
Affiliation(s)
- Yoo Kim
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA
| | - Jonggun Kim
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, Korea University, Seoul, 136-713, Republic of Korea
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, 102 Holdsworth Way, Amherst, MA, 01003, USA.
| |
Collapse
|
170
|
Lipase-catalyzed enrichment of egg yolk phosphatidylcholine with conjugated linoleic acid. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
171
|
Jones PJ, Jew S. Health Claims and Nutrition Marketing. FUNCTIONAL DIETARY LIPIDS 2016:287-302. [DOI: 10.1016/b978-1-78242-247-1.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
172
|
Kim Y, Kim D, Good DJ, Park Y. Conjugated linoleic acid (CLA) influences muscle metabolism via stimulating mitochondrial biogenesis signaling in adult‐onset inactivity induced obese mice. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201500220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoo Kim
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| | - Daeyoung Kim
- Department of Mathematics and StatisticsUniversity of MassachusettsAmherstMAUSA
| | - Deborah J. Good
- Department of Human Nutrition, Foods and ExerciseVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Yeonhwa Park
- Department of Food ScienceUniversity of MassachusettsAmherstMAUSA
| |
Collapse
|
173
|
Tunick MH, Van Hekken DL, Paul M, Ingham ER, Karreman HJ. Case study: Comparison of milk composition from adjacent organic and conventional farms in the USA. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael H Tunick
- Dairy & Functional Foods Research Unit; Eastern Regional Research Center; Agricultural Research Service; US Department of Agriculture; 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Diane L Van Hekken
- Dairy & Functional Foods Research Unit; Eastern Regional Research Center; Agricultural Research Service; US Department of Agriculture; 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Moushumi Paul
- Dairy & Functional Foods Research Unit; Eastern Regional Research Center; Agricultural Research Service; US Department of Agriculture; 600 E. Mermaid Lane Wyndmoor PA 19038 USA
| | - Elaine R Ingham
- Soil Foodweb, Inc.; 1750 SW 3rd St., #C Corvallis OR 97333 USA
| | | |
Collapse
|
174
|
Liu WN, Leung KN. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages. PLoS One 2015; 10:e0143684. [PMID: 26629697 PMCID: PMC4667904 DOI: 10.1371/journal.pone.0143684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| |
Collapse
|
175
|
Chaplin A, Palou A, Serra F. Body fat loss induced by calcium in co-supplementation with conjugated linoleic acid is associated with increased expression of bone formation genes in adult mice. J Nutr Biochem 2015; 26:1540-6. [DOI: 10.1016/j.jnutbio.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/03/2023]
|
176
|
Qian Z, Wu Z, Huang L, Qiu H, Wang L, Li L, Yao L, Kang K, Qu J, Wu Y, Luo J, Liu JJ, Yang Y, Yang W, Gou D. Mulberry fruit prevents LPS-induced NF-κB/pERK/MAPK signals in macrophages and suppresses acute colitis and colorectal tumorigenesis in mice. Sci Rep 2015; 5:17348. [PMID: 26615818 PMCID: PMC4663626 DOI: 10.1038/srep17348] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/28/2015] [Indexed: 02/07/2023] Open
Abstract
Here, we investigated the impact of mulberry fruit (MBF) extracts on lipopolysaccharide (LPS)-induced inflammatory responses in RAW 264.7 macrophages, and the therapeutic efficacy of MBF diet in mice with dextran sulfate sodium (DSS)-induced acute colitis and MUC2−/− mice with colorectal cancer. In vitro, LPS-induced nitric oxide (NO) production was significantly inhibited by MBF extracts via suppressing the expression of proinflammatory molecules, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1 beta (IL-β) and IL-6. Particularly, a dose-dependent inhibition on LPS-induced inflammatory responses was observed following treatment with MBF dichloromethane extract (MBF-DE), in which linoleic acid and ethyl linolenate were identified as two active compounds. Moreover, we elucidated that MBF-DE attenuated LPS-induced inflammatory responses by blocking activation of both NF-κB/p65 and pERK/MAPK pathways. In vivo, DSS-induced acute colitis was significantly ameliorated in MBF-fed mice as gauged by weight loss, colon morphology and histological damage. In addition, MBF-fed MUC2−/− mice displayed significant decrease in intestinal tumor and inflammation incidence compared to control diet-fed group. Overall, our results demonstrated that MBF suppressed the development of intestinal inflammation and tumorgenesis both in vitro and in vivo, and supports the potential of MBF as a therapeutic functional food for testing in human clinical trials.
Collapse
Affiliation(s)
- Zhengjiang Qian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhiqin Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lian Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Huiling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liyan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Li Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kang Kang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yonghou Wu
- College of Animal Science and Technology, Northwest A&F University,Yangling, 712100, Shaanxi, China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A&F University,Yangling, 712100, Shaanxi, China
| | - Johnson J Liu
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052 Australia
| | - Yi Yang
- School of Basic Medical Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wancai Yang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
177
|
Baraldi FG, Vicentini TM, Teodoro BG, Dalalio FM, Dechandt CRP, Prado IMR, Curti C, Cardoso FC, Uyemura SA, Alberici LC. The combination of conjugated linoleic acid (CLA) and extra virgin olive oil increases mitochondrial and body metabolism and prevents CLA-associated insulin resistance and liver hypertrophy in C57Bl/6 mice. J Nutr Biochem 2015; 28:147-54. [PMID: 26878792 DOI: 10.1016/j.jnutbio.2015.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023]
Abstract
Clinical conditions associated with obesity can be improved by daily intake of conjugated linoleic acid (CLA) or extra virgin olive oil (EVOO). Here we investigated whether dietary supplementation with CLA and EVOO, either alone or in combination, changes body metabolism associated with mitochondrial energetics. Male C57Bl/6 mice were divided into one of four groups: CLA (1:1 cis-9, trans-11:trans-10, cis-12; 18:2 isomers), EVOO, CLA plus EVOO or control (linoleic acid). Each mouse received 3 g/kg body weight of the stated oil by gavage on alternating days for 60 days. Dietary supplementation with CLA, alone or in combination with EVOO: (a) reduced the white adipose tissue gain; (b) increased body VO2 consumption, VCO2 production and energy expenditure; (c) elevated uncoupling protein (UCP)-2 expression and UCP activity in isolated liver mitochondria. This organelle, when energized with NAD(+)-linked substrates, produced high amounts of H2O2 without inducing oxidative damage. Dietary supplementation with EVOO alone did not change any metabolic parameter, but supplementation with CLA itself promoted insulin resistance and elevated weight, lipid content and acetyl-CoA carboxylase-1 expression in liver. Interestingly, the in vivo antioxidant therapy with N-acetylcysteine abolished the CLA-induced rise of body metabolism and liver UCP expression and activity, while the in vitro antioxidant treatment with catalase mitigated the CLA-dependent UCP-2 expression in hepatocytes; these findings suggest the participation of an oxidative-dependent pathway. Therefore, this study clarifies the mechanisms by which CLA induces liver UCP expression and activity, and demonstrates for the first time the beneficial effects of combined CLA and EVOO supplementation.
Collapse
Affiliation(s)
- Flávia G Baraldi
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Tatiane M Vicentini
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Bruno G Teodoro
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Felipe M Dalalio
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos R P Dechandt
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Ieda M R Prado
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Carlos Curti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Fernanda C Cardoso
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Sergio A Uyemura
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, USP, Av. Café s/n, 14040-903, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
178
|
Brown L, Poudyal H, Panchal SK. Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 2015; 16:914-41. [PMID: 26345360 DOI: 10.1111/obr.12313] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven.
Collapse
Affiliation(s)
- L Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - H Poudyal
- Department of Diabetes, Endocrinology and Nutrition, The Hakubi Centre for Advanced Research, Kyoto University, Kyoto, Japan
| | - S K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
179
|
Bodkowski R, Czyż K, Kupczyński R, Patkowska-Sokoła B, Nowakowski P, Wiliczkiewicz A. Lipid complex effect on fatty acid profile and chemical composition of cow milk and cheese. J Dairy Sci 2015; 99:57-67. [PMID: 26506539 DOI: 10.3168/jds.2015-9321] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022]
Abstract
The effect of administration of lipid complex (LC) on cow milk and cheese characteristics was studied. Lipid complex was elaborated based on grapeseed oil with synthesized conjugated linoleic acid (CLA) and Atlantic mackerel oil enriched in n-3 fatty acids. The 4-wk experiment was conducted on 30 Polish Holstein Friesian cows. The experimental group cow diet was supplemented with 400 g/d of LC (containing 38% CLA, and eicosapentaenoic acid + docosahexaenoic acid in a relative amount of 36.5%) on a humic-mineral carrier. The chemical composition and fatty acid profile of milk and rennet cheese from raw fresh milk were analyzed. Lipid complex supplementation of the total mixed ration had no effect on milk yield and milk composition, except fat content, which decreased from 4.6 to 4.1%, a 10.9% decrease. Milk from cows treated with LC had greater relative amounts of unsaturated fatty acids, particularly polyunsaturated fatty acids, and lesser relative amounts of saturated fatty acids. Lipid complex addition changed milk fat fatty acid profile: C18:2 cis-9,trans-11 and trans-10,cis-12 isomer (CLA) contents increased by 278 and 233%, respectively, as did eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) contents. Milk fat fatty acid profile changes were correlated with the modifications in rennet cheese fatty acid profile. Lipid complex supplementation of dairy cows produced considerable changes in the biological value of milk and cheese fat.
Collapse
Affiliation(s)
- R Bodkowski
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland.
| | - K Czyż
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
| | - R Kupczyński
- Department of Environment Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
| | - B Patkowska-Sokoła
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
| | - P Nowakowski
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
| | - A Wiliczkiewicz
- Department of Animal Nutrition and Feed Management, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38c, 51-630 Wroclaw, Poland
| |
Collapse
|
180
|
Mapiye C, Vahmani P, Mlambo V, Muchenje V, Dzama K, Hoffman L, Dugan M. The trans-octadecenoic fatty acid profile of beef: Implications for global food and nutrition security. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
181
|
Gómez I, Mendizabal J, Sarriés M, Insausti K, Albertí P, Realini C, Pérez-Juan M, Oliver M, Purroy A, Beriain M. Fatty acid composition of young Holstein bulls fed whole linseed and rumen-protected conjugated linoleic acid enriched diets. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
182
|
Mlambo V, Mapiye C. Towards household food and nutrition security in semi-arid areas: What role for condensed tannin-rich ruminant feedstuffs? Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
183
|
Liu WN, Leung KN. Jacaric acid inhibits the growth of murine macrophage-like leukemia PU5-1.8 cells by inducing cell cycle arrest and apoptosis. Cancer Cell Int 2015; 15:90. [PMID: 26421001 PMCID: PMC4587716 DOI: 10.1186/s12935-015-0246-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
Background Conjugated linolenic acids (CLN) refer to the positional and geometric isomers of octadecatrienoic acids with three conjugated double bonds (C18:3). Previous researches have demonstrated that CLN can inhibit the growth of a wide variety of cancer cells, whereas the modulatory effect of CLN on various myeloid leukemia cells remains unclear. This study aims at demonstrating the in vitro anti-tumor effect and action mechanisms of jacaric acid, a CLN isomer which is present in jacaranda seed oil, on the murine macrophage-like leukemia PU5-1.8 cells. Methods and results It was found that jacaric acid inhibited the proliferation of PU5-1.8 cells in a time- and concentration-dependent manner, as determined by the MTT reduction assay and by using CyQUANT® NF Cell Proliferation Assay Kit, while it exerted minimal cytotoxicity on normal murine cells. Besides, the reactive oxygen species production in jacaric acid-treated PU5-1.8 cells was elevated in a concentration-dependent mannar. Flow cytometric analysis revealed the induction of G0/G1 cell cycle arrest, accompanied by a decrease in CDK2 and cyclin E proteins. Jacaric acid also triggered apoptosis as reflected by induction of DNA fragmentation, phosphatidylserine externalization, mitochondrial membrane depolarization, up-regulation of pro-apoptotic Bax protein and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL proteins. Conclusions Our results demonstrated the growth-inhibitory effect of jacaric acid on PU5-1.8 cells through inducing cell cycle arrest and apoptosis, while exhibiting minimal cytotoxicity to normal murine cells. Therefore, jacaric acid is a potential candidate for the treatment of some forms of myeloid leukemia with minimal toxicity and fewer side effects.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, HKSAR, China
| |
Collapse
|
184
|
Liu WN, Leung KN. Anti-allergic effect of the naturally-occurring conjugated linolenic acid isomer, jacaric acid, on the activated human mast cell line-1. Biomed Rep 2015; 3:839-842. [PMID: 26623027 DOI: 10.3892/br.2015.517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the immunomodulatory effect of jacaric acid, a naturally-occurring conjugated linolenic acid isomer that can be found in jacaranda seed oil, on the activated human mast cell line-1 (HMC-1). Our previous studies have demonstrated that jacaric acid only exerted minimal, if any, cytotoxicity on normal murine cells. In the present study, jacaric acid at concentrations ≤100 µM did not exhibit direct cytotoxicity on human peripheral blood mononuclear cells after 72 h of incubation, as determined by the MTT reduction assay. By contrast, jacaric acid could alleviate the calcium ionophore A23187 and phorbol 12-myristate 13-acetate-triggered allergic response in the HMC-1 cells at concentrations that were non-cytotoxic to the HMC-1 cells. Following pre-treatment with jacaric acid, the secretion of two inflammatory mediators, β-N-acetylglucosaminidase and tryptase, as well as the T helper 2 cytokines [interleukin (IL)-4 and IL-13] was significantly reduced in HMC-1 cells. The alleviation of allergic response was accompanied by downregulation of the matrix metalloproteinase-2 and -9 proteins and upregulation of the tissue inhibitor of metalloproteinase-1 protein. Collectively, the results indicated that the naturally-occurring jacaric acid exhibits a suppressive effect on the allergic response in activated human mast cells in vitro, and this could not be attributed to the direct cytotoxicity of jacaric acid on the treated cells.
Collapse
Affiliation(s)
- Wai Nam Liu
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| | - Kwok Nam Leung
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, P.R. China
| |
Collapse
|
185
|
A comparison of the trans fatty acid content of uncooked and cooked lean meat, edible offal and adipose tissue from New Zealand beef and lamb. J Food Compost Anal 2015. [DOI: 10.1016/j.jfca.2015.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
186
|
Bessa RJB, Alves SP, Santos-Silva J. Constraints and potentials for the nutritional modulation of the fatty acid composition of ruminant meat. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400468] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rui J. B. Bessa
- CIISA, Faculdade de Medicina Veterinária (FMV); Universidade de Lisboa (ULisboa); Lisboa Portugal
| | - Susana P. Alves
- CIISA, Faculdade de Medicina Veterinária (FMV); Universidade de Lisboa (ULisboa); Lisboa Portugal
| | - José Santos-Silva
- Unidade Estratégica de Investigação e Serviços em Produção e Saúde Animal; Instituto Nacional de Investigação Agrária e Veterinária (UEISPA-INIAV); Lisboa Portugal
| |
Collapse
|
187
|
Zhang Q, Qin W, Li M, Shen Q, Saleh AS. Application of Chromatographic Techniques in the Detection and Identification of Constituents Formed during Food Frying: A Review. Compr Rev Food Sci Food Saf 2015. [DOI: 10.1111/1541-4337.12147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Wen Qin
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Meiliang Li
- College of Food Science; Sichuan Agricultural Univ.; Ya'an 625014 Sichuan China
| | - Qun Shen
- Natl. Engineering and Technology Research Center for Fruits and Vegetables; College of Food Science and Nutritional Engineering, China Agricultural Univ.; Beijing 100083 China
| | - Ahmed S.M. Saleh
- Dept. of Food Science and Technology; Faculty of Agriculture, Assiut Univ.; Assiut 71526 Egypt
| |
Collapse
|
188
|
Resende T, Kraft J, Soder K, Pereira A, Woitschach D, Reis R, Brito A. Incremental amounts of ground flaxseed decrease milk yield but increase n-3 fatty acids and conjugated linoleic acids in dairy cows fed high-forage diets1. J Dairy Sci 2015; 98:4785-99. [DOI: 10.3168/jds.2014-9115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/27/2015] [Indexed: 11/19/2022]
|
189
|
Should the pharmacological actions of dietary fatty acids in cardiometabolic disorders be classified based on biological or chemical function? Prog Lipid Res 2015. [PMID: 26205317 DOI: 10.1016/j.plipres.2015.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
190
|
Vahmani P, Mapiye C, Prieto N, Rolland DC, McAllister TA, Aalhus JL, Dugan MER. The scope for manipulating the polyunsaturated fatty acid content of beef: a review. J Anim Sci Biotechnol 2015. [PMID: 26199725 PMCID: PMC4509462 DOI: 10.1186/s40104-015-0026-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since 1950, links between intake of saturated fatty acids and heart disease have led to recommendations to limit consumption of saturated fatty acid-rich foods, including beef. Over this time, changes in food consumption patterns in several countries including Canada and the USA have not led to improvements in health. Instead, the incidence of obesity, type II diabetes and associated diseases have reached epidemic proportions owing in part to replacement of dietary fat with refined carbohydrates. Despite the content of saturated fatty acids in beef, it is also rich in heart healthy cis-monounsaturated fatty acids, and can be an important source of long-chain omega-3 (n-3) fatty acids in populations where little or no oily fish is consumed. Beef also contains polyunsaturated fatty acid biohydrogenation products, including vaccenic and rumenic acids, which have been shown to have anticarcinogenic and hypolipidemic properties in cell culture and animal models. Beef can be enriched with these beneficial fatty acids through manipulation of beef cattle diets, which is now more important than ever because of increasing public understanding of the relationships between diet and health. The present review examines recommendations for beef in human diets, the need to recognize the complex nature of beef fat, how cattle diets and management can alter the fatty acid composition of beef, and to what extent content claims are currently possible for beef fatty acids.
Collapse
Affiliation(s)
- Payam Vahmani
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Cletos Mapiye
- Department of Animal Sciences, Faculty of AgriSciences, Stellenbosch University, P. Bag X1, Matieland, 7602 South Africa
| | - Nuria Prieto
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada ; Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - David C Rolland
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 1st Avenue South 5403, PO Box 3000, T1J 4B1 Lethbridge, AB Canada
| | - Jennifer L Aalhus
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| | - Michael E R Dugan
- Agriculture and Agri-Food Canada, Lacombe Research Centre, 6000 C & E Trail, T4L 1 W1, Lacombe, AB Canada
| |
Collapse
|
191
|
Papaemmanouil C, Tsiafoulis CG, Alivertis D, Tzamaloukas O, Miltiadou D, Tzakos AG, Gerothanassis IP. Selective One-Dimensional Total Correlation Spectroscopy Nuclear Magnetic Resonance Experiments for a Rapid Identification of Minor Components in the Lipid Fraction of Milk and Dairy Products: Toward Spin Chromatography? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5381-5387. [PMID: 25986319 DOI: 10.1021/acs.jafc.5b01335] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a rapid, direct, and unequivocal spin-chromatographic separation and identification of minor components in the lipid fraction of milk and common dairy products with the use of selective one-dimensional (1D) total correlation spectroscopy (TOCSY) nuclear magnetic resonance (NMR) experiments. The method allows for the complete backbone spin-coupling network to be elucidated even in strongly overlapped regions and in the presence of major components from 4 × 10(2) to 3 × 10(3) stronger NMR signal intensities. The proposed spin-chromatography method does not require any derivatization steps for the lipid fraction, is selective with excellent resolution, is sensitive with quantitation capability, and compares favorably to two-dimensional (2D) TOCSY and gas chromatography-mass spectrometry (GC-MS) methods of analysis. The results of the present study demonstrated that the 1D TOCSY NMR spin-chromatography method can become a procedure of primary interest in food analysis and generally in complex mixture analysis.
Collapse
Affiliation(s)
| | | | | | - Ouranios Tzamaloukas
- ⊥Department of Agricultural Sciences, Biotechnology and Food Sciences, Cyprus University of Technology, Post Office Box 50329, Limassol 3603, Cyprus
| | - Despoina Miltiadou
- ⊥Department of Agricultural Sciences, Biotechnology and Food Sciences, Cyprus University of Technology, Post Office Box 50329, Limassol 3603, Cyprus
| | | | | |
Collapse
|
192
|
Kim Y, Kim D, Good DJ, Park Y. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5212-5223. [PMID: 25976059 DOI: 10.1021/acs.jafc.5b00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Conjugated linoleic acid (CLA) has been reported to prevent body weight gain and fat accumulation in part by improving physical activity in mice. However, the effects of postweaning administration of CLA on the development of obesity later in life have not yet been demonstrated. The current study investigated the role of postweaning CLA treatment on skeletal muscle energy metabolism in genetically induced inactive adult-onset obese model, nescient basic helix-loop-helix 2 knockout (N2KO) mice. Four-week-old male N2KO and wild type mice were fed either control or a CLA-containing diet (0.5%) for 4 weeks, and then CLA was withdrawn and control diet provided to all mice for the following 8 weeks. Postweaning CLA supplementation in wild type animals, but not N2KO mice, may activate AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-δ (PPARδ) as well as promote desensitization of phosphatase and tensin homologue (PTEN) and sensitization of protein kinase B (AKT) at threonine 308 in gastrocnemius skeletal muscle, improving voluntary activity and glucose homeostasis. We suggest that postweaning administration of CLA may in part stimulate the underlying molecular targets involved in muscle energy metabolism to reduce weight gain in normal animals, but not in the genetically induced inactive adult-onset animal model.
Collapse
Affiliation(s)
| | | | - Deborah J Good
- §Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
193
|
D’Alessandro AG, Palazzo M, Petrotos K, Goulas P, Martemucci G. Fatty acid composition of light lamb meat from Leccese and Comisana dairy breeds as affected by slaughter age. Small Rumin Res 2015. [DOI: 10.1016/j.smallrumres.2015.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
194
|
Viladomiu M, Hontecillas R, Bassaganya-Riera J. Modulation of inflammation and immunity by dietary conjugated linoleic acid. Eur J Pharmacol 2015; 785:87-95. [PMID: 25987426 DOI: 10.1016/j.ejphar.2015.03.095] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/04/2015] [Accepted: 03/05/2015] [Indexed: 01/22/2023]
Abstract
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of linoleic acid. This family of polyunsaturated fatty acids has drawn significant attention in the last three decades for its variety of biologically beneficial properties and health effects. CLA has been shown to exert various potent protective functions such as anti-inflammatory, anticarcinogenic, antiadipogenic, antidiabetic and antihypertensive properties in animal models of disease. Therefore, CLA represents a nutritional avenue to prevent lifestyle diseases or metabolic syndrome. Initially, the overall effects of CLA were thought to be the result of interactions between its two major isomers: cis-9, trans-11 and trans-10, cis-12. However, later evidence suggests that such physiological effects of CLA might be different between the isomers: t-10, c-12-CLA is thought to be anticarcinogenic, antiobesity and antidiabetic, whereas c-9, t-11-CLA is mainly anti-inflammatory. Although preclinical data support a benefit of CLA supplementation, human clinical findings have yet to show definitive evidence of a positive effect. The purpose of this review is to comprehensively summarize the mechanisms of action and anti-inflammatory properties of dietary CLA supplementation and evaluate the potential uses of CLA in human health and disease.
Collapse
Affiliation(s)
- Monica Viladomiu
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Raquel Hontecillas
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA
| | - Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA; Center for Modeling Immunity to Enteric Pathogens, Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
195
|
Druart C, Bindels LB, Schmaltz R, Neyrinck AM, Cani PD, Walter J, Ramer-Tait AE, Delzenne NM. Ability of the gut microbiota to produce PUFA-derived bacterial metabolites: Proof of concept in germ-free versus conventionalized mice. Mol Nutr Food Res 2015; 59:1603-13. [PMID: 25820326 DOI: 10.1002/mnfr.201500014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 11/10/2022]
Abstract
SCOPE The gut microbiota is able to modulate host physiology through the production of bioactive metabolites. Our recent studies suggest that changes in gut microbiota composition upon prebiotics supplementation alter tissue levels of PUFA-derived metabolites in mice. However, in vivo evidence that gut microbes produces PUFA-derived metabolites is lacking. This study aimed to decipher the contribution of gut microbes versus that of the host in PUFA-derived metabolite production. METHODS AND RESULTS To achieve this goal, we compared the proportion of PUFA-derived metabolites and the expression of fatty acid desaturases in germ-free (GF) and conventionalized (CONV) mice fed either a low fat or Western diet. Higher concentrations of PUFA-derived metabolites were found in the colonic contents of conventionalized mice (CONV) mice compared to GF mice. The abundance of these metabolites in host tissues was modulated by dietary treatments but not by microbial status. Although microbial status did significantly influence desaturase expression, no correlations between host enzymes and tissue PUFA-derived metabolite levels were observed. CONCLUSION Together, these results highlight the ability of the gut microbiota to produce PUFA-derived metabolites from dietary PUFA. However, microbial production of these metabolites in colonic contents is not necessarily associated with modifications of their concentration in host tissues.
Collapse
Affiliation(s)
- Céline Druart
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Audrey M Neyrinck
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jens Walter
- Nutrition, Microbes, and Gastrointestinal Health, Department of Agricultural, Food & Nutritional Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda E Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
196
|
Kim JH, Kim YJ, Park Y. Conjugated Linoleic Acid and Postmenopausal Women's Health. J Food Sci 2015; 80:R1137-43. [DOI: 10.1111/1750-3841.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Ho Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Young Jun Kim
- Dept. of Food and Biotechnology; Korea Univ; Sejong 339-700 Republic of Korea
| | - Yeonhwa Park
- Dept. of Food Science; Univ. of Massachusetts; Amherst MA 01003 U.S.A
| |
Collapse
|
197
|
WANG TAO, LIM JINA, LEE JAESUNG, LEE SANGBUM, HWANG JINHEE, JUNG USUK, KIM MINJEONG, HWANG DAEYOUN, LEE SANGRAK, ROH SANGGUN, LEE HONGGU. Effects of dietary trans-9 octadecenoic acid, trans-11 vaccenic acid and cis-9, trans-11 conjugated linoleic acid in mice. Mol Med Rep 2015; 12:3200-6. [DOI: 10.3892/mmr.2015.3767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 04/10/2015] [Indexed: 11/05/2022] Open
|
198
|
McClements DJ. Reduced-fat foods: the complex science of developing diet-based strategies for tackling overweight and obesity. Adv Nutr 2015; 6:338S-52S. [PMID: 25979507 PMCID: PMC4424772 DOI: 10.3945/an.114.006999] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fat plays multiple roles in determining the desirable physicochemical properties, sensory attributes, nutritional profile, and biologic response of food products. Overconsumption of fats is linked to chronic diseases, such as obesity, coronary heart disease, diabetes, and cancer. There is therefore a need to develop reduced-fat products with physicochemical properties and sensory profiles that match those of their full-fat counterparts. In addition, foods may be redesigned to increase the feelings of satiety and satiation, and thereby reduce overall food intake. The successful design of these types of functional foods requires a good understanding of the numerous roles that fat plays in determining food attributes and the development of effective strategies to replace these attributes. This article provides an overview of the current understanding of the influence of fat on the physicochemical and physiologic attributes of emulsion-based food products and highlights approaches to create high-quality foods with reduced-fat contents.
Collapse
|
199
|
Abubakr A, Alimon AR, Yaakub H, Abdullah N, Ivan M. Effect of feeding palm oil by-products based diets on muscle fatty acid composition in goats. PLoS One 2015; 10:e0119756. [PMID: 25789610 PMCID: PMC4366160 DOI: 10.1371/journal.pone.0119756] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
The present study aims to evaluate the effects of feeding palm oil by-products based diets on different muscle fatty acid profiles in goats. Thirty-two Cacang × Boer goats were randomly assigned to four dietary treatments: (1) control diet (CD), (2) 80% decanter cake diet (DCD), (3) 80% palm kernel cake diet (PKCD) and (4) CD plus 5% palm oil (PO) supplemented diet (CPOD). After 100 days of feeding, four goats from each group were slaughtered and longissimus dorsi (LD), infraspinatus (IS) and biceps femoris (BF) were sampled for analysis of fatty acids. Goats fed the PKCD had higher (P<0.05) concentration of lauric acid (C12:0) than those fed the other diets in all the muscles tested. Compared to the other diets, the concentrations of palmitic acid (C16:0) and stearic acid (C18:0) were lower (P<0.05) and that of linoleic acid (C18:2 n-6) was higher (P<0.05) in the muscles from goats fed the CD. It was concluded that palm kernel cake and decanter cake can be included in the diet of goats up to 80% with more beneficial than detrimental effects on the fatty acid profile of their meat.
Collapse
Affiliation(s)
- Abdelrahim Abubakr
- Department of Animal Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Animal Nutrition, University of Bahri,Khartoum, Sudan
| | - Abdul Razak Alimon
- Department of Animal Science, University Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| | - Halimatun Yaakub
- Department of Animal Science, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Norhani Abdullah
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Michael Ivan
- Institute of Tropical Agriculture, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
200
|
Chung C, Smith G, Degner B, McClements DJ. Reduced Fat Food Emulsions: Physicochemical, Sensory, and Biological Aspects. Crit Rev Food Sci Nutr 2015; 56:650-85. [DOI: 10.1080/10408398.2013.792236] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Cheryl Chung
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Gordon Smith
- ConAgra Foods, Six ConAgra Drive, Omaha, Nebraska, USA
| | - Brian Degner
- ConAgra Foods, Six ConAgra Drive, Omaha, Nebraska, USA
| | | |
Collapse
|