151
|
Lee SH, Lee I, Kim MH, Go JS, Lee SH, Hwang HJ, Hyun SK, Kang KH, Kim BW, Kim CM, Chung KT, Lee JH. An extract ofUlmus macrocarpaimproves cellular immunity in immuno-suppressed models. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1230556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
152
|
Mfarrej BG, Battaglia M. The “Unusual Suspects” in Allograft Rejection: Will T Regulatory Cell Therapy Arrest Them? CURRENT TRANSPLANTATION REPORTS 2016. [DOI: 10.1007/s40472-016-0108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
153
|
Elhaik Goldman S, Moshkovits I, Shemesh A, Filiba A, Tsirulsky Y, Vronov E, Shagan M, Apte RN, Benharroch DA, Karo-Atar D, Dagan R, Munitz A, Mizrachi Nebenzahl Y, Porgador A. Natural Killer Receptor 1 Dampens the Development of Allergic Eosinophilic Airway Inflammation. PLoS One 2016; 11:e0160779. [PMID: 27580126 PMCID: PMC5007051 DOI: 10.1371/journal.pone.0160779] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023] Open
Abstract
The function of NCR1 was studied in a model of experimental asthma, classified as a type 1 hypersensitivity reaction, in mice. IgE levels were significantly increased in the serum of OVA immunized NCR1 deficient (NCR1gfp/gfp) mice in comparison to OVA immunized wild type (NCR1+/+) and adjuvant immunized mice. Histological analysis of OVA immunized NCR1gfp/gfp mice revealed no preservation of the lung structure and overwhelming peribronchial and perivascular granulocytes together with mononuclear cells infiltration. OVA immunized NCR+/+ mice demonstrated preserved lung structure and peribronchial and perivascular immune cell infiltration to a lower extent than that in NCR1gfp/gfp mice. Adjuvant immunized mice demonstrated lung structure preservation and no immune cell infiltration. OVA immunization caused an increase in PAS production independently of NCR1 presence. Bronchoalveolar lavage (BAL) revealed NCR1 dependent decreased percentages of eosinophils and increased percentages of lymphocytes and macrophages following OVA immunization. In the OVA immunized NCR1gfp/gfp mice the protein levels of eosinophils' (CCL24) and Th2 CD4+ T-cells' chemoattractants (CCL17, and CCL24) in the BAL are increased in comparison with OVA immunized NCR+/+ mice. In the presence of NCR1, OVA immunization caused an increase in NK cells numbers and decreased NCR1 ligand expression on CD11c+GR1+ cells and decreased NCR1 mRNA expression in the BAL. OVA immunization resulted in significantly increased IL-13, IL-4 and CCL17 mRNA expression in NCR1+/+ and NCR1gfp/gfp mice. IL-17 and TNFα expression increased only in OVA-immunized NCR1+/+mice. IL-6 mRNA increased only in OVA immunized NCR1gfp/gfp mice. Collectively, it is demonstrated that NCR1 dampens allergic eosinophilic airway inflammation.
Collapse
Affiliation(s)
- Shirin Elhaik Goldman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Itay Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Filiba
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yevgeny Tsirulsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Elena Vronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ron N. Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - D aniel Benharroch
- Soroka University Medical Center, Department of Pathology, Bear Sheva, Israel
| | - Danielle Karo-Atar
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ron Dagan
- Faculty of Health Science, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- Department of Clinical Microbiology and Immunology, Sackler school of medicine, Tel-Aviv University, Tel Aviv, Israel
- * E-mail: ;
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail: ;
| |
Collapse
|
154
|
TRAIL-mediated killing of acute lymphoblastic leukemia by plasmacytoid dendritic cell-activated natural killer cells. Oncotarget 2016; 6:29440-55. [PMID: 26320191 PMCID: PMC4745738 DOI: 10.18632/oncotarget.4984] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/12/2015] [Indexed: 01/24/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) still frequently recurs after hematopoietic stem cell transplantation (HSCT), underscoring the need to improve the graft-versus-leukemia (GvL) effect. Natural killer (NK) cells reconstitute in the first months following HSCT when leukemia burden is at its lowest, but ALL cells have been shown to be resistant to NK cell-mediated killing. We show here that this resistance is overcome by NK cell stimulation with TLR-9-activated plasmacytoid dendritic cells (pDCs). NK cell priming with activated pDCs resulted in TRAIL and CD69 up-regulation on NK cells and IFN-γ production. NK cell activation was dependent on IFN-α produced by pDCs, but was not reproduced by IFN-α alone. ALL killing was further enhanced by inhibition of KIR engagement. We showed that ALL lysis was mainly mediated by TRAIL engagement, while the release of cytolytic granules was involved when ALL expressed NK cell activating receptor ligands. Finally, adoptive transfers of activated-pDCs in ALL-bearing humanized mice delayed the leukemia onset and cure 30% of mice. Our data therefore demonstrate that TLR-9 activated pDCs are a powerful tool to overcome ALL resistance to NK cell-mediated killing and to reinforce the GvL effect of HSCT. These results open new therapeutic avenues to prevent relapse in children with ALL.
Collapse
|
155
|
Gill US, Peppa D, Micco L, Singh HD, Carey I, Foster GR, Maini MK, Kennedy PTF. Interferon Alpha Induces Sustained Changes in NK Cell Responsiveness to Hepatitis B Viral Load Suppression In Vivo. PLoS Pathog 2016; 12:e1005788. [PMID: 27487232 PMCID: PMC4972354 DOI: 10.1371/journal.ppat.1005788] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
NK cells are important antiviral effectors, highly enriched in the liver, with the potential to regulate immunopathogenesis in persistent viral infections. Here we examined whether changes in the NK pool are induced when patients with eAg-positive CHB are 'primed' with PegIFNα and importantly, whether these changes are sustained or further modulated long-term after switching to nucleos(t)ides (sequential NUC therapy), an approach currently tested in the clinic. Longitudinal sampling of a prospectively recruited cohort of patients with eAg+CHB showed that the cumulative expansion of CD56bright NK cells driven by 48-weeks of PegIFNα was maintained at higher than baseline levels throughout the subsequent 9 months of sequential NUCs. Unexpectedly, PegIFNα-expanded NK cells showed further augmentation in their expression of the activating NK cell receptors NKp30 and NKp46 during sequential NUCs. The expansion in proliferating, functional NK cells was more pronounced following sequential NUCs than in comparison cohorts of patients treated with de novo NUCs or PegIFNα only. Reduction in circulating HBsAg concentrations, a key goal in the path towards functional cure of CHB, was only achieved in those patients with enhancement of NK cell IFNγ and cytotoxicity but decrease in their expression of the death ligand TRAIL. In summary, we conclude that PegIFNα priming can expand a population of functional NK cells with an altered responsiveness to subsequent antiviral suppression by NUCs. Patients on sequential NUCs with a distinct NK cell profile show a decline in HBsAg, providing mechanistic insights for the further optimisation of treatment strategies to achieve sustained responses in CHB.
Collapse
Affiliation(s)
- Upkar S. Gill
- Hepatology, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, United Kingdom
- Department of Hepatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Dimitra Peppa
- Division of Infection & Immunity, UCL, London, United Kingdom
| | - Lorenzo Micco
- Division of Infection & Immunity, UCL, London, United Kingdom
| | | | - Ivana Carey
- Institute of Liver Studies, Kings College Hospital, London, United Kingdom
| | - Graham R. Foster
- Hepatology, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, United Kingdom
- Department of Hepatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Mala K. Maini
- Division of Infection & Immunity, UCL, London, United Kingdom
- * E-mail: (MKM); (PTFK)
| | - Patrick T. F. Kennedy
- Hepatology, Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine & Dentistry, QMUL, London, United Kingdom
- Department of Hepatology, The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
- * E-mail: (MKM); (PTFK)
| |
Collapse
|
156
|
Textor S, Bossler F, Henrich KO, Gartlgruber M, Pollmann J, Fiegler N, Arnold A, Westermann F, Waldburger N, Breuhahn K, Golfier S, Witzens-Harig M, Cerwenka A. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. Oncoimmunology 2016; 5:e1116674. [PMID: 27622013 DOI: 10.1080/2162402x.2015.1116674] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/01/2015] [Accepted: 11/01/2015] [Indexed: 01/22/2023] Open
Abstract
Natural Killer (NK) cells are innate effector cells that are able to recognize and eliminate tumor cells through engagement of their surface receptors. NKp30 is a potent activating NK cell receptor that elicits efficient NK cell-mediated target cell killing. Recently, B7-H6 was identified as tumor cell surface expressed ligand for NKp30. Enhanced B7-H6 mRNA levels are frequently detected in tumor compared to healthy tissues. To gain insight in the regulation of expression of B7-H6 in tumors, we investigated transcriptional mechanisms driving B7-H6 expression by promoter analyses. Using luciferase reporter assays and chromatin immunoprecipitation we mapped a functional binding site for Myc, a proto-oncogene overexpressed in certain tumors, in the B7-H6 promoter. Pharmacological inhibition or siRNA/shRNA-mediated knock-down of c-Myc or N-Myc significantly decreased B7-H6 expression on a variety of tumor cells including melanoma, pancreatic carcinoma and neuroblastoma cell lines. In tumor cell lines from different origin and primary tumor tissues of hepatocellular carcinoma (HCC), lymphoma and neuroblastoma, mRNA levels of c-Myc positively correlated with B7-H6 expression. Most importantly, upon inhibition or knock-down of c-Myc in tumor cells impaired NKp30-mediated degranulation of NK cells was observed. Thus, our data imply that Myc driven tumors could be targets for cancer immunotherapy exploiting the NKp30/B7-H6 axis.
Collapse
Affiliation(s)
- Sonja Textor
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Felicitas Bossler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | | | - Julia Pollmann
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Nathalie Fiegler
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | - Annette Arnold
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| | | | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg , Heidelberg, Germany
| | - Sven Golfier
- Bayer HealthCare Pharmaceuticals , Berlin, Germany
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center (DKFZ) , Heidelberg, Germany
| |
Collapse
|
157
|
Phenotypically distinct helper NK cells are required for gp96-mediated anti-tumor immunity. Sci Rep 2016; 6:29889. [PMID: 27431727 PMCID: PMC4949418 DOI: 10.1038/srep29889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
A number of Heat Shock Proteins (HSPs), in the extracellular environment, are immunogenic. Following cross-presentation of HSP-chaperoned peptides by CD91+ antigen presenting cells (APCs), T cells are primed with specificity for the derivative antigen-bearing cell. Accordingly, tumor-derived HSPs are in clinical trials for cancer immunotherapy. We investigate the role of NK cells in gp96-mediated anti-tumor immune responses given their propensity to lyse tumor cells. We show that gp96-mediated rejection of tumors requires a unique and necessary helper role in NK cells. This helper role occurs during the effector phase of the anti-tumor immune response and is required for T cell and APC function. Gp96 activates NK cells indirectly via APCs to a phenotype distinct from NK cells activated by other mechanisms such as IL-2. While NK cells have both lytic and cytokine producing properties, we show that gp96 selectively activates cytokine production in NK cells, which is important in the HSP anti-tumor immune response, and leaves their cytotoxic capacity unchanged.
Collapse
|
158
|
Consentius C, Akyüz L, Schmidt-Lucke JA, Tschöpe C, Pinzur L, Ofir R, Reinke P, Volk HD, Juelke K. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation. Stem Cells 2016; 33:3087-99. [PMID: 26184374 DOI: 10.1002/stem.2104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/04/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity.
Collapse
Affiliation(s)
- C Consentius
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité University Medicine, Berlin, Germany
| | - L Akyüz
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Institute for Medical Immunology, Charité University Medicine, Berlin, Germany
| | | | - C Tschöpe
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Department for Cardiology, CVK, Charité University Medicine, Berlin, Germany
| | - L Pinzur
- Pluristem Therapeutics, Inc, Haifa, Israel
| | - R Ofir
- Pluristem Therapeutics, Inc, Haifa, Israel
| | - P Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Department for Nephrology and Intensive Care, CVK, Charité University Medicine, Berlin, Germany
| | - H-D Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
- Institute for Medical Immunology, Charité University Medicine, Berlin, Germany
| | - K Juelke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité University Medicine, Berlin, Germany
| |
Collapse
|
159
|
Lapenta C, Donati S, Spadaro F, Castaldo P, Belardelli F, Cox MC, Santini SM. NK Cell Activation in the Antitumor Response Induced by IFN-α Dendritic Cells Loaded with Apoptotic Cells from Follicular Lymphoma Patients. THE JOURNAL OF IMMUNOLOGY 2016; 197:795-806. [DOI: 10.4049/jimmunol.1600262] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/01/2016] [Indexed: 11/19/2022]
|
160
|
Pallmer K, Oxenius A. Recognition and Regulation of T Cells by NK Cells. Front Immunol 2016; 7:251. [PMID: 27446081 PMCID: PMC4919350 DOI: 10.3389/fimmu.2016.00251] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022] Open
Abstract
Regulation of T cell responses by innate lymphoid cells (ILCs) is increasingly documented and studied. Direct or indirect crosstalk between ILCs and T cells early during and after T cell activation can affect their differentiation, polarization, and survival. Natural killer (NK) cells that belong to the ILC1 group were initially described for their function in recognizing and eliminating "altered self" and as source of early inflammatory cytokines, most notably type II interferon. Using signals conveyed by various germ-line encoded activating and inhibitory receptors, NK cells are geared to sense sudden cellular changes that can be caused by infection events, malignant transformation, or cellular stress responses. T cells, when activated by TCR engagement (signal 1), costimulation (signal 2), and cytokines (signal 3), commit to a number of cellular alterations, including entry into rapid cell cycling, metabolic changes, and acquisition of effector functions. These abrupt changes may alert NK cells, and T cells might thereby expose themselves as NK cell targets. Here, we review how activated T cells can be recognized and regulated by NK cells and what consequences such regulation bears for T cell immunity in the context of vaccination, infection, or autoimmunity. Conversely, we will discuss mechanisms by which activated T cells protect themselves against NK cell attack and outline the significance of this safeguard mechanism.
Collapse
Affiliation(s)
| | - Annette Oxenius
- Institute of Microbiology, ETH Zürich , Zürich , Switzerland
| |
Collapse
|
161
|
Kim JH, Choi GE, Lee BJ, Kwon SW, Lee SH, Kim HS, Jang YJ. Natural killer cells regulate eosinophilic inflammation in chronic rhinosinusitis. Sci Rep 2016; 6:27615. [PMID: 27271931 PMCID: PMC4897886 DOI: 10.1038/srep27615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Eosinophils play a major pathologic role in the pathogenesis of diverse inflammatory diseases including chronic rhinosinusitis (CRS). Dysregulated production of prostaglandin (PG), particularly PGD2, is considered to be an important contributing factor to eosinophilic inflammation in CRS primarily through proinflammatory and chemotactic effects on eosinophils. Here, we provide evidence that PGD2 can promote eosinophilic inflammation through a suppression of Natural killer (NK) cell effector function and NK cell-mediated eosinophil regulation. Eosinophil apoptosis mediated by NK cells was significantly decreased in CRS patients compared with healthy controls. This decrease was associated with NK cell dysfunction and eosinophilic inflammation. Tissue eosinophils were positively correlated with blood eosinophils in CRS patients. In a murine model of CRS, NK cell depletion caused an exacerbation of blood eosinophilia and eosinophilic inflammation in the sinonasal tissue. PGD2 and its metabolite, but not PGE2 and a panel of cytokines including TGF-β, were increased in CRS patients compared with controls. Effector functions of NK cells were potently suppressed by PGD2-dependent, rather than PGE2-dependent, pathway in controls and CRS patients. Thus, our results suggest decreased NK cell-mediated eosinophil regulation, possibly through an increased level of PGD2, as a previously unrecognized link between PG dysregulation and eosinophilic inflammation in CRS.
Collapse
Affiliation(s)
- Ji Heui Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Go Eun Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea
| | - Bong-Jae Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Seog Woon Kwon
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Hun Sik Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Cellular Dysfunction Research Center, University of Ulsan College of Medicine, Seoul 138-736, Korea.,Department of Microbiology, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
162
|
Loyon R, Picard E, Mauvais O, Queiroz L, Mougey V, Pallandre JR, Galaine J, Mercier-Letondal P, Kellerman G, Chaput N, Wijdenes J, Adotévi O, Ferrand C, Romero P, Godet Y, Borg C. IL-21-Induced MHC Class II+ NK Cells Promote the Expansion of Human Uncommitted CD4+ Central Memory T Cells in a Macrophage Migration Inhibitory Factor-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2016; 197:85-96. [PMID: 27233967 DOI: 10.4049/jimmunol.1501147] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
NK cells are critical for innate immunity-mediated protection. The main roles of NK cells rely on their cytotoxic functions or depend on the tuning of Th1 adaptive immunity by IFN-γ. However, the precise influence of inflammatory cytokines on NK cell and CD4 T lymphocyte interactions was never investigated. In this study, we provide evidence that IL-21, a cytokine produced during chronic inflammation or infectious diseases, promotes the differentiation of a specific subset of NK cells coexpressing CD86 and HLA-DR and lacking NKp44. More importantly, IL-21-propagated HLA-DR(+) NK cells produce macrophage migration inhibitory factor and provide costimulatory signaling during naive CD4(+) T cell priming inducing the differentiation of uncommitted central memory T cells. Central memory T cells expanded in the presence of HLA-DR(+) NK cells are CXCR3(+)CCR6(-)CCR4(-)CXCR5(-) and produce IL-2, as well as low levels of TNF-α. Costimulation of CD4(+) T cells by HLA-DR(+) NK cells prevents the acquisition of effector memory phenotype induced by IL-2. Moreover, we identified this population of NK HLA-DR(+) macrophage migration inhibitory factor(+) cells in inflammatory human appendix. Collectively, these results demonstrate a novel function for IL-21 in tuning NK and CD4(+) T cell interactions promoting a specific expansion of central memory lymphocytes.
Collapse
Affiliation(s)
- Romain Loyon
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Emilie Picard
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Olivier Mauvais
- Department of Head and Neck Surgery, University Hospital of Besançon, 25000 Besançon, France
| | - Lise Queiroz
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France
| | - Virginie Mougey
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | - Jean-René Pallandre
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; INSERM Unit 1007, University of Paris Descartes, 75270 Paris, France
| | - Jeanne Galaine
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Patricia Mercier-Letondal
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | | | - Nathalie Chaput
- INSERM Unit 1015, Gustave Roussy Cancer Campus, 94805 Villejuif, France
| | - John Wijdenes
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Olivier Adotévi
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France; Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France; and
| | - Christophe Ferrand
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France
| | - Pedro Romero
- Ludwig Center for Cancer Research of the University of Lausanne, Lausanne 1066, Switzerland
| | - Yann Godet
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France
| | - Christophe Borg
- INSERM Unit 1098, University of Franche-Comté, 25000 Besançon, France; Clinical Investigation Center for Biotherapies, 25000 Besançon, France; Etablissement Français du Sang, 25000 Besançon, France; Department of Medical Oncology, University Hospital of Besançon, 25000 Besançon, France; and
| |
Collapse
|
163
|
Yuan X, Fu R, Liu H, Wang YH, Li LJ, Liu CY, Wang HL, Shao YY, Ding K, Chen J, Ruan EB, Wang HQ, Song J, Wang GJ, Shao ZH. [Quantities and function of NK cells in patients with positive BMMNC-Coombs test and cytopenia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:393-8. [PMID: 27210874 PMCID: PMC7348301 DOI: 10.3760/cma.j.issn.0253-2727.2016.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To test NK cell quantities and function in patients with positive BMMNC-Coombs test (CBCPC) and cytopenia and to explore how NK cell participate in the progress of this disease. METHODS The percentage of CD3(-)CD56(+) NK cell in peripheral blood lymphocytes, the expression of activating receptor (NKG2D, NKp46, NKp44), inhibitory receptor (CD158a, CD158b), perforin and granzyme-β were detected by flow cytometry. All samples were taken from 42 patients (22 newly diagnosed and 20 in remission) and 12 healthy volunteers. The correlation between the above parameters and patients' clinical profile were evaluated. RESULTS ①The percentage of CD3(-)CD56(+) NK cell in new diagnosed and remission CBCPC patients were significantly lower than that in healthy control [(10.04 ± 5.33)% vs (19.94 ± 7.38)%; (11.62 ± 6.80)% vs (19.94 ± 7.38)%, all P<0.01]. ② The expression of activating receptor NKG2D in new diagnosed CBCPC patients was significantly higher than that in remission group and healthy control [(74.03±18.24)% vs (45.97±29.45)%; (74.03±18.24)% vs (41.89± 15.34)% , P <0.01]. ③The expression of inhibitory receptor CD158a in new diagnosed CBCPC patients was significantly lower than that in remission group and healthy control (median: 3.72% vs 16.10%, P= 0.015; 3.72% vs 11.04%, P=0.025). ④The expression of perforin in new diagnosed and remitted CBCPC patients were significantly higher than that in healthy controls [(75.71±10.14) % vs (57.20±18.85)%, P= 0.018; (77.88±22.82)% vs (57.20±18.85)%, P=0.008]. ⑤The product of NK cell percentage and perforin expression in new diagnosed and remission CBCPC patient were significantly lower than that in healthy control [(7.68±4.54)% vs (12.13±5.19)%, P=0.011; (8.24±5.80)% vs (12.13±5.19)%, P=0.023]. The product of NK cell percentage and granzyme-β expression in the new diagnosed and remission CBCPC patient were significantly lower than that in healthy control [(7.83±5.26)% vs (14.79±8.37)%, P=0.008; (8.37 ± 6.83)% vs (14.79±8.37)%, P=0.012]. CONCLUSION Deceased quantities and impaired total NK function might play a role in pathogenesis of CBCPC.
Collapse
Affiliation(s)
- X Yuan
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Fend L, Rusakiewicz S, Adam J, Bastien B, Caignard A, Messaoudene M, Iribarren C, Cremer I, Marabelle A, Borg C, Semeraro M, Barraud L, Limacher JM, Eggermont A, Kroemer G, Zitvogel L. Prognostic impact of the expression of NCR1 and NCR3 NK cell receptors and PD-L1 on advanced non-small cell lung cancer. Oncoimmunology 2016; 6:e1163456. [PMID: 28197362 DOI: 10.1080/2162402x.2016.1163456] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/21/2023] Open
Abstract
The putative contribution of natural killer (NK) cells to immunosurveillance in non-small cell lung cancer (NSCLC) has been an ongoing conundrum. Here, we used a readily standardizable quantitative real time polymerase chain reaction (qRT-PCR) to measure the expression of NK cell receptors in total peripheral blood mononuclear cells (PBMC) from healthy volunteers (HV), patients with gastrointestinal stromal tumors (GIST), neuroblastoma (NB), melanoma or NSCLC. We quantified NCR1 (which codes for NKp46) and NCR3 (which codes for NKp30), as well as that of three NCR3 splice variants (which give rise to immunostimulatory NKp30A and NKp30B, as well as to immunosuppressive NKp30C). NSCLC patients expressed lower levels of NCR1 than did HV. Remarkably, NCR3 was lower in NSCLC patients than in HV as well as in all other malignancies. Moreover, a discrete proportion of NSCLC patients exhibited a particular low ratio between NKp30B and NKp30C (ΔBC). In the overall cohort, low expression of NCR3 correlated with poor overall and progression-free survival (PFS). When patients were stratified according to the level of PD-L1 expression by NSCLC cells, within the PD-L1high category (>5% positive tumors), the sole parameter that affected prognosis was the expression of NCR1. However, in patients bearing tumors with negative PD-L1 expression on tumor or tumor-infiltrating stromal cells, the ΔBClow patients exhibited a dismal prognosis. Altogether, these results strongly suggest that NK cells mediate immunosurveillance against NSCLC and that measuring NK cell receptor expression by blood cells can yield useful biomarkers for patient stratification.
Collapse
Affiliation(s)
- Laetitia Fend
- Transgene S.A, Parc d'innovation, Illkirch-Graffenstaden Cedex, France; Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Sylvie Rusakiewicz
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), GRCC, Villejuif, France
| | - Julien Adam
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; Department of Pathology, GRCC, Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Bérangère Bastien
- Transgene S.A, Parc d'innovation , Illkirch-Graffenstaden Cedex, France
| | - Anne Caignard
- INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Institut Universitaire d'Hématologie, Hôpital Saint Louis, Paris, France
| | - Meriem Messaoudene
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France
| | - Christina Iribarren
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - Isabelle Cremer
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, Center de Recherche des Cordeliers, Paris, France; Université Pierre et Marie Curie, Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Drug Development Department (DITEP), GRCC, Villejuif, France
| | - Christophe Borg
- INSERM, Unité Mixte de Recherche, University of Franche-Comté, Besançon, France; Etablissement Français du Sang de Bourgogne Franche-Comté, Besançon, France; Université de Franche-Comté, Besançon, France
| | - Michaela Semeraro
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Department of Pediatric Oncology, GRCC, Villejuif, France
| | - Luc Barraud
- Transgene S.A, Parc d'innovation , Illkirch-Graffenstaden Cedex, France
| | | | | | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; INSERM, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Metabolomics and Cell Biology Platforms, GRCC, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), GRCC, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Department of Immuno-Oncology, GRCC, Villejuif, France
| |
Collapse
|
165
|
Tufa DM, Ahmad F, Chatterjee D, Ahrenstorf G, Schmidt RE, Jacobs R. IL-1β limits the extent of human 6-sulfo LacNAc dendritic cell (slanDC)-mediated NK cell activation and regulates CD95-induced apoptosis. Cell Mol Immunol 2016; 14:976-985. [PMID: 27086951 DOI: 10.1038/cmi.2016.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/26/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
To function optimally, human blood natural killer (NK) cells need to communicate with other immune cells. Previously, it has been shown that NK cells communicate with 6-sulfo LacNAc dendritic cells (slanDCs), which are able to stimulate NK cells in vitro. In this study, we investigated how slanDCs regulate the level of NK cell activation. The secretion of interleukin (IL)-1β by slanDCs during coculture with NK cells increased as a result of signaling via intercellular adhesion molecule-1 on slanDCs following its interaction with lymphocyte function-associated antigen-1 on NK cells. IL-1β induced the expression of Fas receptor (CD95) on NK cells. The binding of Fas ligand (CD178) to CD95 induced the apoptosis of activated NK cells. Moreover, IL-1β also induced increased cyclooxygenase-2 expression in slanDCs, which in turn enabled the cells to secrete prostaglandin (PG)-E2. Consequently, PGE2 acted as a suppressing agent, tuning down the activation level of NK cells. In summary, IL-1β limits the level of NK cell activation by inducing apoptosis and suppression as a homeostatic regulatory function.
Collapse
Affiliation(s)
- Dejene Milkessa Tufa
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Fareed Ahmad
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Debanjana Chatterjee
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Gerrit Ahrenstorf
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Ernst Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
166
|
Dendritic Cells and Their Multiple Roles during Malaria Infection. J Immunol Res 2016; 2016:2926436. [PMID: 27110574 PMCID: PMC4823477 DOI: 10.1155/2016/2926436] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/06/2016] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) play a central role in the initiation of adaptive immune responses, efficiently presenting antigens to T cells. This ability relies on the presence of numerous surface and intracellular receptors capable of sensing microbial components as well as inflammation and on a very efficient machinery for antigen presentation. In this way, DCs sense the presence of a myriad of pathogens, including Plasmodium spp., the causative agent of malaria. Despite many efforts to control this infection, malaria is still responsible for high rates of morbidity and mortality. Different groups have shown that DCs act during Plasmodium infection, and data suggest that the phenotypically distinct DCs subsets are key factors in the regulation of immunity during infection. In this review, we will discuss the importance of DCs for the induction of immunity against the different stages of Plasmodium, the outcomes of DCs activation, and also what is currently known about Plasmodium components that trigger such activation.
Collapse
|
167
|
Zhou S, Tanaka K, O’Keeffe M, Qi M, El-Assaad F, Weaver JC, Chen G, Weatherall C, Wang Y, Giannakopoulos B, Chen L, Yu D, Hamilton MJ, Wensing LA, Stevens RL, Krilis SA. CD117+ Dendritic and Mast Cells Are Dependent on RasGRP4 to Function as Accessory Cells for Optimal Natural Killer Cell-Mediated Responses to Lipopolysaccharide. PLoS One 2016; 11:e0151638. [PMID: 26982501 PMCID: PMC4794117 DOI: 10.1371/journal.pone.0151638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 11/25/2022] Open
Abstract
Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an evolutionarily conserved calcium-regulated, guanine nucleotide exchange factor and diacylglycerol/phorbol ester receptor. While an important intracellular signaling protein for CD117+ mast cells (MCs), its roles in other immune cells is less clear. In this study, we identified a subset of in vivo-differentiated splenic CD117+ dendritic cells (DCs) in wild-type (WT) C57BL/6 mice that unexpectedly contained RasGRP4 mRNA and protein. In regard to the biologic significance of these data to innate immunity, LPS-treated splenic CD117+ DCs from WT mice induced natural killer (NK) cells to produce much more interferon-γ (IFN-γ) than comparable DCs from RasGRP4-null mice. The ability of LPS-responsive MCs to cause NK cells to increase their expression of IFN-γ was also dependent on this intracellular signaling protein. The discovery that RasGRP4 is required for CD117+ MCs and DCs to optimally induce acute NK cell-dependent immune responses to LPS helps explain why this signaling protein has been conserved in evolution.
Collapse
Affiliation(s)
- Saijun Zhou
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - Kumiko Tanaka
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Meredith O’Keeffe
- Dendritic Cell Research Laboratory, Immunity Vaccines and Immunisation, Burnet Institute, Prahran, Melbourne, Victoria, Australia
| | - Miao Qi
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Fatima El-Assaad
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James C. Weaver
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Cardiology, St. George Hospital, Sydney, New South Wales, Australia
| | - Gang Chen
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher Weatherall
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ying Wang
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Bill Giannakopoulos
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Liming Chen
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - DeMint Yu
- Laboratory of Hormones and Development (Ministry of Health), Metabolic Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, TJ, China
| | - Matthew J. Hamilton
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Lislaine A. Wensing
- Departament of Immunology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Richard L. Stevens
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Steven A. Krilis
- Department of Infectious Diseases, Immunology, and Sexual Health, St. George Hospital, and the St. George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
168
|
Gagliostro V, Seeger P, Garrafa E, Salvi V, Bresciani R, Bosisio D, Sozzani S. Pro-lymphangiogenic properties of IFN-γ-activated human dendritic cells. Immunol Lett 2016; 173:26-35. [PMID: 26987844 DOI: 10.1016/j.imlet.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) play a crucial role in the initiation of adaptive immune responses. In addition, through the release of pro- and anti-angiogenic mediators, DCs are key regulators of blood vessel remodeling, a process that characterizes inflammation. Less information is available on the role of DCs in lymphangiogenesis. This study reports that human DCs produce VEGF-C, a cytokine with potent pro-lymphangiogenic activity when stimulated with IFN-γ. DC-derived VEGF-C was biologically active, being able to promote tube-like structure formation in cultures of human lymphatic endothelial cells (LECs). DCs co-cultured with IL-15-activated NK cells produced high levels of VEGF-C, suggesting a role for NK-DC cross-talk in peripheral lymphoid and non-lymphoid tissues in inflammation-associated lymphangiogenesis. Induction of VEGF-C by IFN-γ was detected also in other myeloid cells, such as blood-purified CD1c(+) DCs, CD14(+) monocytes and in monocyte-derived macrophages. In all these cell types, VEGF-C was found associated with the cell membrane by low affinity, heparan sulphate-mediated, interactions. Therefore, human DCs should be considered as new players in inflammation-associated lymphangiogenesis.
Collapse
Affiliation(s)
- Vincenzo Gagliostro
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Pascal Seeger
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Humanitas Clinical Research Center, Rozzano, Italy.
| |
Collapse
|
169
|
Semeraro M, Rusakiewicz S, Minard-Colin V, Delahaye NF, Enot D, Vély F, Marabelle A, Papoular B, Piperoglou C, Ponzoni M, Perri P, Tchirkov A, Matta J, Lapierre V, Shekarian T, Valsesia-Wittmann S, Commo F, Prada N, Poirier-Colame V, Bressac B, Cotteret S, Brugieres L, Farace F, Chaput N, Kroemer G, Valteau-Couanet D, Zitvogel L. Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Sci Transl Med 2016; 7:283ra55. [PMID: 25877893 DOI: 10.1126/scitranslmed.aaa2327] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n = 196, P < 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification.
Collapse
Affiliation(s)
- Michaela Semeraro
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France. University of Paris Sud XI, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France
| | - Sylvie Rusakiewicz
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France
| | - Véronique Minard-Colin
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Nicolas F Delahaye
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - David Enot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France
| | - Frédéric Vély
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, F-13009 Marseille, France. CNRS, UMR7280, F-13009 Marseille, France. Aix Marseille Université, UM2, F-13009 Marseille, France. Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, F-13009 Marseille, France
| | - Aurélien Marabelle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Benjamin Papoular
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Christelle Piperoglou
- Service d'Immunologie, Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, F-13009 Marseille, France
| | - Mirco Ponzoni
- Giannina Gaslini Hospital, Experimental Therapy Unit Laboratory of Oncology, 16147 Genoa, Italy
| | - Patrizia Perri
- Giannina Gaslini Hospital, Experimental Therapy Unit Laboratory of Oncology, 16147 Genoa, Italy
| | - Andrei Tchirkov
- EA 4677 ERTICa, CHU et Centre Jean Perrin, 63011 Clermont-Ferrand, France. CHU de Clermont-Ferrand, Service de Cytogénétique Médicale, Hôpital Estaing, 63001 Clermont-Ferrand, France
| | - Jessica Matta
- Centre d'Immunologie de Marseille-Luminy, INSERM, U1104, F-13009 Marseille, France. CNRS, UMR7280, F-13009 Marseille, France. Aix Marseille Université, UM2, F-13009 Marseille, France
| | - Valérie Lapierre
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Cell Therapy Unit, GRCC, 94805 Villejuif, France
| | - Tala Shekarian
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Sandrine Valsesia-Wittmann
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Université de Lyon, 69000 Lyon, France
| | - Frédéric Commo
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Nicole Prada
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Vichnou Poirier-Colame
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Brigitte Bressac
- Service de Génétique, Molecular Genetic Department, GRCC, 94805 Villejuif, France
| | - Sophie Cotteret
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France
| | - Laurence Brugieres
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Françoise Farace
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U981, 94805 Villejuif, France
| | - Nathalie Chaput
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France
| | - Guido Kroemer
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. Equipe 11 labelisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France. INSERM U1138, 94805 Villejuif, France. University of Paris Descartes/ParisV, Sorbonne Paris Cité, 75005 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| | - Dominique Valteau-Couanet
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. Department of Pediatric Oncology, GRCC, 94805 Villejuif, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, 94805 Villejuif, France. INSERM U1015, GRCC, 94805 Villejuif, France. University of Paris Sud XI, 94805 Villejuif, France. Center of Clinical Investigations in Biotherapies of Cancer, CICBT507, GRCC, 94805 Villejuif, France.
| |
Collapse
|
170
|
Ulbar F, Nicolini B, Chirumbolo G, Tolomelli G, Steinle A, Rondelli D, Arpinati M. Human hematopoietic CD34+ progenitor cells induce natural killer cell alloresponses via NKG2D activation. Exp Hematol 2016; 44:14-23.e1. [DOI: 10.1016/j.exphem.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/13/2023]
|
171
|
Abstract
During the last decade, probiotics have been established to be important mediators of host immunity. Their effects on both innate and adaptive immunity have been documented in the literature. Although several reports have correlated different strains of bacteria as probiotics, their effects on immunity vary. Clearly, there is a complex interplay between various constituents of probiotics and the immune response in humans. The role of probiotics on natural killer (NK) cells in the gut has been the subject of a few reports. In this review, we summarize the reported findings on the role of probiotics in the activation of gut-associated NK cells and the response of NK cells to stimuli elicited by probiotics and their microenvironment. The effects of probiotics on the activation of NK cells and their secretion of immune factors (e.g., interferon-γ, tumor necrosis factor-α, interleukin-2, etc.) are discussed in regard to their clinical significance in various diseases. Current investigations are being pursued, in particular, on the role of probiotics-activated NK cells in promoting the adaptive immune response against pathogens.
Collapse
Affiliation(s)
- Nabil Aziz
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| | - Benjamin Bonavida
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095
| |
Collapse
|
172
|
Rezvani K, Rouce RH. The Application of Natural Killer Cell Immunotherapy for the Treatment of Cancer. Front Immunol 2015; 6:578. [PMID: 26635792 PMCID: PMC4648067 DOI: 10.3389/fimmu.2015.00578] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo-expanded, chimeric antigen receptor (CAR)-engineered, or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated antitumor effect can be achieved in the absence of graft-vs.-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer, such as the failure of infused NK cells to expand and persist in vivo. Therefore, efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors, and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next few years.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Rayne H Rouce
- Department of Pediatrics, Texas Children's Cancer and Hematology Centers, Baylor College of Medicine , Houston, TX , USA ; Center for Cell and Gene Therapy, Baylor College of Medicine Houston Methodist Hospital and Texas Children's Hospital , Houston, TX , USA
| |
Collapse
|
173
|
Dunphy SE, Sweeney CM, Kelly G, Tobin AM, Kirby B, Gardiner CM. Natural killer cells from psoriasis vulgaris patients have reduced levels of cytotoxicity associated degranulation and cytokine production. Clin Immunol 2015; 177:43-49. [PMID: 26477484 DOI: 10.1016/j.clim.2015.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 12/28/2022]
Abstract
Psoriasis vulgaris is a chronic inflammatory disease of the skin with a strong genetic component and immune system involvement. Although some evidence suggests that Natural Killer (NK) cells may play a part in psoriasis, their role is relatively unstudied and results are controversial. In this current study, NK cells from psoriasis patients exhibited reduced degranulation and produced lower levels of the pro-inflammatory cytokines IFN-γ and TNF-α. Further investigation found that NK cells from psoriasis patients and healthy controls expressed similar levels of activation markers, NK cell receptors and apoptosis-inducing molecules. In addition, comparable levels of several cytokines important in NK cell biology were found in the serum of psoriasis patients and healthy controls. Genotyping analysis revealed that HLA-C2, which provides a ligand for killer-cell immunoglobulin-like receptors (KIR) expressed by NK cells, was strongly associated with psoriasis susceptibility. However, no link between the KIR genes themselves and disease was found.
Collapse
Affiliation(s)
- S E Dunphy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - C M Sweeney
- Department of Dermatology, St Vincent's University Hospital, Dublin 4, Ireland
| | - G Kelly
- Department of Dermatology, St Vincent's University Hospital, Dublin 4, Ireland
| | - A M Tobin
- Department of Dermatology, Tallaght Hospital, Dublin 24, Ireland
| | - B Kirby
- Department of Dermatology, St Vincent's University Hospital, Dublin 4, Ireland
| | - C M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
174
|
Anton OM, Vielkind S, Peterson ME, Tagaya Y, Long EO. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors. THE JOURNAL OF IMMUNOLOGY 2015; 195:4810-21. [PMID: 26453750 DOI: 10.4049/jimmunol.1500414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis.
Collapse
Affiliation(s)
- Olga M Anton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Susina Vielkind
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Mary E Peterson
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| | - Yutaka Tagaya
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852; and
| |
Collapse
|
175
|
Hadad U, Thauland TJ, Martinez OM, Butte MJ, Porgador A, Krams SM. NKp46 Clusters at the Immune Synapse and Regulates NK Cell Polarization. Front Immunol 2015; 6:495. [PMID: 26441997 PMCID: PMC4585260 DOI: 10.3389/fimmu.2015.00495] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell surface expressed inhibitory and activating receptors. NKp46 is a major NK cell-activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However, the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study, we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.
Collapse
Affiliation(s)
- Uzi Hadad
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA ; The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Timothy J Thauland
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Olivia M Martinez
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| | - Manish J Butte
- Department of Pediatrics, Division of Immunology, Stanford University , Stanford, CA , USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology and Immunology and Genetics, Ben-Gurion University of the Negev , Beersheba , Israel
| | - Sheri M Krams
- Department of Surgery, Division of Abdominal Transplantation, Stanford University , Stanford, CA , USA
| |
Collapse
|
176
|
Hasmim M, Messai Y, Ziani L, Thiery J, Bouhris JH, Noman MZ, Chouaib S. Critical Role of Tumor Microenvironment in Shaping NK Cell Functions: Implication of Hypoxic Stress. Front Immunol 2015; 6:482. [PMID: 26441986 PMCID: PMC4585210 DOI: 10.3389/fimmu.2015.00482] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Blurring the boundary between innate and adaptive immune system, natural killer (NK) cells, a key component of the innate immunity, are recognized as potent anticancer mediators. Extensive studies have been detailed on how NK cells get activated and recognize cancer cells. In contrast, few studies have been focused on how tumor microenvironment-mediated immunosubversion and immunoselection of tumor-resistant variants may impair NK cell function. Accumulating evidences indicate that several cell subsets (macrophages, myeloid-derived suppressive cells, T regulatory cells, dendritic cells, cancer-associated fibroblasts, and tumor cells), their secreted factors, as well as metabolic components (i.e., hypoxia) have immunosuppressive roles in the tumor microenvironment and are able to condition NK cells to become anergic. In this review, we will describe how NK cells react with different stromal cells in the tumor microenvironment. This will be followed by a discussion on the role of hypoxic stress in the regulation of NK cell functions. The aim of this review is to provide a better understanding of how the tumor microenvironment impairs NK cell functions, thereby limiting the use of NK cell-based therapy, and we will attempt to suggest more efficient tools to establish a more favorable tumor microenvironment to boost NK cell cytotoxicity and control tumor progression.
Collapse
Affiliation(s)
- Meriem Hasmim
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Yosra Messai
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Linda Ziani
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jerome Thiery
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Jean-Henri Bouhris
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France ; Department of Hematology and Bone Marrow Transplantation, Gustave Roussy Campus , Villejuif , France
| | - Muhammad Zaeem Noman
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| | - Salem Chouaib
- INSERM U 1186, Equipe labellisée Ligue Contre le Cancer, Gustave Roussy Campus , Villejuif , France
| |
Collapse
|
177
|
Moreno-Nieves UY, Didier C, Lévy Y, Barré-Sinoussi F, Scott-Algara D. S100A9 Tetramers, Which are Ligands of CD85j, Increase the Ability of MVAHIV-Primed NK Cells to Control HIV Infection. Front Immunol 2015; 6:478. [PMID: 26441983 PMCID: PMC4585218 DOI: 10.3389/fimmu.2015.00478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/03/2015] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the major antiviral effector population of the innate immune system. We previously found that S100A9 is a novel ligand of the receptor CD85j and that S100A9 tetramers enhance the anti-HIV activity of NK cells. Also, we found that dendritic cells (DCs) infected by the HIV vaccine candidate, MVAHIV, prime NK cells to specifically control HIV infection in autologous CD4(+) T cells. In this study, we analyzed whether stimulation of NK cells by S100A9 tetramers prior to the priming by MVAHIV-infected DCs modulates the subsequent anti-HIV activity of NK cells. We found that S100A9 tetramers activate NK cells and that DCs enhance the anti-HIV activity of NK cells. Interestingly, we observed that stimulation of NK cells by S100A9 tetramers, prior to the priming, significantly increased the subsequent anti-HIV activity of NK cells and that the enhanced anti-HIV activity was observed following different conditions of priming, including the MVAHIV-priming. As S100A9 tetramers alone directly increase the anti-HIV activity of NK cells and as this increased anti-HIV activity is also observed following the interaction of NK cells with MVAHIV-infected DCs, we propose S100A9 tetramers as potential adjuvants to stimulate the anti-HIV activity of NK cells.
Collapse
Affiliation(s)
- Uriel Y Moreno-Nieves
- Unité de Régulation des Infections Rétrovirales, Department of Virology, Institut Pasteur , Paris , France
| | - Céline Didier
- Unité de Régulation des Infections Rétrovirales, Department of Virology, Institut Pasteur , Paris , France
| | - Yves Lévy
- INSERM U955, AP-HP, Groupe Henri-Mondor Albert-Chenevier, Immunologie Clinique , Creteil , France
| | - Françoise Barré-Sinoussi
- Unité de Régulation des Infections Rétrovirales, Department of Virology, Institut Pasteur , Paris , France
| | - Daniel Scott-Algara
- Unité de Régulation des Infections Rétrovirales, Department of Virology, Institut Pasteur , Paris , France
| | | |
Collapse
|
178
|
Affiliation(s)
- Jayajit Das
- Battelle Center for Mathematical Medicine; The Research Institute at the Nationwide Children's Hospital and the Departments of Pediatrics and Physics; The Ohio State University; Columbus OH USA
| | - Salim I. Khakoo
- Clinical and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton UK
| |
Collapse
|
179
|
Rydyznski CE, Waggoner SN. Boosting vaccine efficacy the natural (killer) way. Trends Immunol 2015; 36:536-46. [PMID: 26272882 DOI: 10.1016/j.it.2015.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 12/19/2022]
Abstract
Coordination of the innate and adaptive immune systems is paramount to the development of protective humoral and cellular immunity following vaccination. Natural killer (NK) cells are front-line soldiers of the innate immune system, and recent studies have revealed functions for NK cells in long-lived immune memory and the regulation of adaptive immune responses. These findings suggest that NK cells may play important roles in the development of efficacious vaccines, as well as, in some contexts, failed immunizations. Here, we review the current understanding of the immunomodulatory and memory differentiation capabilities of NK cells. We examine the context dependency of the mechanisms and the nature of NK cell-mediated modulation of the immune response, and discuss how these insights may impact immunization strategies and the development of next-generation vaccines.
Collapse
Affiliation(s)
- Carolyn E Rydyznski
- Center for Autoimmune Genomics and Etiology (CAGE) and Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, S6.214, MLC 15012, Cincinnati, OH 45229, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology (CAGE) and Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, S6.214, MLC 15012, Cincinnati, OH 45229, USA.
| |
Collapse
|
180
|
Zou Y, Bao J, Pan X, Lu Y, Liao S, Wang X, Wang G, Lin D. NKP30-B7-H6 Interaction Aggravates Hepatocyte Damage through Up-Regulation of Interleukin-32 Expression in Hepatitis B Virus-Related Acute-On-Chronic Liver Failure. PLoS One 2015; 10:e0134568. [PMID: 26241657 PMCID: PMC4524618 DOI: 10.1371/journal.pone.0134568] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 07/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND AIMS Previous work conducted by our group has shown that the accumulation of hepatic natural killer (NK) cells and the up-regulation of natural cytotoxicity receptors (NKP30 and NKP46) on NK cells from patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) were correlated with disease progression in HBV-ACLF. The natural cytotoxicity receptors expressed on NK cells are believed to be probable candidates involved in the NK cell-mediated hepatocyte damage in HBV-ACLF. However, the underlying mechanisms remain to be elucidated. In the present study, we aimed to discover the role of NKP30-B7-H6 interaction in NK cells-mediated hepatocyte damage in HBV-ACLF. METHODS Hepatic expressions of B7-H6 and interleukin-32 (IL-32) were examined by immunochemistry staining in samples from patients with HBV-ACLF or mild chronic hepatitis B (CHB). The cytotoxicity of NK-92 cell against target cells (Huh-7 and LO2) was evaluated by CCK8 assay. Expression of IL-32 in liver NK cell, T cells and NK-92 cell line was detected by the flow cytometric analysis. The effect of IL-32 on the apoptosis of Huh7 cells was evaluated using Annexin V/PI staining analysis. RESULTS An enhancement of hepatic B7-H6 and IL-32 expression was associated with the severity of liver injury in HBV-ACLF. And there was a positive association between hepatic B7-H6 and IL-32 expression. Expressions of IL-32 in liver NK cells and T cells were increased in HBV-ACLF patients. In vitro NK-92 cells are highly capable of killing the high B7-H6 expressing Huh7 cells and B7-H6-tansfected hepatocyte line LO2 cells dependent on NKP30 and B7-H6 interaction. Furthermore, NK-92 cells exhibited elevated IL-32 expression when stimulated with anti-NKP30 antibodies or when co-cultured with Huh7 cells. IL-32 can induce the apoptosis of Huh7 cells in a dose-dependent manner. CONCLUSION Our results suggest that NKP30-B7-H6 interaction can aggravate hepatocyte damage, probably through up-regulation of IL-32 expression in HBV-ACLF.
Collapse
Affiliation(s)
- Yong Zou
- Department of Blood Transfusion, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junjie Bao
- Preterm Birth Prevention and Treatment Research Unit, Department of Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xingfei Pan
- Department of infectious disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Lu
- Department of Blood Transfusion, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Sihong Liao
- Department of Blood Transfusion, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xicheng Wang
- Department of oncology, Zhangqiu People’s Hospital, Jinan, China
| | - Guoying Wang
- Department of Liver Transplantation Center, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dongjun Lin
- Department of Blood Transfusion, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Hematology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
181
|
Spallanzani RG, Torres NI, Avila DE, Ziblat A, Iraolagoitia XLR, Rossi LE, Domaica CI, Fuertes MB, Rabinovich GA, Zwirner NW. Regulatory Dendritic Cells Restrain NK Cell IFN-γ Production through Mechanisms Involving NKp46, IL-10, and MHC Class I–Specific Inhibitory Receptors. THE JOURNAL OF IMMUNOLOGY 2015; 195:2141-8. [DOI: 10.4049/jimmunol.1403161] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
|
182
|
Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology 2015; 222:11-20. [PMID: 26264743 DOI: 10.1016/j.imbio.2015.07.012] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/15/2015] [Accepted: 07/22/2015] [Indexed: 01/21/2023]
Abstract
Natural Killer (NK) cells are classically considered innate immune effector cells involved in the first line of defense against infected and malignant cells. More recently, NK cells have emerged to acquire properties of adaptive immunity in response to certain viral infections such as expansion of specific NK cell subsets and long-lasting virus-specific responses to secondary challenges. NK cells distinguish healthy cells from abnormal cells by measuring the net input of activating and inhibitory signals perceived from target cells through NK cell surface receptors. Acquisition of activating ligands in combination with reduced expression of MHC class I molecules on virus-infected and cancer cells activates NK cell cytotoxicity and release of immunostimulatory cytokines like IFN-γ. In the cancer microenvironment however, NK cells become functionally impaired by inhibitory factors produced by immunosuppressive immune cells and cancer cells. Here we review recent progress on the role of NK cells in cancer immunity. We describe regulatory factors of the tumor microenvironment on NK cell function which determine cancer cell destruction or escape from immune recognition. Finally, recent strategies that focus on exploiting NK cell anti-cancer responses for immunotherapeutic approaches are outlined.
Collapse
Affiliation(s)
- Jens Pahl
- Innate Immunity Group, D080, German Cancer Research Center, DKFZ Im Neuenheimer Feld 280, 69221 Heidelberg, Germany.
| | - Adelheid Cerwenka
- Innate Immunity Group, D080, German Cancer Research Center, DKFZ Im Neuenheimer Feld 280, 69221 Heidelberg, Germany.
| |
Collapse
|
183
|
Abstract
Asthma is an immune-mediated disease of the airways characterized by reversible airway obstruction, bronchial eosinophilic inflammation, and airway hyperresponsiveness (AHR). The immune dysregulation in asthma has been attributed to the involvement of diverse immune cells that contribute to the immunopathology of the disease. Natural killer (NK) cells play critical roles in host defense against viruses and various cancers. Accumulating evidence demonstrates additional important roles for these cells in T cell priming, dendritic cell maturation, and the development of inflammation, all of which have the potential to enhance or dampen allergic responses. The ability of NK cells to produce Th2-type cytokines and their pivotal role in combating respiratory infections which cause airway dysfunction in asthmatics further suggest that they may directly contribute to the immunopathogenesis of allergic airway disease. In this review, we examine emerging evidence and discuss the putative roles of NK cells in the sensitization, progression, and resolution of asthma.
Collapse
Affiliation(s)
- Clinton B Mathias
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy, Western New England University, Springfield, MA, 01119, USA,
| |
Collapse
|
184
|
Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, Larsson M. Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:1698-704. [PMID: 26157174 DOI: 10.4049/jimmunol.1500618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
Collapse
Affiliation(s)
- Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jonas Andersson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Esaki M Shankar
- Tropical Infectious Disease Research and Education Center, Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden; and
| |
Collapse
|
185
|
Oth T, Van Elssen CHMJ, Schnijderberg MCA, Senden-Gijsbers BLMG, Germeraad WTV, Bos GMJ, Vanderlocht J. Potency of Both Human Th1 and NK Helper Cell Activation is Determined by IL-12p70-Producing PAMP-Matured DCs. J Interferon Cytokine Res 2015; 35:748-58. [PMID: 26134473 DOI: 10.1089/jir.2015.0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Besides T helper (Th) cells, natural killer (NK) cells have also been described to participate in the shaping of dendritic cell (DC)-mediated adaptive immune responses. At present, it remains unclear to what extent the induction of these NK helper cell immune mechanisms is coupled with Th responses and whether both helper immune responses are induced by the same DC upon specific pathogen recognition receptor (PRR) stimulation. In this study, we demonstrate that maturation of DCs with a cocktail containing FMKp (membrane fragments of Klebsiella pneumoniae) mounts both Th cell and NK cell helper responses in a PRR-triggered dose-dependent manner as determined by the capacity of the helper cells to produce IFN-γ. Furthermore, by triggering an additional PRR pathway [FMKp in combination with poly(I:C) lyovec], we reveal that both approaches modulate the amount of DC-derived IL-12p70 and that this cytokine is the key determinant of the DC-induced Th1 and NK cell helper responses. Moreover, all PRR triggers able to induce IL-12-producing mature DCs are sufficient to induce these helper responses. We propose the existence of a single program used by DCs to induce potent cellular immune responses by stimulating both T helper and NK cell helper processes. This knowledge can help to select the proper PRR triggers in preventive and therapeutic vaccine design.
Collapse
Affiliation(s)
- Tammy Oth
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Catharina H M J Van Elssen
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Melanie C A Schnijderberg
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Birgit L M G Senden-Gijsbers
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Wilfred T V Germeraad
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Gerard M J Bos
- 1 Division of Hematology, Department of Internal Medicine, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| | - Joris Vanderlocht
- 2 Tissue Typing Laboratory, Department of Transplantation Immunology, School of Oncology and Developmental Biology, Maastricht University Medical Center+ , Maastricht, The Netherlands
| |
Collapse
|
186
|
Riise RE, Bernson E, Aurelius J, Martner A, Pesce S, Della Chiesa M, Marcenaro E, Bylund J, Hellstrand K, Moretta L, Moretta A, Thorén FB. TLR-Stimulated Neutrophils Instruct NK Cells To Trigger Dendritic Cell Maturation and Promote Adaptive T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:1121-8. [PMID: 26085684 DOI: 10.4049/jimmunol.1500709] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Polymorphonuclear neutrophils (PMNs) are innate effector cells with pivotal roles in pathogen recognition, phagocytosis, and eradication. However, their role in the development of subsequent immune responses is incompletely understood. This study aimed to identify mechanisms of relevance to the cross talk between human neutrophils and NK cells and its potential role in promoting adaptive immunity. TLR-stimulated PMNs were found to release soluble mediators to attract and activate NK cells in vitro. PMN-conditioned NK cells displayed enhanced cytotoxicity and cytokine production, and responded vigorously to ensuing stimulation with exogenous and endogenous IL-12. The neutrophil-induced activation of NK cells was prevented by caspase-1 inhibitors and by natural antagonists to IL-1 and IL-18, suggesting a role for the NOD-like receptor family pyrin domain containing-3 inflammasome. In addition, PMN-conditioned NK cells triggered the maturation of monocyte-derived dendritic cells, which promoted T cell proliferation and IFN-γ production. These data imply that neutrophils attract NK cells to sites of infection to convert these cells into an active state, which drives adaptive immune responses via maturation of dendritic cells. Our results add to a growing body of evidence that suggests a sophisticated role for neutrophils in orchestrating the immune response to pathogens.
Collapse
Affiliation(s)
- Rebecca E Riise
- Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Elin Bernson
- Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Johan Aurelius
- Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Anna Martner
- Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Silvia Pesce
- Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy
| | | | - Emanuela Marcenaro
- Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy; Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, 16132 Genoa, Italy
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, University of Gothenburg, 40530 Gothenburg, Sweden; and
| | | | | | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università di Genova, 16132 Genoa, Italy; Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, 16132 Genoa, Italy
| | - Fredrik B Thorén
- Sahlgrenska Cancer Center, University of Gothenburg, 40530 Gothenburg, Sweden;
| |
Collapse
|
187
|
Mueller-Leisse J, Brueggemann S, Bouzani M, Schmitt AL, Einsele H, Loeffler J. Polymorphonuclear neutrophils and granulocytic myeloid-derived suppressor cells inhibit natural killer cell activity towardAspergillus fumigatus. Med Mycol 2015; 53:622-9. [DOI: 10.1093/mmy/myv030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 12/16/2022] Open
|
188
|
Hagberg N, Theorell J, Hjorton K, Spee P, Eloranta ML, Bryceson YT, Rönnblom L. Functional anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies in patients with systemic lupus erythematosus. Arthritis Rheumatol 2015; 67:1000-11. [PMID: 25510434 DOI: 10.1002/art.38999] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Recently we serendipitously identified a patient with systemic lupus erythematosus (SLE) who was positive for autoantibodies to CD94/natural killer receptor group 2A (NKG2A). The present study was undertaken to investigate the occurrence and function of autoantibodies targeting lectin-like NK cell receptors in SLE. METHODS Sera from 203 SLE patients and 90 healthy individuals were analyzed, by flow cytometry, for Ig binding to Ba/F3 cells transfected with CD94/NKG2A, CD94/NKG2C, or NKG2D. Autoantibodies identified were characterized with regard to interference with HLA-E binding, effect on NK cell activation in response to HLA-E-transfected K562 cells, and capacity to facilitate antibody-dependent cell-mediated cytotoxicity (ADCC). Levels of autoantibodies were determined in longitudinally sampled sera, and correlations with disease activity (SLE Disease Activity Index 2000) and severity (Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index) were investigated. RESULTS Anti-CD94/NKG2A autoantibodies were identified in 7 SLE patients. The autoantibodies from 6 patients inhibited binding of HLA-E to CD94/NKG2A, whereas those from the seventh patient augmented this binding. Autoantibodies from 2 patients also reacted with the activating receptor CD94/NKG2C, with inhibition of the binding of HLA-E to CD94/NKG2C observed in 1 case and enhancement of this binding in the other. None of the sera contained anti-NKG2D autoantibodies. The levels of anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies correlated with disease activity and with a more severe SLE phenotype. Mechanistically, anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies both interfered with HLA-E-mediated regulation of NK cell activation and facilitated the elimination of target cells expressing CD94/NKG2A or CD94/NKG2C through ADCC. CONCLUSION Anti-CD94/NKG2A and anti-CD94/NKG2C autoantibodies occur in a subset of patients with clinically active SLE. Given their capacity to deplete certain NK cell subsets and interfere with particular NK cell function, such autoantibodies may promote the pathogenesis of SLE.
Collapse
|
189
|
Schlums H, Cichocki F, Tesi B, Theorell J, Beziat V, Holmes TD, Han H, Chiang SCC, Foley B, Mattsson K, Larsson S, Schaffer M, Malmberg KJ, Ljunggren HG, Miller JS, Bryceson YT. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015; 42:443-56. [PMID: 25786176 DOI: 10.1016/j.immuni.2015.02.008] [Citation(s) in RCA: 588] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/31/2014] [Accepted: 02/20/2015] [Indexed: 12/20/2022]
Abstract
The mechanisms underlying human natural killer (NK) cell phenotypic and functional heterogeneity are unknown. Here, we describe the emergence of diverse subsets of human NK cells selectively lacking expression of signaling proteins after human cytomegalovirus (HCMV) infection. The absence of B and myeloid cell-related signaling protein expression in these NK cell subsets correlated with promoter DNA hypermethylation. Genome-wide DNA methylation patterns were strikingly similar between HCMV-associated adaptive NK cells and cytotoxic effector T cells but differed from those of canonical NK cells. Functional interrogation demonstrated altered cytokine responsiveness in adaptive NK cells that was linked to reduced expression of the transcription factor PLZF. Furthermore, subsets of adaptive NK cells demonstrated significantly reduced functional responses to activated autologous T cells. The present results uncover a spectrum of epigenetically unique adaptive NK cell subsets that diversify in response to viral infection and have distinct functional capabilities compared to canonical NK cell subsets.
Collapse
Affiliation(s)
- Heinrich Schlums
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Frank Cichocki
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, 17164 Stockholm, Sweden; Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, 14186 Stockholm, Sweden
| | - Jakob Theorell
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Vivien Beziat
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Tim D Holmes
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Hongya Han
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Samuel C C Chiang
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Bree Foley
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Kristin Mattsson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Stella Larsson
- Department of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Marie Schaffer
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Karl-Johan Malmberg
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; K.G. Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, 0310 Oslo, Norway; Department of Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway
| | - Hans-Gustaf Ljunggren
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Yenan T Bryceson
- Centre for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
190
|
Zhang Q, Liu XY, Zhang T, Zhang XF, Zhao L, Long F, Liu ZK, Wang EH. The dual-functional capability of cytokine-induced killer cells and application in tumor immunology. Hum Immunol 2015; 76:385-91. [DOI: 10.1016/j.humimm.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/18/2023]
|
191
|
Heiberg IL, Pallett LJ, Winther TN, Høgh B, Maini MK, Peppa D. Defective natural killer cell anti-viral capacity in paediatric HBV infection. Clin Exp Immunol 2015; 179:466-76. [PMID: 25311087 PMCID: PMC4337679 DOI: 10.1111/cei.12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells exhibit dysregulated effector function in adult chronic hepatitis B virus (HBV) infection (CHB), which may contribute to virus persistence. The role of NK cells in children infected perinatally with HBV is less studied. Access to a unique cohort enabled the cross-sectional evaluation of NK cell frequency, phenotype and function in HBV-infected children relative to uninfected children. We observed a selective defect in NK cell interferon (IFN)-γ production, with conserved cytolytic function, mirroring the functional dichotomy observed in adult infection. Reduced expression of NKp30 on NK cells suggests a role of impaired NK-dendritic cell (DC) cellular interactions as a potential mechanism leading to reduced IFN-γ production. The finding that NK cells are already defective in paediatric CHB, albeit less extensively than in adult CHB, has potential implications for the timing of anti-viral therapy aiming to restore immune control.
Collapse
Affiliation(s)
- I L Heiberg
- Department of Paediatrics, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
192
|
Sarhan D, Palma M, Mao Y, Adamson L, Kiessling R, Mellstedt H, Österborg A, Lundqvist A. Dendritic cell regulation of NK-cell responses involves lymphotoxin-α, IL-12, and TGF-β. Eur J Immunol 2015; 45:1783-93. [DOI: 10.1002/eji.201444885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 02/16/2015] [Accepted: 03/10/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Dhifaf Sarhan
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Marzia Palma
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
- Hematology Center; Karolinska University Hospital Solna; Stockholm Sweden
| | - Yumeng Mao
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Lars Adamson
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
| | - Anders Österborg
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
- Hematology Center; Karolinska University Hospital Solna; Stockholm Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology; Karolinska Institutet; Stockholm Sweden
- Center for the Diseases of Aging at the Vaccine and Gene Therapy; Institute of Florida; Port St. Lucie FL USA
| |
Collapse
|
193
|
Animal models of Epstein Barr virus infection. Curr Opin Virol 2015; 13:6-10. [PMID: 25846986 DOI: 10.1016/j.coviro.2015.03.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 11/23/2022]
Abstract
Epstein Barr virus (EBV) was the first human tumor virus to be described. Despite its discovery now more than fifty years ago, immune control of this virus is still not very well understood and no vaccine is available. This knowledge gap is due in part to the lack of a preclinical small animal model which can faithfully recapitulate EBV infection and immune control, and would allow testing of EBV specific vaccine candidates. With the advent of mice with reconstituted human immune system compartments (HIS mice) during the past decade this is changing. We will discuss which aspects of EBV infection and its immune control can already be modeled in HIS mice, and which shortcomings still need to be overcome in order to recapitulate the immunobiology of oncogenic EBV infection.
Collapse
|
194
|
B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther 2015; 22:675-84. [PMID: 25830550 PMCID: PMC4529373 DOI: 10.1038/gt.2015.29] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/06/2015] [Accepted: 02/26/2015] [Indexed: 12/20/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have demonstrated durable and potentially curative therapeutic efficacy against B-cell leukemia in clinical trials. A CAR strategy can target any tumor surface antigens as long as an antigen-binding receptor can be generated. New CARs that target solid tumors and have the potential to target multiple tumor types are needed. In this study, B7H6, a ligand for the NK cell activating receptor NKp30, was targeted to create a CAR that targets multiple tumor types. B7H6 is expressed on various primary human tumors, including leukemia, lymphoma and gastrointestinal stromal tumors, but it is not constitutively expressed on normal tissues. B7H6-specific CAR T cells have robust cellular cytotoxicity and interferon-γ secretion when co-cultured with B7H6+ tumor cells, and they exhibit little self-reactivity to immature dendritic cells or pro-inflammatory monocytes. In vivo, B7H6-specific CAR T cells greatly enhanced the survival of RMA/B7H6 lymphoma-bearing mice. The long-term survivor mice were protected against a B7H6-deficient tumor re-challenge. This CAR therapy also decreased tumor burden in a murine ovarian cancer model. In conclusion, B7H6-specific CARs have the potential to treat B7H6+ hematologic and solid tumors.
Collapse
|
195
|
Arapović J, Arapović M, Golemac M, Traven L, Tomac J, Rumora D, Ražić E, Krmpotić A, Jonjić S. The specific NK cell response in concert with perforin prevents CD8(+) T cell-mediated immunopathology after mouse cytomegalovirus infection. Med Microbiol Immunol 2015; 204:335-44. [PMID: 25809566 DOI: 10.1007/s00430-015-0409-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/13/2015] [Indexed: 12/16/2022]
Abstract
Natural killer (NK) and CD8(+) T cells play a crucial role in the control of mouse cytomegalovirus (MCMV) infection. These effector cells exert their functions by releasing antiviral cytokines and by cytolytic mechanisms including perforin activation. In addition to their role in virus control, NK cells play an immunoregulatory role since they shape the CD8(+) T cell response to MCMV. To investigate the role of perforin-dependent cytolytic mechanism in NK cell modulation of CD8(+) T cell response during acute MCMV infection, we have used perforin-deficient C57BL/6 mice (Prf1(-/-)) and have shown that virus control by CD8(+) T cells in Prf1(-/-) mice is more efficient if NK cells are activated by the engagement of the Ly49H receptor with the m157 MCMV protein. A lack of perforin results in severe liver inflammation after MCMV infection, which is characterized by immunopathological lesions that are more pronounced in Prf1(-/-) mice infected with virus unable to activate NK cells. This immunopathology is caused by an abundant infiltration of activated CD8(+) T cells. The depletion of CD8(+) T cells has markedly reduced pathohistological lesions in the liver and improved the survival of Prf1(-/-) mice in spite of an increased viral load. Altogether, the results of our study suggest that a lack of perforin and absence of the specific activation of NK cells during acute MCMV infection lead to an unleashed CD8(+) T cell response that is detrimental for the host.
Collapse
Affiliation(s)
- Jurica Arapović
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, Rijeka, Croatia
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Karimi K, Karimi Y, Chan J, Boudreau JE, Basset J, Chew MV, Reid S, Bramson JL, Wan Y, Ashkar AA. Type I IFN signaling on dendritic cells is required for NK cell-mediated anti-tumor immunity. Innate Immun 2015; 21:626-34. [PMID: 25749844 DOI: 10.1177/1753425915575078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 02/04/2015] [Indexed: 11/15/2022] Open
Abstract
NK cells play a vital role in innate anti-tumor immunity. Crosstalk between NK cells and dendritic cells (DCs) has come to the forefront in protection against tumors in the context of DC vaccines. We previously discovered that NK cell activation mediates the anti-tumor activity elicited by DC vaccines in response to melanoma tumor challenge in a murine lung metastasis model. In this study, we sought to explore the mechanism behind this NK-DC communication, specifically looking at the involvement of IL-15 and type I IFN signaling. Using DCs from IL-15(-/-) and IL-15Rα(-/-) mice, we found that the anti-tumor effect of the vaccine remained comparable with DCs from wild type mice. Moreover, DCs derived from IFN-α/βR(-/-) mice also maintained their anti-tumor effect. Interestingly, endogenous DCs were found to accumulate in the draining lymph nodes post-immunization and their depletion abolished the anti-tumor effect of the vaccine. Our findings suggest the important role that type I IFN signaling and endogenous DCs play in DC vaccine-mediated anti-tumor protection. Our data suggest that type I IFNs from vaccine DCs activate host DCs to provide NK cell-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yalda Karimi
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jeffrey Chan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jeanette E Boudreau
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jennifer Basset
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Marianne V Chew
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Sarah Reid
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Ali A Ashkar
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
197
|
Jenkins MR, Rudd-Schmidt JA, Lopez JA, Ramsbottom KM, Mannering SI, Andrews DM, Voskoboinik I, Trapani JA. Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. ACTA ACUST UNITED AC 2015; 212:307-17. [PMID: 25732304 PMCID: PMC4354371 DOI: 10.1084/jem.20140964] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Jenkins et al. discover that failure of perforin and granzyme cytotoxicity by human and mouse CTLs/NK cells prolongs the immunological synapse, leading to repetitive calcium signaling and hypersecretion of inflammatory mediators that subsequently activate macrophages. Disengagement from target cells is dependent on apoptotic caspase signaling. The findings may provide mechanistic understanding for immunopathology in familial hemophagocytic lymphohistiocytosis. Failure of cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells to kill target cells by perforin (Prf)/granzyme (Gzm)-induced apoptosis causes severe immune dysregulation. In familial hemophagocytic lymphohistiocytosis, Prf-deficient infants suffer a fatal “cytokine storm” resulting from macrophage overactivation, but the link to failed target cell death is not understood. We show that prolonged target cell survival greatly amplifies the quanta of inflammatory cytokines secreted by CTLs/NK cells and that interferon-γ (IFN-γ) directly invokes the activation and secondary overproduction of proinflammatory IL-6 from naive macrophages. Furthermore, using live cell microscopy to visualize hundreds of synapses formed between wild-type, Prf-null, or GzmA/B-null CTLs/NK cells and their targets in real time, we show that hypersecretion of IL-2, TNF, IFN-γ, and various chemokines is linked to failed disengagement of Prf- or Gzm-deficient lymphocytes from their targets, with mean synapse time increased fivefold, from ∼8 to >40 min. Surprisingly, the signal for detachment arose from the dying target cell and was caspase dependent, as delaying target cell death with various forms of caspase blockade also prevented their disengagement from fully competent CTLs/NK cells and caused cytokine hypersecretion. Our findings provide the cellular mechanism through which failed killing by lymphocytes causes systemic inflammation involving recruitment and activation of myeloid cells.
Collapse
Affiliation(s)
- Misty R Jenkins
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jesse A Rudd-Schmidt
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jamie A Lopez
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly M Ramsbottom
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stuart I Mannering
- The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Daniel M Andrews
- The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ilia Voskoboinik
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph A Trapani
- Cancer Cell Death and Killer Cell Biology Laboratories, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia The Sir Peter MacCallum Department of Oncology; Department of Genetics; and Department of Medicine, St. Vincent's Hospital; The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
198
|
Yossef R, Gur C, Shemesh A, Guttman O, Hadad U, Nedvetzki S, Miletić A, Nalbandyan K, Cerwenka A, Jonjic S, Mandelboim O, Porgador A. Targeting natural killer cell reactivity by employing antibody to NKp46: implications for type 1 diabetes. PLoS One 2015; 10:e0118936. [PMID: 25719382 PMCID: PMC4342013 DOI: 10.1371/journal.pone.0118936] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
Natural killer (NK) cells belong to the innate lymphoid cells. Their cytotoxic activity is regulated by the delicate balance between activating and inhibitory signals. NKp46 is a member of the primary activating receptors of NK cells. We previously reported that the NKp46 receptor is involved in the development of type 1 diabetes (T1D). Subsequently, we hypothesized that blocking this receptor could prevent or hinder disease development. To address this goal, we developed monoclonal antibodies for murine NKp46. One mAb, named NCR1.15, recognizes the mouse homologue protein of NKp46, named Ncr1, and was able to down-regulate the surface expression of NKp46 on primary murine NK cells following antibody injection in vivo. Additionally, NCR1.15 treatments were able to down-regulate cytotoxic activity mediated by NKp46, but not by other NK receptors. To test our primary assumption, we examined T1D development in two models, non-obese diabetic mice and low-dose streptozotocin. Our results show a significantly lower incidence of diabetic mice in the NCR1.15-treated group compared to control groups. This study directly demonstrates the involvement of NKp46 in T1D development and suggests a novel treatment strategy for early insulitis.
Collapse
Affiliation(s)
- Rami Yossef
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Chamutal Gur
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
- Department of Medicine, Hadassah-Hebrew University Hospital, Jerusalem 91120, Israel
| | - Avishai Shemesh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofer Guttman
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Uzi Hadad
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shlomo Nedvetzki
- BioLineRx Ltd., 19 Hartum Street, P.O. Box 45158. Jerusalem 91450, Israel
| | - Antonija Miletić
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | | | - Adelheid Cerwenka
- Innate Immunity Group, German Cancer Research Center, Heidelberg 69120, Germany
| | - Stipan Jonjic
- Center for Proteomics and Department for Histology and Embryology, School of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
- * E-mail:
| |
Collapse
|
199
|
Pampena MB, Levy EM. Natural killer cells as helper cells in dendritic cell cancer vaccines. Front Immunol 2015; 6:13. [PMID: 25674087 PMCID: PMC4309200 DOI: 10.3389/fimmu.2015.00013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/08/2015] [Indexed: 12/24/2022] Open
Abstract
Vaccine-based cancer immunotherapy has generated highly variable clinical results due to differing methods of vaccine preparation and variation in patient populations among other lesser factors. Moreover, these clinical responses do not necessarily correspond with the induction of tumor-specific cytotoxic lymphocytes. Here, we review the participation of natural killer (NK) cells as alternative immune components that could cooperate in successful vaccination treatment. NK cells have been described as helper cells in dendritic cell-based cancer vaccines, but the role in other kinds of vaccination strategies (whole cells, peptide, or DNA-based vaccines) is poorly understood. In this article, we address the following issues regarding the role of NK cells in cancer vaccines: NK cell anti-tumor action sites, and the loci of NK cell interaction with other immune cells; descriptions of new data on the memory characteristics of NK cells described in infectious diseases; and finally phenotypical and functional changes after vaccination measured by immunomonitoring in preclinical and clinical settings.
Collapse
|
200
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system that can lyse target cells without prior sensitization and have an important role in host defense to pathogens and transformed cells. A balance between negative and positive signals transmitted via germ line-encoded inhibitory and activating receptors controls the function of NK cells. Although the concept of "missing-self" would suggest that NK cells could target foreign allografts, the prevailing dogma has been that NK cells are not active participants in the mechanisms that culminate in the rejection of solid organ allografts. Recent studies, however, challenge this conclusion and instead implicate NK cells in contributing to both graft rejection and tolerance to an allograft. In this review, we highlight recent studies with the goal of understanding the complex NK cell interactions that impact alloimmunity.
Collapse
Affiliation(s)
- Uzi Hadad
- Division of Abdominal Transplantation, Department of Surgery and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|