151
|
Sack U, Knoechner S, Warschkau H, Pigla U, Emmrich F, Kamprad M. Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmun Rev 2003; 2:298-304. [PMID: 12965182 DOI: 10.1016/s1568-9972(03)00067-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Indirect immunofluorescence with HEp-2 cells presents the major screening method for detection of autoantibodies in systemic autoimmune diseases. Hereby, a large variety of autoantibody entities can be detected and recognized by at least partially typic fluorescence patterns. Currently, this method requires highly specialized technicians and resists automatization. Nevertheless, requirements of good laboratory practice, especially standardization and documentation are hampered by the common microscopic technique. Here, we present a computer-assisted system for classification of interphase HEp-2 immunofluorescence patterns in autoimmune diagnostics. Designed as an assisting system, representative patterns are acquired by an operator with a digital microscope camera and transferred to a personal computer. By use of a novel software package based on image analysis, feature extraction and machine learning algorithms, relevant characteristics describing patterns could be found out. Our results show that identification of positive fluorescence and pre-differentiation between most important HEp-2 staining patterns can be performed by this system. Results and documentation of fluorescence patterns can be integrated into the laboratory system. To enable the usage of such a system in routine diagnostics, accuracy of this system and correct recognition of interferring patterns must be further improved.
Collapse
Affiliation(s)
- Ulrich Sack
- Institute of Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
152
|
Richard P, Darzacq X, Bertrand E, Jády BE, Verheggen C, Kiss T. A common sequence motif determines the Cajal body-specific localization of box H/ACA scaRNAs. EMBO J 2003; 22:4283-93. [PMID: 12912925 PMCID: PMC175784 DOI: 10.1093/emboj/cdg394] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional synthesis of 2'-O-methylated nucleotides and pseudouridines in Sm spliceosomal small nuclear RNAs takes place in the nucleoplasmic Cajal bodies and it is directed by guide RNAs (scaRNAs) that are structurally and functionally indistinguishable from small nucleolar RNAs (snoRNAs) directing rRNA modification in the nucleolus. The scaRNAs are synthesized in the nucleoplasm and specifically targeted to Cajal bodies. Here, mutational analysis of the human U85 box C/D-H/ACA scaRNA, followed by in situ localization, demonstrates that box H/ACA scaRNAs share a common Cajal body-specific localization signal, the CAB box. Two copies of the evolutionarily conserved CAB consensus (UGAG) are located in the terminal loops of the 5' and 3' hairpins of the box H/ACA domains of mammalian, Drosophila and plant scaRNAs. Upon alteration of the CAB boxes, mutant scaRNAs accumulate in the nucleolus. In turn, authentic snoRNAs can be targeted into Cajal bodies by addition of exogenous CAB box motifs. Our results indicate that scaRNAs represent an ancient group of small nuclear RNAs which are localized to Cajal bodies by an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Patricia Richard
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, UMR5099, IFR109, 118 route de Narbonne, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
153
|
Hong S, Ka S, Kim S, Park Y, Kang S. p80 coilin, a coiled body-specific protein, interacts with ataxin-1, the SCA1 gene product. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1638:35-42. [PMID: 12757932 DOI: 10.1016/s0925-4439(03)00038-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1) is an autosomal-dominant neurodegenerative disorder characterized by ataxia and progressive motor deterioration. SCA1 is associated with an elongated polyglutamine tract in ataxin-1, the SCA1 gene product. Using the yeast two-hybrid system and co-immunoprecipitation experiments, we have found that p80 coilin, coiled body-specific protein, binds to ataxin-1. In further experiments with deletion mutants, we found that the C-terminal regions of ataxin-1 and p80 coilin were essential for this interaction. In HeLa cells that have been co-transfected with ataxin-1 and p80 coilin, the p80 coilin protein co-localizes with ataxin-1 aggregates in the nucleoplasm. However, immunohistochemical analysis and immunofluorescence assays showed that mutant ataxin-1 aggregates do not redistribute p80 coilin's dot-like structures in the Purkinje cells of SCA1 transgenic mice. This feature of the interaction between ataxin-1 and p80 coilin suggests that p80 coilin might be implicated in altering the function of ataxin-1.
Collapse
Affiliation(s)
- Sunghoi Hong
- Graduate School of Biotechnology, Korea University, 1,5-ka Anam-dong, Sungbuk-ku, 136-701, Seoul, South Korea
| | | | | | | | | |
Collapse
|
154
|
Sleeman JE, Trinkle-Mulcahy L, Prescott AR, Ogg SC, Lamond AI. Cajal body proteins SMN and Coilin show differential dynamic behaviour in vivo. J Cell Sci 2003; 116:2039-50. [PMID: 12679382 DOI: 10.1242/jcs.00400] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Analysis of stable cell lines expressing fluorescently tagged survival of motor neurons protein (SMN) and coilin shows striking differences in their dynamic behaviour, both in the nucleus and during mitosis. Cajal bodies labelled with either FP-SMN or FP-coilin show similar behaviour and frequency of movements. However, fluorescence recovery after photobleaching (FRAP) studies show that SMN returns approximately 50-fold more slowly to Cajal bodies than does coilin. Time-lapse studies on cells progressing from prophase through to G1 show further differences between SMN and coilin, both in their localisation in telophase and in the timing of their re-entry into daughter nuclei. The data reveal similarities between Cajal bodies and nucleoli in their behaviour during mitosis. This in vivo study indicates that SMN and coilin interact differentially with Cajal bodies and reveals parallels in the pathway for reassembly of nucleoli and Cajal bodies following mitosis.
Collapse
Affiliation(s)
- Judith E Sleeman
- University of Dundee, MSI/WTB Complex, School of Life Sciences, Dow Street, Dundee DD1 5EH, UK
| | | | | | | | | |
Collapse
|
155
|
Abstract
The characterization of autoantibody specificities in rheumatic diseases is important in both diagnostic and basic research areas. Identification of the epitopes recognized by autoantibodies and their clinical and biological significance is not a trivial task. Epitopes may range in complexity from simple linear sequences of amino acids to complex quaternary structures. In addition to this structural complexity the frequency with which an autoantigen and its epitopes are recognized in a patient population may be useful in diagnosis, defining disease subgroups, and may offer information on disease prognosis. In this review recent advances in the epitope mapping of autoantigens in connective tissue diseases are discussed, with particular emphasis placed on the methodologies used to identify epitopes and the classification of the structural features of epitopes. To illustrate the identification of epitope structure, clinically relevant autoantigens, including CENP-A, PM/Scl-100, fibrillarin, filaggrin, Ro-52, and dsDNA, are discussed as examples of each type of epitope.
Collapse
|
156
|
Jády BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 2003; 22:1878-88. [PMID: 12682020 PMCID: PMC154478 DOI: 10.1093/emboj/cdg187] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Biogenesis of functional spliceosomal small nuclear RNAs (snRNAs) includes the post-transcriptional covalent modification of numerous internal nucleotides. We have recently demonstrated that synthesis of 2'-O-methylated nucleotides and pseudouridines in the RNA polymerase II-synthesized Sm snRNAs is directed by sequence-specific guide RNAs. Here, we provide evidence supporting the notion that modification of Sm snRNAs occurs in nucleoplasmic Cajal bodies (CBs), where modification guide RNAs accumulate. We show that short fragments of Sm snRNAs are correctly and efficiently modified when targeted to CBs, but not when these same fragments are targeted to the nucleolus. We also demonstrate that internal modification of the U2 snRNA occurs exclusively after nuclear import of the newly assembled Sm snRNP from the cytoplasm. Finally, we show that p80 coilin, the CB marker protein, is not required for snRNA modification. In coilin knockout cells, Sm snRNAs and their modification guide RNAs colocalize in residual CBs, which do not stockpile fibrillarin and fail to recruit the U3 small nucleolar RNA.
Collapse
Affiliation(s)
- Beáta E Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
157
|
Polak PE, Simone F, Kaberlein JJ, Luo RT, Thirman MJ. ELL and EAF1 are Cajal body components that are disrupted in MLL-ELL leukemia. Mol Biol Cell 2003; 14:1517-28. [PMID: 12686606 PMCID: PMC153119 DOI: 10.1091/mbc.e02-07-0394] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The (11;19)(q23;p13.1) translocation in acute leukemia results in the formation of a chimeric MLL-ELL fusion protein. ELL is an RNA Polymerase II (Pol II) transcriptional elongation factor that interacts with the recently identified EAF1 protein. Here, we show that ELL and EAF1 are components of Cajal bodies (CBs). Although ELL and EAF1 colocalize with p80 coilin, the signature protein of CBs, ELL and EAF1 do not exhibit a direct physical interaction with p80 coilin. Treatment of cells with actinomycin D, DRB, or alpha-amanitin, specific inhibitors of Pol II, disperses ELL and EAF1 from CBs, indicating that localization of ELL and EAF1 in CBs is dependent on active transcription by Pol II. The concentration of ELL and EAF1 in CBs links the transcriptional elongation activity of ELL to the RNA processing functions previously identified in CBs. Strikingly, CBs are disrupted in MLL-ELL leukemia. EAF1 and p80 coilin are delocalized from CBs in murine MLL-ELL leukemia cells and in HeLa cells transiently transfected with MLL-ELL. Nuclear and cytoplasmic fractionation revealed diminished expression of p80 coilin and EAF1 in the nuclei of MLL-ELL leukemia cells [corrected]. These studies are the first demonstration of a direct role of CB components in leukemogenesis.
Collapse
MESH Headings
- Autoantigens
- Cell Line
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 19/genetics
- Coiled Bodies/metabolism
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Proteins
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Elongation Factors
- Phosphoproteins/metabolism
- RNA/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/metabolism
- Transcription Factors/metabolism
- Transcriptional Elongation Factors
- Transfection
- Translocation, Genetic
- snRNP Core Proteins
Collapse
Affiliation(s)
- Paul E Polak
- University of Chicago Section of Hematology/Oncology, Chicago, Illinois 60637-1470, USA
| | | | | | | | | |
Collapse
|
158
|
Stanĕk D, Rader SD, Klingauf M, Neugebauer KM. Targeting of U4/U6 small nuclear RNP assembly factor SART3/p110 to Cajal bodies. J Cell Biol 2003; 160:505-16. [PMID: 12578909 PMCID: PMC2173746 DOI: 10.1083/jcb.200210087] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The spliceosomal small nuclear RNAs (snRNAs) are distributed throughout the nucleoplasm and concentrated in nuclear inclusions termed Cajal bodies (CBs). A role for CBs in the metabolism of snRNPs has been proposed but is not well understood. The SART3/p110 protein interacts transiently with the U6 and U4/U6 snRNPs and promotes the reassembly of U4/U6 snRNPs after splicing in vitro. Here we report that SART3/p110 is enriched in CBs but not in gems or residual CBs lacking coilin. The U6 snRNP Sm-like (LSm) proteins, also involved in U4/U6 snRNP assembly, were localized to CBs as well. The levels of SART3/p110 and LSm proteins in CBs were reduced upon treatment with the transcription inhibitor alpha-amanitin, suggesting that CB localization reflects active processes dependent on transcription/splicing. The NH2-terminal HAT domain of SART3/p110 was necessary and sufficient for specific protein targeting to CBs. Overexpression of truncation mutants containing the HAT domain had dominant negative effects on U6 snRNP localization to CBs, indicating that endogenous SART3/p110 plays a role in targeting the U6 snRNP to CBs. We propose that U4 and U6 snRNPs accumulate in CBs for the purpose of assembly into U4/U6 snRNPs by SART3/p110.
Collapse
Affiliation(s)
- David Stanĕk
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
159
|
Handwerger KE, Murphy C, Gall JG. Steady-state dynamics of Cajal body components in the Xenopus germinal vesicle. J Cell Biol 2003; 160:495-504. [PMID: 12591912 PMCID: PMC2173734 DOI: 10.1083/jcb.200212024] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cajal bodies (CBs) are evolutionarily conserved nuclear organelles that contain many factors involved in the transcription and processing of RNA. It has been suggested that macromolecular complexes preassemble or undergo maturation within CBs before they function elsewhere in the nucleus. Most such models of CB function predict a continuous flow of molecules between CBs and the nucleoplasm, but there are few data that directly support this view. We used fluorescence recovery after photobleaching (FRAP) on isolated Xenopus oocyte nuclei to measure the steady-state exchange rate between the nucleoplasm and CBs of three fluorescently tagged molecules: U7 small nuclear RNA, coilin, and TATA-binding protein (TBP). In the nucleoplasm, the apparent diffusion coefficients for the three molecules ranged from 0.26 to 0.40 microm2 s-1. However, in CBs, fluorescence recovery was markedly slower than in the nucleoplasm, and there were at least three kinetic components. The recovery rate within CBs was independent of bleach spot diameter and could not be attributed to high CB viscosity or density. We propose that binding to other molecules and possibly assembly into larger complexes are the rate-limiting steps for FRAP of U7, coilin, and TBP inside CBs.
Collapse
Affiliation(s)
- Korie E Handwerger
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | | | |
Collapse
|
160
|
Kiss AM, Jády BE, Darzacq X, Verheggen C, Bertrand E, Kiss T. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucleic Acids Res 2002; 30:4643-9. [PMID: 12409454 PMCID: PMC135803 DOI: 10.1093/nar/gkf592] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 09/09/2002] [Accepted: 09/09/2002] [Indexed: 11/13/2022] Open
Abstract
Site-specific post-transcriptional conversion of uridines to pseudouridine in ribosomal RNAs and small nuclear RNAs (snRNAs) is directed by guide RNAs which possess the conserved box H and ACA sequence elements and fold into the consensus 'hairpin-hinge-hairpin-tail' secondary structure. Here, we describe an unusual mammalian pseudouridylation guide RNA, called U93, that is composed of two tandemly arranged box H/ACA RNA domains. The U93 RNA therefore carries two H and two ACA box motifs, all of which are essential for accumulation of the full-length RNA. The human U93 RNA accumulates in Cajal (coiled) bodies and it is predicted to function in pseudouridylation of the U2 spliceosomal snRNA. Our results lend further support to the notion that modification of the RNA polymerase II-transcribed spliceosomal snRNAs takes place in Cajal bodies.
Collapse
Affiliation(s)
- Arnold M Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
161
|
Wang IF, Reddy NM, Shen CKJ. Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 2002; 99:13583-8. [PMID: 12361981 PMCID: PMC129717 DOI: 10.1073/pnas.212483099] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 08/12/2002] [Indexed: 11/18/2022] Open
Abstract
The nuclei of eukaryotic cells consist of discrete substructures. These substructures include the nuclear bodies, which have been implicated in a number of biological processes such as transcription and splicing. However, for most nuclear bodies, the details of involvement in these processes in relation to their three-dimensional distributions in the nucleus are still unclear. Through the analysis of TDP, a protein functional in both transcriptional repression and alternative splicing, we have identified a new category of nuclear bodies within which the TDP molecules reside. Remarkably, the TDP bodies (TBs) colocalize or overlap with several different types of nuclear bodies previously suggested to function in transcription or splicing. Of these nuclear bodies, the Gemini of coiled bodies (GEM) seems to associate with TB through the interaction between survival motor neuron (SMN) protein and TDP. Furthermore, TB sometimes appears to be the bridge of two or more of these other nuclear bodies. Our data suggest the existence of a hierarchy and possibly functional arrangement of the nuclear bodies within the eukaryotic nuclei.
Collapse
Affiliation(s)
- I-Fan Wang
- Institute of Molecular Biology, Academia Sinica, National Taiwan University, Taipei, Taiwan 115, Republic of China
| | | | | |
Collapse
|
162
|
Gribbon C, Dahm R, Prescott AR, Quinlan RA. Association of the nuclear matrix component NuMA with the Cajal body and nuclear speckle compartments during transitions in transcriptional activity in lens cell differentiation. Eur J Cell Biol 2002; 81:557-66. [PMID: 12437190 DOI: 10.1078/0171-9335-00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional status of cells can be deduced from the staining pattern of various nuclear markers such as the Cajal body, nucleolus and nuclear speckles. In this study we have used these markers to correlate transcriptional status with cell differentiation in the lens. As a closed system with no cell loss and with each stage being spatially preserved, it is particularly well suited to such studies. To confirm that the nuclear markers in lens cells follow the same trends as in other cells, primary bovine lens epithelial cells were cultured and then treated with actinomycin D to inhibit transcription. This reduced the Cajal body markers to one or two foci per nucleus and the nucleoli became compacted as revealed by fibrillarin staining. The nuclear speckles, containing snRNPs (e.g. Sm) and the splicing factor, SC35, also became larger and more numerous while the signal for trimethylguanine (TMG) decreased suggesting a role hierarchy for the various speckle factors during transcriptional shutdown. The signal for survival of motor neurones gene product (SMN) also decreased at this point. In the lens epithelium, postmitotic cells near the equatorial region had one or two Cajal bodies per nucleus, indicating these cells had only basal levels of transcription. Sm was also present as large foci in these cells. Interestingly, both the speckles and Cajal bodies were NuMA-positive in these post-mitotic cells. At the epithelial-fibre cell transition, Cajal body number increased, while their size decreased indicative of increased transcriptional activity. Fibrillarin adopted the open floret pattern indicating increased transcriptional activity. The nuclear speckles adopted a more diffuse nucleoplasmic pattern, although some spots were still observed. All NuMA colocalisation with the Cajal bodies and nuclear speckles was lost at this stage of lens cell differentiation. Transcriptional shutdown occurs at a later stage in fibre cell differentiation, prior to programmed nuclear destruction. In the lens, both the Cajal bodies and nuclear speckles again became NuMA-positive, although separate NuMA spots were also formed during transcriptional shutdown. These data suggest the nuclear matrix is important in the concentration of Cajal body and speckle components into large, distinct spots in transcriptionally inactive nuclei and also suggest a new role for NuMA in post-mitotic cells to assist in these sub-nuclear reorganisations.
Collapse
Affiliation(s)
- Chris Gribbon
- School of Life Sciences, MSIWTB, University of Dundee, UK
| | | | | | | |
Collapse
|
163
|
Wehner KA, Ayala L, Kim Y, Young PJ, Hosler BA, Lorson CL, Baserga SJ, Francis JW. Survival motor neuron protein in the nucleolus of mammalian neurons. Brain Res 2002; 945:160-73. [PMID: 12126878 DOI: 10.1016/s0006-8993(02)02750-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by mutations in the survival motor neuron gene (SMN1). While it has been shown that the SMN protein is involved in spliceosome biogenesis and pre-mRNA splicing, there is increasing evidence indicating that SMN may also perform important functions in the nucleolus. We demonstrate here through the use of a previously characterized polyclonal anti-SMN antibody, abSMN, that the SMN protein shows a striking colocalization with the nucleolar protein, fibrillarin, in both nucleoli and Cajal bodies/gems of primary neurons. Immunoblot analysis with antifibrillarin and two different anti-SMN antibodies reveals that SMN and fibrillarin also cofractionate in the insoluble protein fraction of cultured cell lysates. Immunoprecipitation experiments using whole cell extracts of HeLa cells and cultured neurons revealed that abSMN coprecipitated small amounts of the U3 small nucleolar RNA (snoRNA) previously shown to be associated with fibrillarin in vivo. These studies raise the possibility that SMN may serve a function in rRNA maturation/ribosome synthesis similar to its role in spliceosome biogenesis.
Collapse
Affiliation(s)
- Karen A Wehner
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Narayanan U, Ospina JK, Frey MR, Hebert MD, Matera AG. SMN, the spinal muscular atrophy protein, forms a pre-import snRNP complex with snurportin1 and importin beta. Hum Mol Genet 2002; 11:1785-95. [PMID: 12095920 PMCID: PMC1630493 DOI: 10.1093/hmg/11.15.1785] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The survival of motor neuron (SMN) protein is mutated in patients with spinal muscular atrophy (SMA). SMN is part of a multiprotein complex required for biogenesis of the Sm class of small nuclear ribonucleoproteins (snRNPs). Following assembly of the Sm core domain, snRNPs are transported to the nucleus via importin beta. Sm snRNPs contain a nuclear localization signal (NLS) consisting of a 2,2,7-trimethylguanosine (TMG) cap and the Sm core. Snurportin1 (SPN) is the adaptor protein that recognizes both the TMG cap and importin beta. Here, we report that a mutant SPN construct lacking the importin beta binding domain (IBB), but containing an intact TMG cap-binding domain, localizes primarily to the nucleus, whereas full-length SPN localizes to the cytoplasm. The nuclear localization of the mutant SPN was not a result of passive diffusion through the nuclear pores. Importantly, we found that SPN interacts with SMN, Gemin3, Sm snRNPs and importin beta. In the presence of ribonucleases, the interactions with SMN and Sm proteins were abolished, indicating that snRNAs mediate this interplay. Cell fractionation studies showed that SPN binds preferentially to cytoplasmic SMN complexes. Notably, we found that SMN directly interacts with importin beta in a GST-pulldown assay, suggesting that the SMN complex might represent the Sm core NLS receptor predicted by previous studies. Therefore, we conclude that, following Sm protein assembly, the SMN complex persists until the final stages of cytoplasmic snRNP maturation and may provide somatic cell RNPs with an alternative NLS.
Collapse
Affiliation(s)
- Usha Narayanan
- Department of Genetics, Center for Human Genetics and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
165
|
Lam YW, Lyon CE, Lamond AI. Large-scale isolation of Cajal bodies from HeLa cells. Mol Biol Cell 2002; 13:2461-73. [PMID: 12134083 PMCID: PMC117327 DOI: 10.1091/mbc.02-03-0034] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 02/20/2002] [Accepted: 04/05/2002] [Indexed: 11/11/2022] Open
Abstract
The Cajal body (CB) is a conserved, dynamic nuclear structure that is implicated in various cellular processes, such as the maturation of splicing small nuclear ribonucleoproteins and the assembly of transcription complexes. Here, we report the first procedure for the large-scale purification of CBs from HeLa cell nuclei, resulting in an approximately 750-fold enrichment of the CB marker protein p80-coilin. Immunofluorescence, immunoblotting, and mass spectrometric analyses showed that the composition of the isolated CBs was similar to that of CBs in situ. The morphology and structure of the isolated CBs, as judged by transmission and scanning electron microscopy analysis, are also similar to those of CBs in situ. This protocol demonstrates the feasibility of isolating intact distinct classes of subnuclear bodies from cultured cells in sufficient yield and purity to allow detailed characterization of their molecular composition, structure, and properties.
Collapse
Affiliation(s)
- Yun Wah Lam
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | |
Collapse
|
166
|
Darzacq X, Jády BE, Verheggen C, Kiss AM, Bertrand E, Kiss T. Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. EMBO J 2002; 21:2746-56. [PMID: 12032087 PMCID: PMC126017 DOI: 10.1093/emboj/21.11.2746] [Citation(s) in RCA: 385] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cajal (coiled) bodies are conserved subnuclear organelles that are present in the nucleoplasm of both animal and plant cells. Although Cajal bodies were first described nearly 100 years ago, their function has remained largely speculative. Here, we describe a novel class of human small nuclear RNAs that localize specifically to Cajal bodies. The small Cajal body-specific RNAs (scaRNAs) are predicted or have already been demonstrated to function as guide RNAs in site-specific synthesis of 2'-O-ribose-methylated nucleotides and pseudouridines in the RNA polymerase II-transcribed U1, U2, U4 and U5 spliceosomal small nuclear RNAs (snRNAs). Our results provide strong support for the idea that the Cajal body, this mysterious nuclear organelle, provides the cellular locale for post-transcriptional modification of spliceosomal snRNAs.
Collapse
Affiliation(s)
| | - Beáta E. Jády
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex,
Institut de Génétique Moléculaire, Montpellier, France and Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Corresponding author e-mail:
| | - Céline Verheggen
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex,
Institut de Génétique Moléculaire, Montpellier, France and Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Corresponding author e-mail:
| | - Arnold M. Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex,
Institut de Génétique Moléculaire, Montpellier, France and Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Corresponding author e-mail:
| | - Edouard Bertrand
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex,
Institut de Génétique Moléculaire, Montpellier, France and Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Corresponding author e-mail:
| | - Tamás Kiss
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex,
Institut de Génétique Moléculaire, Montpellier, France and Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Corresponding author e-mail:
| |
Collapse
|
167
|
Paushkin S, Gubitz AK, Massenet S, Dreyfuss G. The SMN complex, an assemblyosome of ribonucleoproteins. Curr Opin Cell Biol 2002; 14:305-12. [PMID: 12067652 DOI: 10.1016/s0955-0674(02)00332-0] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spinal muscular atrophy is a common, often lethal, neurodegenerative disease that results from low levels of, or loss-of-function mutations in, the SMN (survival of motor neurons) protein. SMN oligomerizes and forms a stable complex with five additional proteins: Gemins 2-6. SMN also interacts with several additional proteins referred to as "substrates". Most of these substrates contain a domain enriched in arginine and glycine residues (the RG-rich domain), and are constituents of different ribonucleoprotein complexes. Recent studies revealed that the substrates can be modified by an arginine methyltransferase complex, the methylosome. This forms symmetrical dimethylarginines within the RG-rich domains of the substrates, thereby converting them to high-affinity binders of the SMN complex, and most likely providing regulation of the ribonucleoprotein assembly processes.
Collapse
Affiliation(s)
- Sergey Paushkin
- Howard Hughes Medical Institute, and the Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | |
Collapse
|
168
|
Türeci O, Sahin U, Koslowski M, Buss B, Bell C, Ballweber P, Zwick C, Eberle T, Zuber M, Villena-Heinsen C, Seitz G, Pfreundschuh M. A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene 2002; 21:3879-88. [PMID: 12032826 DOI: 10.1038/sj.onc.1205481] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Revised: 02/28/2002] [Accepted: 03/18/2002] [Indexed: 11/09/2022]
Abstract
We describe here the definition and characterization of antigen CT-8/HOM-TES-85 encoded by a previously unknown gene and identified by serological expression screening using antibodies from a seminoma patient. Intriguingly, the leucine zipper region of CT-8/HOM-TES-85 shows an atypical amphipathy with clusters of hydrophobic residues that is exclusively shared by the N-myc proto-oncogene. CT-8/HOM-TES-85 gene is tightly silenced in normal tissues except for testis. However, it is frequently activated in human neoplasms of different types including lung cancer, ovarian cancer, melanoma and glioma. Endogenous as well as heterogeneously expressed CT-8/HOM-TES-85 targets predominantly to the nucleus forming a distinctive speckled pattern of nuclear dots arranged in macromolecular structures. By co-localization studies these speckles were identified as loci of transcriptional activity and splicing, suggesting that CT-8/HOM-TES-85 may be involved in these processes. The aberrant expression of CT-8/HOM-TES-85 in human neoplasms might therefore be involved in cancer associated alterations of transcriptional or post-transcriptional processes and thus may disclose new mechanisms involved in the manifestation of the cancer phenotype.
Collapse
MESH Headings
- Alternative Splicing
- Antigens/chemistry
- Antigens/metabolism
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Blotting, Northern
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Genome
- Green Fluorescent Proteins
- Humans
- Immunoblotting
- Leucine Zippers
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Models, Chemical
- Phenotype
- Protein Structure, Tertiary
- Proto-Oncogene Mas
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ozlem Türeci
- III. Medizinische Klinik und Poliklinik, Johannes Gutenberg Universität Mainz, D-55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
BACKGROUND The cell nucleus contains distinct classes of subnuclear bodies, including nucleoli, splicing speckles, Cajal bodies, gems, and PML bodies. Many nuclear proteins are known to interact dynamically with one or other of these bodies, and disruption of the specific organization of nuclear proteins can result in defects in cell functions and may cause molecular disease. RESULTS A proteomic study of purified human nucleoli has identified novel proteins, including Paraspeckle Protein 1 (PSP1) (see accompanying article, this issue of Current Biology). Here we show that PSP1 accumulates in a new nucleoplasmic compartment, termed paraspeckles, that also contains at least two other protein components: PSP2 and p54/nrb. A similar pattern of typically 10 to 20 paraspeckles was detected in all human cell types analyzed, including primary and transformed cells. Paraspeckles correspond to discrete bodies in the interchromatin nucleoplasmic space that are often located adjacent to splicing speckles. A stable cell line expressing YFP-PSP1 has been established and used to demonstrate that PSP1 interacts dynamically with nucleoli and paraspeckles in living cells. The three paraspeckle proteins relocalize quantitatively to unique cap structures at the nucleolar periphery when transcription is inhibited. CONCLUSIONS We have identified a novel nuclear compartment, termed paraspeckles, found in both primary and transformed human cells. Paraspeckles contain at least three RNA binding proteins that all interact dynamically with the nucleolus in a transcription-dependent fashion.
Collapse
Affiliation(s)
- Archa H Fox
- Wellcome Trust Biocentre, MSI/WTB Complex, University of Dundee, DD1 4HN, Dundee, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
The Nopp140 gene of Drosophila maps within 79A5 of chromosome 3. Alternative splicing yields two variants. DmNopp140 (654 residues) is the sequence homolog of vertebrate Nopp140. Its carboxy terminus is 64% identical to that of the prototypical rat Nopp140. DmNopp140-RGG (688 residues) is identical to DmNopp140 throughout its first 551 residues, but its carboxy terminus contains a glycine/arginine-rich domain that is often found in RNA-binding proteins such as vertebrate nucleolin. Both Drosophila variants localize to nucleoli in Drosophila Schneider II cells and Xenopus oocytes, specifically within the dense fibrillar components. In HeLa cells, DmNopp140-RGG localizes to intact nucleoli, whereas DmNopp140 partitions HeLa nucleoli into phase-light and phase-dark regions. The phase-light regions contain DmNopp140 and endogenous fibrillarin, whereas the phase-dark regions contain endogenous nucleolin. When coexpressed, both Drosophila variants colocalize to HeLa cell nucleoli. Both variants fail to localize to endogenous Cajal bodies in Xenopus oocyte nuclei and in HeLa cell nuclei. Endogenous HeLa coilin, however, accumulates around the periphery of phase-light regions in cells expressing DmNopp140. The carboxy truncation (DmNopp140DeltaRGG) also fails to localize to Cajal bodies, but it forms similar phase-light regions that peripherally accumulate endogenous coilin. Conversely, we see no unusual accumulation of coilin in cells expressing DmNopp140-RGG.
Collapse
Affiliation(s)
- John M Waggener
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | |
Collapse
|
171
|
Sleeman JE, Ajuh P, Lamond AI. snRNP protein expression enhances the formation of Cajal bodies containing p80-coilin and SMN. J Cell Sci 2001; 114:4407-19. [PMID: 11792806 DOI: 10.1242/jcs.114.24.4407] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Splicing snRNPs (small nuclear ribonucleoproteins) are essential sub-units of the spliceosome. Here we report the establishment of stable cell lines expressing fluorescently tagged SmB, a core snRNP protein. Analysis of these stable cell lines has allowed us to characterize the nuclear pathway that leads to snRNP accumulation in nuclear speckles and has identified a limiting nucleolar step in the pathway that can be saturated by overexpression of Sm proteins. After nuclear import, newly assembled snRNPs accumulate first in a subset of Cajal bodies that contain both p80-coilin and the survival of motor neurons protein (SMN) and not in bodies that contain p80-coilin but lack SMN. Treatment of cells with leptomycin B (LMB) inhibits both the accumulation of snRNPs in nuclear bodies and their subsequent accumulation in speckles. The formation of Cajal bodies is enhanced by Sm protein expression and the assembly of new snRNPs. Formation of heterokaryons between HeLa cell lines expressing Sm proteins and primary cells that usually lack Cajal bodies results in the detection of Cajal bodies in primary cell nuclei. Transient over-expression of exogenous SmB alone is sufficient to induce correspondingly transient Cajal body formation in primary cells. These data indicate that the level of snRNP protein expression and snRNP assembly, rather than the expression levels of p80-coilin or SMN, may be a key trigger for Cajal body formation.
Collapse
Affiliation(s)
- J E Sleeman
- School of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, DD1 5EH, UK
| | | | | |
Collapse
|
172
|
Bogolyubov D, Parfenov V. Immunogold localization of RNA polymerase II and pre-mRNA splicing factors in Tenebrio molitor oocyte nuclei with special emphasis on karyosphere development. Tissue Cell 2001; 33:549-61. [PMID: 11827099 DOI: 10.1054/tice.2001.0210] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ultrastructural and immunomorphological characteristics of the developing karyosphere and extrachromosomal nuclear bodies (NBs) in Tenebrio molitor oocytes are presented. Three consecutive stages of karyosphere development were identified: reticular, compact and ring-shaped. At the beginning of the karyosphere development (reticular and compact stages), condensed chromosomes are associated with a fibrogranular material (FGM). The successive karyosphere development is accompanied by the reorganization of FGM into fibrogranular NBs. Special attention was given to the nuclear distribution of hyperphosphorylated and non-phosphorylated forms of RNA polymerase II (pol II) and pre-mRNA splicing factors (snRNPs and SC35 protein) during karyosphere development and NB formation. The immunoelectron microscopy revealed that two forms of pol II and splicing factors being assembled in FGM are deposited in appropriate NBs. Some NBs were also shown to contain coilin, a marker protein for Cajal (coiled) bodies. We suggest that different types of NBs appearing in T. molitor oocyte nuclei along with the cessation of transcriptional activity during the karyosphere development represent storage domains for inactive RNA transcription/processing machinery to later usage in early embryogenesis.
Collapse
Affiliation(s)
- D Bogolyubov
- Institute of Cytology, Russian Academy of Sciences, St Petersburg.
| | | |
Collapse
|
173
|
Trinkle-Mulcahy L, Sleeman JE, Lamond AI. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells. J Cell Sci 2001; 114:4219-28. [PMID: 11739654 DOI: 10.1242/jcs.114.23.4219] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 1 (PP1) is expressed in mammalian cells as three closely related isoforms, α, β/δ and γ1, which are encoded by separate genes. It has yet to be determined whether the separate isoforms behave in a similar fashion or play distinct roles in vivo. We report here on analyses by fluorescence microscopy of functional and fluorescently tagged PP1 isoforms in live cells. PP1α and PP1γ fluorescent protein fusions show largely complimentary localization patterns, particularly within the nucleus where tagged PP1γ accumulates in the nucleolus, whereas tagged PP1α is primarily found in the nucleoplasm. Overexpression of NIPP1 (nuclear inhibitor of PP1), a PP1 targeting subunit that accumulates at interchromatin granule clusters in the nucleoplasm, results in a retargeting of both isoforms to these structures, indicating that steady-state localization is based, at least in part, on relative affinities for various targeting subunits. Photobleaching analyses show that PP1γ is rapidly exchanging between the nucleolar, nucleoplasmic and cytoplasmic compartments. Fluorescence resonance energy transfer (FRET) analyses indicate that the direct interaction of the two proteins predominantly occurs at or near interchromatin granule clusters. These data indicate that PP1 isoforms are highly mobile in cells and can be dynamically (re)localized through direct interaction with targeting subunits.
Collapse
|
174
|
Abstract
Within the oocyte nucleus of many insect species, a variable number of intensely stained spherical bodies occur. These nuclear bodies differ significantly from nucleoli and their precise role in nuclei has not been elucidated yet. I have examined some of the histochemical properties as well as the molecular composition of these structures in a representative of ground (carabid) beetles. I demonstrate, using molecular markers, that the nuclear bodies are composed of small nuclear RNAs and associated proteins, including p80 coilin. Hence, they correspond to Cajal bodies (= coiled bodies) described in somatic cell nuclei as well as oocyte germinal vesicles in plant and animal organisms. It is suggested that Cajal bodies in the carabid germinal vesicle serve as a storage site for splicing factors.
Collapse
Affiliation(s)
- M K Jaglarz
- Institute of Zoology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
175
|
Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG. Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 2001; 154:293-307. [PMID: 11470819 PMCID: PMC2150753 DOI: 10.1083/jcb.200104083] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cajal bodies (CBs) are nuclear suborganelles involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs). In addition to snRNPs, they are highly enriched in basal transcription and cell cycle factors, the nucleolar proteins fibrillarin (Fb) and Nopp140 (Nopp), the survival motor neuron (SMN) protein complex, and the CB marker protein, p80 coilin. We report the generation of knockout mice lacking the COOH-terminal 487 amino acids of coilin. Northern and Western blot analyses demonstrate that we have successfully removed the full-length coilin protein from the knockout animals. Some homozygous mutant animals are viable, but their numbers are reduced significantly when crossed to inbred backgrounds. Analysis of tissues and cell lines from mutant animals reveals the presence of extranucleolar foci that contain Fb and Nopp but not other typical nucleolar markers. These so-called "residual" CBs neither condense Sm proteins nor recruit members of the SMN protein complex. Transient expression of wild-type mouse coilin in knockout cells results in formation of CBs and restores these missing epitopes. Our data demonstrate that full-length coilin is essential for proper formation and/or maintenance of CBs and that recruitment of snRNP and SMN complex proteins to these nuclear subdomains requires sequences within the coilin COOH terminus.
Collapse
Affiliation(s)
- K E Tucker
- Department of Genetics, and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Abstract
Cajal bodies (CBs) are small nuclear organelles that contain the three eukaryotic RNA polymerases and a variety of factors involved in transcription and processing of all types of RNA. A number of these factors, as well as subunits of polymerase (pol) II itself, are rapidly and specifically targeted to CBs when injected into the cell. It is suggested that pol I, pol II, and pol III transcription and processing complexes are preassembled in the CBs before transport to the sites of transcription on the chromosomes and in the nucleoli.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210-3301, USA.
| |
Collapse
|
177
|
Abstract
Recent progress in the autoimmune aspects of atopic dermatitis has clarified that patients with atopic dermatitis develop IgE-class autoantibodies mainly against intracellular proteins. The cloning of cDNAs encoding autoallergens with human expression cDNA libraries and serum IgE from atopic dermatitis patients has unraveled the molecular characteristics of IgE-binding autoantigens. Some patients with atopic dermatitis also have IgG-class autoantibodies, especially anti-nuclear antibodies. One of the nuclear autoantigens was identified as DFS70/transcription coactivator p75. In addition, p80-coilin in nuclear coiled bodies is also targetted. Several lines of evidence suggest that a subset of atopic dermatitis may be associated with an autoimmune response.
Collapse
Affiliation(s)
- Y Muro
- Division of Connective Tissue Disease & Autoimmunity, Department of Dermatology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, 466-8550, Nagoya, Japan.
| |
Collapse
|
178
|
Abstract
Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramón y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| |
Collapse
|
179
|
Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB. Replication-dependent histone gene expression is related to Cajal body (CB) association but does not require sustained CB contact. Mol Biol Cell 2001; 12:565-76. [PMID: 11251071 PMCID: PMC30964 DOI: 10.1091/mbc.12.3.565] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interactions between Cajal bodies (CBs) and replication-dependent histone loci occur more frequently than for other mRNA-encoding genes, but such interactions are not seen with all alleles at a given time. Because CBs contain factors required for transcriptional regulation and 3' end processing of nonpolyadenylated replication-dependent histone transcripts, we investigated whether interaction with CBs is related to metabolism of these transcripts, known to vary during the cell cycle. Our experiments revealed that a locus containing a cell cycle-independent, replacement histone gene that produces polyadenylated transcripts does not preferentially associate with CBs. Furthermore, modest but significant changes in association levels of CBs with replication-dependent histone loci mimic their cell cycle modulations in transcription and 3' end processing rates. By simultaneously visualizing replication-dependent histone genes and their nuclear transcripts for the first time, we surprisingly find that the vast majority of loci producing detectable RNA foci do not contact CBs. These studies suggest some link between CB association and unusual features of replication-dependent histone gene expression. However, sustained CB contact is not a requirement for their expression, consistent with our observations of U7 snRNP distributions. The modest correlation to gene expression instead may reflect transient gene signaling or the nucleation of small CBs at gene loci.
Collapse
Affiliation(s)
- L S Shopland
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
180
|
Platani M, Goldberg I, Swedlow JR, Lamond AI. In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 2000; 151:1561-74. [PMID: 11134083 PMCID: PMC2150679 DOI: 10.1083/jcb.151.7.1561] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cajal bodies (also known as coiled bodies) are subnuclear organelles that contain specific nuclear antigens, including splicing small nuclear ribonucleoproteins (snRNPs) and a subset of nucleolar proteins. Cajal bodies are localized in the nucleoplasm and are often found at the nucleolar periphery. We have constructed a stable HeLa cell line, HeLa(GFP-coilin), that expresses the Cajal body marker protein, p80 coilin, fused to the green fluorescent protein (GFP-coilin). The localization pattern and biochemical properties of the GFP-coilin fusion protein are identical to the endogenous p80 coilin. Time-lapse recordings on 63 nuclei of HeLa(GFP-coilin) cells showed that all Cajal bodies move within the nucleoplasm. Movements included translocations through the nucleoplasm, joining of bodies to form larger structures, and separation of smaller bodies from larger Cajal bodies. Also, we observed Cajal bodies moving to and from nucleoli. The data suggest that there may be at least two classes of Cajal bodies that differ in their size, antigen composition, and dynamic behavior. The smaller size class shows more frequent and faster rates of movement, up to 0.9 microm/min. The GFP-coilin protein is dynamically associated with Cajal bodies as shown by changes in their fluorescence intensity over time. This study reveals an unexpectedly high level of movement and interactions of nuclear bodies in human cells and suggests that these movements may be driven, at least in part, by regulated mechanisms.
Collapse
Affiliation(s)
| | - Ilya Goldberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | - Angus I. Lamond
- MSI/WTB Complex, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
181
|
Hebert MD, Matera AG. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 2000; 11:4159-71. [PMID: 11102515 PMCID: PMC15064 DOI: 10.1091/mbc.11.12.4159] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have found that coilin, the marker protein for Cajal bodies (coiled bodies, CBs), is a self-interacting protein, and we have mapped the domain responsible for this activity to the amino-terminus. Together with a nuclear localization signal, the self-interaction domain is necessary and sufficient for localization to CBs. Overexpression of various wild-type and mutant coilin constructs in HeLa cells results in disruption of both CBs and survival motor neurons (SMN) gems. Additionally, we have identified a cryptic nucleolar localization signal (NoLS), within the coilin protein, which may be exposed in specific coilin phospho-isoforms. The implications of these findings are discussed in light of the fact that other proteins known to localize within nuclear bodies (e. g., PML, SMN and Sam68) can also self-associate. Thus protein self-interaction appears to be a general feature of nuclear body marker proteins.
Collapse
Affiliation(s)
- M D Hebert
- Department of Genetics, Center for Human Genetics and Program in Cell Biology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106-4955, USA
| | | |
Collapse
|
182
|
La Bella V, Kallenbach S, Pettmann B. Expression and subcellular localization of two isoforms of the survival motor neuron protein in different cell types. J Neurosci Res 2000; 62:346-56. [PMID: 11054803 DOI: 10.1002/1097-4547(20001101)62:3<346::aid-jnr4>3.0.co;2-d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The survival motor neuron (SMN) gene is deleted or mutated in over 98% of spinal muscular atrophy patients who show specific motoneuron loss. By performing transfection experiments with rat smn cDNA, we show that two isoforms of SMN with Mr of 32 kDa and 35 kDa are produced by the same cDNA. In cultured motoneurons, both forms colocalize in coiled bodies and not in GEMS bodies as shown for HeLa cells. Subcellular fractionation of cells acutely dissociated from rat embryonic ventral spinal cord shows that the two SMN isoforms have a different subcellular localization, namely, that the 32 kDa isoform is enriched in the cytosol, whereas the 35 kDa isoform is segregating in the microsomal fraction. We show that the 35 kDa isoform of SMN is part of an insoluble complex but is absent from the cytoplasmic membranes and from the mitochondria. Immunostaining studies show that neither SMN isoform colocalizes with Bcl-2, the mitochondrial antiapoptotic protein suggested to bind to SMN in HeLa cells. Our results show that the isoforms of SMN protein have different subcellular localization and may therefore play independent biological roles. Moreover, the absence of colocalization of SMN with Bcl-2 in motoneurons suggests that some of the interactors of SMN may vary depending on the cell type, and this underscores the importance of identifying motoneuron-specific SMN interactors.
Collapse
Affiliation(s)
- V La Bella
- INSERM U382, Developmental Biology Institute of Marseille (CNRS-INSERM-Université de la Méditerranée, AP de Marseille), Marseille, France
| | | | | |
Collapse
|
183
|
Zhao J. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 2000. [DOI: 10.1101/gad.827700] [Citation(s) in RCA: 446] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
184
|
Zhao J, Kennedy BK, Lawrence BD, Barbie DA, Matera AG, Fletcher JA, Harlow E. NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev 2000; 14:2283-97. [PMID: 10995386 PMCID: PMC316937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2000] [Accepted: 07/28/2000] [Indexed: 02/17/2023]
Abstract
In eukaryotic cells, histone gene expression is one of the major events that mark entry into S phase. While this process is tightly linked to cell cycle position, how it is regulated by the cell cycle machinery is not known. Here we show that NPAT, a substrate of the cyclin E-Cdk2 complex, is associated with human replication-dependent histone gene clusters on both chromosomes 1 and 6 in S phase. We demonstrate that NPAT activates histone gene transcription and that this activation is dependent on the promoter elements (SSCSs) previously proposed to mediate cell cycle-dependent transcription. Cyclin E is also associated with the histone gene loci, and cyclin E-Cdk2 stimulates the NPAT-mediated activation of histone gene transcription. Thus, our results both show that NPAT is involved in a key S phase event and provide a link between the cell cycle machinery and activation of histone gene transcription.
Collapse
Affiliation(s)
- J Zhao
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
The Cajal (coiled) body is a discrete nuclear organelle that was first described in mammalian neurons in 1903. Because the molecular composition, structure, and function of Cajal bodies were unknown, these enigmatic structures were largely ignored for most of the last century. The Cajal body has now regained the interest of biologists, due to the isolation of a protein marker, coilin. Despite current widespread use of coilin to identify Cajal bodies in various cell types, its structure and function are still little understood. Here, I would like to discuss what we have learned about coilin and suggest a possible role for coilin in RNA processing and cellular trafficking, especially in relation to Cajal bodies and nucleoli. Although coilin has been investigated primarily in somatic cells, I will emphasize the advantages of using the amphibian oocyte to study nuclear proteins and organelles.
Collapse
Affiliation(s)
- M Bellini
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA.
| |
Collapse
|
186
|
Isaac C, Marsh KL, Paznekas WA, Dixon J, Dixon MJ, Jabs EW, Meier UT. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11:3061-71. [PMID: 10982400 PMCID: PMC14975 DOI: 10.1091/mbc.11.9.3061] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development caused by mutations in the gene TCOF1. Its gene product, treacle, consists mainly of a central repeat domain, which shows it to be structurally related to the nucleolar phosphoprotein Nopp140. Treacle remains mostly uncharacterized to date. Herein we show that it, like Nopp140, is a highly phosphorylated nucleolar protein. However, treacle fails to colocalize with Nopp140 to Cajal (coiled) bodies. As in the case of Nopp140, casein kinase 2 appears to be responsible for the unusually high degree of phosphorylation as evidenced by its coimmunoprecipitation with treacle. Based on these and other observations, treacle and Nopp140 exhibit distinct but overlapping functions. The majority of TCOF1 mutations in TCS lead to premature termination codons that could affect the cellular levels of the full-length treacle. We demonstrate however, that the cellular amount of treacle varies less than twofold among a collection of primary fibroblasts and lymphoblasts and regardless of whether the cells were derived from TCS patients or healthy individuals. Therefore, cells of TCS patients possess a mechanism to maintain wild-type levels of full-length treacle from a single allele.
Collapse
Affiliation(s)
- C Isaac
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Pena E, Berciano MT, Fernandez R, Crespo P, Lafarga M. Stress-induced activation of c-Jun N-terminal kinase in sensory ganglion neurons: accumulation in nuclear domains enriched in splicing factors and distribution in perichromatin fibrils. Exp Cell Res 2000; 256:179-91. [PMID: 10739665 DOI: 10.1006/excr.2000.4814] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to cellular stress, the activation of the JNK cascade mediates phosphorylation of c-Jun that promotes its transactivation, which in turn activates the transcription of specific genes. In an experimental model of neuronal stress in vivo, by means of immunofluorescence and kinase assays we have found a reversible activation of JNK induced by the administration of the anti-cancer drug Adriamycin. In control neurons, a considerable basal level of the active, phosphorylated JNK was detected in neuronal nuclei, with a speckled distribution in addition to a diffuse nucleoplasmic signal. Adriamycin-induced neuronal stress was associated with a notable increase of this nuclear immunostaining, indicating activation of the JNK pathway which was confirmed by the increase of JNK enzymatic activity, while no changes in the total JNK were detected by Western blots. The JNK neuronal response to stress was also accompanied by an increase in the nuclear immunoreactivity for c-Jun and also by the de novo appearance of a strong nuclear phospho-c-Jun signal. These effects tend to revert to the control situation after 24 h of Adriamycin treatment. The nuclear compartmentalization of phospho-JNK and its substrate c-Jun was analyzed by confocal laser microscopy. Phospho-JNK strongly colocalizes with snRNPs in nuclear speckles, while the former was not concentrated in the coiled bodies. Upon stress induction, both c-Jun and phospho-c-Jun show a nucleoplasmic distribution in euchromatin domains, with the nucleoli free of immunolabeling. Furthermore, the nuclear speckles enriched in phospho-JNK exhibit a very low or undetectable signal with both c-Jun antibodies. Immunogold electron microscopy confirms the accumulation of phospho-JNK in interchromatin granule clusters (nuclear speckles), while in the nucleoplasm this kinase is mainly localized in perichromatin fibrils. Both c-Jun and phospho-c-Jun were also detected in perichromatin fibrils. Double labeling experiments show the colocalization of phospho-JNK and phospho-c-Jun in certain perichromatin fibrils. These results indicate that the neuronal response to the Adriamycin-induced stress is mediated by the activation of the JNK pathway. The accumulation of phospho-JNK in nuclear speckles raises the possibility that this kinase may be involved in the phosphorylation of an unknown splicing factor. Moreover, the colocalization of phospho-JNK and c-Jun in perichromatin fibrils, which are associated with sites of active transcription, suggests that these nuclear structures may be putative sites for the phosphorylation of JNK substrates.
Collapse
Affiliation(s)
- E Pena
- Departamentos de Anatomia y Biologia Celular, Universidad de Cantabria, Facultad de Medicina, Av. Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | | | | | | | | |
Collapse
|
188
|
Abstract
In the mammalian cell nucleus pre-mRNA splicing factors are organized in a speckled pattern. The fluorescence signal within speckles appears homogeneous when cells are immunolabeled with antibodies directed against pre-mRNA splicing factors and examined by fluorescence microscopy. We have reexamined the speckled domains using serial dilutions of antibodies against SR proteins, snRNPs, and a 3' end processing protein by immunofluorescence and confocal laser scanning microscopy. Using higher antibody dilutions, the speckled domains consist of numerous subdomains that are spherical and heterogeneous in size ranging from 0.2 to 0.5 micrometer in diameter. We refer to these subdomains as "subspeckles." Each speckle is composed of 5 to 50 subspeckles and in some cases in actively transcribing cells, strings and loops of subspeckles were observed to extend from the speckled domains. Upon inhibition of RNA polymerase II transcription, the strings and loops of subspeckles were no longer observed. Subspeckles were also not observed in coiled bodies. Using fluorescence in situ hybridization we found subspeckles to be colocalized with transiently expressed beta-tropomyosin RNA transcripts. The compartmentalization into subspeckles may represent an efficient way of organizing these factors for their subsequent transport to transcription/RNA processing sites.
Collapse
Affiliation(s)
- P J Mintz
- Department of Molecular Genetics and Microbiology, S.U.N.Y. Stony Brook, Stony Brook, New York, 11794, USA
| | | |
Collapse
|
189
|
Tucker KE, Massello LK, Gao L, Barber TJ, Hebert MD, Chan EK, Matera AG. Structure and characterization of the murine p80 coilin gene, Coil. J Struct Biol 2000; 129:269-77. [PMID: 10806077 DOI: 10.1006/jsbi.2000.4234] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cajal bodies (coiled bodies, CBs) are nuclear organelles of unknown function and are characterized by a wide variety of components including various basal transcription and cell cycle proteins, the nucleolar proteins fibrillarin and Nopp140, numerous small nuclear ribonucleoproteins, the survival motor neuron protein complex, and the marker protein, p80 coilin. To gain insight into the role of p80 coilin in CBs, we have cloned the murine gene Coil and have mapped it to the distal portion of chromosome band 11D. The approximately 2.6-kb transcript is detectable in all tissues analyzed, with the highest levels in brain and testis. Sequence analysis shows that, like its human counterpart, the mouse coilin gene is composed of seven exons and spans nearly 30 kb of genomic DNA. The predicted amino acid sequence reveals two conserved N- and C-terminal domains, and comparison with the Xenopus SPH-1 protein reveals that these three genes are indeed orthologous. These results should facilitate gene disruption experiments aimed at creating a genetic model system to study CBs.
Collapse
Affiliation(s)
- K E Tucker
- Department of Genetics, Case Western Reserve University, Cleveland, Ohio, 44106-4955, USA
| | | | | | | | | | | | | |
Collapse
|
190
|
Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G. Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 2000; 148:1177-86. [PMID: 10725331 PMCID: PMC2174312 DOI: 10.1083/jcb.148.6.1177] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Jeongsik Yong
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | | | - Matthias Mann
- Protein Interaction Laboratory University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
191
|
Charroux B, Pellizzoni L, Perkinson RA, Shevchenko A, Mann M, Dreyfuss G. Gemin3: A novel DEAD box protein that interacts with SMN, the spinal muscular atrophy gene product, and is a component of gems. J Cell Biol 1999; 147:1181-94. [PMID: 10601333 PMCID: PMC2168095 DOI: 10.1083/jcb.147.6.1181] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.
Collapse
Affiliation(s)
- Bernard Charroux
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Livio Pellizzoni
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Robert A. Perkinson
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| | - Andrej Shevchenko
- Peptide and Protein Group, European Molecular Biology Laboratory (EMBL), 69012 Heidelberg, Germany
| | - Matthias Mann
- Protein Interaction Laboratory, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148
| |
Collapse
|
192
|
Speckmann W, Narayanan A, Terns R, Terns MP. Nuclear retention elements of U3 small nucleolar RNA. Mol Cell Biol 1999; 19:8412-21. [PMID: 10567566 PMCID: PMC84939 DOI: 10.1128/mcb.19.12.8412] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The processing and methylation of precursor rRNA is mediated by the box C/D small nucleolar RNAs (snoRNAs). These snoRNAs differ from most cellular RNAs in that they are not exported to the cytoplasm. Instead, these RNAs are actively retained in the nucleus where they assemble with proteins into mature small nucleolar ribonucleoprotein particles and are targeted to their intranuclear site of action, the nucleolus. In this study, we have identified the cis-acting sequences responsible for the nuclear retention of U3 box C/D snoRNA by analyzing the nucleocytoplasmic distributions of an extensive panel of U3 RNA variants after injection of the RNAs into Xenopus oocyte nuclei. Our data indicate the importance of two conserved sequence motifs in retaining U3 RNA in the nucleus. The first motif is comprised of the conserved box C' and box D sequences that characterize the box C/D family. The second motif contains conserved box sequences B and C. Either motif is sufficient for nuclear retention, but disruption of both motifs leads to mislocalization of the RNAs to the cytoplasm. Variant RNAs that are not retained also lack 5' cap hypermethylation and fail to associate with fibrillarin. Furthermore, our results indicate that nuclear retention of U3 RNA does not simply reflect its nucleolar localization. A fragment of U3 containing the box B/C motif is not localized to nucleoli but retained in coiled bodies. Thus, nuclear retention and nucleolar localization are distinct processes with differing sequence requirements.
Collapse
Affiliation(s)
- W Speckmann
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
193
|
Jagatheesan G, Thanumalayan S, Muralikrishna B, Rangaraj N, Karande AA, Parnaik VK. Colocalization of intranuclear lamin foci with RNA splicing factors. J Cell Sci 1999; 112 ( Pt 24):4651-61. [PMID: 10574713 DOI: 10.1242/jcs.112.24.4651] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lamins form a fibrous network underlying the inner nuclear membrane termed the nuclear lamina. In order to gain insights into the role of lamins in nuclear organization, we have characterized a monoclonal antibody (LA-2H10) raised against recombinant rat lamin A that labels nuclei in a speckled pattern in all cells of unsynchronized populations of HeLa and rat F-111 fibroblast cells, unlike the typical nuclear periphery staining by another monoclonal antibody to lamin A, LA-2B3. In immunolocalization studies the lamin A speckles or foci were found to colocalize with the RNA splicing factors SC-35 and U5-116 kD, but not with p80 coilin found in coiled bodies. Lamin B1 was also associated with these foci. These foci dispersed when cells entered mitosis and reformed during anaphase. The differential reactivity of LA-2H10 and LA-2B3 was retained after nuclei were extracted with detergents, nucleases and salt to disrupt interactions of lamins with chromatin and other nuclear proteins. Using deletion fragments of recombinant lamin A, the epitope recognized by LA-2H10 was located between amino acids 171 and 246. Our findings are consistent with a structural role for lamins in supporting nuclear compartments containing proteins involved in RNA splicing.
Collapse
Affiliation(s)
- G Jagatheesan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
194
|
Schul W, Adelaar B, van Driel R, de Jong L. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991201)75:3<393::aid-jcb5>3.0.co;2-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
195
|
Gall JG, Bellini M, Wu Z, Murphy C. Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 1999; 10:4385-402. [PMID: 10588665 PMCID: PMC25765 DOI: 10.1091/mbc.10.12.4385] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/1999] [Accepted: 09/24/1999] [Indexed: 01/09/2023] Open
Abstract
We have examined the distribution of RNA transcription and processing factors in the amphibian oocyte nucleus or germinal vesicle. RNA polymerase I (pol I), pol II, and pol III occur in the Cajal bodies (coiled bodies) along with various components required for transcription and processing of the three classes of nuclear transcripts: mRNA, rRNA, and pol III transcripts. Among these components are transcription factor IIF (TFIIF), TFIIS, splicing factors, the U7 small nuclear ribonucleoprotein particle, the stem-loop binding protein, SR proteins, cleavage and polyadenylation factors, small nucleolar RNAs, nucleolar proteins that are probably involved in pre-rRNA processing, and TFIIIA. Earlier studies and data presented here show that several of these components are first targeted to Cajal bodies when injected into the oocyte and only subsequently appear in the chromosomes or nucleoli, where transcription itself occurs. We suggest that pol I, pol II, and pol III transcription and processing components are preassembled in Cajal bodies before transport to the chromosomes and nucleoli. Most components of the pol II transcription and processing pathway that occur in Cajal bodies are also found in the many hundreds of B-snurposomes in the germinal vesicle. Electron microscopic images show that B-snurposomes consist primarily, if not exclusively, of 20- to 30-nm particles, which closely resemble the interchromatin granules described from sections of somatic nuclei. We suggest the name pol II transcriptosome for these particles to emphasize their content of factors involved in synthesis and processing of mRNA transcripts. We present a model in which pol I, pol II, and pol III transcriptosomes are assembled in the Cajal bodies before export to the nucleolus (pol I), to the B-snurposomes and eventually to the chromosomes (pol II), and directly to the chromosomes (pol III). The key feature of this model is the preassembly of the transcription and processing machinery into unitary particles. An analogy can be made between ribosomes and transcriptosomes, ribosomes being unitary particles involved in translation and transcriptosomes being unitary particles for transcription and processing of RNA.
Collapse
Affiliation(s)
- J G Gall
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA.
| | | | | | | |
Collapse
|
196
|
Chen HK, Pai CY, Huang JY, Yeh NH. Human Nopp140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 1999; 19:8536-46. [PMID: 10567578 PMCID: PMC84972 DOI: 10.1128/mcb.19.12.8536] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nopp140 is thought to shuttle between nucleolus and cytoplasm. However, the predominant nucleolar localization of Nopp140 homologues from different species suggests that Nopp140 is also involved in events occurring within the nucleolus. In this study, we demonstrated that the largest subunit of RNA polymerase I, RPA194, was coimmunoprecipitated with the human Nopp140 (hNopp140). Such an interaction is mediated through amino acids 204 to 382 of hNopp140. By double immunofluorescence, hNopp140 was colocalized with RNA polymerase I at the rDNA (rRNA genes) transcription active foci in the nucleolus. These results suggest that Nopp140 can interact with RNA polymerase I in vivo. Transfected cells expressing the amino-terminal half of hNopp140, hNopp140N382 (amino acids 1 to 382), displayed altered nucleoli with crescent-shaped structures. This phenotype is reminiscent of the segregated nucleoli induced by actinomycin D treatment, which is known to inhibit rRNA synthesis. Consistently, the hNopp140N382 protein mislocalized the endogenous RNA polymerase I and shut off cellular rRNA gene transcription as revealed by an in situ run-on assay. These dominant negative effects of the mutant hNopp140N382 suggest that Nopp140 plays an essential role in rDNA transcription. Interestingly, ectopic expression of hNopp140 to a very high level caused the formation of a transcriptionally inactive spherical structure occupying the entire nucleolar area which trapped the RNA polymerase I, fibrillarin, and hNopp140 but excluded the nucleolin. The mislocalizations of these nucleolar proteins after hNopp140 overexpression imply that Nopp140 may also play roles in maintenance of nucleolar integrity.
Collapse
Affiliation(s)
- H K Chen
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan 11221, Republic of China
| | | | | | | |
Collapse
|
197
|
Schul W, van Der Kraan I, Matera AG, van Driel R, de Jong L. Nuclear domains enriched in RNA 3'-processing factors associate with coiled bodies and histone genes in a cell cycle-dependent manner. Mol Biol Cell 1999; 10:3815-24. [PMID: 10564273 PMCID: PMC25681 DOI: 10.1091/mbc.10.11.3815] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear domains, called cleavage bodies, are enriched in the RNA 3'-processing factors CstF 64 kDa and and CPSF 100 kDa. Cleavage bodies have been found either overlapping with or adjacent to coiled bodies. To determine whether the spatial relationship between cleavage bodies and coiled bodies was influenced by the cell cycle, we performed cell synchronization studies. We found that in G1 phase cleavage bodies and coiled bodies were predominantly coincident, whereas in S phase they were mostly adjacent to each other. In G2 cleavage bodies were often less defined or absent, suggesting that they disassemble at this point in the cell cycle. A small number of genetic loci have been reported to be juxtaposed to coiled bodies, including the genes for U1 and U2 small nuclear RNA as well as the two major histone gene clusters. Here we show that cleavage bodies do not overlap with small nuclear RNA genes but do colocalize with the histone genes next to coiled bodies. These findings demonstrate that the association of cleavage bodies and coiled bodies is both dynamic and tightly regulated and suggest that the interaction between these nuclear neighbors is related to the cell cycle-dependent expression of histone genes.
Collapse
Affiliation(s)
- W Schul
- E. C. Slater Instituut, University of Amsterdam, BioCentrum Amsterdam, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
198
|
Bellini M, Gall JG. Coilin shuttles between the nucleus and cytoplasm in Xenopus oocytes. Mol Biol Cell 1999; 10:3425-34. [PMID: 10512877 PMCID: PMC25612 DOI: 10.1091/mbc.10.10.3425] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/1999] [Accepted: 07/29/1999] [Indexed: 11/11/2022] Open
Abstract
Coiled bodies are discrete nuclear organelles often identified by the marker protein p80-coilin. Because coilin is not detected in the cytoplasm by immunofluorescence and Western blotting, it has been considered an exclusively nuclear protein. In the Xenopus germinal vesicle (GV), most coilin actually resides in the nucleoplasm, although it is highly concentrated in 50-100 coiled bodies. When affinity-purified anti-coilin antibodies were injected into the cytoplasm of oocytes, they could be detected in coiled bodies within 2-3 h. Coiled bodies were intensely labeled after 18 h, whereas other nuclear organelles remained negative. Because the nuclear envelope does not allow passive diffusion of immunoglobulins, this observation suggests that anti-coilin antibodies are imported into the nucleus as an antigen-antibody complex with coilin. Newly synthesized coilin is not required, because cycloheximide had no effect on nuclear import and subsequent targeting of the antibodies. Additional experiments with myc-tagged coilin and myc-tagged pyruvate kinase confirmed that coilin is a shuttling protein. The shuttling of Nopp140, NO38/B23, and nucleolin was easily demonstrated by the targeting of their respective antibodies to the nucleoli, whereas anti-SC35 did not enter the germinal vesicle. We suggest that coilin, perhaps in association with Nopp140, may function as part of a transport system between the cytoplasm and the coiled bodies.
Collapse
Affiliation(s)
- M Bellini
- Department of Embryology, Carnegie Institution, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
199
|
Onouchi H, Muro Y, Tomita Y. Clinical features and IgG subclass distribution of anti-p80 coilin antibodies. J Autoimmun 1999; 13:225-32. [PMID: 10479391 DOI: 10.1006/jaut.1999.0318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the clinical features of patients presenting antinuclear autoantibodies against p80-coilin and the IgG subclass distribution of anti- p80-coilin antibodies. Sera from 365 Japanese patients were analysed. Immunoblotting and indirect immunofluorescence microscopy techniques were used with a polyclonal rabbit antiserum against p80-coilin. Eleven patients with anti-p80-coilin antibodies were found. All the patients were female and nine were in their twenties. None could be diagnosed with differentiated rheumatic disease except for one case of systemic scleroderma and another of Sjögren's syndrome. Most patients had general fatigue, arthralgia, headaches, dysmenorrhea, lymph node swelling and/or low grade fever such as chronic fatigue syndrome (CFS), and showed low complement. One patient fulfilled the criteria for CFS. All were younger females than those often diagnosed with rheumatic disease in previous reports. Patients' sera had a predominant distribution of subclass IgG(1)anti-p80-coilin antibodies and five sera had concomitant subclass IgG(2). Two rheumatic disease patients had a relatively high titer of IgG(2)anti-p80-coilin antibodies. The IgG(2)subclass of anti-p80-coilin antibodies may be a specific marker for systemic autoimmune disease.
Collapse
Affiliation(s)
- H Onouchi
- Department of Dermatology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | |
Collapse
|
200
|
Narayanan A, Speckmann W, Terns R, Terns MP. Role of the box C/D motif in localization of small nucleolar RNAs to coiled bodies and nucleoli. Mol Biol Cell 1999; 10:2131-47. [PMID: 10397754 PMCID: PMC25425 DOI: 10.1091/mbc.10.7.2131] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a large family of eukaryotic RNAs that function within the nucleolus in the biogenesis of ribosomes. One major class of snoRNAs is the box C/D snoRNAs named for their conserved box C and box D sequence elements. We have investigated the involvement of cis-acting sequences and intranuclear structures in the localization of box C/D snoRNAs to the nucleolus by assaying the intranuclear distribution of fluorescently labeled U3, U8, and U14 snoRNAs injected into Xenopus oocyte nuclei. Analysis of an extensive panel of U3 RNA variants showed that the box C/D motif, comprised of box C', box D, and the 3' terminal stem of U3, is necessary and sufficient for the nucleolar localization of U3 snoRNA. Disruption of the elements of the box C/D motif of U8 and U14 snoRNAs also prevented nucleolar localization, indicating that all box C/D snoRNAs use a common nucleolar-targeting mechanism. Finally, we found that wild-type box C/D snoRNAs transiently associate with coiled bodies before they localize to nucleoli and that variant RNAs that lack an intact box C/D motif are detained within coiled bodies. These results suggest that coiled bodies play a role in the biogenesis and/or intranuclear transport of box C/D snoRNAs.
Collapse
Affiliation(s)
- A Narayanan
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|