151
|
Sigalov AB. Uncoupled binding and folding of immune signaling-related intrinsically disordered proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:525-36. [DOI: 10.1016/j.pbiomolbio.2011.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 10/17/2022]
|
152
|
Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, Venturi V, Gostick E, Urrutia A, Wooldridge L, Clement M, Gras S, Wilmann PG, Autran B, Moris A, Rossjohn J, Davenport MP, Takiguchi M, Brander C, Douek DC, Kelleher AD, Price DA, Appay V. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood 2011; 118:2138-49. [PMID: 21734237 PMCID: PMC3162351 DOI: 10.1182/blood-2011-01-328781] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022] Open
Abstract
Mapping the precise determinants of T-cell efficacy against viruses in humans is a public health priority with crucial implications for vaccine design. To inform this effort, we performed a comprehensive analysis of the effective CD8(+) T-cell clonotypes that constitute responses specific for the HIV p24 Gag-derived KK10 epitope (KRWIILGLNK; residues 263-272) restricted by HLA-B*2705, which are known to confer superior control of viral replication in HIV-infected individuals. Particular KK10-specific CD8(+) T-cell clonotypes, characterized by TRBV4-3/TRBJ1-3 gene rearrangements, were found to be preferentially selected in vivo and shared between individuals. These "public" clonotypes exhibit high levels of TCR avidity and Ag sensitivity, which impart functional advantages and enable effective suppression of HIV replication. The early L(268)M mutation at position 6 of the KK10 epitope enables the virus to avoid recognition by these highly effective CD8(+) T-cell clonotypes. However, alternative clonotypes with variant reactivity provide flexibility within the overall KK10-specific response. These findings provide refined mechanistic insights into the workings of an effective CD8(+) T-cell response against HIV.
Collapse
Affiliation(s)
- Maria Candela Iglesias
- Inserm UMR S 945, Infections and Immunity, Université Pierre et Marie Curie-Paris 6, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Deswal S, Schulze AK, Höfer T, Schamel WWA. Quantitative analysis of protein phosphorylations and interactions by multi-colour IP-FCM as an input for kinetic modelling of signalling networks. PLoS One 2011; 6:e22928. [PMID: 21829558 PMCID: PMC3146539 DOI: 10.1371/journal.pone.0022928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 07/01/2011] [Indexed: 11/22/2022] Open
Abstract
Background To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. Methodology/Principal Findings We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. Conclusions/Significance The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network.
Collapse
Affiliation(s)
- Sumit Deswal
- Max Planck Institute of Immunobiology and Epigenetics, and Faculty of Biology, Biology III, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Freiburg, Germany
| | - Anna K. Schulze
- Research Group Modeling of Biological Systems, German Cancer Research Center and BioQuant Center, Heidelberg, Germany
| | - Thomas Höfer
- Research Group Modeling of Biological Systems, German Cancer Research Center and BioQuant Center, Heidelberg, Germany
| | - Wolfgang W. A. Schamel
- Max Planck Institute of Immunobiology and Epigenetics, and Faculty of Biology, Biology III, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Centre of Chronic Immunodeficiency (CCI), University Medical Center Freiburg, and University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
154
|
Schrum AG, Gil D, Turka LA, Palmer E. Physical and functional bivalency observed among TCR/CD3 complexes isolated from primary T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:870-8. [PMID: 21666056 PMCID: PMC3131427 DOI: 10.4049/jimmunol.1100538] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Unlike BCR and secreted Ig, TCR expression is not thought to occur in a bivalent form. The conventional monovalent model of TCR/CD3 is supported by published studies of complexes solubilized in the detergent digitonin, in which bivalency was not observed. We revisited the issue of TCR valency by examining complexes isolated from primary αβ T cells after solubilization in digitonin. Using immunoprecipitation followed by flow cytometry, we unexpectedly observed TCR/CD3 complexes that contained two TCRs per complex. Standard anti-TCR Abs, being bivalent themselves, tended to bind with double occupancy to bivalent TCRs; this property masked the presence of the second TCR per complex in certain Ab binding assays, which may partially explain why previous data did not reveal these bivalent complexes. We also found that the prevalence of bivalency among fully assembled, mature TCR/CD3 complexes was sufficient to impact the functional performance of immunoprecipitated TCRs in binding antigenic peptide/MHC-Ig fusion proteins. Both TCR positions per bivalent complex required an Ag-specific TCR to effect optimal binding to these soluble ligands. Therefore, we conclude that in primary T cells, TCR/CD3 complexes can be found that are physically and functionally bivalent. The expression of bivalent TCR/CD3 complexes has implications regarding potential mechanisms by which Ag may trigger signaling. It also suggests the possibility that the potential for bivalent expression could represent a general feature of Ag receptors.
Collapse
MESH Headings
- Adaptive Immunity/genetics
- Animals
- CD3 Complex/genetics
- CD3 Complex/isolation & purification
- CD3 Complex/physiology
- Flow Cytometry
- Immunoprecipitation
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein Multimerization/genetics
- Protein Multimerization/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/isolation & purification
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- T-Lymphocyte Subsets/chemistry
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Adam G. Schrum
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| | - Diana Gil
- Department of Immunology, 200 First Street SW, Mayo Clinic College of Medicine, Rochester MN, 55905, USA
- Inmunología, Departamento de Microbiología I, Facultad de Medicina,Universidad Complutense de Madrid, Madrid 28043, Spain
| | - Laurence A. Turka
- Department of Medicine, 415 Curie Blvd, University of Pennsylvania School of Medicine, Philadelphia PA, 19104, USA
| | - Ed Palmer
- Laboratory of Transplantation Immunology and Nephrology, Department of Research, University Hospital-Basel, Hebelstrasse 20, 4031-Basel, Switzerland
| |
Collapse
|
155
|
Martín-Cófreces NB, Alarcón B, Sánchez-Madrid F. Tubulin and actin interplay at the T cell and antigen-presenting cell interface. Front Immunol 2011; 2:24. [PMID: 22566814 PMCID: PMC3341975 DOI: 10.3389/fimmu.2011.00024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Accepted: 06/15/2011] [Indexed: 01/04/2023] Open
Abstract
T cells reorganize their actin and tubulin-based cytoskeletons to provide a physical basis to the immune synapse. However, growing evidence shows that their roles on T cell activation are more dynamic than merely serving as tracks or scaffold for different molecules. The crosstalk between both skeletons may be important for the formation and movement of the lamella at the immunological synapse by increasing the adhesion of the T cell to the antigen-presenting cells (APC), thus favoring the transport of components toward the plasma membrane and in turn regulating the T-APC intercellular communication. Microtubules and F-actin appear to be essential for the transport of the different signaling microclusters along the membrane, therefore facilitating the propagation of the signal. Finally, they can also be important for regulating the endocytosis, recycling, and degradation of the T cell receptor signaling machinery, thus helping both to sustain the activated state and to switch it off.
Collapse
Affiliation(s)
- Noa Beatriz Martín-Cófreces
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares Madrid, Spain
| | | | | |
Collapse
|
156
|
Alarcón B, Mestre D, Martínez-Martín N. The immunological synapse: a cause or consequence of T-cell receptor triggering? Immunology 2011; 133:420-5. [PMID: 21631496 DOI: 10.1111/j.1365-2567.2011.03458.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The immunological synapse forms as a result of the tight apposition of a T cell with an antigen-presenting cell (APC) and it is the site where the T-cell receptor (TCR) is triggered by its antigen ligand, the peptide-MHC complex present in the APC membrane. The immunological synapse was initially characterized in the T-cell membrane as three concentric rings of membrane receptors and their underlying cytoskeletal and signalling proteins. The inner circle, or central supramolecular activation cluster (cSMAC), concentrates most of the TCR and CD28, and it is surrounded by the peripheral SMAC that is formed by integrins. Finally, the most external ring or distal SMAC (dSMAC) is where proteins with large ectodomains are located, such as CD43 and CD45, far from the cSMAC. This arrangement was initially thought to be responsible for maintaining sustained TCR signalling, however, this typical concentric bull's-eye pattern is not found in the immunological synapses formed with the APCs of dendritic cells. Interestingly, TCR signalling has been detected in microclusters formed in the dSMAC area and it extinguishes as the TCRs reach the cSMAC. Hence, it appears that TCR signalling and full T-cell activation do not require the formation of the cSMAC and that this structure may rather play a role in TCR down-regulation, as well as participating in the polarized secretion of lytic granules. Here, we shall review the historical evolution of the role of the cSMAC in T-cell activation, finally discussing our most recent data indicating that the cSMAC serves to internalize exhausted TCRs by phagocytosis.
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| | | | | |
Collapse
|
157
|
Lim TS, Mortellaro A, Lim CT, Hämmerling GJ, Ricciardi-Castagnoli P. Mechanical interactions between dendritic cells and T cells correlate with T cell responsiveness. THE JOURNAL OF IMMUNOLOGY 2011; 187:258-65. [PMID: 21622857 DOI: 10.4049/jimmunol.1100267] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ag recognition is achieved through the communication across intercellular contacts between T cells and APCs such as dendritic cells (DC). Despite remarkable progress in delineating detailed molecular components at the intercellular contacts, little is known about the functional roles of physical cross-junctional adhesion between T and DC in shaping T cell responses. In addition, the mechanisms underlying sensitivity and specificity of Ag discrimination by T cells at intercellular contacts remain to be elucidated. In this study, we use single-cell force spectroscopy to probe the mechanical interactions between DC and T cells in response to stimulation with a panel of altered peptide ligands. The results show that intercellular interactions of DC-T cell conjugates exhibited different ranges of interaction forces in peptide-dependent manners that match the ability of the peptides to activate T cells. Elevated calcium mobilization and IL-2 secretion by T cells were only promoted in response to antigenic peptides that induce strong interaction forces, suggesting that mechanically stable DC-T cell contacts are crucial for driving T cell activation. Strong interactions were not solely dependent on cell-surface molecules such as TCRs and the adhesion molecule LFA-1, but were also controlled by cytoskeletal dynamics and the integrity of membrane lipid rafts. These data provide novel mechanical insights into the effect of Ag affinity on intercellular contacts that align with T cell responsiveness.
Collapse
Affiliation(s)
- Tong Seng Lim
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648 Singapore.
| | | | | | | | | |
Collapse
|
158
|
Tolar P. Inside the microcluster: antigen receptor signalling viewed with molecular imaging tools. Immunology 2011; 133:271-7. [PMID: 21574995 DOI: 10.1111/j.1365-2567.2011.03452.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Over the last decade, live cell imaging has revealed the surprisingly complex orchestration of antigen receptor signalling at the immunological synapse. The imaging studies showed that one of the earliest steps in antigen receptor activation is the formation of submicroscopic clusters, which regulate the early signalling events. However, the molecular mechanisms operating inside these microclusters have remained beyond the resolution of optical microscopy. Recent development of imaging techniques that approach molecular resolution in intact cells offers a first view of the molecular processes inside these structures. Here I review the contributions of molecular imaging of the immunological synapse to our understanding of antigen receptor clustering, binding to antigens, and recruitment of signalling molecules. Finally, I provide an outlook on the future prospects of this rapidly advancing technology.
Collapse
Affiliation(s)
- Pavel Tolar
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK.
| |
Collapse
|
159
|
Berry R, Chen Z, McCluskey J, Rossjohn J. Insight into the basis of autonomous immunoreceptor activation. Trends Immunol 2011; 32:165-70. [PMID: 21354859 DOI: 10.1016/j.it.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 01/25/2011] [Accepted: 01/27/2011] [Indexed: 12/16/2022]
Abstract
Expression of the pre-T cell receptor (pTCR) by immature thymocytes is crucial for T cell development. The pTCR comprises an invariant pre-Tα chain that pairs with a newly rearranged TCRβ chain and CD3 signaling components. Despite its similarity to the mature αβTCR, which binds to specific peptide-loaded major histocompatibility molecules, the pTCR functions in a ligand-independent manner. Precisely how pTCR functions autonomously has remained a source of intense debate. Recently, the structure of the extracellular domain of the pTCR has been determined, providing insight into the mechanism of pTCR autonomous signaling. In this review, we reflect on the current understanding of pTCR function and draw comparisons to the mechanisms employed by the mature αβTCR and the related pre-B cell receptor.
Collapse
Affiliation(s)
- Richard Berry
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
160
|
Fiala GJ, Schamel WWA, Blumenthal B. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates. J Vis Exp 2011:2164. [PMID: 21403626 DOI: 10.3791/2164] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Multiprotein complexes (MPCs) play a crucial role in cell signalling, since most proteins can be found in functional or regulatory complexes with other proteins (Sali, Glaeser et al. 2003). Thus, the study of protein-protein interaction networks requires the detailed characterization of MPCs to gain an integrative understanding of protein function and regulation. For identification and analysis, MPCs must be separated under native conditions. In this video, we describe the analysis of MPCs by blue native polyacrylamide gel electrophoresis (BN-PAGE). BN-PAGE is a technique that allows separation of MPCs in a native conformation with a higher resolution than offered by gel filtration or sucrose density ultracentrifugation, and is therefore useful to determine MPC size, composition, and relative abundance (Schägger and von Jagow 1991); (Schägger, Cramer et al. 1994). By this method, proteins are separated according to their hydrodynamic size and shape in a polyacrylamide matrix. Here, we demonstrate the analysis of MPCs of total cellular lysates, pointing out that lysate dialysis is the crucial step to make BN-PAGE applicable to these biological samples. Using a combination of first dimension BN- and second dimension SDS-PAGE, we show that MPCs separated by BN-PAGE can be further subdivided into their individual constituents by SDS-PAGE. Visualization of the MPC components upon gel separation is performed by standard immunoblotting. As an example for MPC analysis by BN-PAGE, we chose the well-characterized eukaryotic 19S, 20S, and 26S proteasomes.
Collapse
Affiliation(s)
- Gina J Fiala
- Spemann Graduate School of Biology and Medicine, University of Freiburg
| | | | | |
Collapse
|
161
|
Cuesta N, Martín-Cófreces NB, Murga C, van Santen HM. Receptors, signaling networks, and disease. Sci Signal 2011; 4:mr3. [PMID: 21343616 DOI: 10.1126/scisignal.2001687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past years, a holistic approach has been applied to the study of the field of receptor signaling, permitting the analysis of how the interaction between receptors and their cellular environment determines receptor function and the study of the role of these receptors, under both normal and pathophysiological conditions, in whole organisms. This has been facilitated by the development of high-resolution microscopy techniques, which allow single-molecule or spatiotemporal resolution, or both, of signaling processes at the cellular and organismal levels. Concurrently, the role of these signaling pathways can be tested in increasingly sophisticated murine disease models. Finally, computational approaches aid in predicting and understanding receptor behavior. The program of the Madrid meeting reflected this integrated approach, highlighting signaling by and dynamics and regulation of immune cell receptors, the T cell receptor and B cell receptor, and signaling by and regulation of G protein-coupled receptors.
Collapse
Affiliation(s)
- Natalia Cuesta
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | | | | | |
Collapse
|
162
|
Abstract
There is considerable controversy about the mechanism of T cell receptor (TCR) triggering, the process by which the TCR tranduces signals across the plasma membrane after binding to its ligand (an agonist peptide complexed with an MHC molecule). Three main types of mechanism have been proposed, which involve aggregation, conformational change and segregation. Here, we review recently published evidence for each type of mechanism and conclude that all three may be involved. This complexity may reflect the uniquely demanding nature of TCR-mediated antigen recognition, which requires the detection of a very weak 'signal' (very rare foreign peptide-MHC ligands) in the presence of considerable 'noise' (abundant self peptide-MHC molecules).
Collapse
|
163
|
Dong S, Corre B, Nika K, Pellegrini S, Michel F. T cell receptor signal initiation induced by low-grade stimulation requires the cooperation of LAT in human T cells. PLoS One 2010; 5:e15114. [PMID: 21152094 PMCID: PMC2994893 DOI: 10.1371/journal.pone.0015114] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 10/24/2010] [Indexed: 12/04/2022] Open
Abstract
Background One of the earliest activation events following stimulation of the T cell receptor (TCR) is the phosphorylation of the immunoreceptor tyrosine-based activation motifs (ITAMs) within the CD3-associated complex by the Src family kinase Lck. There is accumulating evidence that a large pool of Lck is constitutively active in T cells but how the TCR is connected to Lck and to the downstream signaling cascade remains elusive. Methodology/Principal Findings We have analyzed the phosphorylation state of Lck and Fyn and TCR signaling in human naïve CD4+ T cells and in the transformed T cell line, Hut-78. The latter has been shown to be similar to primary T cells in TCR-inducible phosphorylations and can be highly knocked down by RNA interference. In both T cell types, basal phosphorylation of Lck and Fyn on their activatory tyrosine was observed, although this was much less pronounced in Hut-78 cells. TCR stimulation led to the co-precipitation of Lck with the transmembrane adaptor protein LAT (linker for activation of T cells), Erk-mediated phosphorylation of Lck and no detectable dephosphorylation of Lck inhibitory tyrosine. Strikingly, upon LAT knockdown in Hut-78 cells, we found that LAT promoted TCR-induced phosphorylation of Lck and Fyn activatory tyrosines, TCRζ chain phosphorylation and Zap-70 activation. Notably, LAT regulated these events at low strength of TCR engagement. Conclusions/Significance Our results indicate for the first time that LAT promotes TCR signal initiation and suggest that this adaptor may contribute to maintain active Lck in proximity of their substrates.
Collapse
Affiliation(s)
- Shen Dong
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Béatrice Corre
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Konstantina Nika
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sandra Pellegrini
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
| | - Frédérique Michel
- Unit of Cytokine Signaling, Department of Immunology, Institut Pasteur, Paris, France
- CNRS URA 1961, Paris, France
- * E-mail:
| |
Collapse
|
164
|
Arechaga I, Swamy M, Abia D, Schamel WA, Alarcón B, Valpuesta JM. Structural characterization of the TCR complex by electron microscopy. Int Immunol 2010; 22:897-903. [PMID: 21059766 DOI: 10.1093/intimm/dxq443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Structural information on how the TCR transmits signals upon binding of its antigen peptide MHC molecule ligand is still lacking. The ectodomains of the TCRα/β, CD3εγ and CD3εδ dimers, as well as the transmembrane domain of CD3ζ, have been characterized by X-ray crystallography and nuclear magnetic resonance (NMR). However, no structural data have been obtained for the entire TCR complex. In this study, we have purified the TCR from T cells under native conditions and used electron microscopy to derive a three-dimensional structure. The TCR complex appears as a pear-shaped structure of 180 × 120 × 65 . Furthermore, the use of mAbs has allowed to determine the orientation of the TCRα/β and CD3 subunits and to suggest a model of interactions. Interestingly, the reconstructed TCR is larger than expected for a complex with a αβγεδεζζ stoichiometry. The accommodation of a second TCRαβ to fill in the extra volume is discussed.
Collapse
Affiliation(s)
- Ignacio Arechaga
- Departamento de Biología Molecular, Universidad de Cantabria (UC) and Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), c/Herrera Oria s/n, 39011 Santander, Spain
| | | | | | | | | | | |
Collapse
|
165
|
Yang J, Reth M. The dissociation activation model of B cell antigen receptor triggering. FEBS Lett 2010; 584:4872-7. [PMID: 20920502 DOI: 10.1016/j.febslet.2010.09.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
Abstract
To detect its cognate antigen, each B lymphocyte contains up to 120000 B cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors remain silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood. The antigen-specific activation of the BCR is currently explained by the cross-linking model (CLM). This model predicts that the many BCR complexes on the surface of a B cell are dispersed signalling-inert monomers and that it is BCR dimerization that initiates signalling from the receptor. The finding that the BCR forms auto-inhibited oligomers on the surface of resting B cells falsifies these predictions of the CLM. We propose the dissociation activation model (DAM), which fits better with the existing body of experimental data.
Collapse
Affiliation(s)
- Jianying Yang
- Centre of Biological Signalling Studies BIOSS, University Freiburg, Freiburg, Germany
| | | |
Collapse
|
166
|
Sigalov AB. The SCHOOL of nature: IV. Learning from viruses. SELF/NONSELF 2010; 1:282-298. [PMID: 21487503 PMCID: PMC3062383 DOI: 10.4161/self.1.4.13279] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 02/05/2023]
Abstract
During the co-evolution of viruses and their hosts, the latter have equipped themselves with an elaborate immune system to defend themselves from the invading viruses. In order to establish a successful infection, replicate and persist in the host, viruses have evolved numerous strategies to counter and evade host antiviral immune responses as well as exploit them for productive viral replication. These strategies include those that modulate signaling mediated by cell surface receptors. Despite tremendous advancement in recent years, the exact molecular mechanisms underlying these critical points in viral pathogenesis remain unknown. In this work, based on a novel platform of receptor signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, I suggest specific mechanisms used by different viruses such as human immunodeficiency virus (HIV), cytomegalovirus (CMV), severe acute respiratory syndrome coronavirus, human herpesvirus 6 and others, to modulate receptor signaling. I also use the example of HIV and CMV to illustrate how two unrelated enveloped viruses use a similar SCHOOL mechanism to modulate the host immune response mediated by two functionally different receptors: T cell antigen receptor and natural killer cell receptor, NKp30. This suggests that it is very likely that similar general mechanisms can be or are used by other viral and possibly non-viral pathogens. Learning from viruses how to target cell surface receptors not only helps us understand viral strategies to escape from the host immune surveillance, but also provides novel avenues in rational drug design and the development of new therapies for immune disorders.
Collapse
|
167
|
Pre-clustered TCR complexes. FEBS Lett 2010; 584:4832-7. [DOI: 10.1016/j.febslet.2010.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/21/2010] [Accepted: 09/01/2010] [Indexed: 11/22/2022]
|
168
|
Oligomeric organization of the B-cell antigen receptor on resting cells. Nature 2010; 467:465-9. [DOI: 10.1038/nature09357] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/14/2010] [Indexed: 11/09/2022]
|
169
|
Owen DM, Gaus K, Magee AI, Cebecauer M. Dynamic organization of lymphocyte plasma membrane: lessons from advanced imaging methods. Immunology 2010; 131:1-8. [PMID: 20646076 PMCID: PMC2966752 DOI: 10.1111/j.1365-2567.2010.03319.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/07/2010] [Accepted: 05/11/2010] [Indexed: 11/26/2022] Open
Abstract
Lipids and lipid domains are suggested to play an essential role in the heterogeneous organization of the plasma membrane in eukaryotic cells, including cells of the immune system. We summarize the results of advanced imaging and physical studies of membrane organization with special focus on the plasma membrane of lymphocytes. We provide a comprehensive up-to-date view on the existence of membrane lipid and protein clusters such as lipid rafts and suggest research directions to better understand these highly dynamic entities on the surface of immune cells.
Collapse
Affiliation(s)
- Dylan M Owen
- Centre for Vascular Research, University of New South Wales, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
170
|
Guillaume P, Baumgaertner P, Neff L, Rufer N, Wettstein P, Speiser DE, Luescher IF. Novel soluble HLA-A2/MELAN-A complexes selectively stain a differentiation defective subpopulation of CD8+ T cells in patients with melanoma. Int J Cancer 2010; 127:910-23. [PMID: 19998338 DOI: 10.1002/ijc.25099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multimeric MHC I-peptide complexes containing phycoerythrin-streptavidin are widely used to detect and investigate antigen-specific CD8+ (and CD4+) T cells. Because such reagents are heterogeneous, we compared their binding characteristics with those of monodisperse dimeric, tetrameric and octameric complexes containing linkers of variable length and flexibility on Melan-A-specific CD8+ T cell clones and peripheral blood mononuclear cells (PBMC) from HLA-A*0201(+) melanoma patients. Striking binding differences were observed for different defined A2/Melan-A(26-35) complexes on T cells depending on their differentiation stage. In particular, short dimeric but not octameric A2/Melan-A(26-35) complexes selectively and avidly stained incompletely differentiated effector-memory T cells clones and populations expressing CD27 and CD28 and low levels of cytolytic mediators (granzymes and perforin). This subpopulation was found in PBMC from all six melanoma patients analyzed and proliferated on peptide stimulation with only modest phenotypic changes. By contrast influenza matrix(58-66) -specific CD8+ PBMC from nine HLA-A*0201(+) healthy donors were efficiently stained by A2/Flu matrix(58-61) multimers, but not dimer and upon peptide stimulation proliferated and differentiated from memory into effector T cells. Thus PBMC from melanoma patients contain a differentiation defective sub-population of Melan-A-specific CD8+ T cells that can be selectively and efficiently stained by short dimeric A2/Melan- A(26-35) complexes, which makes them directly accessible for longitudinal monitoring and further investigation.
Collapse
Affiliation(s)
- Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
171
|
Sigalov AB. The SCHOOL of nature: III. From mechanistic understanding to novel therapies. SELF/NONSELF 2010; 1:192-224. [PMID: 21487477 PMCID: PMC3047783 DOI: 10.4161/self.1.3.12794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 11/19/2022]
Abstract
Protein-protein interactions play a central role in biological processes and thus represent an appealing target for innovative drug design and development. They can be targeted by small molecule inhibitors, modulatory peptides and peptidomimetics, which represent a superior alternative to protein therapeutics that carry many disadvantages. Considering that transmembrane signal transduction is an attractive process to therapeutically control multiple diseases, it is fundamentally and clinically important to mechanistically understand how signal transduction occurs. Uncovering specific protein-protein interactions critical for signal transduction, a general platform for receptor-mediated signaling, the signaling chain homooligomerization (SCHOOL) platform, suggests these interactions as universal therapeutic targets. Within the platform, the general principles of signaling are similar for a variety of functionally unrelated receptors. This suggests that global therapeutic strategies targeting key protein-protein interactions involved in receptor triggering and transmembrane signal transduction may be used to treat a diverse set of diseases. This also assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T cell-mediated skin diseases and platelet disorders or combined to develop novel pharmacological approaches. Intriguingly, human viruses use the SCHOOL-like strategies to modulate and/or escape the host immune response. These viral mechanisms are highly optimized over the millennia, and the lessons learned from viral pathogenesis can be used practically for rational drug design. Proof of the SCHOOL concept in the development of novel therapies for atopic dermatitis, rheumatoid arthritis, cancer, platelet disorders and other multiple indications with unmet needs opens new horizons in therapeutics.
Collapse
|
172
|
Fooksman DR, Vardhana S, Vasiliver-Shamis G, Liese J, Blair DA, Waite J, Sacristán C, Victora GD, Zanin-Zhorov A, Dustin ML. Functional anatomy of T cell activation and synapse formation. Annu Rev Immunol 2010; 28:79-105. [PMID: 19968559 DOI: 10.1146/annurev-immunol-030409-101308] [Citation(s) in RCA: 361] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T cell activation and function require a structured engagement of antigen-presenting cells. These cell contacts are characterized by two distinct dynamics in vivo: transient contacts resulting from promigratory junctions called immunological kinapses or prolonged contacts from stable junctions called immunological synapses. Kinapses operate in the steady state to allow referencing to self-peptide-MHC (pMHC) and searching for pathogen-derived pMHC. Synapses are induced by T cell receptor (TCR) interactions with agonist pMHC under specific conditions and correlate with robust immune responses that generate effector and memory T cells. High-resolution imaging has revealed that the synapse is highly coordinated, integrating cell adhesion, TCR recognition of pMHC complexes, and an array of activating and inhibitory ligands to promote or prevent T cell signaling. In this review, we examine the molecular components, geometry, and timing underlying kinapses and synapses. We integrate recent molecular and physiological data to provide a synthesis and suggest ways forward.
Collapse
Affiliation(s)
- David R Fooksman
- Department of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, NYU School of Medicine, New York, 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Detection of phosphorylated T and B cell antigen receptor species by Phos-tag SDS- and Blue Native-PAGE. Immunol Lett 2010; 130:51-6. [DOI: 10.1016/j.imlet.2009.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 01/31/2023]
|
174
|
Sigalov AB. New therapeutic strategies targeting transmembrane signal transduction in the immune system. Cell Adh Migr 2010; 4:255-67. [PMID: 20519929 DOI: 10.4161/cam.4.2.10746] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Single-chain receptors and multi-chain immune recognition receptors (SRs and MIRRs, respectively) represent families of structurally related but functionally different surface receptors expressed on different cells. In contrast to SRs, a distinctive and common structural characteristic of MIRR family members is that the extracellular recognition domains and intracellular signaling domains are located on separate subunits. How extracellular ligand binding triggers MIRRs and initiates intracellular signal transduction processes is not clear. A novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, suggests that the homooligomerization of receptor intracellular signaling domains represents a necessary and sufficient condition for receptor triggering. In this review, I demonstrate striking similarities between a consensus model of SR signaling and the SCHOOL model of MIRR signaling and show how these models, together with the lessons learned from viral pathogenesis, provide a molecular basis for novel pharmacological approaches targeting inter- and intrareceptor transmembrane interactions as universal therapeutic targets for a diverse variety of immune and other disorders.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
175
|
Cebecauer M, Spitaler M, Sergé A, Magee AI. Signalling complexes and clusters: functional advantages and methodological hurdles. J Cell Sci 2010; 123:309-20. [PMID: 20130139 DOI: 10.1242/jcs.061739] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Signalling molecules integrate, codify and transport information in cells. Organisation of these molecules in complexes and clusters improves the efficiency, fidelity and robustness of cellular signalling. Here, we summarise current views on how signalling molecules assemble into macromolecular complexes and clusters and how they use their physical properties to transduce environmental information into a variety of cellular processes. In addition, we discuss recent innovations in live-cell imaging at the sub-micrometer scale and the challenges of object (particle) tracking, both of which help us to observe signalling complexes and clusters and to examine their dynamic character.
Collapse
Affiliation(s)
- Marek Cebecauer
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
176
|
Huang J, Zarnitsyna VI, Liu B, Edwards LJ, Jiang N, Evavold BD, Zhu C. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 2010; 464:932-6. [PMID: 20357766 PMCID: PMC2925443 DOI: 10.1038/nature08944] [Citation(s) in RCA: 396] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 02/25/2010] [Indexed: 01/17/2023]
Abstract
The T-cell receptor (TCR) interacts with peptide-major histocompatibility complexes (pMHC) to discriminate pathogens from self-antigens and trigger adaptive immune responses. Direct physical contact is required between the T cell and the antigen-presenting cell for cross-junctional binding where the TCR and pMHC are anchored on two-dimensional (2D) membranes of the apposing cells. Despite their 2D nature, TCR-pMHC binding kinetics have only been analysed three-dimensionally (3D) with a varying degree of correlation with the T-cell responsiveness. Here we use two mechanical assays to show high 2D affinities between a TCR and its antigenic pMHC driven by rapid on-rates. Compared to their 3D counterparts, 2D affinities and on-rates of the TCR for a panel of pMHC ligands possess far broader dynamic ranges that match that of their corresponding T-cell responses. The best 3D predictor of response is the off-rate, with agonist pMHC dissociating the slowest. In contrast, 2D off-rates are up to 8,300-fold faster, with the agonist pMHC dissociating the fastest. Our 2D data suggest rapid antigen sampling by T cells and serial engagement of a few agonist pMHCs by TCRs in a large self pMHC background. Thus, the cellular environment amplifies the intrinsic TCR-pMHC binding to generate broad affinities and rapid kinetics that determine T-cell responsiveness.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- HLA Antigens/immunology
- HLA Antigens/metabolism
- Humans
- Imaging, Three-Dimensional
- Kinetics
- Ligands
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Models, Immunological
- Receptors, Antigen, T-Cell/agonists
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Jun Huang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | |
Collapse
|
177
|
Sigalov AB. The SCHOOL of nature: II. Protein order, disorder and oligomericity in transmembrane signaling. SELF/NONSELF 2010; 1:89-102. [PMID: 21487511 PMCID: PMC3065667 DOI: 10.4161/self.1.2.11590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/19/2022]
Abstract
Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered proteins (IDPs), are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of IDPs has been recently observed and shown to exhibit unique biophysical characteristics, including the lack of significant changes in chemical shift and peak intensity upon binding. In this work, I summarize several distinct features of protein disorder that are especially important as related to receptor-mediated transmembrane signal transduction. I also hypothesize that interactions of IDPs with their protein or lipid partners represent a general biphasic process with the "no disorder-to-order" fast interaction which, depending on the interacting partner, may or may not be accompanied by the slow formation of a secondary structure. Further, I suggest signaling-related functional connections between protein order, disorder, and oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.
Collapse
|
178
|
Bridgeman JS, Blaylock M, Hawkins RE, Gilham DE. Development of a flow cytometric co-immunoprecipitation technique for the study of multiple protein-protein interactions and its application to T-cell receptor analysis. Cytometry A 2010; 77:338-46. [DOI: 10.1002/cyto.a.20840] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
179
|
Swamy M, Siegers GM, Fiala GJ, Molnar E, Dopfer EP, Fisch P, Schraven B, Schamel WWA. Stoichiometry and intracellular fate of TRIM-containing TCR complexes. Cell Commun Signal 2010; 8:5. [PMID: 20298603 PMCID: PMC2848047 DOI: 10.1186/1478-811x-8-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/18/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Studying the stoichiometry and intracellular trafficking of the T cell antigen receptor (TCR) is pivotal in understanding its mechanisms of activation. The alphabetaTCR includes the antigen-binding TCRalphabeta heterodimer as well as the signal transducing CD3epsilongamma, CD3epsilondelta and zeta2 subunits. Although the TCR-interacting molecule (TRIM) is also part of the alphabetaTCR complex, it has not been included in most reports so far. RESULTS We used the native antibody-based mobility shift (NAMOS) assay in a first dimension (1D) blue native (BN)-PAGE and a 2D BN-/BN-PAGE to demonstrate that the stoichiometry of the digitonin-solublized TRIM-containing alphabetaTCR is TCRalphabetaCD3epsilon2gammadeltazeta2TRIM2. Smaller alphabetaTCR complexes possess a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry. Complexes of these sizes were detected in T cell lines as well as in primary human and mouse T cells. Stimulating the alphabetaTCR with anti-CD3 antibodies, we demonstrate by confocal laser scanning microscopy that CD3epsilon colocalizes with zeta and both are degraded upon prolonged stimulation, possibly within the lysosomal compartment. In contrast, a substantial fraction of TRIM does not colocalize with zeta. Furthermore, TRIM neither moves to lysosomes nor is degraded. Immunoprecipitation studies and BN-PAGE indicate that TRIM also associates with the gammadeltaTCR. CONCLUSIONS Small alphabetaTCR complexes have a TCRalphabeta CD3epsilon2gammadeltazeta2 stoichiometry; whereas those associated with one TRIM dimer are TCRalphabeta CD3epsilon2gammadeltazeta2TRIM2. TRIM is differentially processed compared to CD3 and zeta subunits after T cell activation and is not degraded. The gammadeltaTCR also associates with TRIM.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Gabrielle M Siegers
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Cell Therapy Program, Princess Margaret Hospital/Ontario Cancer Institute, 610 University Ave., Toronto, Ontario, M5G 2M9, Canada
| | - Gina J Fiala
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert Ludwigs University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Eszter Molnar
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Elaine P Dopfer
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Paul Fisch
- Department of Pathology, University of Freiburg Medical Center, 79110 Freiburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-Universität Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Wolfgang WA Schamel
- Department of Molecular Immunology, Max Planck-Institute of Immunobiology and Institute for Biology III, Albert Ludwigs University Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
180
|
Huppa JB, Axmann M, Mörtelmaier MA, Lillemeier BF, Newell EW, Brameshuber M, Klein LO, Schütz GJ, Davis MM. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 2010; 463:963-7. [PMID: 20164930 PMCID: PMC3273423 DOI: 10.1038/nature08746] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 12/07/2009] [Indexed: 11/09/2022]
Abstract
The recognition of foreign antigens by T lymphocytes is essential to most adaptive immune responses. It is driven by specific T-cell antigen receptors (TCRs) binding to antigenic peptide-major histocompatibility complex (pMHC) molecules on other cells. If productive, these interactions promote the formation of an immunological synapse. Here we show that synaptic TCR-pMHC binding dynamics differ significantly from TCR-pMHC binding in solution. We used single-molecule microscopy and fluorescence resonance energy transfer (FRET) between fluorescently tagged TCRs and their cognate pMHC ligands to measure the kinetics of TCR-pMHC binding in situ. When compared with solution measurements, the dissociation of this complex was increased significantly (4-12-fold). Disruption of actin polymers reversed this effect, indicating that cytoskeletal dynamics destabilize this interaction directly or indirectly. Nevertheless, TCR affinity for pMHC was significantly elevated as the result of a large (about 100-fold) increase in the association rate, a likely consequence of complementary molecular orientation and clustering. In helper T cells, the CD4 molecule has been proposed to bind cooperatively with the TCR to the same pMHC complex. However, CD4 blockade had no effect on the synaptic TCR affinity, nor did it destabilize TCR-pMHC complexes, indicating that the TCR binds pMHC independently of CD4.
Collapse
Affiliation(s)
- Johannes B Huppa
- Department of Microbiology and Immunology, Stanford School of Medicine, California 94305-5323, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Karanikas V, Zamanakou M, Soukou F, Kerenidi T, Gourgoulianis KI, Germenis AE. Naturally occurring tumor‐specific CD8
+
T‐cell precursors in individuals with and without cancer. Immunol Cell Biol 2010; 88:575-85. [DOI: 10.1038/icb.2010.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vaios Karanikas
- Cancer Immunology Unit, Department of Immunology & Histocompatibility, School of Medicine, University of Thessaly Larissa Greece
| | - Maria Zamanakou
- Cancer Immunology Unit, Department of Immunology & Histocompatibility, School of Medicine, University of Thessaly Larissa Greece
| | - Faye Soukou
- Cancer Immunology Unit, Department of Immunology & Histocompatibility, School of Medicine, University of Thessaly Larissa Greece
| | - Theodora Kerenidi
- Department of Respiratory Medicine, School of Medicine, University of Thessaly, University Hospital of Larissa Larissa Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, School of Medicine, University of Thessaly, University Hospital of Larissa Larissa Greece
| | - Anastasios E Germenis
- Cancer Immunology Unit, Department of Immunology & Histocompatibility, School of Medicine, University of Thessaly Larissa Greece
| |
Collapse
|
182
|
Analysis of novel phospho-ITAM specific antibodies in a S2 reconstitution system for TCR-CD3 signalling. Immunol Lett 2010; 130:43-50. [PMID: 20005895 DOI: 10.1016/j.imlet.2009.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/01/2009] [Accepted: 12/02/2009] [Indexed: 11/23/2022]
Abstract
The T cell antigen receptor (TCR-CD3) complex contains 12 different cytoplasmic tyrosines, each of which is part of an immunoreceptor tyrosine-based activation motif and thus occurs in similar sequence context. Since phosphorylation of individual tyrosines can be correlated with the quality of the T cell response, monitoring their phosphorylation is important. We thus generated novel antibodies against phospho-tyrosines of the TCR-CD3 complex and tested the specificity in a synthetic biology approach. We utilized the Drosophila S2 reconstitution system testing several kinases and stimulation conditions that lead to optimal phosphorylation of the TCR-CD3 subunit zeta. Expressing TCR-CD3 subunits and tyrosine mutants thereof we tested the specificity of the novel antibodies in Western blot and immunopurification experiments. In particular, we generated and characterized the monoclonal antibody EM-26 that specifically recognizes phosphorylation of the membrane proximal tyrosine of zeta (phospho-zetaY1) and antisera raised against the first and the second phospho-tyrosine of CD3epsilon (phospho-epsilonY1 and phospho-epsilonY2).
Collapse
|
183
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
184
|
Sigalov AB. Protein intrinsic disorder and oligomericity in cell signaling. ACTA ACUST UNITED AC 2010; 6:451-61. [DOI: 10.1039/b916030m] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
185
|
Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 2009; 11:90-6. [PMID: 20010844 DOI: 10.1038/ni.1832] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/12/2009] [Indexed: 02/04/2023]
Abstract
The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane-associated signal transduction.
Collapse
Affiliation(s)
- Björn F Lillemeier
- Howard Hughes Medical Institute, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
186
|
Harder T, Sangani D. Plasma membrane rafts engaged in T cell signalling: new developments in an old concept. Cell Commun Signal 2009; 7:21. [PMID: 19732448 PMCID: PMC2744677 DOI: 10.1186/1478-811x-7-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 09/04/2009] [Indexed: 11/10/2022] Open
Abstract
Considerable controversy arose over the concept that cholesterol/sphingolipid-rich rafts in the T cell plasma membrane serve as a platform for TCR signalling reactions. This controversy was founded on the initial definition of rafts as detergent resistant membranes which later turned out to misrepresent many features of cell membrane organisation under physiological conditions. Raft-organisation was subsequently studied using a number of detergent-free experimental approaches. The results led to a refined perception of membrane rafts which resolves the controversies. Here we review new biophysical and biochemical data which provide an updated picture of the highly dynamic nanometer-sized cholesterol/sphingolipid-rich raft domains stabilised by protein-networks to form TCR signalling platforms in the T cell plasma membrane.
Collapse
Affiliation(s)
- Thomas Harder
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, OX1 3RE, UK.
| | | |
Collapse
|
187
|
Swamy M, Molnar E, Bock T, Bausch-Fluck D, Wollscheid B, Schamel WW. Detection of protein complex interactions via a Blue Native-PAGE retardation assay. Anal Biochem 2009; 392:177-9. [DOI: 10.1016/j.ab.2009.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 11/30/2022]
|
188
|
Martínez-Martín N, Risueño RM, Morreale A, Zaldívar I, Fernández-Arenas E, Herranz F, Ortiz AR, Alarcón B. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3epsilon. Sci Signal 2009; 2:ra43. [PMID: 19671929 DOI: 10.1126/scisignal.2000402] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The CD3epsilon subunit of the T cell receptor (TCR) complex undergoes a conformational change upon ligand binding that is thought to be important for the activation of T cells. To study this process, we built a molecular dynamics model of the transmission of the conformational change within the ectodomains of CD3. The model showed that the CD3 dimers underwent a stiffening effect that was funneled to the base of the CD3epsilon subunit. Mutation of two relevant amino acid residues blocked transmission of the conformational change and the differentiation and activation of T cells. Furthermore, this inhibition occurred even in the presence of excess endogenous CD3epsilon subunits. These results emphasize the importance of the conformational change in CD3epsilon for the activation of T cells and suggest the existence of unforeseen cooperativity between TCR complexes.
Collapse
Affiliation(s)
- Nuria Martínez-Martín
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | | | | | | | | | | | |
Collapse
|
189
|
|
190
|
N-terminal negatively charged residues in CD3varepsilon chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: analysis of human CD3varepsilon chains. Immunol Lett 2009; 126:8-15. [PMID: 19616027 DOI: 10.1016/j.imlet.2009.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 06/23/2009] [Accepted: 07/09/2009] [Indexed: 11/21/2022]
Abstract
CD3varepsilon chains are essential to the structure, expression and signaling of T cell receptors. Here, we extend to human CD3varepsilon our previous data in mouse CD3varepsilon showing that, in T cells, proteolytic processing of the acidic N-terminal sequence of CD3varepsilon chains generate distinct polypeptide species that can be identified by two-dimension (IEF-SDS PAGE) electrophoresis and immunoblot. This was shown first by showing the processing of a fusion protein of GFP and the extracellular domain of mouse CD3varepsilon (mCD3GFP) expressed in Jurkat cells. Secondly, pI heterogeneity was also found in human CD3varepsilon chains immunoprecipitated from the surface of Jurkat cells or PHA blasts of human blood T lymphocytes. Comparison of CD3varepsilon chains from 27 different species shows that their N-terminal sequences share a strong acidic nature, despite the large differences in terms of length and composition, even among closely related species. Our results suggest that generation of CD3varepsilon chain isoforms with different N-terminal sequence and pI is a general phenomenon. Thus, as previously observed in the mouse, the relative abundance of CD3varepsilon chain species might regulate TCR/CD3 structure and function, including the strength of the interactions between CD3 dimers and the TCR clonotypic receptors, as well as TCR/CD3 activation thresholds. Interestingly, CD3varepsilon chains from 7 out of 27 species studied have putative N-glycosylation (NxS or NxT) motifs in their Ig extracellular domain. Their location, plus the conservation of residues involved in domain organization, the interactions with other CD3 chains, or the TCR, and signal triggering add new data useful to establish a permissive topology for the interaction between CD3 dimers and the TCR chains.
Collapse
|
191
|
Singleton TE, Platzer B, Dehlink E, Fiebiger E. The first transmembrane region of the beta-chain stabilizes the tetrameric Fc epsilon RI complex. Mol Immunol 2009; 46:2333-9. [PMID: 19406478 PMCID: PMC2745130 DOI: 10.1016/j.molimm.2009.03.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/28/2009] [Indexed: 12/26/2022]
Abstract
The family of activating immune receptors stabilizes via the 3-helix assembly principle. A charged basic transmembrane residue interacts with two charged acidic transmembrane residues and forms a 3-helix interface to stabilize receptor complexes in the lipid bilayer. One family member, the high affinity receptor for IgE, Fc epsilon RI, is a key regulator of immediate allergic responses. Tetrameric Fc epsilon RI consists of the IgE-binding alpha-chain, the multimembrane-spanning beta-chain and a dimer of the gamma-subunit (Fc epsilon R gamma). Comparative analysis of these seven transmembrane regions indicates that Fc epsilon RI does not meet the charge requirements for the 3-helix assembly mechanism. We performed alanine mutagenesis to show that the only basic amino acid in the transmembrane regions, beta K97, is not involved in Fc epsilon RI stabilization or surface upregulation, a hallmark function of the beta-chain. Even a beta K97E mutant is functional despite four negatively charged acidic amino acids in the transmembrane regions. Using truncation mutants, we demonstrate that the first uncharged transmembrane domain of the beta-chain contains the interface for receptor stabilization. In vitro translation experiments depict the first transmembrane region as the internal signal peptide of the beta-chain. We also show that this beta-chain domain can function as a cleavable signal peptide when used as a leader peptide for a Type I protein. Our results provide evidence that tetrameric Fc epsilon RI does not assemble according to the 3-helix assembly principle. We conclude that receptors formed with multispanning proteins use different mechanisms of shielding transmembrane charged amino acids.
Collapse
Affiliation(s)
- Theresa E. Singleton
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Barbara Platzer
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| | - Eleonora Dehlink
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Fiebiger
- Department of Medicine, Division of Gastroenterology and Nutrition, Children's Hospital Boston, Boston, MA 02115
| |
Collapse
|
192
|
Almeida JR, Sauce D, Price DA, Papagno L, Shin SY, Moris A, Larsen M, Pancino G, Douek DC, Autran B, Sáez-Cirión A, Appay V. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 2009; 113:6351-60. [PMID: 19389882 PMCID: PMC2710928 DOI: 10.1182/blood-2009-02-206557] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/15/2009] [Indexed: 12/23/2022] Open
Abstract
CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.
Collapse
Affiliation(s)
- Jorge R Almeida
- Institut National de la Santé et de la Recherche Médicale Unité, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Alarcón B, Swamy M, van Santen HM, Schamel WWA. T-cell antigen-receptor stoichiometry: pre-clustering for sensitivity. EMBO Rep 2009; 7:490-5. [PMID: 16670682 PMCID: PMC1479560 DOI: 10.1038/sj.embor.7400682] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 03/15/2006] [Indexed: 11/09/2022] Open
Abstract
The T-cell antigen receptor (TCR x CD3) is a multi-subunit complex that is responsible for triggering an adaptive immune response. It shows high specificity and sensitivity, while having a low affinity for the ligand. Furthermore, T cells respond to antigen over a wide concentration range. The stoichiometry and architecture of TCR x CD3 in the membrane have been under intense scrutiny because they might be the key to explaining its paradoxical properties. This review highlights new evidence that TCR x CD3 is found on intact unstimulated T cells in a monovalent form (one ligand-binding site per receptor) as well as in several distinct multivalent forms. This is in contrast to the TCR x CD3 stoichiometries determined by several biochemical means; however, these data can be explained by the effects of different detergents on the integrity of the receptor. Here, we discuss a model in which the multivalent receptors are important for the detection of low concentrations of ligand and therefore confer sensitivity, whereas the co-expressed monovalent TCR x CD3s allow a wide dynamic range.
Collapse
MESH Headings
- Animals
- Humans
- Protein Conformation
- Receptor Aggregation/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Signal Transduction/immunology
Collapse
Affiliation(s)
- Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Mahima Swamy
- Max Planck-Institut für Immunbiologie and University of Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | - Hisse M van Santen
- Centro de Biología Molecular Severo Ochoa, CSIC-Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Wolfgang W A Schamel
- Max Planck-Institut für Immunbiologie and University of Freiburg, Stübeweg 51, 79108 Freiburg, Germany
- Tel: +49 761 510 8313; Fax: +49 761 510 8423;
| |
Collapse
|
194
|
Beddoe T, Chen Z, Clements CS, Ely LK, Bushell SR, Vivian JP, Kjer-Nielsen L, Pang SS, Dunstone MA, Liu YC, Macdonald WA, Perugini MA, Wilce MC, Burrows SR, Purcell AW, Tiganis T, Bottomley SP, McCluskey J, Rossjohn J. Antigen Ligation Triggers a Conformational Change within the Constant Domain of the αβ T Cell Receptor. Immunity 2009; 30:777-88. [DOI: 10.1016/j.immuni.2009.03.018] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/16/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
|
195
|
Abstract
Classical alphabeta T cells protect the host by monitoring intracellular and extracellular proteins in a two-step process. The first step is protein degradation and combination with a major histocompatibility complex (MHC) molecule, leading to surface expression of this amalgam (antigen processing). The second step is the interaction of the T cell receptor with the MHC-peptide complex, leading to signaling in the T cells (antigen recognition). The context for this interaction is a T cell-antigen presenting cell junction, known as an immunological synapse if symmetric and stable and as a kinapse if asymmetric and mobile. The physiological recognition of a ligand takes place most efficiently in the F-actin-rich lamellipodium and is F-actin dependent in stages of formation and triggering and myosin II dependent for signal amplification. This review discusses how these concepts emerged from early studies on adhesion, signaling, and cell biology of T cells.
Collapse
Affiliation(s)
- Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
196
|
Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 2009; 126:165-76. [PMID: 19125887 DOI: 10.1111/j.1365-2567.2008.03015.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The interaction between the T-cell receptor (TCR) and its peptide-major histocompatibility complex (pepMHC) ligand plays a critical role in determining the activity and specificity of the T cell. The binding properties associated with these interactions have now been studied in many systems, providing a framework for a mechanistic understanding of the initial events that govern T-cell function. There have been various other reviews that have described the structural and biochemical features of TCR : pepMHC interactions. Here we provide an overview of four areas that directly impact our understanding of T-cell function, as viewed from the perspective of the TCR : pepMHC interaction: (1) relationships between T-cell activity and TCR : pepMHC binding parameters, (2) TCR affinity, avidity and clustering, (3) influence of coreceptors on pepMHC binding by TCRs and T-cell activity, and (4) impact of TCR binding affinity on antigenic peptide specificity.
Collapse
Affiliation(s)
- Jennifer D Stone
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
197
|
Swamy M, Schamel WWA. Purification of the T cell antigen receptor and analysis by blue-native PAGE. Methods Mol Biol 2009; 514:135-50. [PMID: 19048218 DOI: 10.1007/978-1-60327-527-9_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The T cell antigen receptor (TCR) is a multi-protein complex composed of six different transmembrane subunits, which form complexes of various sizes on the surface of resting T cells. The stoichiometry of the smallest form was recently determined to be alphabetagammaepsilondeltaepsilonzetazeta, whereas that of the larger forms is unknown. The roles of the different forms and their ratios are poorly defined. Biochemical analyses to address these questions must focus on the detergent and the best native conditions to maintain the integrity of the complexes. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) is a high-resolution native protein separation method that relies on the dye Coomassie blue to confer negative charge for separation. Using this powerful approach, the size, subunit composition and the relative abundance of the different TCR forms can be studied. We present here four methods to isolate the TCR in a native form and details to analyse it by BN-PAGE.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Max Planck Institute for Immunobiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
198
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
199
|
Kuball J, Hauptrock B, Malina V, Antunes E, Voss RH, Wolfl M, Strong R, Theobald M, Greenberg PD. Increasing functional avidity of TCR-redirected T cells by removing defined N-glycosylation sites in the TCR constant domain. ACTA ACUST UNITED AC 2009; 206:463-75. [PMID: 19171765 PMCID: PMC2646573 DOI: 10.1084/jem.20082487] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Adoptive transfer of T lymphocytes transduced with a T cell receptor (TCR) to impart tumor reactivity has been reported as a potential strategy to redirect immune responses to target cancer cells (Schumacher, T.N. 2002. Nat. Rev. Immunol. 2:512–519). However, the affinity of most TCRs specific for shared tumor antigens that can be isolated is usually low. Thus, strategies to increase the affinity of TCRs or the functional avidity of TCR-transduced T cells might be therapeutically beneficial. Because glycosylation affects the flexibility, movement, and interactions of surface molecules, we tested if selectively removing conserved N-glycoslyation sites in the constant regions of TCR α or β chains could increase the functional avidity of T cells transduced with such modified TCRs. We observed enhanced functional avidity and improved recognition of tumor cells by T cells harboring TCR chains with reduced N-glycosylation (ΔTCR) as compared with T cells with wild-type (WT) TCR chains. T cells transduced with WT or ΔTCR chains bound tetramer equivalently at 4°C, but tetramer binding was enhanced at 37°C, predominantly as a result of reduced tetramer dissociation. This suggested a temperature-dependent mechanism such as TCR movement in the cell surface or structural changes of the TCR allowing improved multimerization. This strategy was effective with mouse and human TCRs specific for different antigens and, thus, should be readily translated to TCRs with any specificity.
Collapse
Affiliation(s)
- Jürgen Kuball
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Dustin ML. Multiscale analysis of T cell activation: correlating in vitro and in vivo analysis of the immunological synapse. Curr Top Microbiol Immunol 2009; 334:47-70. [PMID: 19521681 DOI: 10.1007/978-3-540-93864-4_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recently implemented fluorescence imaging techniques, such as total internal reflection fluorescence microscopy and two-photon laser scanning microscopy, have made possible multiscale analysis of the immune response from single molecules in an interface to cells moving in lymphoid tissues and tumors. In this review, we consider components of T cell sensitivity: the immunological synapse, the coordination of migration, and antigen recognition in vivo. Potency, dose, and detection threshold for peptide-MHC determine T cell sensitivity. The immunological synapse incorporates T cell receptor microclusters that initiate and sustain signaling, and it also determines the positional stability of the T cells through symmetry and symmetry breaking. In vivo decisions by T cells on stopping or migration are based on antigen stop signals and environmental go signals that can sometimes prevent arrest of T cells altogether, and thus can change the outcome of antigen encounters.
Collapse
Affiliation(s)
- Michael L Dustin
- Department of Pathology, Program of Molecular Pathogenesis, Skirball Institute of BioMolecular Medicine, NYU School of Medicine, 540 First Avenue, New York, NY 10016, USA
| |
Collapse
|