151
|
Interleukin-35 Limits Anti-Tumor Immunity. Immunity 2016; 44:316-29. [PMID: 26872697 DOI: 10.1016/j.immuni.2016.01.013] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 10/19/2015] [Accepted: 11/08/2015] [Indexed: 11/20/2022]
Abstract
Regulatory T (Treg) cells pose a major barrier to effective anti-tumor immunity. Although Treg cell depletion enhances tumor rejection, the ensuing autoimmune sequelae limits its utility in the clinic and highlights the need for limiting Treg cell activity within the tumor microenvironment. Interleukin-35 (IL-35) is a Treg cell-secreted cytokine that inhibits T cell proliferation and function. Using an IL-35 reporter mouse, we observed substantial enrichment of IL-35(+) Treg cells in tumors. Neutralization with an IL-35-specific antibody or Treg cell-restricted deletion of IL-35 production limited tumor growth in multiple murine models of human cancer. Limiting intratumoral IL-35 enhanced T cell proliferation, effector function, antigen-specific responses, and long-term T cell memory. Treg cell-derived IL-35 promoted the expression of multiple inhibitory receptors (PD1, TIM3, LAG3), thereby facilitating intratumoral T cell exhaustion. These findings reveal previously unappreciated roles for IL-35 in limiting anti-tumor immunity and contributing to T cell dysfunction in the tumor microenvironment.
Collapse
|
152
|
Cunningham CR, Champhekar A, Tullius MV, Dillon BJ, Zhen A, de la Fuente JR, Herskovitz J, Elsaesser H, Snell LM, Wilson EB, de la Torre JC, Kitchen SG, Horwitz MA, Bensinger SJ, Smale ST, Brooks DG. Type I and Type II Interferon Coordinately Regulate Suppressive Dendritic Cell Fate and Function during Viral Persistence. PLoS Pathog 2016; 12:e1005356. [PMID: 26808628 PMCID: PMC4726812 DOI: 10.1371/journal.ppat.1005356] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
Persistent viral infections are simultaneously associated with chronic inflammation and highly potent immunosuppressive programs mediated by IL-10 and PDL1 that attenuate antiviral T cell responses. Inhibiting these suppressive signals enhances T cell function to control persistent infection; yet, the underlying signals and mechanisms that program immunosuppressive cell fates and functions are not well understood. Herein, we use lymphocytic choriomeningitis virus infection (LCMV) to demonstrate that the induction and functional programming of immunosuppressive dendritic cells (DCs) during viral persistence are separable mechanisms programmed by factors primarily considered pro-inflammatory. IFNγ first induces the de novo development of naive monocytes into DCs with immunosuppressive potential. Type I interferon (IFN-I) then directly targets these newly generated DCs to program their potent T cell immunosuppressive functions while simultaneously inhibiting conventional DCs with T cell stimulating capacity. These mechanisms of monocyte conversion are constant throughout persistent infection, establishing a system to continuously interpret and shape the immunologic environment. MyD88 signaling was required for the differentiation of suppressive DCs, whereas inhibition of stimulatory DCs was dependent on MAVS signaling, demonstrating a bifurcation in the pathogen recognition pathways that promote distinct elements of IFN-I mediated immunosuppression. Further, a similar suppressive DC origin and differentiation was also observed in Mycobacterium tuberculosis infection, HIV infection and cancer. Ultimately, targeting the underlying mechanisms that induce immunosuppression could simultaneously prevent multiple suppressive signals to further restore T cell function and control persistent infections. Persistent virus infections induce host derived immunosuppressive factors that attenuate the immune response and prevent control of infection. Although the mechanisms of T cell exhaustion are being defined, we know surprisingly little about the underlying mechanisms that induce the immunosuppressive state and the origin and functional programming of the cells that deliver these signals to the T cells. We recently demonstrated that type I interferon (IFN-I) signaling was responsible for many of the immune dysfunctions associated with persistent virus infection and in particular the induced expression of the suppressive factors IL-10 and PDL1 by dendritic cells (DCs). Yet, mechanistically how IFN-I signaling specifically generates and programs cells to become immunosuppressive is still unknown. Herein, we define the underlying mechanisms of IFN-I mediated immunosuppression and establish that the induction of factors and the generation of the DCs that express them are separable events integrally reliant on additional inflammatory factors. Further, we demonstrate a similar derivation of the suppressive DCs that emerge in other diseases associated with prolonged inflammation and immunosuppression, specifically in HIV infection, Mycobacterium tuberculosis, and cancer, indicating a conserved origin of immunosuppression and suggesting that targeting the pathways that underlie expression of immunosuppressive cells and factors could be beneficial to treat multiple chronic diseases.
Collapse
Affiliation(s)
- Cameron R. Cunningham
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Ameya Champhekar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michael V. Tullius
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Barbara Jane Dillon
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anjie Zhen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin Rafael de la Fuente
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Jonathan Herskovitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Heidi Elsaesser
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Laura M. Snell
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
| | - Elizabeth B. Wilson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Juan Carlos de la Torre
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Scott G. Kitchen
- Division of Hematology and Oncology, Department of Medicine, UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marcus A. Horwitz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven J. Bensinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Stephen T. Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - David G. Brooks
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Princess Margaret Cancer Center, Immune Therapy Program, University Health Network, Toronto, Ontario
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
153
|
Koch K, Koch N, Sandaradura de Silva U, Jung N, Schulze zur Wiesch J, Fätkenheuer G, Hartmann P, Romerio F, Lehmann C. Increased Frequency of CD49b/LAG-3(+) Type 1 Regulatory T Cells in HIV-Infected Individuals. AIDS Res Hum Retroviruses 2015; 31:1238-46. [PMID: 26192268 DOI: 10.1089/aid.2014.0356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In HIV-1 infection elevated serum levels of interferon-α (IFN-α) and interleukin-10 (IL-10) are associated with immune hyperactivation and disease progression. Recently, coexpression of CD49b and LAG-3 was shown to identify Type 1 regulatory T (Tr1) cells, which secrete large amounts of the immunosuppressive cytokine IL-10. We analyzed the frequency of CD49b/LAG-3(+) Tr1 cells in the peripheral blood of HIV-infected individuals at different stages of the disease. We found increased levels of CD49b/LAG-3(+) Tr1 cells as well as IL-10 in HIV patients. With disease progression, Tr1 cells negatively correlate with frequency of plasmacytoid dendritic cells (pDCs), the main producers of IFN-α. However, elevated IL-10 levels could not be ascribed to the CD49b/LAG-3(+)Tr1 cell population. Moreover, we showed in vitro that IFN-α leads to an upregulation of IL-10 as well as CD49b/LAG-3(+) Tr1 cell counts in healthy controls, recapitulating effects observed in vivo during HIV infection. Our results suggest that overexpression of IFN-α during HIV infection drives the generation of CD49b/LAG-3(+) Tr1 cells and the immunosuppressive cytokine IL-10. Furthermore, it remains unclear whether elevated IL-10 levels are beneficial or detrimental in regard to disease progression.
Collapse
Affiliation(s)
- Kristina Koch
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | - Nora Koch
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | | | - Norma Jung
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
| | | | - Gerd Fätkenheuer
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Pia Hartmann
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Fabio Romerio
- Institute of Human Virology, University of Maryland, Baltimore, Maryland
| | - Clara Lehmann
- First Department of Internal Medicine, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| |
Collapse
|
154
|
Zhang Z, Doel C, Bashiruddin JB. Interleukin-10 production at the early stage of infection with foot-and-mouth disease virus related to the likelihood of persistent infection in cattle. Vet Res 2015; 46:132. [PMID: 26582423 PMCID: PMC4652405 DOI: 10.1186/s13567-015-0276-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022] Open
Abstract
The factors leading to persistent infection of foot-and-mouth disease (FMD) virus in ruminants are not well defined. This paper provides evidence of the presence of interleukin-10 (IL-10) early in the course of infection (1–4 days) as a factor in the development of persistence of FMD virus in cattle. Results showed that serum IL-10 in carrier cattle infected with FMD virus type O (n = 4) was detected and peaked at 1 or 2 days post infection and rapidly declined thereafter. In contract, serum IL-10 levels in non-carrier cattle (n = 21) were very low or undetectable during the same period.
Collapse
Affiliation(s)
- Zhidong Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Xujiaping 1, Lanzhou, 730046, Gansu, China. .,The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| | - Claudia Doel
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK. .,DCD Consulting Ltd, Alton, Hants, GU34 5BG, UK.
| | - John B Bashiruddin
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK. .,JBBiologik, Farnham, Surrey, GU10 1DH, UK.
| |
Collapse
|
155
|
Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125:4053-62. [PMID: 26413872 PMCID: PMC4639980 DOI: 10.1172/jci81187] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- DNA-Binding Proteins/deficiency
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis A Virus Cellular Receptor 2
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/physiology
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Sema Kurtulus
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kaori Sakuishi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shin-Foong Ngiow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Joller
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dewar J. Tan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michele W.L. Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mark J. Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
156
|
Abstract
Chronic viral infections represent a unique challenge to the infected host. Persistently replicating viruses outcompete or subvert the initial antiviral response, allowing the establishment of chronic infections that result in continuous stimulation of both the innate and adaptive immune compartments. This causes a profound reprogramming of the host immune system, including attenuation and persistent low levels of type I interferons, progressive loss (or exhaustion) of CD8(+) T cell functions, and specialization of CD4(+) T cells to produce interleukin-21 and promote antibody-mediated immunity and immune regulation. Epigenetic, transcriptional, posttranscriptional, and metabolic changes underlie this adaptation or recalibration of immune cells to the emerging new environment in order to strike an often imperfect balance between the host and the infectious pathogen. In this review we discuss the common immunological hallmarks observed across a range of different persistently replicating viruses and host species, the underlying molecular mechanisms, and the biological and clinical implications.
Collapse
Affiliation(s)
- Elina I Zuniga
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Monica Macal
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - Gavin M Lewis
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093;
| | - James A Harker
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
157
|
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
158
|
Wong YC, Tay SS, McCaughan GW, Bowen DG, Bertolino P. Immune outcomes in the liver: Is CD8 T cell fate determined by the environment? J Hepatol 2015; 63:1005-14. [PMID: 26103545 DOI: 10.1016/j.jhep.2015.05.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
The liver is known for its tolerogenic properties. This unique characteristic is associated with persistent infection of the liver by the hepatitis B and C viruses. Improper activation of cellular adaptive immune responses within the liver and immune exhaustion over time both contribute to ineffective cytotoxic T cell responses to liver-expressed antigens in animal models, and likely play a role in incomplete clearance of chronic hepatitis virus infections in humans. However, under some conditions, functional immune responses can be elicited against hepatic antigens, resulting in control of hepatotropic infections. In order to develop improved therapeutics in immune-mediated chronic liver diseases, including viral hepatitis, it is essential to understand how intrahepatic immunity is regulated. This review focuses on CD8 T cell immunity directed towards foreign antigens expressed in the liver, and explores how the liver environment dictates the outcome of intrahepatic CD8 T cell responses. Potential strategies to rescue unresponsive CD8 T cells in the liver are also discussed.
Collapse
Affiliation(s)
- Yik Chun Wong
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Szun Szun Tay
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Geoffrey W McCaughan
- Liver Cancer and Injury Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
159
|
Oldstone MBA. A Jekyll and Hyde Profile: Type 1 Interferon Signaling Plays a Prominent Role in the Initiation and Maintenance of a Persistent Virus Infection. J Infect Dis 2015; 212 Suppl 1:S31-6. [PMID: 26116728 DOI: 10.1093/infdis/jiu501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hallmarks of persistent viral infections are exhaustion of virus-specific T cells, elevated production of interleukin 10 (IL-10) and programmed death-1 (PD-1) the dominant negative regulators of the immune system and disruption of secondary lymphoid tissues. Within the first 12-24 hours after mice are infected with lymphocytic choriomeningitis virus (LCMV) clone 13, which is used as a model of persistent virus infection, we note generation of high titers of type 1 interferon. Blockade of type 1 interferon significantly lessens IL-10 and PD-1/PD-L1, allows normal secondary lymphoid architecture and re-establishes antiviral T-cell function, thus eradicating the virus and clearing the infection. Hence, type 1 interferon is a master reostat for establishing persistent viral infection.
Collapse
Affiliation(s)
- Michael B A Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
160
|
Abstract
Innate and adaptive immunity are activated by both infections and tumors. The immune cells infiltrating infected tissues are similar to those infiltrating neoplastic tissues, but their function in the first setting is quite different from that in the latter. Infected tissues are usually characterized by an acute inflammatory environment that favors the generation of protective immunity, whereas tumors are characterized by chronic inflammation that suppresses antitumor immune responses and promotes tumor growth and escape from the immune system. During resolution of the immune response to infection or in chronic infections, immunosuppressive mechanisms that are typical of the tumor microenvironment are observed in infected tissues. Conversely, immunotherapy and chemotherapy may redirect the tumor microenvironment and allow the activation of effective anticancer immune responses. The transformation of neoplastic cells is determined by intrinsic genetic alteration but tumor progression is controlled by the tumor microenvironment and by the inflammatory and immune response to the tumors. Commensal microorganisms live in great numbers in all our barrier epithelia and control inflammation and immunity both locally and systemically. The commensal microbiota is essential for optimal immune response to pathogens and for the establishment of autoimmunity. It also modulates inflammation and immune responses that affect tumor growth and it is required for the effectiveness of anticancer immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
161
|
Böttcher JP, Beyer M, Meissner F, Abdullah Z, Sander J, Höchst B, Eickhoff S, Rieckmann JC, Russo C, Bauer T, Flecken T, Giesen D, Engel D, Jung S, Busch DH, Protzer U, Thimme R, Mann M, Kurts C, Schultze JL, Kastenmüller W, Knolle PA. Functional classification of memory CD8(+) T cells by CX3CR1 expression. Nat Commun 2015; 6:8306. [PMID: 26404698 PMCID: PMC4667439 DOI: 10.1038/ncomms9306] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/06/2015] [Indexed: 01/01/2023] Open
Abstract
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.
Collapse
Affiliation(s)
- Jan P. Böttcher
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Marc Beyer
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Felix Meissner
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Zeinab Abdullah
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Jil Sander
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Bastian Höchst
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Ismaninger Street 22, München 81675, Germany
| | - Sarah Eickhoff
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Jan C. Rieckmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Caroline Russo
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Tanja Bauer
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Tobias Flecken
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Dominik Giesen
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Daniel Engel
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Steffen Jung
- Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dirk H. Busch
- Institute of Microbiology, Immunology and Hygiene, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München, Troger Street 30, München 81675, Germany
| | - Robert Thimme
- Clinic for Internal Medicine II, Universitätsklinikum Freiburg, Hugstetter Street 55, Freiburg 79106, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, München 82152, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, LIMES-Institute, Universität Bonn, Carl-Troll-Street 31, Bonn 53115, Germany
| | - Wolfgang Kastenmüller
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
| | - Percy A. Knolle
- Institute of Experimental Immunology, Universitätsklinikum Bonn, Sigmund-Freud-Street 25, Bonn 53105, Germany
- Institute of Molecular Immunology and Experimental Oncology, Technische Universität München, Ismaninger Street 22, München 81675, Germany
| |
Collapse
|
162
|
Collet B, Urquhart K, Monte M, Collins C, Garcia Perez S, Secombes CJ, Hall M. Individual Monitoring of Immune Response in Atlantic Salmon Salmo salar following Experimental Infection with Infectious Salmon Anaemia Virus (ISAV). PLoS One 2015; 10:e0137767. [PMID: 26397117 PMCID: PMC4580571 DOI: 10.1371/journal.pone.0137767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/20/2015] [Indexed: 01/11/2023] Open
Abstract
Monitoring the immune response in fish over the progression of a disease is traditionally carried out by experimental infection whereby animals are killed at regular intervals and samples taken. We describe here a novel approach to infectiology for salmonid fish where blood samples are collected repeatedly in a small group of PIT-tagged animals. This approach contributes to the reduction of animals used in research and to improved data quality. Two groups of 12 PIT-tagged Atlantic salmon (Salmo salar) were i.p infected with Infectious Salmon Anaemia Virus (ISAV) or culture medium and placed in 1 m3 tanks. Blood samples were collected at 0, 4, 8, 12, 16, 21 and 25 days post infection. The viral load, immune and stress response were determined in individual fish by real-time quantitative PCR (QPCR) on the blood cells, as well as the haematocrit used as an indicator of haemolysis, a clinical consequence of ISAV infection. "In-tank" anaesthesia was used in order to reduce the stress related to chase and netting prior to sampling. The data were analysed using a statistical approach which is novel with respect to its use in fish immunology. The repeated blood collection procedure did not induce stress response as measured by HSP70 and HSP90 gene expression in the un-infected animals. A strong increase in viraemia as well as a significant induction of Mx and γIP gene expression were observed in the infected group. Interleukin 10 was found induced at the later stage of the infection whereas no induction of CD8 or γ IFN could be detected. These results and the advantages of this approach are discussed.
Collapse
Affiliation(s)
- Bertrand Collet
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Katy Urquhart
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Milena Monte
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Catherine Collins
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Sandro Garcia Perez
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| | - Chris J. Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Malcolm Hall
- Aquaculture and Fish Health, Marine Scotland, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
163
|
Erickson JJ, Lu P, Wen S, Hastings AK, Gilchuk P, Joyce S, Shyr Y, Williams JV. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype. THE JOURNAL OF IMMUNOLOGY 2015; 195:4319-30. [PMID: 26401005 DOI: 10.4049/jimmunol.1403004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 11/19/2022]
Abstract
Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pengcheng Lu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sherry Wen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Andrew K Hastings
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Administration Tennessee Valley Healthcare System, Nashville, TN 37232
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - John V Williams
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232; and Department of Pediatrics, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of University of Pittsburgh Medical Center, Pittsburgh, PA 15224
| |
Collapse
|
164
|
Abstract
IL-10 is a multifunctional cytokine secreted by a variety of cells. It not only inhibits activation of monocyte/macrophage system and synthesis of monocyte cytokine and inflammatory cytokine but also promotes the proliferation and maturation of non-monocyte-dependent T cell, stimulating proliferation of antigen-specific B cell. Increasing evidence indicates that IL-10 plays an important role in both the onset and development of auto-immune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's syndrome (SS), multiple sclerosis (MS), Crohn's disease (CD), and psoriasis. However, the exact mechanisms of IL-10 in auto-immune diseases remain unclear. In the present review, we will summarize the biological effects of IL-10, as well as its role and therapeutic potential in auto-immune diseases.
Collapse
|
165
|
Molecular and cellular insights into T cell exhaustion. NATURE REVIEWS. IMMUNOLOGY 2015. [PMID: 26205583 DOI: 10.1038/nri3862.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In chronic infections and cancer, T cells are exposed to persistent antigen and/or inflammatory signals. This scenario is often associated with the deterioration of T cell function: a state called 'exhaustion'. Exhausted T cells lose robust effector functions, express multiple inhibitory receptors and are defined by an altered transcriptional programme. T cell exhaustion is often associated with inefficient control of persisting infections and tumours, but revitalization of exhausted T cells can reinvigorate immunity. Here, we review recent advances that provide a clearer molecular understanding of T cell exhaustion and reveal new therapeutic targets for persisting infections and cancer.
Collapse
|
166
|
Hammami A, Charpentier T, Smans M, Stäger S. IRF-5-Mediated Inflammation Limits CD8+ T Cell Expansion by Inducing HIF-1α and Impairing Dendritic Cell Functions during Leishmania Infection. PLoS Pathog 2015; 11:e1004938. [PMID: 26046638 PMCID: PMC4457842 DOI: 10.1371/journal.ppat.1004938] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
Inflammation is known to be necessary for promoting, sustaining, and tuning CD8+ T cell responses. Following experimental Leishmania donovani infection, the inflammatory response is mainly induced by the transcription factor IRF-5. IRF-5 is responsible for the activation of several genes encoding key pro-inflammatory cytokines, such as IL-6 and TNF. Here, we investigate the role of IRF-5-mediated inflammation in regulating antigen-specific CD8+ T cell responses during L. donovani infection. Our data demonstrate that the inflammatory response induced by IRF-5 limits CD8+ T cell expansion and induces HIF-1α in dendritic cells. Ablation of HIF-1α in CD11c+ cells resulted into a higher frequency of short-lived effector cells (SLEC), enhanced CD8+ T cell expansion, and increased IL-12 expression by splenic DCs. Moreover, mice with a targeted depletion of HIF-1α in CD11c+ cells had a significantly lower splenic parasite burden, suggesting that induction of HIF-1α may represent an immune evasive mechanism adopted by Leishmania parasites to establish persistent infections. Inflammation is essential for inducing, sustaining, and regulating CD8+ T cell responses. The transcription factor IRF-5 is mainly responsible for initiating the inflammatory response following experimental Leishmani donovani infection. IRF-5 activates several genes encoding key pro-inflammatory cytokines, such as IL-6 and TNF. In this study, we investigate the role of IRF-5-mediated inflammation in regulating antigen-specific CD8+ T cell responses during L. donovani infection. Our data demonstrate that the inflammatory response induced by IRF-5 limits the expansion CD8+ T cell. This negative effect is mediated by the induction of HIF-1α in dendritic cells. Indeed, we observed a significant increase in CD8+ T cell expansion in mice lacking HIF-1α expression in dendritic cells. Moreover, these mice had a significantly lower parasite burden in the spleen, suggesting that induction of HIF-1α may represent an immune evasive mechanism adopted by Leishmania parasites to establish persistent infections.
Collapse
Affiliation(s)
- Akil Hammami
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
| | | | - Mélina Smans
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
| | - Simona Stäger
- INRS—Institut Armand-Frappier, Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
167
|
Cook KD, Kline HC, Whitmire JK. NK cells inhibit humoral immunity by reducing the abundance of CD4+ T follicular helper cells during a chronic virus infection. J Leukoc Biol 2015; 98:153-62. [PMID: 25986014 DOI: 10.1189/jlb.4hi1214-594r] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
There is a need to understand better how to improve B cell responses and immunity to persisting virus infections, which often cause debilitating illness or death. People with chronic virus infection show evidence of improved virus control when there is a strong neutralizing antibody response, and conversely, B cell dysfunction is associated with higher viral loads. We showed previously that NK cells inhibit CD4(+) and CD8(+) T cell responses to disseminating LCMV infection and that depletion of NK cells attenuates chronic infection. Here, we examined the effect of NK cell depletion on B cell responses to LCMV infection in mice. Whereas mice infected acutely generated a peak level of antibody soon after the infection was resolved, mice infected chronically showed a continued increase in antibody levels that exceeded those after acute infection. We found that early NK cell depletion rapidly increased virus-specific antibody levels to chronic infection, and this effect depended on CD4(+) T cells and was associated with elevated numbers of CXCR5(+)CD4(+) TFH cells. However, the NK cell-depleted mice controlled the infection and by 1 mo pi, had lower TFH cell numbers and antibody levels compared with mice with sustained infection. Finally, we show that NK cell depletion improved antiviral CD8(+) T cell responses only when B cells and virus-specific antibody were present. Our data indicate that NK cells diminish immunity to chronic infection, in part, by suppressing TFH cell and antibody responses.
Collapse
Affiliation(s)
- Kevin D Cook
- *Department of Genetics and Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hannah C Kline
- *Department of Genetics and Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason K Whitmire
- *Department of Genetics and Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
168
|
Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA, Dominguez CX, Rosenberg DW, Kaech SM. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat Med 2015; 21:327-34. [PMID: 25799228 PMCID: PMC4505619 DOI: 10.1038/nm.3831] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
More than 10% of the world's population is chronically infected with HIV, hepatitis C virus (HCV) or hepatitis B virus (HBV), all of which can cause severe disease and death. These viruses persist in part because continuous antigenic stimulation causes the deterioration of virus-specific cytotoxic T lymphocyte (CTL) function and survival. Additionally, antiviral CTLs autonomously suppress their responses to limit immunopathology by upregulating inhibitory receptors such as programmed cell death 1 (PD-1). Identification and blockade of the pathways that induce CTL dysfunction may facilitate the clearance of chronic viral infections. We found that the prostaglandin E2 (PGE₂) receptors EP2 and EP4 were upregulated on virus-specific CTLs during chronic lymphocytic choriomeningitis virus (LCMV) infection and suppressed CTL survival and function. We show that the combined blockade of PGE₂ and PD-1 signaling was therapeutic in terms of improving viral control and augmenting the numbers of functional virus-specific CTLs. Thus, PGE₂ inhibition is both an independent candidate therapeutic target and a promising adjunct therapy to PD-1 blockade for the treatment of HIV and other chronic viral infections.
Collapse
Affiliation(s)
- Jonathan H. Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Curtis J. Perry
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Yao-Chen Tsui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew M. Staron
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ian A. Parish
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Claudia X. Dominguez
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel W. Rosenberg
- Department of Genetics and Molecular Biology, The University of Connecticut Health Center, Farmington, CT, USA
| | - Susan M. Kaech
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
169
|
Distinctive features of CD4+ T cell dysfunction in chronic viral infections. Curr Opin HIV AIDS 2015; 9:446-51. [PMID: 25023623 DOI: 10.1097/coh.0000000000000094] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To describe recent advances in the understanding of virus-specific CD4 T cell dysfunction in chronic viral infections, with an emphasis on HIV disease. We highlight features that are distinctive for CD4 T cells, as opposed to their CD8 T cell counterparts. RECENT FINDINGS CD4 T cell activation and differentiation are tightly controlled. Regulation of these processes depends on the context of initial encounter of the naïve CD4 T cell with the cognate antigen and on ongoing external cues to the antigen-experienced CD4 T cell, in particular the inflammatory environment, which is prominent in HIV infection. Virus-specific CD4 T cell dysfunction results from a combination of an exhaustion program and skewing in T helper lineage differentiation which impact function. The CD4 and CD8 T cell exhaustion programs present similarities and distinct features. The sets of inhibitory coreceptors expression differ, although programmed-death 1 (PD-1) and T cell immunoglobulin mucin-3 (Tim-3) are upregulated on both HIV-specific CD4 and CD8 T cells, cytotoxic T-lymphocyte antigen 4 (CTLA-4) is largely specific to CD4 T cells, whereas 2B4 and CD160 are biased toward CD8 T cells. SUMMARY Understanding the molecular basis of HIV-specific CD4 T cell exhaustion and identifying key differences with CD8 T cell impairment will be critical to design effective therapeutic and preventive immunotherapies against HIV.
Collapse
|
170
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
171
|
Sun Z, Fourcade J, Pagliano O, Chauvin JM, Sander C, Kirkwood JM, Zarour HM. IL10 and PD-1 Cooperate to Limit the Activity of Tumor-Specific CD8+ T Cells. Cancer Res 2015; 75:1635-44. [PMID: 25720800 DOI: 10.1158/0008-5472.can-14-3016] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/29/2015] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors show great promise as therapy for advanced melanoma, heightening the need to determine the most effective use of these agents. Here, we report that programmed death-1(high) (PD-1(high)) tumor antigen (TA)-specific CD8(+) T cells present at periphery and at tumor sites in patients with advanced melanoma upregulate IL10 receptor (IL10R) expression. Multiple subsets of peripheral blood mononucleocytes from melanoma patients produce IL10, which acts directly on IL10R(+) TA-specific CD8(+) T cells to limit their proliferation and survival. PD-1 blockade augments expression of IL10R by TA-specific CD8(+) T cells, thereby increasing their sensitivity to the immunosuppressive effects of endogenous IL10. Conversely, IL10 blockade strengthened the effects of PD-1 blockade in expanding TA-specific CD8(+) T cells and reinforcing their function. Collectively, our findings offer a rationale to block both IL10 and PD-1 to strengthen the counteraction of T-cell immunosuppression and to enhance the activity of TA-specific CD8(+) T cell in advanced melanoma patients.
Collapse
Affiliation(s)
- Zhaojun Sun
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Julien Fourcade
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ornella Pagliano
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joe-Marc Chauvin
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cindy Sander
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John M Kirkwood
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hassane M Zarour
- Division of Hematology/Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
172
|
Polymorphisms in the IFNγ, IL-10, and TGFβ genes may be associated with HIV-1 infection. DISEASE MARKERS 2015; 2015:248571. [PMID: 25802474 PMCID: PMC4354727 DOI: 10.1155/2015/248571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/22/2014] [Accepted: 12/22/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study investigated possible associations between the TNFα-308G/A, IFN+874A/T, IL-6-174C/G, IL-10-1082A/G, and TGFβ-509C/T polymorphisms with HIV-1 infection, in addition to correlation of the polymorphisms with clinical markers of AIDS progression, such as levels of CD4+/CD8+ T lymphocytes and plasma viral load. METHODS A total of 216 individuals who were infected with HIV-1 and on antiretroviral therapy (ART) and 294 individuals from the uninfected control group were analyzed. RESULTS All individuals evaluated were negative for total anti-HBc, anti-HCV, anti-T. pallidum, and anti-HTLV-1/2. The polymorphisms were identified by PCR-RFLP. Individuals presenting the IFN+874A allele as well as the AA genotype were more frequent in the HIV-1 infected group compared to the control group (P < 0.05), in addition to having lower levels of CD4+ T lymphocytes. The CD8+ T lymphocytes count was significantly lower in individuals with the IL-10-1082 GG genotype. The TGFβ-509TT genotype was associated with higher plasma viral load. CONCLUSIONS The results suggest that the presence of the IFN+874A allele confers susceptibility to HIV-1 infection and a decrease in the number of CD4+ T lymphocytes. In addition, the genotype associated with high serum levels of TGFβ may be associated with an increase in plasma viral load.
Collapse
|
173
|
T cell exhaustion and Interleukin 2 downregulation. Cytokine 2015; 71:339-47. [DOI: 10.1016/j.cyto.2014.11.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/30/2023]
|
174
|
Evaluation of Interleukin-10 Levels in Patients Diagnosed with Chronic Hepatitis. W INDIAN MED J 2015; 64:71-5. [PMID: 26360676 DOI: 10.7727/wimj.2014.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/30/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE One of the most important factors playing a role in chronic hepatitis B pathogenesis is cytokine release and one of the cytokines with anti-inflammatory characteristic is interleukin-10 (IL-10). The aim of the present study is to examine IL-10 levels in patients with chronic hepatitis B. SUBJECTS AND METHODS Sixty-three patients with chronic hepatitis B disease who had not received any antiviral treatment were included in the study. Serum IL-10 level was investigated by enzyme-linked immunosorbent assay (ELISA) method. In the control group, 25 healthy individuals with mean age similar to the patient population were included. Control and patient groups were compared and data were statistically analysed. RESULTS Interleukin-10 levels of 25 patients with hepatitis B virus (HBV) DNA levels between 2000 and 20 000 IU/mL were compared with those of 25 subjects in the control group, and the level in the chronic hepatitis B group was statistically significantly higher (p < 0.05). Interleukin-10 levels of 38 patients with HBV DNA > 20 000 IU/mL were statistically significantly higher than those in the control group. When chronic hepatitis B patients were compared among themselves, IL-10 levels increased as HBV DNA levels increased. Also, when IL-10 levels of hepatitis B 'e' antigen (HBeAg) positive patients were compared with those of HBeAg negative patients, the difference was not statistically significant. CONCLUSION It is believed that decreasing IL-10 levels by various methods would have significant contributions in disease progression and treatment. Moreover, IL-10 level may be an important marker in HBeAg seroconversion and evaluation of treatment response.
Collapse
|
175
|
Zhu C, Sakuishi K, Xiao S, Sun Z, Zaghouani S, Gu G, Wang C, Tan DJ, Wu C, Rangachari M, Pertel T, Jin HT, Ahmed R, Anderson AC, Kuchroo VK. An IL-27/NFIL3 signalling axis drives Tim-3 and IL-10 expression and T-cell dysfunction. Nat Commun 2015; 6:6072. [PMID: 25614966 PMCID: PMC4311884 DOI: 10.1038/ncomms7072] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022] Open
Abstract
The inhibitory receptor T-cell immunoglobulin and mucin domain-3 (Tim-3) has emerged as a critical regulator of the T-cell dysfunction that develops in chronic viral infections and cancers. However, little is known regarding the signalling pathways that drive Tim-3 expression. Here, we demonstrate that interleukin (IL)-27 induces nuclear factor, interleukin 3 regulated (NFIL3), which promotes permissive chromatin remodelling of the Tim-3 locus and induces Tim-3 expression together with the immunosuppressive cytokine IL-10. We further show that the IL-27/NFIL3 signalling axis is crucial for the induction of Tim-3 in vivo. IL-27-conditioned T helper 1 cells exhibit reduced effector function and are poor mediators of intestinal inflammation. This inhibitory effect is NFIL3 dependent. In contrast, tumour-infiltrating lymphocytes from IL-27R(-/-) mice exhibit reduced NFIL3, less Tim-3 expression and failure to develop dysfunctional phenotype, resulting in better tumour growth control. Thus, our data identify an IL-27/NFIL3 signalling axis as a key regulator of effector T-cell responses via induction of Tim-3, IL-10 and T-cell dysfunction.
Collapse
Affiliation(s)
- Chen Zhu
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Kaori Sakuishi
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Sheng Xiao
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Zhiyi Sun
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Sarah Zaghouani
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Guangxiang Gu
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Chao Wang
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Dewar J. Tan
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Chuan Wu
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Manu Rangachari
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Thomas Pertel
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Hyun-Tak Jin
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases, Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 77 Avenue Louis Pasteur, Boston 02115, MA, USA
| |
Collapse
|
176
|
T cell exhaustion during persistent viral infections. Virology 2015; 479-480:180-93. [PMID: 25620767 DOI: 10.1016/j.virol.2014.12.033] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control.
Collapse
|
177
|
Sullivan BM, Teijaro JR, de la Torre JC, Oldstone MBA. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog 2015; 11:e1004588. [PMID: 25569216 PMCID: PMC4287607 DOI: 10.1371/journal.ppat.1004588] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 11/24/2014] [Indexed: 01/12/2023] Open
Abstract
Many persistent viral infections are characterized by a hypofunctional T cell response and the upregulation of negative immune regulators. These events occur days after the initiation of infection. However, the very early host-virus interactions that determine the establishment of viral persistence remain poorly uncharacterized. Here we show that to establish persistence, LCMV must counteract an innate anti-viral immune response within eight hours after infection. While the virus triggers cytoplasmic RNA sensing pathways soon after infection, LCMV counteracts this pathway through a rapid increase in viral titers leading to a dysfunctional immune response characterized by a high cytokine and chemokine expression profile. This altered immune environment allows for viral replication in the splenic white pulp as well as infection of immune cells essential to an effective anti-viral immune response. Our findings illustrate how early events during infection critically dictate the characteristics of the immune response to infection and facilitate either virus control and clearance or persistence. Lymphocytic Choriomenengitis Virus (LCMV) is an important model for the investigation of the pathogenesis of persistent viral infections. As with humans infected with hepatitis C and Human Immunodeficiency Virus-1, adult mice persistently infected with immunosuppressive strains of LCMV express high levels of negative immune regulators that suppress the adaptive T cell immune response thereby facilitating viral persistence. Unknown, however, is whether and how very early interactions between the virus and the infected host affect the establishment of a persistent infection. Here, we describe host-virus interactions within the first 8–12 hours of infection are critical for establishing a persistent infection. While early induction of an anti-viral type-I interferons is essential for the subsequent adaptive immune response required to clear the virus, LCMV is able to overcome the programmed innate immune response by over-stimulating this response early. This affects not only the rate of viral growth in the host, but also the ability to infect specific immune cells that help shape an effective adaptive immune response. We further describe how and where LCMV is sensed by this early immune response, identify the critical timing of early virus-host interactions that lead to a persistent infection, and identify an early dysregulated immune signature associated with a persistent viral infection. Altogether, these observations are critical to understanding how early virus-host interactions determines the course of infection.
Collapse
Affiliation(s)
- Brian M. Sullivan
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| | - John R. Teijaro
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Juan Carlos de la Torre
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael B. A. Oldstone
- Viral-Immunobiology Laboratory, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
178
|
Ni G, Wang T, Walton S, Zhu B, Chen S, Wu X, Wang Y, Wei MQ, Liu X. Manipulating IL-10 signalling blockade for better immunotherapy. Cell Immunol 2015; 293:126-9. [PMID: 25596475 DOI: 10.1016/j.cellimm.2014.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
Interleukin 10 is a cytokine with the ability to reduce or terminate inflammation. Chronic viral infection, such as infection of chronic hepatitis B, hepatitis C and HIV, has increased levels of interleukin 10 in peripheral blood. Serum IL-10 levels are also high in certain cancers. Blocking IL-10 signalling at the time of immunisation clears chronic viral infection and prevents tumour growth in animal models. We review recent advances in this area, with the emphasis on potential use of this novel strategy to treat chronic viral infection and cancer in human.
Collapse
Affiliation(s)
- Guoying Ni
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of Sunshine Coast, Sippy Downs 4556, QLD, Australia
| | - Shelley Walton
- Inflammation and Healing Research Cluster, University of Sunshine Coast, Sippy Downs 4556, Australia
| | - Bin Zhu
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Shu Chen
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Xiaolian Wu
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Yuejian Wang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China.
| | - Ming Q Wei
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Xiaosong Liu
- Inflammation and Healing Research Cluster, University of Sunshine Coast, Sippy Downs 4556, Australia; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China.
| |
Collapse
|
179
|
Natural history of chronic hepatitis B virus infection. Med Microbiol Immunol 2014; 204:5-10. [PMID: 25540037 DOI: 10.1007/s00430-014-0369-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 10/02/2014] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.
Collapse
|
180
|
Zdrenghea MT, Makrinioti H, Muresan A, Johnston SL, Stanciu LA. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2014; 25:33-49. [PMID: 25430775 PMCID: PMC4316183 DOI: 10.1002/rmv.1817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Ion Chiricuta Oncology InstituteCluj-Napoca, Romania
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Heidi Makrinioti
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Adriana Muresan
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Sebastian L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Luminita A Stanciu
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
- *
Correspondence to: Dr. L. A. Stanciu, MD, PhD, Airway Disease Infection Section, Imperial College London, London, UK., E-mail:
| |
Collapse
|
181
|
The dual nature of interleukin-10 in pemphigus vulgaris. Cytokine 2014; 73:335-41. [PMID: 25464924 DOI: 10.1016/j.cyto.2014.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023]
Abstract
The immunomodulatory cytokine interleukin-10 (IL-10) plays beneficial but also potentially detrimental roles in inflammation, infection, and autoimmunity. Recent studies suggest a regulatory role for IL-10-expressing B cells in the autoimmune blistering disease pemphigus vulgaris. Here we review the studies on IL-10 in pemphigus vulgaris and discuss the potential pathophysiological significance of these findings in comparison to prior studies of IL-10 in other human conditions. A better understanding of the complex roles of IL-10 in immune regulation may improve our understanding of pemphigus pathogenesis and treatment.
Collapse
|
182
|
Tsai TT, Chuang YJ, Lin YS, Chang CP, Wan SW, Lin SH, Chen CL, Lin CF. Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 2014; 8:e3320. [PMID: 25412261 PMCID: PMC4239119 DOI: 10.1371/journal.pntd.0003320] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Background Interleukin (IL)-10 levels are increased in dengue virus (DENV)-infected patients with severe disorders. A hypothetical intrinsic pathway has been proposed for the IL-10 response during antibody-dependent enhancement (ADE) of DENV infection; however, the mechanisms of IL-10 regulation remain unclear. Principle Finding We found that DENV infection and/or attachment was sufficient to induce increased expression of IL-10 and its downstream regulator suppressor of cytokine signaling 3 in human monocytic THP-1 cells and human peripheral blood monocytes. IL-10 production was controlled by activation of cyclic adenosine monophosphate response element-binding (CREB), primarily through protein kinase A (PKA)- and phosphoinositide 3-kinase (PI3K)/PKB-regulated pathways, with PKA activation acting upstream of PI3K/PKB. DENV infection also caused glycogen synthase kinase (GSK)-3β inactivation in a PKA/PI3K/PKB-regulated manner, and inhibition of GSK-3β significantly increased DENV-induced IL-10 production following CREB activation. Pharmacological inhibition of spleen tyrosine kinase (Syk) activity significantly decreased DENV-induced IL-10 production, whereas silencing Syk-associated C-type lectin domain family 5 member A caused a partial inhibition. ADE of DENV infection greatly increased IL-10 expression by enhancing Syk-regulated PI3K/PKB/GSK-3β/CREB signaling. We also found that viral load, but not serotype, affected the IL-10 response. Finally, modulation of IL-10 expression could affect DENV replication. Significance These results demonstrate that, in monocytes, IL-10 production is regulated by ADE through both an extrinsic and an intrinsic pathway, all involving a Syk-regulated PI3K/PKB/GSK-3β/CREB pathway, and both of which impact viral replication. IL-10 has multiple cellular functions, including anti-inflammatory and immunomodulatory effects. Clinical studies have demonstrated that the serum levels of IL-10 are significantly increased in DENV-infected patients with severe disorders. However, the molecular mechanism underlying DENV-induced IL-10 production is still unresolved. In this study, we demonstrate a molecular mechanism for DENV-induced IL-10 production, which may be exacerbated by ADE through Fcγ receptor-mediated extrinsic and intrinsic pathways, leading to IL-10/SOCS3-mediated advantages for viral replication. With or without Fcγ receptor- or CLEC5A-mediated DENV infection, a common Syk/PKA-regulated PI3K/PKB activation results in a decrease in GSK-3β activity followed by an increase in CREB-mediated IL-10 expression not only in THP-1 monocytic cells but also in human monocytes. Taken together, we demonstrate a potential regulation and a pathological role for ADE-induced IL-10 overproduction during DENV replication. Therefore, inhibiting immunosuppression by targeting the IL-10 pathways identified in this study may help to prevent the progression of severe dengue diseases.
Collapse
Affiliation(s)
- Tsung-Ting Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Jui Chuang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Chen
- Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
183
|
Niesen E, Schmidt J, Flecken T, Thimme R. Suppressive effect of interleukin 10 on priming of naive hepatitis C virus-specific CD8+ T cells. J Infect Dis 2014; 211:821-6. [PMID: 25355941 DOI: 10.1093/infdis/jiu541] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Growing evidence suggests a role for the immunomodulatory cytokine interleukin-10 (IL-10) in hepatitis C virus (HCV)-specific CD8(+) T-cell failure. To address the possible role of IL-10 during priming, we performed in vitro priming experiments with naive HCV-specific CD8(+) T cells and autologous monocyte-derived dendritic cells in the absence or presence of IL-10. Our results showed that IL-10, when present during priming, significantly reduced the frequency of HCV-specific CD8(+) T cells after coculture; It was directly targeting CD8(+) T cells and led to impaired effector cell differentiation. These results may provide a possible mechanistic basis for the association between early IL-10 elevation, T-cell failure, and viral persistence.
Collapse
Affiliation(s)
| | - Julia Schmidt
- Department of Medicine II, University Hospital Freiburg
| | - Tobias Flecken
- Department of Medicine II, University Hospital Freiburg Spemann Graduate School of Biology and Medicine Faculty of Biology, Albert-Ludwigs University Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg
| |
Collapse
|
184
|
Mboowa G. Genetics of Sub-Saharan African Human Population: Implications for HIV/AIDS, Tuberculosis, and Malaria. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2014; 2014:108291. [PMID: 25202468 PMCID: PMC4151494 DOI: 10.1155/2014/108291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/09/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Sub-Saharan Africa has continued leading in prevalence and incidence of major infectious disease killers such as HIV/AIDS, tuberculosis, and malaria. Epidemiological triad of infectious diseases includes susceptible host, pathogen, and environment. It is imperative that all aspects of vertices of the infectious disease triad are analysed to better understand why this is so. Studies done to address this intriguing reality though have mainly addressed pathogen and environmental components of the triad. Africa is the most genetically diverse region of the world as well as being the origin of modern humans. Malaria is relatively an ancient infection in this region as compared to TB and HIV/AIDS; from the evolutionary perspective, we would draw lessons that this ancestrally unique population now under three important infectious diseases both ancient and exotic will be skewed into increased genetic diversity; moreover, other evolutionary forces are also still at play. Host genetic diversity resulting from many years of malaria infection has been well documented in this population; we are yet to account for genetic diversity from the trio of these infections. Effect of host genetics on treatment outcome has been documented. Host genetics of sub-Saharan African population and its implication to infectious diseases are an important aspect that this review seeks to address.
Collapse
Affiliation(s)
- Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
- School of Allied Health Sciences, International Health Sciences University, P.O. Box 7782, Kampala, Uganda
| |
Collapse
|
185
|
Therapeutic strategies for a functional cure of chronic hepatitis B virus infection. Acta Pharm Sin B 2014; 4:248-57. [PMID: 26579392 PMCID: PMC4629125 DOI: 10.1016/j.apsb.2014.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/20/2014] [Accepted: 05/23/2014] [Indexed: 02/07/2023] Open
Abstract
Treatment of chronic hepatitis B virus (HBV) infection with the viral DNA polymerase inhibitors or pegylated alpha-interferon has led to a significant retardation in HBV-related disease progression and reduction in mortality related to chronic hepatitis B associated liver decompensation and hepatocellular carcinoma. However, chronic HBV infection remains not cured. The reasons for the failure to eradicate HBV infection by long-term antiviral therapy are not completely understood. However, clinical studies suggest that the intrinsic stability of the nuclear form of viral genome, the covalently closed circular (ccc) DNA, sustained low level viral replication under antiviral therapy and homeostatic proliferation of hepatocytes are the critical virological and pathophysiological factors that affect the persistence and therapeutic outcomes of HBV infection. More importantly, despite potent suppression of HBV replication in livers of the treated patients, the dysfunction of HBV-specific antiviral immunity persists. The inability of the immune system to recognize cells harboring HBV infection and to cure or eliminate cells actively producing virus is the biggest challenge to finding a cure. Unraveling the complex virus–host interactions that lead to persistent infection should facilitate the rational design of antivirals and immunotherapeutics to cure chronic HBV infection.
Collapse
|
186
|
Wu HL, Kao JH, Chen TC, Wu WH, Liu CH, Su TH, Yang HC, Chen DS, Chen PJ, Liu CJ. Serum cytokine/chemokine profiles in acute exacerbation of chronic hepatitis B: clinical and mechanistic implications. J Gastroenterol Hepatol 2014; 29:1629-1636. [PMID: 24730549 DOI: 10.1111/jgh.12606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Acute exacerbation (AE) of chronic hepatitis B virus (HBV) infection is common and negatively impacts the clinical outcome. Although upsurge of viral load always precedes or coincides with AE, the underlying immunological mechanisms remain unclear and were investigated. METHODS We prospectively followed the serum cytokine/chemokine profiles, viral load, and alanine aminotransferase (ALT) levels in 250 patients and identified 44 consecutive patients (male: 72.7%; age: 40.4 ± 9.7 years; hepatitis B e antigen [HBeAg] positivity: 63.6%; genotype B/C: 75%/25%) who developed AE during the follow-up in a medical center. The impact of clinical characteristics (age, gender, HBeAg, ALT, HBV genotype), cytokines (tumor necrosis factor-alpha, interferon gamma, interleukin [IL]-2, IL-4, IL-6, and IL-10), and chemokines (CXCL10/interferon gamma-induced protein [IP]-10, CCL2/MCP-1, CXCL9/MIG, CCL5/RANTES, and CXCL8/IL-8) on the serum HBV DNA dynamics at different time points (baseline, peak of serum HBV DNA level, peak of serum ALT level, and after AE) were analyzed. RESULTS Of 44 patients, serum HBV DNA level surged before the peak of serum ALT level in 23 (52.3%), and coincided with the peak of ALT in 21 (47.7%). The upsurge of serum viral load significantly correlated with the increase of IL-10 (P = 0.0037) and CXCL10/IP-10 (P = 0.0044). Upsurge of serum viral load was preceded by an increase in serum IL-4 (P < 0.05), IL-6 (P < 0.05), and IL-10 (P < 0.05). Combination of HBV genotype, IL-6 level at baseline, and ALT level at the peak of serum HBV DNA reliably predicted subsequent AE pattern (P = 0.0116). CONCLUSIONS Enhanced Th2 activity is likely involved in the surge of HBV DNA level before hepatitis exacerbation.
Collapse
Affiliation(s)
- Hui-Lin Wu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Parish IA, Marshall HD, Staron MM, Lang PA, Brüstle A, Chen JH, Cui W, Tsui YC, Perry C, Laidlaw BJ, Ohashi PS, Weaver CT, Kaech SM. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J Clin Invest 2014; 124:3455-68. [PMID: 25003188 DOI: 10.1172/jci66108] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.
Collapse
|
188
|
Chen S, Wang X, Wu X, Wei MQ, Zhang B, Liu X, Wang Y. IL-10 signalling blockade at the time of immunization inhibits Human papillomavirus 16 E7 transformed TC-1 tumour cells growth in mice. Cell Immunol 2014; 290:145-51. [DOI: 10.1016/j.cellimm.2014.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 12/30/2022]
|
189
|
Freeman BE, Meyer C, Slifka MK. Anti-inflammatory cytokines directly inhibit innate but not adaptive CD8+ T cell functions. J Virol 2014; 88:7474-84. [PMID: 24741101 PMCID: PMC4054413 DOI: 10.1128/jvi.00658-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/14/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Virus-specific CD8(+) T cells provide classical adaptive immunity by responding to cognate peptide antigen, but they may also act in an "innate" capacity by responding directly to cytokine stimulation. Here, we examined regulation of these distinct T cell functions by anti-inflammatory cytokines (interleukin-4 [IL-4], IL-10, and transforming growth factor β [TGF-β]). Innate gamma interferon (IFN-γ) production by CD8(+) T cells following exposure to IL-12 plus IL-18, IL-12 plus tumor necrosis factor alpha (TNF-α), or IL-12 plus IL-15 was inhibited by exposure to anti-inflammatory cytokines either before or shortly after stimulation. However, inhibition was not universal, as other activation parameters, including upregulation of CD25 and CD69, remained largely unaltered. In contrast, peptide-specific T cell responses were resistant to inhibition by anti-inflammatory cytokines. This was not due to downregulation of cytokine receptor expression or an inability to signal through cytokine receptors since phosphorylation of STAT proteins remained intact. These results highlight key differences in cytokine-mediated regulation of innate and adaptive T cell functions, which may help balance effective antiviral immune responses while reducing T cell-mediated immunopathology. IMPORTANCE This study demonstrates key differences between the regulation of "innate" and "adaptive" CD8(+) T cell functions following activation by innate cytokines or viral peptide. Innate production of IFN-γ by CD8(+) T cells following exposure to IL-12 plus IL-18, IL-12 plus TNF-α, or IL-12 plus IL-15 was inhibited by exposure to anti-inflammatory cytokines (IL-4, IL-10, and TGF-β). However, inhibition was not universal, as other activation parameters, including upregulation of CD25 and CD69, remained largely unaltered. In contrast, peptide-specific T cell responses were resistant to inhibition by anti-inflammatory cytokines. This distinct regulation of innate and adaptive T cell functions may serve to reduce T cell-mediated immunopathology while still allowing for effective antiviral responses at a site of infection.
Collapse
Affiliation(s)
- Bailey E Freeman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Christine Meyer
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Mark K Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
190
|
Li S, Symonds ALJ, Miao T, Sanderson I, Wang P. Modulation of antigen-specific T-cells as immune therapy for chronic infectious diseases and cancer. Front Immunol 2014; 5:293. [PMID: 24987395 PMCID: PMC4060297 DOI: 10.3389/fimmu.2014.00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
T-cell responses are induced by antigen presenting cells (APC) and signals from the microenvironment. Antigen persistence and inflammatory microenvironments in chronic infections and cancer can induce a tolerant state in T-cells resulting in hyporesponsiveness, loss of effector function, and weak biochemical signaling patterns in response to antigen stimulation. Although the mechanisms of T-cell tolerance induced in chronic infection and cancer may differ from those involved in tolerance to self-antigen, the impaired proliferation and production of IL-2 in response to antigen stimulation are hallmarks of all tolerant T cells. In this review, we will summarize the evidence that the immune responses change from non-self to “self”-like in chronic infection and cancer, and will provide an overview of strategies for re-balancing the immune response of antigen-specific T cells in chronic infection and cancer without affecting the homeostasis of the immune system.
Collapse
Affiliation(s)
- Suling Li
- Bioscience, Brunel University , London , UK
| | - Alistair L J Symonds
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Tizong Miao
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ian Sanderson
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ping Wang
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| |
Collapse
|
191
|
Type I interferon is a therapeutic target for virus-induced lethal vascular damage. Proc Natl Acad Sci U S A 2014; 111:8925-30. [PMID: 24889626 DOI: 10.1073/pnas.1408148111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outcome of a viral infection reflects the balance between virus virulence and host susceptibility. The clone 13 (Cl13) variant of lymphocytic choriomeningitis virus--a prototype of Old World arenaviruses closely related to Lassa fever virus--elicits in C57BL/6 and BALB/c mice abundant negative immunoregulatory molecules, associated with T-cell exhaustion, negligible T-cell-mediated injury, and high virus titers that persist. Conversely, here we report that in NZB mice, despite the efficient induction of immunoregulatory molecules and high viremia, Cl13 generated a robust cytotoxic T-cell response, resulting in thrombocytopenia, pulmonary endothelial cell loss, vascular leakage, and death within 6-8 d. These pathogenic events required type I IFN (IFN-I) signaling on nonhematopoietic cells and were completely abrogated by IFN-I receptor blockade. Thus, IFN-I may play a prominent role in hemorrhagic fevers and other acute virus infections associated with severe vascular pathology, and targeting IFN-I or downstream effector molecules may be an effective therapeutic approach.
Collapse
|
192
|
Hazlett LD, Jiang X, McClellan SA. IL-10 function, regulation, and in bacterial keratitis. J Ocul Pharmacol Ther 2014; 30:373-80. [PMID: 24738920 PMCID: PMC4043257 DOI: 10.1089/jop.2014.0018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023] Open
Abstract
The immune system protects the host from pathogenic microbes, but tight regulation of the evoked response is requisite to limit bystander damage. The interleukin (IL)-10 family of cytokines, composed of 9 members: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, and 3 distantly related members, IL-28A, IL-28B, and IL-29, plays a central role in this regulation. IL-10 family cytokines emerged before the adaptive immune response and elicit diverse host defense mechanisms, especially from epithelial cells during an infection. IL-10 family cytokines are also essential for maintenance and integrity of tissue epithelial layers. These cytokines promote innate immune responses from tissue epithelia that limit the damage caused by both viral and bacterial infections. They also facilitate tissue healing after infection/inflammation. In this regard, IL-10 suppresses pro-inflammatory responses, limiting tissue disruption resulting from an inflammatory response. Thus, a central functional theme of IL-10 family cytokines is their role in tissue protection. This review focuses on IL-10, the founding member of this family of cytokines, and integrates recent data on the function and regulation of IL-10 during bacterial infections. Emphasis is placed on the role of IL-10 in Pseudomonas aeruginosa keratitis and the subsequent infectious/inflammatory processes evoked.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Anatomy & Cell Biology, Wayne State University School of Medicine , Detroit, Michigan
| | | | | |
Collapse
|
193
|
Regulatory T cells control diabetes without compromising acute anti-viral defense. Clin Immunol 2014; 153:298-307. [PMID: 24858581 DOI: 10.1016/j.clim.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023]
Abstract
While previous reports have demonstrated the efficacy of regulatory T cell therapy in the prevention of diabetes, systemic immunocompromise and Treg instability remain key safety concerns. Here we examined the influence of induced Treg (iTreg) cell therapy on anti-viral host defense and autoimmune T cell responses during acute viral infection in a murine model of autoimmune diabetes. Protective transfers of iTregs maintained IL-10 expression, expanded in vivo and controlled diabetes, despite losing FoxP3 expression. Adoptive transfer of iTregs affected neither the primary anti-viral CD8 T cell response nor viral clearance, although a significant and sustained suppression of CD4 T cell responses was observed. Following acute viral clearance, iTregs transferred early suppressed both CD4 and CD8 T cell responses, which resulted in the reversion of diabetes. These observations indicate that iTregs suppress local autoimmune processes while preserving the immunocompetent host's ability to combat acute viral infection.
Collapse
|
194
|
Li Y, Li S, Duan X, Liu B, Yang C, Zeng P, McGilvray I, Chen L. Activation of endogenous type I IFN signaling contributes to persistent HCV infection. Rev Med Virol 2014; 24:332-42. [PMID: 24806972 DOI: 10.1002/rmv.1795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/14/2022]
Abstract
HCV infection is a major world health problem, leading to both end-stage liver disease and primary liver cancer. Great efforts have been made in developing new therapies for HCV infection; however, combination therapy with pegylated IFN-α and ribavirin (pegIFN-RBV) remains the first choice of treatment for chronic HCV infection in most countries. The treatment response to pegIFN-RBV remains relatively low. Understanding the molecular mechanisms of persistent HCV infection and pegIFN-RBV resistance will suggest ways of improving the current standard of care and offers new antiviral therapies for both HCV and other viral infections. Recent data suggest that increased expression of hepatic IFN-stimulated genes (ISGs) before treatment is associated with treatment nonresponse in patients chronically infected with HCV. Although ISGs are generally antiviral in nature, in the case of HCV, the virus may exploit some of them to its benefit. This is not unique to HCV: Blockade of type I IFN signaling has been shown to control persistent LCMV infection. Thus, in certain viral infections, preactivation or overactivation of type I IFN signaling may contribute to viral persistence. In this review, we briefly summarize the findings from high-throughput gene expression profiling from patients chronically infected with HCV, then focus on a novel ubiquitin-like signaling pathway (ISG15/USP18) and its potential role in HCV persistence. Finally, the role of activation of endogenous type I IFN signaling in persistent HCV infection will be discussed in the context of recent studies indicating that blocking IFN signaling controls persistent LCMV infection.
Collapse
Affiliation(s)
- Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Pike KA, Hutchins AP, Vinette V, Théberge JF, Sabbagh L, Tremblay ML, Miranda-Saavedra D. Protein tyrosine phosphatase 1B is a regulator of the interleukin-10-induced transcriptional program in macrophages. Sci Signal 2014; 7:ra43. [PMID: 24803538 DOI: 10.1126/scisignal.2005020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Both pro- and anti-inflammatory cytokines activate the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway; however, they elicit distinct transcriptional programs. Posttranslational modifications of STAT proteins, such as tyrosine phosphorylation, are critical to ensure the differential expression of STAT target genes. Although JAK-STAT signaling is dependent on reversible tyrosine phosphorylation, whether phosphatases contribute to the specificity of STAT-dependent gene expression is unclear. We examined the role of protein tyrosine phosphatase 1B (PTP1B) in regulating the interleukin-10 (IL-10)-dependent, STAT3-mediated anti-inflammatory response. We found that IL-10-dependent STAT3 phosphorylation and anti-inflammatory gene expression were enhanced in macrophages from PTP1B(-/-) mice compared to those in macrophages from wild-type mice. Consistent with this finding, the IL-10-dependent suppression of lipopolysaccharide-induced macrophage activation was increased in PTP1B(-/-) macrophages compared to that in wild-type macrophages, as was the IL-10-dependent increase in the cell surface expression of the anti-inflammatory cytokine receptor IL-4Rα. Furthermore, RNA sequencing revealed the expression of genes encoding proinflammatory factors in IL-10-treated PTP1B(-/-) macrophages, which correlated with increased phosphorylation of STAT1, which is not normally highly activated in response to IL-10. These findings identify PTP1B as a central regulator of IL-10R-STAT3 and IL-10R-STAT1 signaling, and demonstrate that phosphatases can tailor the quantitative and qualitative properties of cytokine-induced transcriptional responses.
Collapse
Affiliation(s)
- Kelly A Pike
- 1Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue, Montreal, Quebec H3A 1A3, Canada
| | | | | | | | | | | | | |
Collapse
|
196
|
Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9:e96121. [PMID: 24769532 PMCID: PMC4000198 DOI: 10.1371/journal.pone.0096121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Collapse
Affiliation(s)
- Visar Qeska
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carola Urhausen
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
197
|
Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice. PLoS One 2014; 9:e94665. [PMID: 24736312 PMCID: PMC3988062 DOI: 10.1371/journal.pone.0094665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 12/11/2022] Open
Abstract
The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2) using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.
Collapse
|
198
|
Austin JW, Lu P, Majumder P, Ahmed R, Boss JM. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:4876-86. [PMID: 24711622 DOI: 10.4049/jimmunol.1302750] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed death-1 (PD-1) is a crucial negative regulator of CD8 T cell development and function, yet the mechanisms that control its expression are not fully understood. Through a nonbiased DNase I hypersensitivity assay, four novel regulatory regions within the Pdcd1 locus were identified. Two of these elements flanked the locus, bound the transcriptional insulator protein CCCTC-binding factor, and interacted with each other, creating a potential regulatory compartmentalization of the locus. In response to T cell activation signaling, NFATc1 bound to two of the novel regions that function as independent regulatory elements. STAT binding sites were identified in these elements as well. In splenic CD8 T cells, TCR-induced PD-1 expression was augmented by IL-6 and IL-12, inducers of STAT3 and STAT4 activity, respectively. IL-6 or IL-12 on its own did not induce PD-1. Importantly, STAT3/4 and distinct chromatin modifications were associated with the novel regulatory regions following cytokine stimulation. The NFATc1/STAT regulatory regions were found to interact with the promoter region of the Pdcd1 gene, providing a mechanism for their action. Together these data add multiple novel distal regulatory regions and pathways to the control of PD-1 expression and provide a molecular mechanism by which proinflammatory cytokines, such as IL-6 or IL-12, can augment PD-1 expression.
Collapse
|
199
|
Panchal RG, Mourich DV, Bradfute S, Hauck LL, Warfield KL, Iversen PL, Bavari S. Induced IL-10 splice altering approach to antiviral drug discovery. Nucleic Acid Ther 2014; 24:179-85. [PMID: 24655055 DOI: 10.1089/nat.2013.0457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ebola virus causes an acute hemorrhagic fever lethal in primates and rodents. The contribution of host immune factors to pathogenesis has yet to be determined and may reveal efficacious targets for potential treatment. In this study, we show that the interleukin (IL)-10 signaling pathway modulates Ebola pathogenesis. IL-10(-/-) mice and wild-type mice receiving antisense targeting IL-10 signaling via disrupting expression through aberrant splice altering were resistant to ebola virus infection. IL-10(-/-) mice exhibited reduced viral titers, pathology, and levels of IL-2, IL-6, keratinocyte-derived chemokine (KC), and macrophage inflammatory protein-1 α and increased interferon (IFN)-γ relative to infected wild-type mice. Furthermore, antibody depletion studies in IL-10(-/-) mice suggest a requirement for natural killer cells and IFN-γ for protection. Together, these data demonstrate that resistance to ebola infection is regulated by IL-10 and can be targeted in a prophylactic manner to protect against lethal hemorrhagic virus challenge.
Collapse
Affiliation(s)
- Rekha G Panchal
- 1 United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland
| | | | | | | | | | | | | |
Collapse
|
200
|
Misumi I, Whitmire JK. IFN-λ exerts opposing effects on T cell responses depending on the chronicity of the virus infection. THE JOURNAL OF IMMUNOLOGY 2014; 192:3596-606. [PMID: 24646741 DOI: 10.4049/jimmunol.1301705] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IFN-λ induces an antiviral state in many cell types and may contribute to the overall inflammatory environment after infection. Either of these effects may influence adaptive immune responses, but the role of type 3 IFNs in the development of primary and memory T cell responses to infection has not been evaluated. In this study, we examined T cell responses to acute or persistent lymphocytic choriomeningitis virus infection in IFN-λR1-deficient mice. Following acute infection, we find that IFN-λR1-deficient mice produced normal levels of IFN, robust NK cell responses, but greater than normal CD4+ and CD8+ T cell responses compared with wild type BALB/c mice. There were more T cells that were IL-7R(hi) and, correspondingly, the IFN-λR-deficient mice showed a 2- to 3-fold increase in memory T cell number. The inhibitory effect of IFN-λR expression was independent of direct cytokine signaling into T cells. In contrast with acute infection, the IFN-λR-deficient mice generated markedly diminished T cell responses and had greater weight loss compared with wild type mice when confronted with a highly disseminating variant of lymphocytic choriomeningitis virus. These data indicate that IFN-λR limits T cell responses and memory after transient infection but augments T cell responses during persisting infection. Thus, the immune-regulatory functions for IFN-λR are complex and vary with the overall inflammatory environment.
Collapse
Affiliation(s)
- Ichiro Misumi
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | | |
Collapse
|