151
|
Class-switch recombination to IgA in the Peyer's patches requires natural thymus-derived Tregs and appears to be antigen independent. Mucosal Immunol 2019; 12:1268-1279. [PMID: 31501516 DOI: 10.1038/s41385-019-0202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 02/04/2023]
Abstract
Our understanding of how class-switch recombination (CSR) to IgA occurs in the gut is still incomplete. Earlier studies have indicated that Tregs are important for IgA CSR and these cells were thought to transform into follicular helper T cells (Tfh), responsible for germinal center formation in the Peyer's patches (PP). Following adoptive transfer of T-cell receptor-transgenic (TCR-Tg) CD4 T cells into nude mice, we unexpectedly found that oral immunization did not require an adjuvant to induce strong gut IgA and systemic IgG responses, suggesting an altered regulatory environment in the PP. After sorting of splenic TCR-Tg CD4 T cells into CD25+ or CD25- cells we observed that none of these fractions supported a gut IgA response, while IgG responses were unperturbed in mice receiving the CD25- cell fraction. Hence, while Tfh functions resided in the CD25- fraction the IgA CSR function in the PP was dependent on CD25+ Foxp3+ Tregs, which were found to be Helios+ neuropilin-1+ thymus-derived Tregs. This is the first study to demonstrate that Tfh and IgA CSR functions are indeed, unique, and separate functions in the PP with the former being TCR-dependent while the latter appeared to be antigen independent.
Collapse
|
152
|
Rezende RM, Nakagaki BN, Moreira TG, Lopes JR, Kuhn C, Tatematsu BK, Boulenouar S, Maghzi AH, Rubino S, Menezes GB, Chitnis T, Weiner HL. γδ T Cell-Secreted XCL1 Mediates Anti-CD3-Induced Oral Tolerance. THE JOURNAL OF IMMUNOLOGY 2019; 203:2621-2629. [PMID: 31578268 DOI: 10.4049/jimmunol.1900784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Oral tolerance is defined as the specific suppression of cellular and/or humoral immune responses to an Ag by prior administration of the Ag through the oral route. Although the investigation of oral tolerance has classically involved Ag feeding, we have found that oral administration of anti-CD3 mAb induced tolerance through regulatory T (Treg) cell generation. However, the mechanisms underlying this effect remain unknown. In this study, we show that conventional but not plasmacytoid dendritic cells (DCs) are required for anti-CD3-induced oral tolerance. Moreover, oral anti-CD3 promotes XCL1 secretion by small intestine lamina propria γδ T cells that, in turn, induces tolerogenic XCR1+ DC migration to the mesenteric lymph node, where Treg cells are induced and oral tolerance is established. Consistent with this, TCRδ-/- mice did not develop oral tolerance upon oral administration of anti-CD3. However, XCL1 was not required for oral tolerance induced by fed Ags, indicating that a different mechanism underlies this effect. Accordingly, oral administration of anti-CD3 enhanced oral tolerance induced by fed MOG35-55 peptide, resulting in less severe experimental autoimmune encephalomyelitis, which was associated with decreased inflammatory immune cell infiltration in the CNS and increased Treg cells in the spleen. Thus, Treg cell induction by oral anti-CD3 is a consequence of the cross-talk between γδ T cells and tolerogenic DCs in the gut. Furthermore, anti-CD3 may serve as an adjuvant to enhance oral tolerance to fed Ags.
Collapse
Affiliation(s)
- Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Brenda N Nakagaki
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and.,Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Chantal Kuhn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Selma Boulenouar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Amir-Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Gustavo B Menezes
- Center for Gastrointestinal Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Tanuja Chitnis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
153
|
Mowat AM. To respond or not to respond - a personal perspective of intestinal tolerance. Nat Rev Immunol 2019; 18:405-415. [PMID: 29491358 DOI: 10.1038/s41577-018-0002-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research.
Collapse
Affiliation(s)
- Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
154
|
Tezuka H, Ohteki T. Regulation of IgA Production by Intestinal Dendritic Cells and Related Cells. Front Immunol 2019; 10:1891. [PMID: 31456802 PMCID: PMC6700333 DOI: 10.3389/fimmu.2019.01891] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The intestinal mucosa is a physiological barrier for most microbes, including both commensal bacteria and invading pathogens. Under homeostatic conditions, immunoglobulin A (IgA) is the major immunoglobulin isotype in the intestinal mucosa. Microbes stimulate the production of IgA, which controls bacterial translocation and neutralizes bacterial toxins at the intestinal mucosal surface. In the intestinal mucosa, dendritic cells (DCs), specialized antigen-presenting cells, regulate both T-cell-dependent (TD) and -independent (TI) immune responses. The intestinal DCs are a heterogeneous population that includes unique subsets that induce IgA synthesis in B cells. The characteristics of intestinal DCs are strongly influenced by the microenvironment, including the presence of commensal bacterial metabolites and epithelial cell-derived soluble factors. In this review, we summarize the ontogeny, classification, and function of intestinal DCs and how the intestinal microenvironment conditions DCs and their precursors to become the mucosal phenotype, in particular to regulate IgA production, after they arrive at the intestine. Understanding the mechanism of IgA synthesis could provide insights for designing effective mucosal vaccines.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion and Support Headquarters, Fujita Health University, Aichi, Japan
| | - Toshiaki Ohteki
- Department of Biodefense Research, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
155
|
A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 2019; 220:119396. [PMID: 31398556 DOI: 10.1016/j.biomaterials.2019.119396] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/31/2022]
Abstract
Alterations of the microbial composition in the gut and the concomitant dysregulation of the mucosal immune response are associated with the pathogenesis of opportunistic infections, chronic inflammation, and inflammatory bowel disease. To create a platform for the investigation of the underlying mechanisms, we established a three-dimensional microphysiological model of the human intestine. This model resembles organotypic microanatomical structures and includes tissue resident innate immune cells exhibiting features of mucosal macrophages and dendritic cells. The model displays the physiological immune tolerance of the intestinal lumen to microbial-associated molecular patterns and can, therefore, be colonised with living microorganisms. Functional studies on microbial interaction between probiotic Lactobacillus rhamnosus and the opportunistic pathogen Candida albicans show that pre-colonization of the intestinal lumen of the model by L. rhamnosus reduces C. albicans-induced tissue damage, lowers its translocation, and limits fungal burden. We demonstrate that microbial interactions can be efficiently investigated using the in vitro model creating a more physiological and immunocompetent microenvironment. The intestinal model allows a detailed characterisation of the immune response, microbial pathogenicity mechanisms, and quantification of cellular dysfunction attributed to alterations in the microbial composition.
Collapse
|
156
|
Yashiro T, Takeuchi H, Nakamura S, Tanabe A, Hara M, Uchida K, Okumura K, Kasakura K, Nishiyama C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression. FASEB J 2019; 33:11481-11491. [PMID: 31314592 DOI: 10.1096/fj.201900379rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
C-C chemokine receptor type 7 (CCR7) is essential for migration of dendritic cells (DCs) to draining lymph nodes. PU.1/Spi1 is a transcription factor playing a critical role in the gene regulation of DCs. PU.1 knockdown decreased the expression of CCR7 in bone marrow-derived DCs and subsequently attenuated migration in vitro and in vivo. Reporter assays, EMSA, and chromatin immunoprecipitation assays revealed that PU.1 binds to the most proximal Ets motif of the Ccr7 promoter, which is involved in transcriptional activation. The CCR7 expression level, which was higher in the programmed cell death 1 ligand 2 (PD-L2)+ population than in the PD-L2- population and was markedly suppressed by TGF-β treatment, coincided with the binding level of PU.1 to the Ccr7 promoter. The PU.1 binding level in CCR7high mesenteric lymph nodes DCs was higher than in other DC subtypes. The involvement of PU.1 in the expression of the CCR7 gene was also observed in human DCs. We conclude that PU.1 plays a pivotal role in DC migration by transactivating the CCR7 gene via the Ets motif in the promoter in both humans and mice.-Yashiro, T., Takeuchi, H., Nakamura, S., Tanabe, A., Hara, M., Uchida, K., Okumura, K., Kasakura, K., Nishiyama, C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Takeuchi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shusuke Nakamura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Atsushi Tanabe
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Mutsuko Hara
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
157
|
Roquilly A, Torres A, Villadangos JA, Netea MG, Dickson R, Becher B, Asehnoune K. Pathophysiological role of respiratory dysbiosis in hospital-acquired pneumonia. THE LANCET RESPIRATORY MEDICINE 2019; 7:710-720. [PMID: 31182406 DOI: 10.1016/s2213-2600(19)30140-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Hospital-acquired pneumonia is a major cause of morbidity and mortality. The incidence of hospital-acquired pneumonia remains high globally and treatment can often be ineffective. Here, we review the available data and unanswered questions surrounding hospital-acquired pneumonia, discuss alterations of the respiratory microbiome and of the mucosal immunity in patients admitted to hospital, and explore potential approaches to stratify patients for tailored treatments. The lungs have been considered a sterile organ for decades because microbiological culture techniques had shown negative results. Culture-independent techniques have shown that healthy lungs harbour a diverse and dynamic ecosystem of bacteria, changing our comprehension of respiratory physiopathology. Understanding dysbiosis of the respiratory microbiome and altered mucosal immunity in patients with critical illness holds great promise to develop targeted host-directed immunotherapy to reduce ineffective treatment, to improve patient outcomes, and to tackle the global threat of resistant bacteria that cause these infections.
Collapse
Affiliation(s)
- A Roquilly
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes, France; Department of Microbiology and Immunology, Faculty of Medicine, University of Nantes, Nantes, France
| | - A Torres
- Servei de Pneumologia, Hospital Clinic, Universitat de Barcelona Institut d'investigació Biomédica August Pi i Sunyer, Centro de Investigación Biomédica en Red.Enfermedades Respiratorias, Barcelona, Spain
| | - J A Villadangos
- Department of Microbiology and Immunology, Doherty Institute of Infection and Immunity and Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - M G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Dickson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Michigan Center for Integrative Research in Critical Care; Ann Arbor, MI, USA
| | - B Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - K Asehnoune
- Department of Anesthesiology and Critical Care, CHU Nantes, Nantes, France; Department of Microbiology and Immunology, Faculty of Medicine, University of Nantes, Nantes, France.
| |
Collapse
|
158
|
Magnuson AM, Regan DP, Booth AD, Fouts JK, Solt CM, Hill JL, Dow SW, Foster MT. High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. Eur J Nutr 2019; 59:1641-1654. [PMID: 31165249 DOI: 10.1007/s00394-019-02019-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Accumulation of visceral, but not subcutaneous, adipose tissue is highly associated with metabolic disease. Inflammation inciting from adipose tissue is commonly associated with metabolic disease risk and comorbidities. However, constituents of the immune system, lymph nodes, embedded within these adipose depots remain under-investigated. We hypothesize that, lymph nodes are inherently distinct and differentially respond to diet-induced obesity much like the adipose depots they reside in. METHODS Adipose tissue and lymph nodes were collected from the visceral and inguinal depots of male mice fed 13 weeks of standard CHOW or high fat diet (HFD). Immune cells were isolated from tissues, counted and characterized by flow cytometry or plated for proliferative capacity following Concanavalin A stimulation. Lymph node size and fibrosis area were also characterized. RESULTS In HFD fed mice visceral adipose tissue accumulation was associated with significant enlargement of the lymph node encased within. The subcutaneous lymph node did not change. Compared with mice fed CHOW for 13 weeks, mice fed HFD had a decline in immune cell populations and immune cell proliferative ability, as well as, exacerbated fibrosis accumulation, within the visceral, but not subcutaneous, lymph node. CONCLUSIONS Obesity-induced chronic low-grade inflammation is associated with impaired immunity and increased susceptibility to disease. Excessive visceral adiposity and associated inflammation driven by diet likely leads to obesity-induced immune suppression by way of lymph node/lymphatic system pathophysiology.
Collapse
Affiliation(s)
- Aaron M Magnuson
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Andrea D Booth
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Josephine K Fouts
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Claudia M Solt
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Jessica L Hill
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA
| | - Steve W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO, 80523, USA.
| |
Collapse
|
159
|
Tanaka Y, Fukumoto S, Sugawara S. Mechanisms underlying the induction of regulatory T cells by sublingual immunotherapy. J Oral Biosci 2019; 61:73-77. [DOI: 10.1016/j.job.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 12/30/2022]
|
160
|
Solt CM, Hill JL, Vanderpool K, Foster MT. Obesity-induced immune dysfunction and immunosuppression: TEM observation of visceral and subcutaneous lymph node microarchitecture and immune cell interactions. Horm Mol Biol Clin Investig 2019; 39:/j/hmbci.ahead-of-print/hmbci-2018-0083/hmbci-2018-0083.xml. [PMID: 31136298 DOI: 10.1515/hmbci-2018-0083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Background Inflammation, induced by excessive adiposity, links obesity to disease risk yet little attention has been devoted to the lymphoid tissues embedded within adipose tissue depots. Lymph nodes are the primary site for the development of protective immunity, hence any disease process that affects these tissues will also directly impact immunity. Here we examined how obesity alters secondary lymphatic tissue structure and encapsulated immune cells. Materials and methods Four-month-old C57BL/6 male mice were fed standard rodent chow or a Western high fat diet (HFD) for 6 months. Center regions of visceral and subcutaneous lymph nodes (SQLNS) were observed via transmission electron microscopy (TEM). Results Compared with chow, HFD-induced obesity deleteriously modified the structural microarchitecture and immune cell morphology of visceral and SQLNs. In HFD mice, fibroblastic reticular cells (FRCs) were dysregulated while laying among excessive amounts of disorganized collagen (C). In addition HFD lymph nodes contained a disproportionate amount of cellular debris from damaged or dead cells, increased sinus spacing and decreased immune cell interactions. Specifically, dendritic cells (DCs) that are necessary for adaptive immune response where embedded among extracellular debris with decreased pseudopodia. Similarly, the extraneous fibrous extracellular matrix (ECM) in HFD mice limited contact between lymphocytes (LCs) causing their microvilli extensions to decrease. Discussion Overall, excessive C production within lymph nodes, driven by diet-induced obesity, creates a physical barrier that impedes proper lymph flow and cellular communication. Obesity-induced disorganization of the immune cell guidance network interrupts immune cell adhesion and consequently inhibits travel within cortex regions needed for cell interactions, survival and proliferation.
Collapse
Affiliation(s)
- Claudia M Solt
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Jessica L Hill
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Kim Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, 1571 Campus Delivery, 500 West Lake Street, Fort Collins, CO 80523, USA, Phone: +(970) 491-6189; Fax: +(970) 491-3875
| |
Collapse
|
161
|
Hashizume-Takizawa T, Kobayashi R, Tsuzukibashi O, Saito M, Kurita-Ochiai T. CCR7-deficient mice exhibit a delayed antigen-specific mucosal IgA antibody response to an oral recombinant Salmonella strain. Pathog Dis 2019; 77:5480464. [DOI: 10.1093/femspd/ftz024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT
The migration of antigen (Ag)-loading dendritic cells (DCs) from Peyer's patches (PPs) to the draining mesenteric lymph nodes (MLNs) via chemokine receptor 7 (CCR7) is thought to be an important step in the initiation of acquired immunity. Our previous study showed that PPs were indispensable for Ag-specific secretory (S)IgA antibody (Ab) responses against oral recombinant Salmonella (rSalmonella). In this study, we attempted to show direct PP DC migration to MLNs by employing photoconvertible protein transgenic mice and investigated the role of the CCR7 signaling pathway in mucosal IgA induction. Our results demonstrated an actual flux of DCs from PPs to MLNs. The frequency of CCR7+ CD11c+ DCs in MLNs of PP-deficient mice was reduced, suggesting that some PP DCs migrated via CCR7. Immunization of CCR7−/− mice elicited significantly lower levels of Ag-specific SIgA Ab responses, which was associated with diminished formation of the germinal center in PPs. However, increased SIgA Ab production and dissemination of rSalmonella were observed at later time points. These results suggest that, although CCR7 was required for SIgA induction at normal velocity, the CCR7-mediated pathway is not essential for the induction of Ag-specific SIgA Ab responses to rSalmonella.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Ryoki Kobayashi
- Community Oral Health, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271–8587, Japan
| | - Osamu Tsuzukibashi
- Division of Laboratory Medicine for Dentistry, Department of Oral Health Science, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271–8587, Japan
| | - Masanori Saito
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Tomoko Kurita-Ochiai
- Departments of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
162
|
Gao X, Ma Y, Wang Z, Bai J, Jia S, Feng B, Jiang Y, Cui W, Tang L, Li Y, Wang L, Xu Y. Oral immunization of mice with a probiotic Lactobacillus casei constitutively expressing the α-toxoid induces protective immunity against Clostridium perfringens α-toxin. Virulence 2019; 10:166-179. [PMID: 30806148 PMCID: PMC6422513 DOI: 10.1080/21505594.2019.1582975] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clostridium perfringens α-toxin is one of the major virulence factors during C. perfringens infection, causing hemolysis of erythrocytes in various species. Here, genetically engineered Lactobacillus casei (pPG-α/L. casei 393) constitutively expressing the toxoid of C. perfringens α-toxin was generated and its immunogenicity in mice for induction of protective immunity against the α-toxin was evaluated via oral immunization. The α-toxoid was constitutively expressed by pPG-α/L. casei 393 without a specific inducer, as confirmed by western blotting, laser confocal microscopy, and flow cytometry. In an experiment on BALB/c mice to evaluate the oral immunogenicity of pPG-α/L. casei 393, significant levels of a specific secretory IgA (sIgA) antibody in the intestinal mucus and feces and an IgG antibody in the serum of the probiotic vaccine group were detected after booster immunization (p < 0.05) as compared with the pPG/L. casei 393 and PBS control groups. These antibodies effectively neutralized C. perfringens natural α-toxin. Moreover, significantly higher levels of cytokines IL-2, IL-4, IL-10, IL-12, IL-17, and interferon (IFN) γ in the serum and increased proliferation of spleen lymphocytes obtained from mice orally immunized with pPG-α/L. casei 393 were detected. With a commercial C. perfringens type A inactivated vaccine as a control, immune protection provided by the probiotic vaccine against C. perfringens α-toxin was evaluated, and 90% and 80% protection rates were observed, respectively. Therefore, strain pPG-α/L. casei 393 effectively elicited mucosal, humoral, and cellular immunity, suggesting that pPG-α/L. casei 393 is a promising candidate for development of a vaccine against C. perfringens α-toxin.
Collapse
Affiliation(s)
- Xuwen Gao
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yingying Ma
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Zhuo Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Jing Bai
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Shuo Jia
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Baohua Feng
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yanping Jiang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Wen Cui
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Lijie Tang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yijing Li
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , P.R. China
| | - Li Wang
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China
| | - Yigang Xu
- a College of Veterinary Medicine , Northeast Agricultural University , Harbin , P.R. China.,b China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology , Northeastern Science Inspection Station , Harbin , P.R. China.,c Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University , Harbin , P.R. China
| |
Collapse
|
163
|
Esterházy D, Canesso MCC, Mesin L, Muller PA, de Castro TBR, Lockhart A, ElJalby M, Faria AMC, Mucida D. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature 2019; 569:126-130. [PMID: 30988509 PMCID: PMC6587593 DOI: 10.1038/s41586-019-1125-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022]
Abstract
The intestinal immune system has the challenging task of tolerating foreign nutrients and the commensal microbiome, while excluding or eliminating ingested pathogens. Failure of this balance leads to conditions such as inflammatory bowel diseases, food allergies and invasive gastrointestinal infections1. Multiple immune mechanisms are therefore in place to maintain tissue integrity, including balanced generation of effector T (TH) cells and FOXP3+ regulatory T (pTreg) cells, which mediate resistance to pathogens and regulate excessive immune activation, respectively1-4. The gut-draining lymph nodes (gLNs) are key sites for orchestrating adaptive immunity to luminal perturbations5-7. However, it is unclear how they simultaneously support tolerogenic and inflammatory reactions. Here we show that gLNs are immunologically specific to the functional gut segment that they drain. Stromal and dendritic cell gene signatures and polarization of T cells against the same luminal antigen differ between gLNs, with the proximal small intestine-draining gLNs preferentially giving rise to tolerogenic responses and the distal gLNs to pro-inflammatory T cell responses. This segregation permitted the targeting of distal gLNs for vaccination and the maintenance of duodenal pTreg cell induction during colonic infection. Conversely, the compartmentalized dichotomy was perturbed by surgical removal of select distal gLNs and duodenal infection, with effects on both lymphoid organ and tissue immune responses. Our findings reveal that the conflict between tolerogenic and inflammatory intestinal responses is in part resolved by discrete gLN drainage, and encourage antigen targeting to specific gut segments for therapeutic immune modulation.
Collapse
Affiliation(s)
- Daria Esterházy
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| | - Maria C C Canesso
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Paul A Muller
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Tiago B R de Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Mahmoud ElJalby
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Ana M C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
164
|
Aylward B, Clark M, Galileo D, Baernard A, Wilson J, Brannick E, Gressley T, Fecteau M, Davis W, Dyer R. Immune cell populations residing in mesenteric adipose depots and mesenteric lymph nodes of lean dairy cows. J Dairy Sci 2019; 102:3452-3468. [DOI: 10.3168/jds.2018-15156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
|
165
|
Abstract
Gastrointestinal (GI) allergic disease is an umbrella term used to describe a variety of adverse, food antigen-driven, immune-mediated diseases. Although these diseases vary mechanistically, common elements include a breakdown of immunologic tolerance, a biased type 2 immune response, and an impaired mucosal barrier. These pathways are influenced by diverse factors such as diet, infections, exposure to antibiotics and chemicals, GI microbiome composition, and genetic and epigenetic elements. Early childhood has emerged as a critical period when these factors have a dramatic impact on shaping the immune system and therefore triggering or protecting against the onset of GI allergic diseases. In this Review, we will discuss the latest findings on the molecular and cellular mechanisms that govern GI allergic diseases and how these findings have set the stage for emerging preventative and treatment strategies.
Collapse
|
166
|
The microbiome and immunodeficiencies: Lessons from rare diseases. J Autoimmun 2019; 98:132-148. [PMID: 30704941 DOI: 10.1016/j.jaut.2019.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
Primary immunodeficiencies (PIDs) are inherited disorders of the immune system, associated with a considerable increase in susceptibility to infections. PIDs can also predispose to malignancy, inflammation and autoimmunity. There is increasing awareness that some aspects of the immune dysregulation in PIDs may be linked to intestinal microbiota. Indeed, the gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both locally and systemically. Recent studies have indicated that genetic defects causing PIDs lead to perturbations in the conventional mechanisms underlying homeostasis in the gut, resulting in poor immune surveillance at the intestinal barrier, which associates with altered intestinal permeability and bacterial translocation. Consistently, a substantial proportion of PID patients presents with clinically challenging IBD-like pathology. Here, we describe the current body of literature reporting on dysbiosis of the gut microbiota in different PIDs and how this can be either the result or cause of immune dysregulation. Further, we report how infections in PIDs enhance pathobionts colonization and speculate how, in turn, pathobionts may be responsible for increased disease susceptibility and secondary infections in these patients. The potential relationship between the microbial composition in the intestine and other sites, such as the oral cavity and skin, is also highlighted. Finally, we provide evidence, in preclinical models of PIDs, for the efficacy of microbiota manipulation to ameliorate disease complications, and suggest that the potential use of dietary intervention to correct dysbiotic flora in PID patients may hold promise.
Collapse
|
167
|
Mucosal T follicular helper cells in SIV-infected rhesus macaques: contributing role of IL-27. Mucosal Immunol 2019; 12:1038-1054. [PMID: 31114010 PMCID: PMC7746526 DOI: 10.1038/s41385-019-0174-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/04/2019] [Accepted: 04/17/2019] [Indexed: 02/04/2023]
Abstract
Mesenteric lymph nodes (MLNs), that drain the large and small intestine, are critical sites for the induction of oral tolerance. Although depletion of CD4 T cells in the intestinal lamina propria is a hallmark of HIV infection, CD4 T cell dynamics in MLNs is less known due to the lack of accessibility to these LNs. We demonstrate the early loss of memory CD4 T cells, including T follicular helper cells (Tfh) and a remodeling of MLN architecture in SIV-infected rhesus macaques (RMs). Along with the loss of Tfh cells, we observe the loss of memory B cells and of germinal center B cells. Tfh cells display a Th1 profile with increased levels of the transcription factors that negatively impact on Tfh differentiation and of Stat5 phosphorylation. MLNs of SIV-infected RMs display lower mRNA transcripts encoding for IL-12, IL-23, and IL-35, whereas those coding for IL-27 are not impaired in MLNs. In vitro, IL-27 negatively impacts on Tfh cells and recapitulates the profile observed in SIV-infected RMs. Therefore, early defects of memory CD4 T cells, as well of Tfh cells in MLNs, which play a central role in regulating the mucosal immune response, may have major implications for Aids.
Collapse
|
168
|
Tokuhara D, Kurashima Y, Kamioka M, Nakayama T, Ernst P, Kiyono H. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergol Int 2019; 68:17-25. [PMID: 30366757 DOI: 10.1016/j.alit.2018.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
Abstract
Despite its direct exposure to huge amounts of microorganisms and foreign and dietary antigens, the gut mucosa maintains intestinal homeostasis by utilizing the mucosal immune system. The gut mucosal immune system protects the host from the invasion of infectious pathogens and eliminates harmful non-self antigens, but it allows the cohabitation of commensal bacteria in the gut and the entry of dietary non-self antigens into the body via the mucosal surface. These physiological and immunological activities are regulated by the ingenious gut mucosal immune network, comprising such features as gut-associated lymphoid tissue, mucosal immune cells, cytokines, chemokines, antimicrobial peptides, secretory IgA, and commensal bacteria. The gut mucosal immune network keeps a fine tuned balance between active immunity (against pathogens and harmful non-self antigens) and immune tolerance (to commensal microbiota and dietary antigens), thus maintaining intestinal healthy homeostasis. Disruption of gut homeostasis results in persistent or severe gastrointestinal infection, inflammatory bowel disease, or allergic inflammation. In this review, we comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with allergic inflammation.
Collapse
|
169
|
Zakariassen HL, Bendtsen KM, Tougaard P, Hansen AK. Reduced early life mucosal integrity decreases thymic cell counts and increases local, but not thymic regulatory, T cell recruitment: Gut mucosal integrity breach and thymic T cells. EUR J INFLAMM 2019. [DOI: 10.1177/2058739218823466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Early life immune gut microbiota contact is critical for regulatory T cell–mediated oral tolerance induction. We induced a mucosal integrity breach with low dextran sulfate sodium dose right after weaning in BALB/c mice along with a standard high dose to study the impact of increased gut microbiota lymphatic tissue contact on the thymus. Both doses increased gut permeability, which caused a short-term generalized thymic involution and regulatory T cell induction in the mesenteric lymph nodes, even in the absence of clinically apparent inflammation in the low-dose group. The thymic regulatory T cells resisted thymic involution. In the low-dose group, we found acutely altered gut mobilization patterns characterized by changed gut-homing marker CD103 expression on mesenteric lymph node CD4+ T cells as well as on mature CD8+ T cells and developing CD4−/CD8− thymocytes. Furthermore, CD218a (IL-18-receptor-a) expression was acutely decreased on both mature CD8+ T cells and regulatory T cells, while increased on the mesenteric lymph node CD8+ T cells, indicating a direct link between the thymus and the mesenteric lymph nodes with CD218a in a functional role in thymic involution. Acute and non-persisting regulatory responses in the mesenteric lymph nodes were induced in the form of a relative regulatory T cell increase. We saw no changes in total thymic regulatory T cells and thus the thymus does not seem to play a major role of in the regulatory immunity induced by increased gut microbiota lymphatic tissue contact around weaning, which in our study primarily was located to the gut.
Collapse
Affiliation(s)
- Hannah Louise Zakariassen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Katja Maria Bendtsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Peter Tougaard
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
170
|
Barrios BE, Maccio-Maretto L, Nazar FN, Correa SG. A selective window after the food-intake period favors tolerance induction in mesenteric lymph nodes. Mucosal Immunol 2019; 12:108-116. [PMID: 30327533 DOI: 10.1038/s41385-018-0095-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/16/2018] [Indexed: 02/04/2023]
Abstract
Biological rhythms are periodic oscillations that occur in the physiology of the organism and the cells. The rhythms of the immune system are strictly regulated and the circadian alteration seems to have serious consequences. Even so, it is not clear how the immune cells of the intestinal mucosa synchronize with the external environment. Besides, little is known about the way in which biological rhythms affect the critical functions of intestinal immunity, such as oral tolerance. We studied fluctuations in the relevant parameters of intestinal immunity at four different times throughout the day. By using multivariate statistical tools, we found that these oscillations represent at least three different time frames with different conditions for tolerance induction that are altered in Per2ko mice lacking one of the clock genes. Our results allowed us to characterize a window in the final stage of the dark phase that promotes the induction of specific regulatory populations and favors its location in the lamina propria. We show here that, at the end of the intake, the entry of luminal antigens, soluble factors, and leukocyte populations converge in the mesenteric lymph nodes (MLN) and display the greatest potential of the tolerogenic machinery.
Collapse
Affiliation(s)
- Bibiana E Barrios
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lisa Maccio-Maretto
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC) e Instituto de Ciencia y Tecnología de los Alimentos, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Silvia G Correa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI, CONICET-UNC), Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
171
|
Bennek E, Mandić AD, Verdier J, Roubrocks S, Pabst O, Van Best N, Benz I, Kufer T, Trautwein C, Sellge G. Subcellular antigen localization in commensal E. coli is critical for T cell activation and induction of specific tolerance. Mucosal Immunol 2019; 12:97-107. [PMID: 30327531 DOI: 10.1038/s41385-018-0061-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 06/17/2018] [Accepted: 06/23/2018] [Indexed: 02/04/2023]
Abstract
Oral tolerance to soluble antigens is critically important for the maintenance of immunological homeostasis in the gut. The mechanisms of tolerance induction to antigens of the gut microbiota are still less well understood. Here, we investigate whether the subcellular localization of antigens within non-pathogenic E. coli has a role for its ability to induce antigen-specific tolerance. E. coli that express an ovalbumin (OVA) peptide in the cytoplasm, at the outer membrane or as secreted protein were generated. Intestinal colonization of mice with non-pathogenic E. coli expressing OVA at the membrane induced the expansion of antigen-specific Foxp3+ Tregs and mediated systemic immune tolerance. In contrast, cytoplasmic OVA was ignored by antigen-specific CD4+ T cells and failed to induce tolerance. In vitro experiments revealed that surface-displayed OVA of viable E. coli was about two times of magnitude more efficient to activate antigen-specific CD4+ T cells than soluble antigens, surface-displayed antigens of heat-killed E. coli or cytoplasmic antigen of viable or heat-killed E. coli. This effect was independent of the antigen uptake efficiency in dendritic cells. In summary, our results show that subcellular antigen localization in viable E. coli strongly influences antigen-specific CD4+ cell expansion and tolerance induction upon intestinal colonization.
Collapse
Affiliation(s)
- Eveline Bennek
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Ana D Mandić
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Julien Verdier
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Silvia Roubrocks
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Oliver Pabst
- Institute of Molecular Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Niels Van Best
- Institute of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Inga Benz
- Zentrum für Molekularbiologie der Entzündung (ZMBE), Institut für Infektiologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
| |
Collapse
|
172
|
Karrich JJ, Romera-Hernández M, Papazian N, Veenbergen S, Cornelissen F, Aparicio-Domingo P, Stenhouse FH, Peddie CD, Hoogenboezem RM, den Hollander CWJ, Gaskell T, Medley T, Boon L, Blackburn CC, Withers DR, Samsom JN, Cupedo T. Expression of Plet1 controls interstitial migration of murine small intestinal dendritic cells. Eur J Immunol 2018; 49:290-301. [PMID: 30537036 PMCID: PMC6492104 DOI: 10.1002/eji.201847671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/30/2018] [Accepted: 12/05/2018] [Indexed: 12/25/2022]
Abstract
Under homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C‐C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity. In contrast, the molecular mechanisms allowing DCs to efficiently migrate through the complex extracellular matrix of the intestinal lamina propria prior to antigen encounter are still incompletely understood. Here we show that small intestinal murine CD11b+CD103+ DCs express Placenta‐expressed transcript 1 (Plet1), a glycophoshatidylinositol (GPI)‐anchored surface protein involved in migration of keratinocytes during wound healing. In the absence of Plet1, CD11b+CD103+ DCs display aberrant migratory behavior, and accumulate in the small intestine, independent of CCR7 responsiveness. RNA‐sequencing indicated involvement of Plet1 in extracellular matrix‐interactiveness, and subsequent in‐vitro migration assays revealed that Plet1 augments the ability of DCs to migrate through extracellular matrix containing environments. In conclusion, our findings reveal that expression of Plet1 facilitates homeostatic interstitial migration of small intestinal DCs.
Collapse
Affiliation(s)
- Julien J Karrich
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Natalie Papazian
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sharon Veenbergen
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ferry Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Frances H Stenhouse
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - C Diana Peddie
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Terri Gaskell
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Tanya Medley
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - C Clare Blackburn
- MRC, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - David R Withers
- MRC, Centre for Immune Regulation, University of Birmingham, Birmingham, UK
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
173
|
Abstract
Oral tolerance is a state of systemic unresponsiveness that is the default response to food antigens in the gastrointestinal tract, although immune tolerance can also be induced by other routes, such as the skin or inhalation. Antigen can be acquired directly by intestinal phagocytes, or pass through enterocytes or goblet cell-associated passages prior to capture by dendritic cells (DCs) in the lamina propria. Mucin from goblet cells acts on DCs to render them more tolerogenic. A subset of regulatory DCs expressing CD103 is responsible for delivery of antigen to the draining lymph node and induction of Tregs. These DCs also imprint gastrointestinal homing capacity, allowing the recently primed Tregs to home back to the lamina propria where they interact with macrophages that produce IL-10 and expand. Tregs induced by dietary antigen include Foxp3+ Tregs and Foxp3- Tregs. In addition to Tregs, T cell anergy can also contribute to oral tolerance. The microbiota plays a key role in the development of oral tolerance, through regulation of macrophages and innate lymphoid cells that contribute to the regulatory phenotype of gastrointestinal dendritic cells. Absence of microbiota is associated with a susceptibility to food allergy, while presence of Clostridia strains can suppress development of food allergy through enhancement of Tregs and intestinal barrier function. It is not clear if feeding of antigens can also induce true immune tolerance after a memory immune response has been generated, but mechanistic studies of oral immunotherapy trials demonstrate shared pathways in oral tolerance and oral immunotherapy, with a role for Tregs and anergy. An important role for IgA and IgG antibodies in development of immune tolerance is also supported by studies of oral tolerance in humans. The elucidation of key pathways in oral tolerance could identify new strategies to increase efficacy of immunotherapy treatments for food allergy.
Collapse
Affiliation(s)
- Leticia Tordesillas
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Jaffe Food Allergy Institute, Immunology Institute, Mindich Child Health Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1198, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
174
|
Bain CC, Schridde A. Origin, Differentiation, and Function of Intestinal Macrophages. Front Immunol 2018; 9:2733. [PMID: 30538701 PMCID: PMC6277706 DOI: 10.3389/fimmu.2018.02733] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 11/06/2018] [Indexed: 12/12/2022] Open
Abstract
Macrophages are increasingly recognized as essential players in the maintenance of intestinal homeostasis and as key sentinels of the intestinal immune system. However, somewhat paradoxically, they are also implicated in chronic pathologies of the gastrointestinal tract, such as inflammatory bowel disease (IBD) and are therefore considered potential targets for novel therapies. In this review, we will discuss recent advances in our understanding of intestinal macrophage heterogeneity, their ontogeny and the potential factors that regulate their origin. We will describe how the local environment of the intestine imprints the phenotypic and functional identity of the macrophage compartment, and how this changes during intestinal inflammation and infection. Finally, we highlight key outstanding questions that should be the focus of future research.
Collapse
Affiliation(s)
- Calum C Bain
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Schridde
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
175
|
Sorini C, Cardoso RF, Gagliani N, Villablanca EJ. Commensal Bacteria-Specific CD4 + T Cell Responses in Health and Disease. Front Immunol 2018; 9:2667. [PMID: 30524431 PMCID: PMC6256970 DOI: 10.3389/fimmu.2018.02667] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Over the course of evolution, mammalian body surfaces have adapted their complex immune system to allow a harmless coexistence with the commensal microbiota. The adaptive immune response, in particular CD4+ T cell-mediated, is crucial to maintain intestinal immune homeostasis by discriminating between harmless (e.g., dietary compounds and intestinal microbes) and harmful stimuli (e.g., pathogens). To tolerate food molecules and microbial components, CD4+ T cells establish a finely tuned crosstalk with the environment whereas breakdown of these mechanisms might lead to chronic disease associated with mucosal barriers and beyond. How commensal-specific immune responses are regulated and how these molecular and cellular mechanisms can be manipulated to treat chronic disorders is yet poorly understood. In this review, we discuss current knowledge of the regulation of commensal bacteria-specific CD4+ T cells. We place particular focus on the key role of commensal-specific CD4+ T cells in maintaining tolerance while efficiently eradicating local and systemic infections, with a focus on factors that trigger their aberrant activation.
Collapse
Affiliation(s)
- Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Rebeca F. Cardoso
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Nicola Gagliani
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J. Villablanca
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
176
|
Aoki R, Aoki-Yoshida A, Suzuki C, Takayama Y. Indole-3-Pyruvic Acid, an Aryl Hydrocarbon Receptor Activator, Suppresses Experimental Colitis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 201:3683-3693. [PMID: 30429284 DOI: 10.4049/jimmunol.1701734] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Aryl hydrocarbon receptor (AHR) agonists are promising immunomodulators that potentially maintain immune tolerance. In this study, we examined the ability of indole-3-pyruvic acid (IPA), a major precursor of microbiota-derived AHR agonists and a proagonist of AHR, to activate AHR. The anti-inflammatory effects of IPA were also evaluated in a mouse model of colitis in comparison with other aromatic pyruvic acids (phenylpyruvic acid and 4-hydroxyphenylpyruvic acid). Among them, IPA showed the strongest ability to activate AHR in vitro and in vivo, and only IPA improved chronic inflammation in an experimental colitis model. IPA attenuated the expression of genes encoding Th1 cytokines and enhanced Il-10 gene expression in the colon. Oral administration of IPA decreased the frequency of IFN-γ+ IL-10- CD4+ T cells and increased that of IFN-γ- IL-10+ CD4+ T cells in the colon lamina propria in a T cell-mediated colitis model. IPA directly promoted the differentiation of type 1 regulatory T cells in vitro. Furthermore, IPA administration attenuated the ability of dendritic cells (DCs) in the mesenteric lymph nodes (MLN) to induce IFN-γ-producing T cells, increased the frequency of CD103+ CD11b- DCs, and decreased the frequency of CD103- CD11b+ DCs in the MLN. Adoptive transfer of MLN CD103+ CD11b- DCs significantly improved the severity of colon inflammation. Treatment with an AHR antagonist inhibited IPA-induced differentiation of type 1 regulatory T cells and the IPA-induced increase in CD103+ CD11b- DCs and attenuated the anti-inflammatory effect of IPA. These findings suggest that IPA potently prevents chronic inflammation in the colon by activating AHR.
Collapse
Affiliation(s)
- Reiji Aoki
- Functional Biomolecules Research Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan; and
| | - Ayako Aoki-Yoshida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chise Suzuki
- Functional Biomolecules Research Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan; and
| | - Yoshiharu Takayama
- Functional Biomolecules Research Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0901, Japan; and
| |
Collapse
|
177
|
Knoop KA, Newberry RD. Goblet cells: multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 2018; 11:1551-1557. [PMID: 29867079 PMCID: PMC8767637 DOI: 10.1038/s41385-018-0039-y] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 02/07/2023]
Abstract
Goblet cells (GCs) are specialized epithelial cells that line multiple mucosal surfaces and have a well-appreciated role in barrier maintenance through the secretion of mucus. Moreover, GCs secrete anti-microbial proteins, chemokines, and cytokines demonstrating functions in innate immunity beyond barrier maintenance. Recently it was appreciated that GCs can form goblet cell-associated antigen passages (GAPs) and deliver luminal substances to underlying lamina propria (LP) antigen-presenting cells (APCs) in a manner capable of inducing adaptive immune responses. GCs at other mucosal surfaces share characteristics with the GAP forming intestinal GCs, suggesting that GAP formation may not be restricted to the gut, and that GCs may perform this gatekeeper function at other mucosal surfaces. Here we review observations of how GCs contribute to immunity at mucosal surfaces through barrier maintenance, the delivery of luminal substances to APCs, interactions with APCs, and secretion of factors modulating immune responses.
Collapse
Affiliation(s)
- Kathryn A. Knoop
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123,Send correspondence to: , 314-362-2670, Fax 314-362-2609, Correspondence and requests for materials should be addressed to KAK
| | - Rodney D. Newberry
- Department of Internal Medicine, Washington University School of Medicine, St. Louis MO 63123
| |
Collapse
|
178
|
Weiberg D, Basic M, Smoczek M, Bode U, Bornemann M, Buettner M. Participation of the spleen in the IgA immune response in the gut. PLoS One 2018; 13:e0205247. [PMID: 30286198 PMCID: PMC6171922 DOI: 10.1371/journal.pone.0205247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022] Open
Abstract
The role of the spleen in the induction of an immune response to orally administered antigens is still under discussion. Although it is well known that after oral antigen administration specific germinal centres are not only formed in the Peyers patches (PP) and the mesenteric lymph nodes (mLN) but also in the spleen, there is still a lack of functional data showing a direct involvement of splenic B cells in an IgA immune response in the gut. In addition, after removal of mLN a high level of IgA+ B cells was observed in the gut. Therefore, in this study we analysed the role of the spleen in the induction of IgA+ B cells in the gut after mice were orally challenged with antigens. Here we have shown that antigen specific splenic IgM+ B cells after in vitro antigen stimulation as well as oral immunisation of donor mice were able to migrate into the gut of recipient mice, where they predominantly switch to IgA+ plasma cells. Furthermore, stimulation of recipient mice by orally administered antigens enhanced the migration of the splenic B cells into the gut as well as their switch to IgA+ plasma cells. Removal of the mLN led to a higher activation level of the splenic B cells. Altogether, our results imply that splenic IgM+ B cells migrate in the intestinal lamina propria, where they differentiate into IgA+ plasma cells and subsequently proliferate. In conclusion, we demonstrated that the spleen plays a major role in the gut immune response serving as a reservoir of immune cells that migrate to the site of antigen entrance.
Collapse
Affiliation(s)
- Desiree Weiberg
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Margarethe Smoczek
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Ulrike Bode
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Melanie Bornemann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Manuela Buettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
179
|
Hoh RA, Boyd SD. Gut Mucosal Antibody Responses and Implications for Food Allergy. Front Immunol 2018; 9:2221. [PMID: 30319658 PMCID: PMC6170638 DOI: 10.3389/fimmu.2018.02221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
The gastrointestinal mucosa is a critical environmental interface where plasma cells and B cells are exposed to orally-ingested antigens such as food allergen proteins. It is unclear how the development of B cells and plasma cells in the gastrointestinal mucosa differs between healthy humans and those with food allergy, and how B cells contribute to, or are affected by, the breakdown of oral tolerance. In particular, the antibody gene repertoires associated with symptomatic allergy have only begun to be characterized in full molecular detail. Here, we review literature concerning B cells and plasma cells in the gastrointestinal system in the context of food allergy, with a focus on human studies.
Collapse
Affiliation(s)
- Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA, United States
| |
Collapse
|
180
|
Fauquert JL, Michaud E, Pereira B, Bernard L, Gourdon-Dubois N, Rouzaire PO, Rochette E, Merlin E, Evrard B. Peanut gastrointestinal delivery oral immunotherapy in adolescents: Results of the build-up phase of a randomized, double-blind, placebo-controlled trial (PITA study). Clin Exp Allergy 2018; 48:862-874. [PMID: 29665158 DOI: 10.1111/cea.13148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Oral immunotherapy to peanut is effective in desensitizing patients but has significant side effects including anaphylaxis and gastrointestinal symptoms. In most protocols, peanut is administered in a vehicle food. OBJECTIVE In an exclusively adolescent population, we tested a new approach using sealed capsules of peanut (gastrointestinal delivery oral immunotherapy or GIDOIT) to bypass the upper gastrointestinal tract. The primary aim was to assess the efficacy of the oral build-up phase of GIDOIT and the secondary aim to analyse its safety. METHODS Adolescents with a history of a clinical allergic reaction after peanut ingestion were included in a 2-armed, parallel-design, individually randomized, double-blind, placebo-controlled, multicentre trial after a positive double-blind placebo-controlled oral food challenge (DBPCFC1). A central randomization centre used computer-generated tables to allocate treatments. Peanut (or placebo) capsules were ingested daily over a period of 24 weeks with increments every 2 weeks from 2 to 400 mg of peanut protein (pp). Primary outcome was tolerance of 400 mg of pp at DBPCFC2. RESULTS Thirty patients were included between September 2013 and May 2014. At DBPCFC2, unresponsiveness to 400 mg of pp was achieved in 17/21 peanut group patients (2 withdrawn patients) and 1/9 in the placebo group (Intention-to-treat analysis, P < .001, absolute difference = 0.7, 95%IC 0.43 0.96). Oropharyngeal symptoms were equally frequent in both groups. No dysphagia or other signs of eosinophilic oesophagitis occurred. Digestive adverse events (AE) were more frequent in the treated group (P = .02), but mild and without compliance issues. Only one severe advent event led to withdrawal in a patient who ingested twice the investigated treatment. Peanut-specific humoral immune responses were modulated. CONCLUSION The GIDOIT protocol demonstrated clinical and immunological efficacy and had an acceptable level of safety with weak oropharyngeal symptoms, no dysphagia, mild digestive events and few severe systemic AE.
Collapse
Affiliation(s)
- J-L Fauquert
- Unité d'allergologie de l'enfant, CHU Estaing, Pole pédiatrique, CHU Clermont-Ferrand, Clermont-Ferrand, France
- INSERM CIC 1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - E Michaud
- Unité d'allergologie de l'enfant, CHU Estaing, Pole pédiatrique, CHU Clermont-Ferrand, Clermont-Ferrand, France
- INSERM CIC 1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - B Pereira
- Unité de Biostatistiques, Direction de la Recherche Clinique et Innovation (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - L Bernard
- Département de Pharmacie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - N Gourdon-Dubois
- Unité d'allergologie de l'enfant, CHU Estaing, Pole pédiatrique, CHU Clermont-Ferrand, Clermont-Ferrand, France
- INSERM CIC 1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - P-O Rouzaire
- Service d'Immunologie, CHU Gabriel-Montpied, CHU Clermont-Ferrand, Clermont-Ferrand, France
- UFR Pharmacie, ERTICa, Université Clermont Auvergne, Clermont-Ferrand, France
| | - E Rochette
- INSERM CIC 1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - E Merlin
- Unité d'allergologie de l'enfant, CHU Estaing, Pole pédiatrique, CHU Clermont-Ferrand, Clermont-Ferrand, France
- INSERM CIC 1405, CHU Clermont-Ferrand, Clermont-Ferrand, France
- UFR Médecine, UMR1019 UNH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - B Evrard
- Service d'Immunologie, CHU Gabriel-Montpied, CHU Clermont-Ferrand, Clermont-Ferrand, France
- UFR Pharmacie, ERTICa, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
181
|
Kulkarni DH, McDonald KG, Knoop KA, Gustafsson JK, Kozlowski KM, Hunstad DA, Miller MJ, Newberry RD. Goblet cell associated antigen passages are inhibited during Salmonella typhimurium infection to prevent pathogen dissemination and limit responses to dietary antigens. Mucosal Immunol 2018; 11:1103-1113. [PMID: 29445136 PMCID: PMC6037413 DOI: 10.1038/s41385-018-0007-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/04/2023]
Abstract
Dietary antigen acquisition by lamina propria (LP) dendritic cells (DCs) is crucial to induce oral tolerance and maintain homeostasis. However, encountering innocuous antigens during infection can lead to inflammatory responses, suggesting processes may limit steady-state luminal antigen capture during infection. We observed that goblet cell (GC) associated antigen passages (GAPs), a steady-state pathway delivering luminal antigens to LP-DCs, are inhibited during Salmonella infection. GAP inhibition was mediated by IL-1β. Infection abrogated luminal antigen delivery and antigen-specific T cell proliferation in the mesenteric lymph node (MLN). Antigen-specific T cell proliferation to dietary antigen was restored by overriding GAP suppression; however, this did not restore regulatory T cell induction, but induced inflammatory T cell responses. Salmonella translocation to the MLN required GCs and correlated with GAPs. Genetic manipulations overriding GAP suppression, or antibiotics inducing colonic GAPs, but not antibiotics that do not, increased dissemination and worsened outcomes independent of luminal pathogen burden. Thus, steady-state sampling pathways are suppressed during infection to prevent responses to dietary antigens, limit pathogen entry, and lessen the disease. Moreover, antibiotics may worsen Salmonella infection by means beyond blunting gut microbiota colonization resistance, providing new insight into how precedent antibiotic use aggravates enteric infection.
Collapse
Affiliation(s)
- Devesha H Kulkarni
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Keely G McDonald
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kathryn A Knoop
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jenny K Gustafsson
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Konrad M Kozlowski
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mark J Miller
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rodney D Newberry
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
182
|
Thomson CA, van de Pavert SA, Stakenborg M, Labeeuw E, Matteoli G, Mowat AM, Nibbs RJB. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. THE JOURNAL OF IMMUNOLOGY 2018; 201:215-229. [PMID: 29760193 DOI: 10.4049/jimmunol.1700967] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 04/10/2018] [Indexed: 12/15/2022]
Abstract
Atypical chemokine receptors (ACKRs) are expressed by discrete populations of stromal cells at specific anatomical locations where they control leukocyte migration by scavenging or transporting chemokines. ACKR4 is an atypical receptor for CCL19, CCL21, and CCL25. In skin, ACKR4 plays indispensable roles in regulating CCR7-dependent APC migration, and there is a paucity of migratory APCs in the skin-draining lymph nodes of Ackr4-deficient mice under steady-state and inflammatory conditions. This is caused by loss of ACKR4-mediated CCL19/21 scavenging by keratinocytes and lymphatic endothelial cells. In contrast, we show in this study that Ackr4 deficiency does not affect dendritic cell abundance in the small intestine and mesenteric lymph nodes, at steady state or after R848-induced mobilization. Moreover, Ackr4 expression is largely restricted to mesenchymal cells in the intestine, where it identifies a previously uncharacterized population of fibroblasts residing exclusively in the submucosa. Compared with related Ackr4- mesenchymal cells, these Ackr4+ fibroblasts have elevated expression of genes encoding endothelial cell regulators and lie in close proximity to submucosal blood and lymphatic vessels. We also provide evidence that Ackr4+ fibroblasts form physical interactions with lymphatic endothelial cells, and engage in molecular interactions with these cells via the VEGFD/VEGFR3 and CCL21/ACKR4 pathways. Thus, intestinal submucosal fibroblasts in mice are a distinct population of intestinal mesenchymal cells that can be identified by their expression of Ackr4 and have transcriptional and anatomical properties that strongly suggest roles in endothelial cell regulation.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, 13288 Marseille Cedex 9, France; and
| | - Michelle Stakenborg
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Evelien Labeeuw
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders, Catholic University Leuven, BE-3000 Leuven, Belgium
| | - Allan McI Mowat
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Robert J B Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| |
Collapse
|
183
|
The Initiation of Th2 Immunity Towards Food Allergens. Int J Mol Sci 2018; 19:ijms19051447. [PMID: 29757238 PMCID: PMC5983584 DOI: 10.3390/ijms19051447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
In contrast with Th1 immune responses against pathogenic viruses and bacteria, the incipient events that generate Th2 responses remain less understood. One difficulty in the identification of universal operating principles stems from the diversity of entities against which cellular and molecular Th2 responses are produced. Such responses are launched against harmful macroscopic parasites and noxious substances, such as venoms, but also against largely innocuous allergens. This suggests that the established understanding about sense and recognition applied to Th1 responses may not be translatable to Th2 responses. This review will discuss processes and signals known to occur in Th2 responses, particularly in the context of food allergy. We propose that perturbations of homeostasis at barrier sites induced by external or internal subverters, which can activate or lower the threshold activation of the immune system, are the major requirement for allergic sensitization. Innate signals produced in the tissue under these conditions equip dendritic cells with a program that forms an adaptive Th2 response.
Collapse
|
184
|
Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity. Viruses 2018; 10:v10040146. [PMID: 29570694 PMCID: PMC5923440 DOI: 10.3390/v10040146] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.
Collapse
|
185
|
The microbiology of chronic rhinosinusitis with and without nasal polyps. Eur Arch Otorhinolaryngol 2018; 275:1439-1447. [PMID: 29569134 DOI: 10.1007/s00405-018-4931-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/09/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To compare the microbiological features in middle meatus samples from chronic rhinosinusitis (CRS) patients with nasal polyps (CRSwNP) and those without nasal polyps (CRSsNP), and control subjects. METHODS A total of 136 CRSwNP patients, 66 CRSsNP patients, and 49 control subjects who underwent endoscopic surgery in Beijing TongRen Hospital were enrolled between January 2014 and January 2016. Swab samples were obtained from the middle meatus during surgery and processed for the presence of aerobic and non-aerobic bacteria and fungi. Information on the allergic rhinitis, asthma, the percentage of eosinophils in peripheral blood, and the history of smoking and surgery was collected. RESULTS The overall isolation rate for bacteria was 81.3% for the three groups, with the lowest in the CRSsNP group (77.3%) and the highest in the CRSwNP group (88.4%). There were no significant differences in isolation rates among the three groups (P = 0.349). The three most common bacterial species were: Coagulase-negative Staphylococcus (24.3%), Corynebacterium (19.9%), and Staphylococcus epidermidis (19.1%) in the CRSwNP group; S. epidermidis (21.2%), Corynebacterium (21.2%), Coagulase-negative staphylococcus (18.2%), and Staphylococcus aureus (13.6%) in the CRSsNP group; S. epidermidis (30.6%), Coagulase-negative Staphylococcus (28.6%), and S. aureus (14.3%) in the control group. For the bacterial species with high isolation rates, no significant difference in the microbial cultures was observed among the three groups; whereas in the CRSwNP group, a relatively high proportion of Citrobacter (5.9%, a bacterium with low isolation rate) was observed compared with the CRSsNP and control groups (all 0.0%). Furthermore, when samples were categorized into subgroups according to the percentage of eosinophils, some bacterial species showed different rates in the CRSwNP group (e.g., S. aureus, 3.3% in the subgroup with normal percentage of eosinophils, 17.2% in the subgroup with increased percentage of eosinophils, P = 0.011). CONCLUSIONS There were no significant differences in the microbiological features (except Citrobacter) in middle meatus samples from CRSwNP patients, CRSsNP patients, and control subjects. S. aureus may promote eosinophilic inflammatory response, while S. epidermidis may promote non-eosinophilic inflammatory response.
Collapse
|
186
|
Magnuson AM, Fouts JK, Regan DP, Booth AD, Dow SW, Foster MT. Adipose tissue extrinsic factor: Obesity-induced inflammation and the role of the visceral lymph node. Physiol Behav 2018; 190:71-81. [PMID: 29501838 DOI: 10.1016/j.physbeh.2018.02.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/24/2017] [Accepted: 02/22/2018] [Indexed: 12/17/2022]
Abstract
Obesity-related adverse health consequences occur predominately in individuals with upper body fat distribution commonly associated with increased central adiposity. Visceral adipose tissue accumulation is described to be the greatest driver of obesity-induced inflammation, however evidence also supports that the intestines fundamentally contribute to the development of obesity-induced metabolic disease. The visceral adipose depot shares the same vasculature and lymph drainage as the small intestine. We hypothesize that the visceral lymph node, which drains adipose tissue and the gastrointestinal tract, is central to the exacerbation of systemic pro-inflammation. Male C57BL/6 mice were fed CHOW or high fat diet (HFD) for 7 weeks. At termination the mesenteric depot, visceral lymph node and ileum, jejunum and Peyer's patches were collected. Cytokine concentration was determined in adipose tissue whereas immune cell populations where investigated in the visceral lymph node and intestinal segments by flow cytometry. Visceral adipose tissue and the gastrointestinal tract mutually influence immune cells enclosed within the visceral lymph node. HFD increased visceral lymph node immune cell number. This likely resulted from 1.) an increase in immune cells migration from the small intestines likely from activated dendritic cells that travel to the lymph node and 2.) cytokine effluent from visceral adipose tissue that promoted expansion, survival and retention of pro-inflammatory immune cells. Overall, the visceral lymph node, the immune nexus of visceral adipose tissue and the small intestines, likely plays a fundamental role in exacerbation of systemic pro-inflammation by HFD-induced obesity. The research of Tim Bartness greatly enhanced the understanding of adipose tissue regulation. Studies from his laboratory significantly contributed to our awareness of extrinsic factors that influence body fatness levels. Specifically, the work he produced eloquently demonstrated that adipose tissue was more complex than an insulating storage center; it was connected to our brains via the sympathetic and sensory nervous system. Mapping studies demonstrated that adipose tissue both receives and sends information to the brain. Further, his lab demonstrated that nervous system connections contributed to lipolysis, thermogenesis and adipocyte proliferation and growth. The work of Tim Bartness will continue to influence adipose tissue research. As such, Tim Bartness directly inspired the following research. Adipose tissue extrinsic factors are not limited to the peripheral nervous system. The lymphatic system is an additional extrinsic factor that cross talks with adipose tissue, however its role in this context is under emphasized. Here we begin to elucidate how the lymphatic system may contribute to the comorbidities associated with visceral adipose tissue accumulation.
Collapse
Affiliation(s)
| | | | - Daniel P Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Steve W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
187
|
Wang M, Yang IV, Davidson EJ, Joetham A, Takeda K, O'Connor BP, Gelfand EW. Forkhead box protein 3 demethylation is associated with tolerance induction in peanut-induced intestinal allergy. J Allergy Clin Immunol 2018; 141:659-670.e2. [PMID: 28479331 PMCID: PMC5671381 DOI: 10.1016/j.jaci.2017.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Regulatory T (Treg) cells play an essential role in the maintenance of immune homeostasis in allergic diseases. OBJECTIVES We sought to define the mechanisms underlying induction of tolerance to peanut protein and prevention of the development of peanut allergy. METHODS High or low doses of peanut extract were administered to pups every day for 2 weeks before peanut sensitization and challenge. After challenge, symptoms, Treg cell numbers, and forkhead box protein 3 (Foxp3), TH2 and TH17 cytokine, and Tgfβ expression in mesenteric lymph node (MLN) CD4+ T cells and jejunum were monitored. Treg cell suppressive activity and Foxp3 methylation in MLN CD4+ T cells were assayed. RESULTS Feeding high but not low doses of peanut before sensitization induced tolerance, as demonstrated by prevention of diarrhea and peanut-specific IgE responses, increases in the percentage of CD4+CD25+FoxP3+ cells in MLNs, and Foxp3 mRNA and protein expression in CD4+ cells from MLNs or jejunum. Feeding high doses of peanut before sensitization decreased percentages of CD3+CD4+IL-13+ and CD3+CD4+IL-17+ cells in MLNs and decreased Il13 and Il17a and increased Tgfβ mRNA expression in the jejunum; numbers of CD103+ dendritic cells in MLNs were significantly increased. Treg cell suppression was shown to be antigen specific. Foxp3 methylation was increased in peanut extract-sensitized and challenged mice, whereas in tolerized mice levels were significantly reduced. CONCLUSIONS Feeding high doses of peanut to pups induced tolerance to peanut protein. Foxp3 demethylation was associated with tolerance induction, indicating that Treg cells play an important role in the regulation of peanut sensitivity and maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Meiqin Wang
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colo; Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | | | - Anthony Joetham
- Department of Pediatrics, National Jewish Health, Denver, Colo
| | | | - Brian P O'Connor
- Department of Pediatrics, National Jewish Health, Denver, Colo; Center for Genes, Environment, and Health, National Jewish Health, Denver, Colo
| | - Erwin W Gelfand
- Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
188
|
|
189
|
IL-10 control of CD11c+ myeloid cells is essential to maintain immune homeostasis in the small and large intestine. Oncotarget 2017; 7:32015-30. [PMID: 27027442 PMCID: PMC5077993 DOI: 10.18632/oncotarget.8337] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 03/04/2016] [Indexed: 12/23/2022] Open
Abstract
Although IL-10 promotes a regulatory phenotype of CD11c+ dendritic cells and macrophages in vitro, the role of IL-10 signaling in CD11c+ cells to maintain intestinal tolerance in vivo remains elusive. To this aim, we generated mice with a CD11c-specific deletion of the IL-10 receptor alpha (Cd11ccreIl10rafl/fl). In contrast to the colon, the small intestine of Cd11ccreIl10rafl/fl mice exhibited spontaneous crypt hyperplasia, increased numbers of intraepithelial lymphocytes and lamina propria T cells, associated with elevated levels of T cell-derived IFNγ and IL-17A. Whereas naive mucosal T-cell priming was not affected and oral tolerance to ovalbumin was intact, augmented T-cell function in the lamina propria was associated with elevated numbers of locally dividing T cells, expression of T-cell attracting chemokines and reduced T-cell apoptosis. Upon stimulation, intestinal IL-10Rα deficient CD11c+ cells exhibited increased activation associated with enhanced IL-6 and TNFα production. Following colonization with Helicobacter hepaticus Cd11ccreIl10rafl/fl mice developed severe large intestinal inflammation characterized by infiltrating T cells and increased levels of Il17a, Ifng, and Il12p40. Altogether these findings demonstrate a critical role of IL-10 signaling in CD11c+ cells to control small intestinal immune homeostasis by limiting reactivation of local memory T cells and to protect against Helicobacter hepaticus-induced colitis.
Collapse
|
190
|
Shin W, Jeon Y, Choi I, Kim YJ. V-set and Ig domain-containing 4 (VSIG4)-expressing hepatic F4/80 + cells regulate oral antigen-specific responses in mouse. Eur J Immunol 2017; 48:632-643. [PMID: 29235119 DOI: 10.1002/eji.201747212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/10/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Oral tolerance can prevent unnecessary immune responses against dietary antigens. Members of the B7 protein family play critical roles in the positive and/or negative regulation of T cell responses to interactions between APCs and T cells. V-set and Ig domain-containing 4 (VSIG4), a B7-related co-signaling molecule, has been known to act as a co-inhibitory ligand and may be critical in establishing immune tolerance. Therefore, we investigated the regulation of VSIG4 signaling in a food allergy and experimental oral tolerance murine models. We analyzed the contributions of the two main sites involved in oral tolerance, the mesenteric lymph node (MLN) and the liver, in VSIG4-mediated oral tolerance induction. Through the comparative analysis of major APCs, dendritic cells (DCs) and macrophages, we found that Kupffer cells play a critical role in inducing regulatory T cells (Tregs) and establishing immune tolerance against oral antigens via VSIG4 signaling. Taken together, these results suggest the possibility of VSIG4 signaling-based regulation of orally administered antigens.
Collapse
Affiliation(s)
- Wonhwa Shin
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, Gimhae, Korea
| | - Youkyoung Jeon
- Department of Microbiology and Immunology, Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan, Korea
| | - Inhak Choi
- Department of Microbiology and Immunology, Advanced Research Center for Multiple Myeloma, Inje University College of Medicine, Busan, Korea
| | - Yeon-Jeong Kim
- Laboratory of Microbiology and Immunology, College of Pharmacy, Inje University, Gimhae, Korea.,Inje Institute of Pharmaceutical Science and Research, Inje University, Gimhae, Korea
| |
Collapse
|
191
|
McDonald KG, Wheeler LW, McDole JR, Joerger S, Gustafsson JK, Kulkarni DH, Knoop KA, Williams IR, Miller MJ, Newberry RD. CCR6 promotes steady-state mononuclear phagocyte association with the intestinal epithelium, imprinting and immune surveillance. Immunology 2017; 152:613-627. [PMID: 28746740 PMCID: PMC5680074 DOI: 10.1111/imm.12801] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 12/15/2022] Open
Abstract
The intestinal lamina propria (LP) contains antigen-presenting cells with features of dendritic cells and macrophages, collectively referred to as mononuclear phagocytes (MNPs). Association of MNPs with the epithelium is thought to play an important role in multiple facets of intestinal immunity including imprinting MNPs with the ability to induce IgA production, inducing the expression of gut homing molecules on T cells, facilitating the capture of luminal antigens and microbes, and subsequent immune responses in the mesenteric lymph node (MLN). However, the factors promoting this process in the steady state are largely unknown, and in vivo models to test and confirm the importance of LP-MNP association with the epithelium for these outcomes are unexplored. Evaluation of epithelial expression of chemoattractants in mice where MNP-epithelial associations were impaired suggested CCL20 as a candidate promoting epithelial association. Expression of CCR6, the only known receptor for CCL20, was required for MNPs to associate with the epithelium. LP-MNPs from CCR6-/- mice did not display defects in acquiring antigen and stimulating T-cell responses in ex vivo assays or in responses to antigen administered systemically. However, LP-MNPs from CCR6-deficient mice were impaired at acquiring luminal and epithelial antigens, inducing IgA production in B cells, inducing immune responses in the MLN, and capturing and trafficking luminal commensal bacteria to the MLN. These findings identify a crucial role for CCR6 in promoting LP-MNPs to associate with the intestinal epithelium in the steady state to perform multiple functions promoting gut immune homeostasis.
Collapse
Affiliation(s)
- Keely G. McDonald
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| | - Leroy W. Wheeler
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| | - Jeremiah R. McDole
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMOUSA
| | - Shannon Joerger
- Department of PediatricsWashington University School of MedicineSt LouisMOUSA
| | - Jenny K. Gustafsson
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| | - Devesha H. Kulkarni
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| | - Kathryn A. Knoop
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| | - Ifor R. Williams
- Department of Pathology and Laboratory MedicineEmory University School of MedicineAtlantaGAUSA
| | - Mark J. Miller
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt LouisMOUSA
| | - Rodney D. Newberry
- Department of Internal MedicineWashington University School of MedicineSt LouisMOUSA
| |
Collapse
|
192
|
Nutsch K, Chai JN, Ai TL, Russler-Germain E, Feehley T, Nagler CR, Hsieh CS. Rapid and Efficient Generation of Regulatory T Cells to Commensal Antigens in the Periphery. Cell Rep 2017; 17:206-220. [PMID: 27681432 DOI: 10.1016/j.celrep.2016.08.092] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 04/29/2016] [Accepted: 08/27/2016] [Indexed: 12/22/2022] Open
Abstract
Commensal bacteria shape the colonic regulatory T (Treg) cell population required for intestinal tolerance. However, little is known about this process. Here, we use the transfer of naive commensal-reactive transgenic T cells expressing colonic Treg T cell receptors (TCRs) to study peripheral Treg (pTreg) cell development in normal hosts. We found that T cells were activated primarily in the distal mesenteric lymph node. Treg cell induction was rapid, generating >40% Foxp3(+) cells 1 week after transfer. Contrary to prior reports, Foxp3(+) cells underwent the most cell divisions, demonstrating that pTreg cell generation can be the dominant outcome from naive T cell activation. Moreover, Notch2-dependent, but not Batf3-dependent, dendritic cells were involved in Treg cell selection. Finally, neither deletion of the conserved nucleotide sequence 1 (CNS1) region in Foxp3 nor blockade of TGF-β (transforming growth factor-β)-receptor signaling completely abrogated Foxp3 induction. Thus, these data show that pTreg cell selection to commensal bacteria is rapid, is robust, and may be specified by TGF-β-independent signals.
Collapse
Affiliation(s)
- Katherine Nutsch
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiani N Chai
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Teresa L Ai
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emilie Russler-Germain
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Feehley
- Committee on Immunology, Department of Pathology, The University of Chicago, JFK R120, 924 E. 57th Street, Chicago, IL 60637, USA
| | - Cathryn R Nagler
- Committee on Immunology, Department of Pathology, The University of Chicago, JFK R120, 924 E. 57th Street, Chicago, IL 60637, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
193
|
Ahluwalia B, Magnusson MK, Öhman L. Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol 2017; 52:1185-1193. [PMID: 28697651 DOI: 10.1080/00365521.2017.1349173] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract (GI tract) is a unique organ inhabited by a range of commensal microbes, while also being exposed to an overwhelming load of antigens in the form of dietary antigens on a daily basis. The GI tract has dual roles in the body, in that it performs digestion and uptake of nutrients while also carrying out the complex and important task of maintaining immune homeostasis, i.e., keeping the balance between the good and the bad. It is equally important that we protect ourselves from reacting against the good, meaning that we stay tolerant to harmless food, commensal bacteria and self-antigens, as well as react with force against the bad, meaning induction of immune responses against harmful microorganisms. This complex task is achieved through the presence of a highly efficient mucosal barrier and a specialized multifaceted immune system, made up of a large population of scattered immune cells and organized lymphoid tissues termed the gut-associated lymphoid tissue (GALT). This review provides an overview of the primary components of the human mucosal immune system and how the immune responses in the GI tract are coordinated and induced.
Collapse
Affiliation(s)
- Bani Ahluwalia
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,b Research Unit , Calmino Group AB , Gothenburg , Sweden
| | - Maria K Magnusson
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | - Lena Öhman
- a Department of Microbiology and Immunology , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden.,c Department of Internal Medicine and Clinical Nutrition , Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
194
|
Lozano-Ojalvo D, López-Fandiño R. Immunomodulating peptides for food allergy prevention and treatment. Crit Rev Food Sci Nutr 2017; 58:1629-1649. [PMID: 28102702 DOI: 10.1080/10408398.2016.1275519] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Among the most promising strategies currently assayed against IgE-mediated allergic diseases stands the possibility of using immunomodulating peptides to induce oral tolerance toward offending food allergens or even to prevent allergic sensitization. This review focuses on the beneficial effects of food derived immunomodulating peptides on food allergy, which can be directly exerted in the intestinal tract or once being absorbed through the intestinal epithelial barrier to interact with immune cells. Food peptides influence intestinal homeostasis by maintaining and reinforcing barrier function or affecting intestinal cell-signalling to nearby immune cells and mucus secretion. In addition, they can stimulate cells of the innate and adaptive immune system while supressing inflammatory responses. Peptides represent an attractive alternative to whole allergens to enhance the safety and efficacy of immunotherapy treatments. The conclusions drawn from curative and preventive experiments in murine models are promising, although there is a need for more pre-clinical studies to further explore the immunomodulating strategy and its mechanisms and for a deeper knowledge of the peptide sequence and structural requirements that determine the immunoregulatory function.
Collapse
Affiliation(s)
- Daniel Lozano-Ojalvo
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| | - Rosina López-Fandiño
- a Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM) , Madrid , Spain
| |
Collapse
|
195
|
Pezoldt J, Pisano F, Heine W, Pasztoi M, Rosenheinrich M, Nuss AM, Pils MC, Prinz I, Förster R, Huehn J, Dersch P. Impact of CCR7 on T-Cell Response and Susceptibility to Yersinia pseudotuberculosis Infection. J Infect Dis 2017; 216:752-760. [PMID: 28329174 DOI: 10.1093/infdis/jix037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/14/2017] [Indexed: 01/10/2023] Open
Abstract
Background To successfully limit pathogen dissemination, an immunological link between the entry tissue of the pathogen and the underlying secondary lymphoid organs (SLOs) needs to be established to prime adaptive immune responses. Here, the prerequisite of CCR7 to mount host immune responses within SLOs during gastrointestinal Yersinia pseudotuberculosis infection to limit pathogen spread was investigated. Methods Survival, bacterial dissemination, and intestinal and systemic pathology of wild-type and CCR7-/- mice were assessed and correlated to the presence of immune cell subsets and cytokine responses throughout the course of infection. Results The CCR7-/- mice show a significantly higher morbidity and are more prone to pathogen dissemination and intestinal and systemic inflammation during the oral route of infection. Significant impact of CCR7 deficiency over the course of infection on several immunological parameters were observed (ie, elevated neutrophil-dominated innate immune response in Peyer's patches, limited dendritic cell migration to mesenteric lymph nodes [mLNs] causing reduced T cell-mediated adaptive immune responses (in particular Th17-like responses) in mLNs). Conclusions Our work indicates that CCR7 is required to mount a robust immune response against enteropathogenic Y. pseudotuberculosis by promoting Th17-like responses in mLNs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marina C Pils
- Mouse Pathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Braunschweig
| | - Immo Prinz
- Institute for Immunology, Medical School Hannover, Hannover, Germany
| | - Reinhold Förster
- Institute for Immunology, Medical School Hannover, Hannover, Germany
| | | | | |
Collapse
|
196
|
Functional heterogeneity of gut-resident regulatory T cells. Clin Transl Immunology 2017; 6:e156. [PMID: 28983404 PMCID: PMC5628268 DOI: 10.1038/cti.2017.39] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Regulatory T cells (Treg cells) have a central role in the maintenance of intestinal homeostasis by restraining inappropriate immune responses in the healthy gut. Although distinct intestinal immune cell populations have been described to exhibit regulatory activity, several genetic and functional studies provided a strong evidence for a pivotal role of forkhead box P3 (Foxp3)+CD4+ Treg cells in prevention of dysregulated mucosal immune reactions and development of chronic immunological disorders such as celiac disease, food allergies and inflammatory bowel disease. Treg cells provide an important layer of intestinal defense by suppressing immune responses against innocuous food and commensal-derived antigens. Recent functional studies suggest that Treg cells are also involved in several other processes such as controlling microbial diversity in the gut, immunoglobulin A selection and supporting tissue repair in response to intestinal tissue damage. A better understanding of the functional heterogeneity as well as of the molecular signals, which regulate distinct intestinal Treg cell subsets, will encourage strategies aimed at transplanting the optimal Treg cell subset for cellular therapy in humans.
Collapse
|
197
|
TGFβR signalling controls CD103 +CD11b + dendritic cell development in the intestine. Nat Commun 2017; 8:620. [PMID: 28931816 PMCID: PMC5607002 DOI: 10.1038/s41467-017-00658-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/19/2017] [Indexed: 01/01/2023] Open
Abstract
CD103+CD11b+ dendritic cells (DCs) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGFβR1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103−CD11b+ dendritic cell subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103−CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T cells in vitro and in vivo, and by reduced numbers of endogenous Th17 cells in the intestinal mucosa. Thus, TGFβR1-mediated signalling may explain the tissue-specific development of these unique DCs. Developmental cues for the different dendritic cell (DC) subsets in the intestine are yet to be defined. Here the authors show that TGFβR1 signalling is needed for development of CD103+CD11b+ intestinal DCs from CD103−CD11b+ cells and that they contribute to the generation of Th17 and regulatory T cells
Collapse
|
198
|
Turcanu V, Brough HA, Du Toit G, Foong RX, Marrs T, Santos AF, Lack G. Immune mechanisms of food allergy and its prevention by early intervention. Curr Opin Immunol 2017; 48:92-98. [PMID: 28892729 DOI: 10.1016/j.coi.2017.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
The environmental factors driving the increase in food allergies are unclear and possibly involve dual exposure to allergens, microbiome-driven effects or other mechanisms. Until they can be better understood, early intervention aiming at establishing oral tolerance provides an effective way to decrease the window-of-risk when children may develop allergic sensitisation to foods due to the absence of a protective immune response. Thus, the recent LEAP (Learning Early About Peanut allergy) and LEAP-On studies achieved a high level of peanut allergy prevention by early introduction of peanuts in the infants diet and conveyed more information regarding the evolution of IgE and IgG4 antibody responses to food antigens over time.
Collapse
Affiliation(s)
- Victor Turcanu
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Helen A Brough
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - George Du Toit
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Ru-Xin Foong
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Tom Marrs
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Alexandra F Santos
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom
| | - Gideon Lack
- Department of Paediatric Allergy, King's College London, Guy's & St Thomas' NHS Foundation Trust, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH United Kingdom.
| |
Collapse
|
199
|
Yu J, Chen Y, Wu Y, Ye L, Lian Z, Wei H, Sun R, Tian Z. The differential organogenesis and functionality of two liver-draining lymph nodes in mice. J Autoimmun 2017; 84:109-121. [PMID: 28886898 DOI: 10.1016/j.jaut.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022]
Abstract
The liver is an immunological organ. However, fundamental knowledge concerning liver-draining lymph nodes (LNs), which have been newly identified in mice as the portal and celiac LNs, is still lacking. Here, we revealed that the portal LN and celiac LN drain liver lymph through different lymphatic vessels. Although both the portal LN and celiac LN possess typical structures, they have different cell compositions. Interestingly, these two LNs form at different times during fetal development. Moreover, the organogenesis of the celiac LN, but not the portal LN, is controlled by the transcription factor NFIL3. Furthermore, the portal LN and celiac LN also perform different functions. The celiac LN is the predominant site of liver antiviral immune responses, whereas the portal LN functions in the in situ induction of dietary antigen-specific regulatory T cells. In conclusion, the portal LN and celiac LN are two independent liver-draining LNs with different organogenesis histories and separate functions in maintaining immune homeostasis in the liver.
Collapse
Affiliation(s)
- Jiali Yu
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yongyan Chen
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, 400038, China
| | - Zhexiong Lian
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, The Key Laboratory of Innate Immunity and Chronic Disease (Chinese Academy of Science), Institute of Immunology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
200
|
Bacterial flagellin-a potent immunomodulatory agent. Exp Mol Med 2017; 49:e373. [PMID: 28860663 PMCID: PMC5628280 DOI: 10.1038/emm.2017.172] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/23/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023] Open
Abstract
Flagellin is a subunit protein of the flagellum, a whip-like appendage that enables bacterial motility. Traditionally, flagellin was viewed as a virulence factor that contributes to the adhesion and invasion of host cells, but now it has emerged as a potent immune activator, shaping both the innate and adaptive arms of immunity during microbial infections. In this review, we summarize our understanding of bacterial flagellin and host immune system interactions and the role flagellin as an adjuvant, anti-tumor and radioprotective agent, and we address important areas of future research interests.
Collapse
|