151
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
152
|
Epstein-Barr Virus LMP1 Induces Soluble PD-L1 in Nasopharyngeal Carcinoma. Microorganisms 2021; 9:microorganisms9030603. [PMID: 33804064 PMCID: PMC7998736 DOI: 10.3390/microorganisms9030603] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein–Barr virus (EBV)-associated malignancy. The principal oncogene of EBV, latent membrane protein 1 (LMP1), induces the expression of programmed death-ligand 1 (PD-L1), which is an immunosuppressive transmembrane protein and a promising therapeutic target for various malignancies. Recent studies have revealed an association between the level of soluble PD-L1 (sPD-L1) and disease progression. However, the role of sPD-L1 in NPC or its relevance to LMP1 has not been elucidated. This study aimed to examine whether LMP1 induces sPD-L1 in vitro and analyze the clinical relevance of LMP1, PD-L1, and sPD-L1 in NPC patients. Analysis of nasopharyngeal cell lines revealed that LMP1 induces both cellular PD-L1 and sPD-L1. Analysis of biopsy specimens from 32 NPC patients revealed that LMP1 expression was significantly correlated with PD-L1 expression. Finally, the serum sPD-L1 level in NPC patients was higher than that in the controls. Moreover, the sPD-L1 level in the advanced stage was higher than that in the early stage. However, LMP1 expression, PD-L1 expression, and sPD-L1 levels were not associated with prognosis. These results suggest that LMP1 induces both sPD-L1 and PD-L1, which are associated with NPC progression.
Collapse
|
153
|
Huang T, Li F, Cheng X, Wang J, Zhang W, Zhang B, Tang Y, Li Q, Zhou C, Tu S. Wnt Inhibition Sensitizes PD-L1 Blockade Therapy by Overcoming Bone Marrow-Derived Myofibroblasts-Mediated Immune Resistance in Tumors. Front Immunol 2021; 12:619209. [PMID: 33790893 PMCID: PMC8006364 DOI: 10.3389/fimmu.2021.619209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) has been recognized as one cause of tumor resistance to immune checkpoint blockade therapy, but the underlying mechanisms still remain elusive. In the present study, a bone marrow-derived CAF (BMF) -rich tumor model is successfully established by subcutaneously mixed inoculation of BMFs and tumor cells into mice and the BMF-mixed tumor xenografts are demonstrated to be resistant to anti-PD-L1 antibody immunotherapy compared to the mere tumor xenografts. In vitro assays via the co-culture system of BMFs and tumor cells indicate that the co-cultured BMFs are induced to overexpress PD-L1, while there is no such a phenomenon in the co-cultured cancer cells. The further knock-out of PD-L1 in BMFs rescues the sensitivity of BMF-mixed tumor xenografts to PD-L1 blockade therapy. Mechanistically, via the microarray assay, we identify that the upregulation of PD-L1 in BMFs stimulated by cancer cells is medicated by the activation of the Wnt/β-catenin signaling pathway in BMFs. Moreover, the administration of Wnt/β-catenin signaling inhibitors, including XAV-939 and Wnt-C59, distinctly inhibits the upregulation of PD-L1 expression in the co-cultured BMFs. The further combination administration of XAV-939 significantly potentiates the therapeutic outcome of PD-L1 blockade therapy in BMF-mixed tumors. In summary, our study demonstrates that Wnt inhibition augments PD-L1 blockade efficacy by overcoming BMF-mediated immunotherapy resistance.
Collapse
Affiliation(s)
- Tinglei Huang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fuli Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzheng Wang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Tang
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingli Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Zhou
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuiping Tu
- State Key Laboratory of Oncogenes and Related Genes, Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
154
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
155
|
PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 18:345-362. [PMID: 33580222 DOI: 10.1038/s41571-021-00473-5] [Citation(s) in RCA: 868] [Impact Index Per Article: 217.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Immune-checkpoint inhibitors targeting PD-1 or PD-L1 have already substantially improved the outcomes of patients with many types of cancer, although only 20-40% of patients derive benefit from these new therapies. PD-L1, quantified using immunohistochemistry assays, is currently the most widely validated, used and accepted biomarker to guide the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies. However, many challenges remain in the clinical use of these assays, including the necessity of using different companion diagnostic assays for specific agents, high levels of inter-assay variability in terms of both performance and cut-off points, and a lack of prospective comparisons of how PD-L1+ disease diagnosed using each assay relates to clinical outcomes. In this Review, we describe the current role of PD-L1 immunohistochemistry assays used to inform the selection of patients to receive anti-PD-1 or anti-PD-L1 antibodies, we discuss the various technical and clinical challenges associated with these assays, including regulatory issues, and we provide some perspective on how to optimize PD-L1 as a selection biomarker for the future treatment of patients with solid tumours.
Collapse
|
156
|
Recent Advancements in the Mechanisms Underlying Resistance to PD-1/PD-L1 Blockade Immunotherapy. Cancers (Basel) 2021; 13:cancers13040663. [PMID: 33562324 PMCID: PMC7915065 DOI: 10.3390/cancers13040663] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Immune checkpoint blockade targeting PD-1/PD-L1 has a promising therapeutic efficacy in different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. This review summarizes the recent findings of PD-L1 role in resistance to therapies through the PD-1/PD-L1 pathway and other correlating signaling pathways. A special focus will be given to the key mechanisms underlying resistance to the PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, we also discuss the promising combination of therapeutic strategies for patients resistant to the PD-1/PD-L1 blockade in order to enhance the efficacy of immune checkpoint inhibitors. Abstract Release of immunoreactive negative regulatory factors such as immune checkpoint limits antitumor responses. PD-L1 as a significant immunosuppressive factor has been involved in resistance to therapies such as chemotherapy and target therapy in various cancers. Via interacting with PD-1, PD-L1 can regulate other factors or lead to immune evasion of cancer cells. Besides, immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in the different tumors, but a significant percentage of patients cannot benefit from this therapy due to primary and acquired resistance during treatment. In this review, we described the utility of PD-L1 expression levels for predicting poor prognosis in some tumors and present evidence for a role of PD-L1 in resistance to therapies through PD-1/PD-L1 pathway and other correlating signaling pathways. Afterwards, we elaborate the key mechanisms underlying resistance to PD-1/PD-L1 blockade in cancer immunotherapy. Furthermore, promising combination of therapeutic strategies for patients resistant to PD-1/PD-L1 blockade therapy or other therapies associated with PD-L1 expression was also summarized.
Collapse
|
157
|
Carosio R, Fontana V, Mastracci L, Ferro P, Grillo F, Banelli B, Canessa PA, Dessanti P, Vigani A, Morabito A, Pfeffer U, Poggi A, Roncella S, Pistillo MP. Characterization of soluble PD-L1 in pleural effusions of mesothelioma patients: potential implications in the immune response and prognosis. J Cancer Res Clin Oncol 2021; 147:459-468. [PMID: 33216211 DOI: 10.1007/s00432-020-03457-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Programmed death-ligand 1 (PD-L1) protein plays a central role in the antitumor immune response, and appears to be a predictor of prognosis and efficacy for PD-L1 and programmed death 1 (PD-1) blockade therapy. The immunoregulatory role and prognostic impact of PD-L1 soluble form (sPD-L1) have been investigated in biological fluids of patients with different tumors. In malignant pleural mesothelioma (MPM), circulating sPD-L1 has been recently reported in patients' sera, but no data are available in pleural effusions (PE). In our study, we evaluated the baseline expression levels of sPD-L1 in PE from 84 MPM patients and correlated them with PD-L1-status in matched tumors and patients' overall survival (OS). METHODS sPD-L1 in PE was determined by ELISA and tumor PD-L1 by immunohistochemistry. Association of sPD-L1 with OS was estimated using the Cox regression model. RESULTS We observed that sPD-L1 was variably expressed in all the PE and tended to be higher (by 30%) in patients with PD-L1-positive tumors (cut-off ≥ 1% stained cells) as compared to patients with PD-L1-negative tumors (geometric mean ratio = 1.28, P value = 0.288). sPD-L1 levels were significantly higher than those of sPD-1 (P value = 0.001) regardless of the MPM histotypes and they were positively correlated (r = 0.50, P value < 0.001). Moreover, high PE sPD-L1 concentrations were associated with a trend towards increased OS (hazard ratio 0.79, 95% CL 0.62-1.01, P value = 0.062). CONCLUSIONS Our study documents the presence of sPD-L1 in PE of MPM patients, and suggests its possible biological and prognostic role in MPM.
Collapse
Affiliation(s)
- Roberta Carosio
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genoa, Italy
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Ferro
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale 5, La Spezia, Italy
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genoa, Italy
- Anatomic Pathology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Banelli
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | | | - Paolo Dessanti
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale 5, La Spezia, Italy
| | | | - Anna Morabito
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Ulrich Pfeffer
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvio Roncella
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale 5, La Spezia, Italy
| | - Maria Pia Pistillo
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| |
Collapse
|
158
|
Zhou F, Qiao M, Zhou C. The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol Immunol 2021; 18:279-293. [PMID: 33177696 PMCID: PMC8027847 DOI: 10.1038/s41423-020-00577-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Great advances in immune checkpoint blockade have resulted in a paradigm shift in patients with lung cancer. Immune-checkpoint inhibitor (ICI) treatment, either as monotherapy or combination therapy, has been established as the standard of care for patients with locally advanced/metastatic non-small cell lung cancer without EGFR/ALK alterations or extensive-stage small cell lung cancer. An increasing number of clinical trials are also ongoing to further investigate the role of ICIs in patients with early-stage lung cancer as neoadjuvant or adjuvant therapy. Although PD-L1 expression and tumor mutational burden have been widely studied for patient selection, both of these biomarkers are imperfect. Due to the complex cancer-immune interactions among tumor cells, the tumor microenvironment and host immunity, collaborative efforts are needed to establish a multidimensional immunogram to integrate complementary predictive biomarkers for personalized immunotherapy. Furthermore, as a result of the wide use of ICIs, managing acquired resistance to ICI treatment remains an inevitable challenge. A deeper understanding of the underlying biological mechanisms of acquired resistance to ICIs is helpful to overcome these obstacles. In this review, we describe the cutting-edge progress made in patients with lung cancer, the optimal duration of ICI treatment, ICIs in some special populations, the unique response patterns during ICI treatment, the emerging predictive biomarkers, and our understanding of primary and acquired resistance mechanisms to ICI treatment.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Meng Qiao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
159
|
Solorzano-Ibarra F, Alejandre-Gonzalez AG, Ortiz-Lazareno PC, Bastidas-Ramirez BE, Zepeda-Moreno A, Tellez-Bañuelos MC, Banu N, Carrillo-Garibaldi OJ, Chavira-Alvarado A, Bueno-Topete MR, Del Toro-Arreola S, Haramati J. Immune checkpoint expression on peripheral cytotoxic lymphocytes in cervical cancer patients: moving beyond the PD-1/PD-L1 axis. Clin Exp Immunol 2021; 204:78-95. [PMID: 33306195 DOI: 10.1111/cei.13561] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint therapy to reverse natural killer (NK) and T cell exhaustion has emerged as a promising treatment in various cancers. While anti-programmed cell death 1 (PD-1) pembrolizumab has recently gained Food and Drug Administration (FDA) approval for use in recurrent or metastatic cervical cancer, other checkpoint molecules, such as T cell immunoreceptor with immunoglobulin (Ig) and immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) and T cell immunoglobulin and mucin-domain containing-3 (Tim-3), have yet to be fully explored in this disease. We report expression of TIGIT, Tim-3 and PD-1 on subsets of peripheral blood NK (CD56dim/neg CD16bright/dim/neg and CD56bright CD16dim/neg ) and T cells. The percentages of these cells were increased in women with cervical cancer and pre-malignant lesions. PD-1+ NK and T cells were likely to co-express TIGIT and/or Tim-3. These cells, with an apparently 'exhausted' phenotype, were augmented in patients. A subset of cells were also natural killer group 2 member D (NKG2D)- and DNAX accessory molecule 1 (DNAM-1)-positive. PD-1int and PD-1high T cells were notably increased in cervical cancer. Soluble programmed cell death ligand 1 (PD-L1) was higher in cancer patient blood versus healthy donors and we observed a positive correlation between sPD-L1 and PD-1+ T cells in women with low-grade lesions. Within the cancer group, there were no significant correlations between sPD-L1 levels and cervical cancer stage. However, when comparing cancer versus healthy donors, we observed an inverse association between sPD-L1 and total T cells and a correlation between sPD-L1 and CD56dim NK cells. Our results may show an overview of the immune response towards pre-cancerous lesions and cervical cancer, perhaps giving an early clue as to whom to administer blocking therapies. The increase of multiple checkpoint markers may aid in identifying patients uniquely responsive to combined antibody therapies.
Collapse
Affiliation(s)
- F Solorzano-Ibarra
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - A G Alejandre-Gonzalez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - P C Ortiz-Lazareno
- División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| | - B E Bastidas-Ramirez
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - A Zepeda-Moreno
- Instituto de Investigación en Cáncer en la Infancia y Adolescencia, Departamento de Clínicas de la Reproducción Humana, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - M C Tellez-Bañuelos
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, México
| | - N Banu
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - O J Carrillo-Garibaldi
- Clínica de Tumores Pélvicos, Instituto Jalisciense de Cancerología, Organismo Público Descentralizado, Guadalajara, México
| | - A Chavira-Alvarado
- Clínica de Displasias, Nuevo Hospital Civil de Guadalajara "Dr Juan I. Menchaca", Organismo Público Descentralizado, Guadalajara, México
| | - M R Bueno-Topete
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - S Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, CUCS, Universidad de Guadalajara, Guadalajara, México.,Laboratorio de Inmunología, Departamento de Fisiología, CUCS, Universidad de Guadalajara, Guadalajara, México
| | - J Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, México
| |
Collapse
|
160
|
Liang B, Hu X, Ding Y, Liu M. Tumor-derived exosomes in the PD-1/PD-L1 axis: Significant regulators as well as promising clinical targets. J Cell Physiol 2020; 236:4138-4151. [PMID: 33275291 DOI: 10.1002/jcp.30197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
Programmed cell death-1 (PD-1) is a negative coreceptor mainly expressed on the surface of activated T cells. The binding of PD-1 to its ligand PD-L1 significantly induces non-reactivity of T cells to maintain the balance of autoimmunity and immune tolerance. It is reported that tumor cells highly express PD-L1 to restrict cellular immune response, which is one of the most important mechanisms for tumor to mediate immune escape. Cancer immunotherapy targeting PD-1/PD-L1 has achieved remarkable success so far. Tumor-derived exosomes (TEXs) are lipid bilayer vesicles released by tumor cells in an endosome-dependent manner, mediating communication between tumor cells and adjacent cells in the tumor microenvironment. Through signals transmitted by TEXs, tumor can alter the biological characteristics of these cells to promote tumor growth and metastasis. Recent studies have demonstrated that TEXs not only carry tumor-derived PD-L1, but are also closely related to PD-1/PD-L1 expression on target cells. The primary focus of this review will be on how TEXs regulate the PD-1/PD-L1 axis to promote tumor progression, and the promising clinical applications targeting TEXs and exosomal PD-L1.
Collapse
Affiliation(s)
- Benhui Liang
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Ximin Hu
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yinghe Ding
- Department of Cell Biology, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mujun Liu
- Department of Cell Biology, Central South University, Changsha, China
| |
Collapse
|
161
|
Li X, Zheng Y, Yue F. Prognostic Value of Soluble Programmed Cell Death Ligand-1 (sPD-L1) in Various Cancers: A Meta-analysis. Target Oncol 2020; 16:13-26. [PMID: 33222017 DOI: 10.1007/s11523-020-00763-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prognostic value of soluble programmed cell death ligand-1 (sPD-L1) in patients with cancer has been inconsistent across previous studies. OBJECTIVE This meta-analysis aimed to investigate the prognostic significance of sPD-L1 in human tumors. METHODS A comprehensive search of PubMed, Web of Science, Embase, and Cochrane databases from inception to January 6, 2020 was conducted. Studies of sPD-L1 measured by enzyme-linked immunosorbent assay (ELISA) that had available hazard ratios (HRs) for survival outcomes based on high or low sPD-L1 levels were included. The primary endpoint was long-term survival, namely, overall survival (OS), and the second endpoint was short-term survival, including progression-free survival (PFS), disease-free survival (DFS), recurrence-free survival (RFS), and cancer-specific survival (CSS). RESULTS A total of 21 studies, with 2413 patients, were included in this meta-analysis. Elevated sPD-L1 was associated with worse OS [HR = 2.46, 95% confidence interval (CI) 1.74-3.49, P < 0.001]. Moreover, high sPD-L1 was predictive of worse PFS/DFS/RFS/CSS (HR = 2.22, 95% CI 1.47-3.35, P < 0.001). High sPD-L1 was consistently correlated with poor OS and PFS/DFS/RFS/CSS irrespective of study design, sample, and cut-off value of sPD-L1. However, there was non-significant correlation between sPD-L1 and sex, age, clinical stage, Eastern Cooperative Oncology Group Performance Status, tumor differentiation, or serum lactate dehydrogenase. CONCLUSIONS This meta-analysis showed that sPD-L1 was correlated with poor prognosis in human tumors. In addition, sPD-L1 could be used as a predictive factor of inferior outcomes during multiple malignancy treatments.
Collapse
Affiliation(s)
- Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Hematology, Shigatse Municipal People's Hospital, Shigatse, 857000, Tibet, China
| | - Yu Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Department of Hematology, Shigatse Municipal People's Hospital, Shigatse, 857000, Tibet, China
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery, Shigatse Municipal People's Hospital, Shigatse, 857000, Tibet, China.
| |
Collapse
|
162
|
Khan M, Zhao Z, Arooj S, Fu Y, Liao G. Soluble PD-1: Predictive, Prognostic, and Therapeutic Value for Cancer Immunotherapy. Front Immunol 2020; 11:587460. [PMID: 33329567 PMCID: PMC7710690 DOI: 10.3389/fimmu.2020.587460] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed death protein 1 (PD-1) interaction with PD-L1 deliver immunosuppressive environment for tumor growth, and its blockade with directed monoclonal antibodies (anti-PD-1/anti-PD-L1) has shown remarkable clinical outcome. Lately, their soluble counterparts, sPD-1 and sPD-L1, have been detected in plasma, and elevated levels have been associated with advanced disease, clinical stages, and worst prognosis for cancer patients. Elevated plasma levels of sPD-L1 have been correlated with worst prognosis in several studies and has displayed a persistent outlook. On the other hand, sPD-1 levels have been inconsistent in their predictive and prognostic ability. Pretherapeutic higher sPD-1 plasma levels have shown to predict advanced disease state and to a lesser extent worst prognosis. Any increase in sPD-1 plasma level post therapeutically have been correlated with improved survival for various cancers. In vitro and in vivo studies have shown sPD-1 ability to bind PD-L1 and PD-L2 and block PD-1/PD-L1 interaction. Local delivery of sPD-1 in cancer tumor microenvironment through local gene therapy have demonstrated an increase in tumor specific CD8+ T cell immunity and tumor growth reduction. It had also exhibited enhancement of T cell immunity induced by vaccination and other gene therapeutic agents. Furthermore, it may also lessen the inhibitory effect of circulating sPD-L1 and enhance the effects of mAb-based immunotherapy. In this review, we highlight various aspects of sPD-1 role in cancer prediction, prognosis, and anti-cancer immunity, as well as, its therapeutic value for local gene therapy or systemic immunotherapy in blocking the PD-1 and PD-L1 checkpoint interactions.
Collapse
Affiliation(s)
- Muhammad Khan
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhihong Zhao
- Department of Nephrology, Shenzhen People's Hospital, Second Clinical Medicine Centre, Jinan University, Shenzhen, China
| | - Sumbal Arooj
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, University of Sialkot, Sialkot, Pakistan
| | - Yuxiang Fu
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Guixiang Liao
- Department of Radiation Oncology, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
163
|
Wang C, Weng M, Xia S, Zhang M, Chen C, Tang J, Huang D, Yu H, Sun W, Zhang H, Lai M. Distinct roles of programmed death ligand 1 alternative splicing isoforms in colorectal cancer. Cancer Sci 2020; 112:178-193. [PMID: 33058325 PMCID: PMC7780007 DOI: 10.1111/cas.14690] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/30/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022] Open
Abstract
Although anti–programmed death‐1 (PD‐1)/programmed death ligand 1 (PD‐L1) immunotherapy has achieved great success in some cancers, most colorectal cancer (CRC) patients remain unresponsive. Therefore, further clarification of the underlying mechanisms is needed to improve the therapy. In this study, we explored the distinct functions of different PD‐L1 alternative splicing isoforms in CRC. We investigated the biological functions in PD‐L1 knocked down/knockout cells, which were verified through overexpression of PD‐L1 isoforms a, b, and c. The roles of PD‐L1 isoforms in immune surveillance resistance was also analyzed. Meanwhile, we performed RNA‐seq to screen the downstream molecules regulated by PD‐L1 isoforms. Finally, we detected PD‐L1 and PD‐L1 isoforms levels in a cohort of serum samples, two cohorts of CRC tissue samples, and analyzed the correlation of PD‐L1 isoforms with PD‐1 blockade therapy response in two clinical CRC cases. The results indicated that PD‐L1 knockout inhibited proliferation, migration, and invasion, and isoform b exerted a more significant inhibitory effect on T cells than the other two isoforms. Moreover, isoform c could promote CRC progression through regulating epithelial‐mesenchymal transition. Clinical data showed that CRC patients with positive PD‐L1 expression were associated with poorer overall survival. High serum PD‐L1 level was associated with poor prognosis. The level of isoform b or c was negatively associated with prognosis, and a higher level of isoform b was associated with a good response to anti–PD‐1 therapy. In conclusion, isoform b should be considered as a biomarker for clinical responsiveness to anti–PD‐1/PD‐L1 immunotherapy; isoform c had a prometastatic role and is a new potential target for CRC therapy.
Collapse
Affiliation(s)
- Chaoyan Wang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Menghan Weng
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Shuli Xia
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Min Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoyi Chen
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Jinlong Tang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hongfei Yu
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjie Sun
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China
| | - Maode Lai
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Hangzhou, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
164
|
Wang F, Wang S, Zhou Q. The Resistance Mechanisms of Lung Cancer Immunotherapy. Front Oncol 2020; 10:568059. [PMID: 33194652 PMCID: PMC7606919 DOI: 10.3389/fonc.2020.568059] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Immunotherapy has revolutionized lung cancer treatment in the past decade. By reactivating the host’s immune system, immunotherapy significantly prolongs survival in some advanced lung cancer patients. However, resistance to immunotherapy is frequent, which manifests as a lack of initial response or clinical benefit to therapy (primary resistance) or tumor progression after the initial period of response (acquired resistance). Overcoming immunotherapy resistance is challenging owing to the complex and dynamic interplay among malignant cells and the defense system. This review aims to discuss the mechanisms that drive immunotherapy resistance and the innovative strategies implemented to overcome it in lung cancer.
Collapse
Affiliation(s)
- Fen Wang
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing Zhou
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, Guangdong Lung Cancer Institute, South China University of Technology, Guangzhou, China
| |
Collapse
|
165
|
Understanding genetic determinants of resistance to immune checkpoint blockers. Semin Cancer Biol 2020; 65:123-139. [DOI: 10.1016/j.semcancer.2019.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
166
|
Tomela K, Pietrzak B, Schmidt M, Mackiewicz A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life (Basel) 2020; 10:life10100219. [PMID: 32992737 PMCID: PMC7600343 DOI: 10.3390/life10100219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies represent a standard treatment for metastatic melanoma. Although there are remarkable curative effects in responders to ICI therapy, up to 70% of melanoma patients show resistance to this treatment. This low response rate is caused by innate as well as acquired resistance, and some aspects of treatment resistance are still unknown. Growing evidence shows that gut microbiota and bacterial metabolites, such as short-chain fatty acids (SCFAs), affect the efficacy of immunotherapy. Various bacterial species have been indicated as potential biomarkers of anti-PD-1 or anti-CTLA-4 therapy efficacy in melanoma, next to biomarkers related to molecular and genetic tumor characteristics or the host immunological response, which are detected in patients' blood. Here, we review the current status of biomarkers of response to ICI melanoma therapies, their pre-treatment predictive values, and their utility as on-treatment monitoring tools in order to select a relevant personalized therapy on the basis of probability of the best clinical outcome.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
167
|
Yin Z, Fan J, Xu J, Wu F, Li Y, Zhou M, Liao T, Duan L, Wang S, Geng W, Jin Y. Immunoregulatory Roles of Extracellular Vesicles and Associated Therapeutic Applications in Lung Cancer. Front Immunol 2020; 11:2024. [PMID: 32983146 PMCID: PMC7483575 DOI: 10.3389/fimmu.2020.02024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer represents a fatal condition that has the highest morbidity and mortality among malignancies. The currently available treatments fall short of improving the survival and quality of life of late-stage lung cancer patients. Extracellular vesicles (EVs) secreted by tumors or immune cells transport proteins, lipids, and nucleic acids to other cells, thereby mediating immune regulation in the tumor microenvironment. The cargo carried by EVs vary by cellular state or extracellular milieu. So far, multiple studies have suggested that EVs from lung tumor cells (TEVs) or immune cells promote tumor progression mainly through suppressing antitumor immunity. However, modified or engineered EVs can be used as vaccines to elicit antitumor immunity. In addition, blocking the function of immunosuppressive EVs and using EVs carrying immunogenic medicine or EVs from certain immune cells also shows great potential in lung cancer treatment. To provide information for future studies on the role of EVs in lung cancer immunity, this review focus on the immunoregulatory role of EVs and associated treatment applications in lung cancer.
Collapse
Affiliation(s)
- Zhengrong Yin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Liao
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Geng
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
168
|
Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, Menon K, Chen JJ, Baek AE, Vardanyan A, Shahoei SH, Park S, Shapiro DJ, Nanjappa SG, Nelson ER. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 2020; 493:266-283. [PMID: 32861706 DOI: 10.1016/j.canlet.2020.08.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Karan Menon
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anna Vardanyan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Som G Nanjappa
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
169
|
Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020; 8:34. [PMID: 32864131 PMCID: PMC7450548 DOI: 10.1186/s40364-020-00209-0] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Although the clinical development of immune checkpoint inhibitors (ICIs) therapy has ushered in a new era of anti-tumor therapy, with sustained responses and significant survival advantages observed in multiple tumors, most patients do not benefit. Therefore, more and more attention has been paid to the identification and development of predictive biomarkers for the response of ICIs, and more in-depth and comprehensive understanding has been continuously explored in recent years. Predictive markers of ICIs efficacy have been gradually explored from the expression of intermolecular interactions within tumor cells to the expression of various molecules and cells in tumor microenvironment, and been extended to the exploration of circulating and host systemic markers. With the development of high-throughput sequencing and microarray technology, a variety of biomarker strategies have been deeply explored and gradually achieved the process from the identification of single marker to the development of multifactorial synergistic predictive markers. Comprehensive predictive-models developed by integrating different types of data based on different components of tumor-host interactions is the direction of future research and will have a profound impact in the field of precision immuno-oncology. In this review, we deeply analyze the exploration course and research progress of predictive biomarkers as an adjunctive tool to tumor immunotherapy in effectively identifying the efficacy of ICIs, and discuss their future directions in achieving precision immuno-oncology.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Zheng Lv
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Dongsheng Xu
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| |
Collapse
|
170
|
Bai R, Chen N, Li L, Du N, Bai L, Lv Z, Tian H, Cui J. Mechanisms of Cancer Resistance to Immunotherapy. Front Oncol 2020; 10:1290. [PMID: 32850400 PMCID: PMC7425302 DOI: 10.3389/fonc.2020.01290] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, based on the extensive development of preclinical animal studies and clinical trials, the efficacy, and mechanisms of immunotherapy have been fully explored. Significant and lasting clinical responses with immunotherapy provide a new breakthrough treatment for a variety of refractory cancer histologies, which gradually change the treatment pattern of tumors. However, although immune checkpoint inhibitor drugs are promising for achieving longer-term efficacy, their benefits in the overall population are still very low, such as low frequency of response in some common tumor types such as breast and prostate, and heterogeneity in the degree of response among different tumor lesions in the same patient, making immunotherapy with many limitations and challenges. Most patients do not respond to immunotherapy or inevitably develop resistance to treatment after a period of treatment, manifesting with primary resistance or acquired resistance who initially respond to treatment. The mechanisms of tumor immune resistance are very complex and involve multiple aspects such as genes, metabolism, inflammation, and abnormal neovascularization. Currently, many mechanisms of immunotherapy resistance have been characterized, and more continue to be uncovered. These efforts can improve the quality of medical care for cancer diagnosis and treatment, which improve the quality of life of patients, and finally lead to accurate individualized treatment. This review discusses mechanisms of cancer immunotherapy resistance including tumor-intrinsic factors and tumor-extrinsic factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
171
|
Song Z, Xu C, He Y, Li F, Wang W, Zhu Y, Gao Y, Ji M, Chen M, Lai J, Cheng W, Benes CH, Chen L. Simultaneous Detection of Gene Fusions and Base Mutations in Cancer Tissue Biopsies by Sequencing Dual Nucleic Acid Templates in Unified Reaction. Clin Chem 2020; 66:178-187. [PMID: 31810998 DOI: 10.1373/clinchem.2019.308833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND Targeted next-generation sequencing is a powerful method to comprehensively identify biomarkers for cancer. Starting material is currently either DNA or RNA for different variations, but splitting to 2 assays is burdensome and sometimes unpractical, causing delay or complete lack of detection of critical events, in particular, potent and targetable fusion events. An assay that analyzes both templates in a streamlined process is eagerly needed. METHODS We developed a single-tube, dual-template assay and an integrated bioinformatics pipeline for relevant variant calling. RNA was used for fusion detection, whereas DNA was used for single-nucleotide variations (SNVs) and insertion and deletions (indels). The reaction chemistry featured barcoded adaptor ligation, multiplexed linear amplification, and multiplexed PCR for noise reduction and novel fusion detection. An auxiliary quality control assay was also developed. RESULTS In a 1000-sample lung tumor cohort, we identified all major SNV/indel hotspots and fusions, as well as MET exon 14 skipping and several novel or rare fusions. The occurrence frequencies were in line with previous reports and were verified by Sanger sequencing. One noteworthy fusion event was HLA-DRB1-MET that constituted the second intergenic MET fusion ever detected in lung cancer. CONCLUSIONS This method should benefit not only a majority of patients carrying core actionable targets but also those with rare variations. Future extension of this assay to RNA expression and DNA copy number profiling of target genes such as programmed death-ligand 1 may provide additional biomarkers for immune checkpoint therapies.
Collapse
Affiliation(s)
- Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, PR China
| | - Chunwei Xu
- Department of Pathology, Fujian Cancer Hospital and Fujian Medical University, Fuzhou, Fujian Province, PR China
| | - Yunwei He
- HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan, Guangdong Province, PR China
| | - Wenxian Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, PR China
| | - Youcai Zhu
- Department of Thoracic Diagnosis and Treatment Center, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province, PR China
| | - Yanqiu Gao
- HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan, Guangdong Province, PR China
| | - Miao Chen
- HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China
| | - Jiajia Lai
- HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China
| | - Weimin Cheng
- Cancer Research Institute of Zhongshan City, Zhongshan, Guangdong Province, PR China
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Research Center and Harvard Medical School, Charlestown, MA
| | - Li Chen
- HeliTec Biotechnologies, Shenzhen, Guangdong Province, PR China
| |
Collapse
|
172
|
Mao R, Tan X, Xiao Y, Wang X, Wei Z, Wang J, Wang X, Zhou H, Zhang L, Shi Y. Ubiquitin C-terminal hydrolase L1 promotes expression of programmed cell death-ligand 1 in non-small-cell lung cancer cells. Cancer Sci 2020; 111:3174-3183. [PMID: 32539182 PMCID: PMC7469845 DOI: 10.1111/cas.14529] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 01/08/2023] Open
Abstract
Programmed cell death‐ligand 1 (PD‐L1) expressed on cancer cells can cause immune escape of non‐small‐cell lung cancer (NSCLC). Elucidation of the regulatory mechanisms of the PD‐L1 expression is a prerequisite for establishing new tumor immunotherapy strategies. Ubiquitin C‐terminal hydrolase L1 (UCHL1) is a regulator of cellular signaling transduction that is aberrantly expressed in NSCLC. However, it is not known whether UCHL1 regulates the expression of PD‐L1 in NSCLC cells. In the present study, we found that UCHL1 promotes the expression of PD‐L1 in NSCLC cell lines. In addition, UCHL1 expressed in NSCLC cells inhibited activation of Jurkat cells through upregulation of PD‐L1 expression in in vitro experiments. Moreover, UCHL1 upregulates PD‐L1 expression through facilitating activation of the AKT‐P65 signaling pathway. In conclusion, these results indicated that UCHL1 promoted PD‐L1 expression in NSCLC cells. This finding implied that inhibition of UCHL1 might suppress immune escape of NSCLC through downregulation of PD‐L1 expression in NSCLC cells.
Collapse
Affiliation(s)
- Rudi Mao
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Tan
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Ying Xiao
- Molecular Medicine Experimental Teaching Platform, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyu Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhixing Wei
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianing Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyan Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huaiyu Zhou
- Department of Parasitology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lining Zhang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
173
|
Wang YN, Lee HH, Hsu JL, Yu D, Hung MC. The impact of PD-L1 N-linked glycosylation on cancer therapy and clinical diagnosis. J Biomed Sci 2020; 27:77. [PMID: 32620165 PMCID: PMC7333976 DOI: 10.1186/s12929-020-00670-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 12/15/2022] Open
Abstract
N-linked glycosylation is one of the most abundant posttranslational modifications of membrane-bound proteins in eukaryotes and affects a number of biological activities, including protein biosynthesis, protein stability, intracellular trafficking, subcellular localization, and ligand-receptor interaction. Accumulating evidence indicates that cell membrane immune checkpoint proteins, such as programmed death-ligand 1 (PD-L1), are glycosylated with heavy N-linked glycan moieties in human cancers. N-linked glycosylation of PD-L1 maintains its protein stability and interaction with its cognate receptor, programmed cell death protein 1 (PD-1), and this in turn promotes evasion of T-cell immunity. Studies have suggested targeting PD-L1 glycosylation as a therapeutic option by rational combination of cancer immunotherapies. Interestingly, structural hindrance by N-glycan on PD-L1 in fixed samples impedes its recognition by PD-L1 diagnostic antibodies. Notably, the removal of N-linked glycosylation enhances PD-L1 detection in a variety of bioassays and more accurately predicts the therapeutic efficacy of PD-1/PD-L1 inhibitors, suggesting an important clinical implication of PD-L1 N-linked glycosylation. A detailed understanding of the regulatory mechanisms, cellular functions, and diagnostic limits underlying PD-L1 N-linked glycosylation could shed new light on the clinical development of immune checkpoint inhibitors for cancer treatment and deepen our knowledge of biomarkers to identify patients who would benefit the most from immunotherapy. In this review, we highlight the effects of protein glycosylation on cancer immunotherapy using N-linked glycosylation of PD-L1 as an example. In addition, we consider the potential impacts of PD-L1 N-linked glycosylation on clinical diagnosis. The notion of utilizing the deglycosylated form of PD-L1 as a predictive biomarker to guide anti-PD-1/PD-L1 immunotherapy is also discussed.
Collapse
Affiliation(s)
- Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Heng-Huan Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, 91 Hsueh-Shih Rd, North District, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
174
|
Imai Y, Chiba T, Kondo T, Kanzaki H, Kanayama K, Ao J, Kojima R, Kusakabe Y, Nakamura M, Saito T, Nakagawa R, Suzuki E, Nakamoto S, Muroyama R, Tawada A, Matsumura T, Nakagawa T, Kato J, Kotani A, Matsubara H, Kato N. Interferon-γ induced PD-L1 expression and soluble PD-L1 production in gastric cancer. Oncol Lett 2020; 20:2161-2168. [PMID: 32782533 PMCID: PMC7400993 DOI: 10.3892/ol.2020.11757] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
Programmed death-ligand 1 (PD-L1) plays an essential role in tumor cell escape from anti-tumor immunity in various types of cancer, including gastric cancer (GC). The present study investigated the intracellular and membrane-bound expression of PD-L1 in the GC cell lines MKN1, MKN74, KATO III and OCUM-1. Furthermore, soluble PD-L1 (sPD-L1) level in the supernatant of GC cells and the serum of patients with GC and healthy controls was determined by ELISA. Interferon (IFN)-γ treatment of cells resulted in increased cytoplasmic expression of PD-L1 in GC cells in a dose-dependent manner, except for MKN74 cells; however, there was no association between tumor necrosis factor-α treatment and enhanced PD-L1 expression. Concordant with these findings, results from flow cytometry analysis demonstrated that membrane-bound PD-L1 expression was also increased following GC cell treatment with IFN-γ in a dose-dependent manner. In addition, significant sPD-L1 overproduction was observed only in the culture supernatant of OCUM-1 cells. Serum level of sPD-L1 was significantly increased in patients with GC, in particular in stage IV patients, compared with healthy controls. In conclusion, the present study demonstrated that IFN-γ treatment increased the intracellular and membrane-bound PD-L1 expression in GC cells. In addition, sPD-L1 was detected not only in the supernatant of GC cells but also in the serum of patients with GC. Further investigation on the underlying mechanism of regulation of PD-L1 expression and sPD-L1 production is required.
Collapse
Affiliation(s)
- Yushi Imai
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tetsuhiro Chiba
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Takayuki Kondo
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Hiroaki Kanzaki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Kanayama
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Junjie Ao
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryuta Kojima
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Yuko Kusakabe
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Masato Nakamura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoko Saito
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Eiichiro Suzuki
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Shingo Nakamoto
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ryosuke Muroyama
- Department of Molecular Virology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Akinobu Tawada
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoaki Matsumura
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tomoo Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Jun Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Ai Kotani
- Division of Hematological Malignancy, Institute of Medical Sciences, Tokai University, Isehara, Kanagawa 259-1193, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Naoya Kato
- Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
175
|
Farina AR, Cappabianca L, Sebastiano M, Zelli V, Guadagni S, Mackay AR. Hypoxia-induced alternative splicing: the 11th Hallmark of Cancer. J Exp Clin Cancer Res 2020; 39:110. [PMID: 32536347 PMCID: PMC7294618 DOI: 10.1186/s13046-020-01616-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-induced alternative splicing is a potent driving force in tumour pathogenesis and progression. In this review, we update currents concepts of hypoxia-induced alternative splicing and how it influences tumour biology. Following brief descriptions of tumour-associated hypoxia and the pre-mRNA splicing process, we review the many ways hypoxia regulates alternative splicing and how hypoxia-induced alternative splicing impacts each individual hallmark of cancer. Hypoxia-induced alternative splicing integrates chemical and cellular tumour microenvironments, underpins continuous adaptation of the tumour cellular microenvironment responsible for metastatic progression and plays clear roles in oncogene activation and autonomous tumour growth, tumor suppressor inactivation, tumour cell immortalization, angiogenesis, tumour cell evasion of programmed cell death and the anti-tumour immune response, a tumour-promoting inflammatory response, adaptive metabolic re-programming, epithelial to mesenchymal transition, invasion and genetic instability, all of which combine to promote metastatic disease. The impressive number of hypoxia-induced alternative spliced protein isoforms that characterize tumour progression, classifies hypoxia-induced alternative splicing as the 11th hallmark of cancer, and offers a fertile source of potential diagnostic/prognostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Lucia Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
176
|
Bailly C, Vergoten G. Proposed mechanisms for the extracellular release of PD-L1 by the anticancer saponin platycodin D. Int Immunopharmacol 2020; 85:106675. [PMID: 32531711 DOI: 10.1016/j.intimp.2020.106675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Platycodin D (PTD) is an oleanane-type terpenoid saponin, isolated from the plant Platycodon grandiflorus. PTD displays multiple pharmacological effects, notably significant anticancer activities in vitro and in vivo. Recently, PTD was shown to trigger the extracellular release of the immunologic checkpoint glycoprotein PD-L1. The reduction of PD-L1 expression at the surface of cancer cells leads to interleukin-2 secretion and T cells activation. In the present review, we have analyzed the potential origin of this atypical PTD-induced PD-L1 release to propose a mechanistic explanation. For that, we considered all published scientific information, as well as the physicochemical characteristics of the natural product (a modeling analysis of PTD and the related saponin β -escin is provided). On this basis, we raise the hypothesis that the capacity of PTD to induce PD-L1 extracellular release derives from two main mechanisms: (i) a drug-promoted shedding of membrane PD-L1 by metalloproteases or more likely, (ii) a cholesterol binding-related effect, that would lead to perturbation of membrane raft domains, limiting the recruitment of proteins like TLR4. The drug-induced membrane effects (frequently observed with saponin drugs), associated with a production of interferon-γ,can favor the release of proteins like PD-L1 into membrane vesicles. Our analysis supports the hypothesis that PTD is a cholesterol-dependent lipid raft-modulating agent able to promote the formation of PD-L1 containing extracellular vesicles. The anticancer potential of PTD and its capacity to modulate the functioning of the PD-1/PD-L1 checkpoint should be further considered.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, U995 - LIRIC - Lille Inflammation Research International Center, ICPAL, 3 rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| |
Collapse
|
177
|
Kiyasu Y, Kawada K, Hirai H, Ogawa R, Hanada K, Masui H, Nishikawa G, Yamamoto T, Mizuno R, Itatani Y, Kai M, Taketo MM, Sakai Y. Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice. Cancer Lett 2020; 487:53-62. [PMID: 32473241 DOI: 10.1016/j.canlet.2020.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022]
Abstract
Tumor-stromal interaction is implicated in tumor progression. Although CCR1 expression in myeloid cells could be associated with pro-tumor activity, it remains elusive whether disruption of CCR1-mediated myeloid cell accumulation can suppress tumor progression. Here, we investigated the role of CCR1 depletion in myeloid cells in two syngeneic colorectal cancer mouse models: MC38, a transplanted tumor model and CMT93, a liver metastasis model. Both cells induced tumor accumulation of CCR1+ myeloid cells that express MMP2, MMP9, iNOS, and VEGF. Lack of the Ccr1 gene in host mice dramatically reduced MC38 tumor growth as well as CMT93 liver metastasis. To delineate the contribution of CCR1+ myeloid cells, we performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type or Ccr1-/- mice. Mice reconstituted with Ccr1-/- BM exhibited marked suppression of MC38 tumor growth and CMT93 liver metastasis, compared with control mice. Consistent with these results, administration of a neutralizing anti-CCR1 monoclonal antibody, KM5908, significantly suppressed MC38 tumor growth and CMT93 liver metastases. Our findings highlight the importance of the application of CCR1 blockade as a therapeutic strategy.
Collapse
Affiliation(s)
- Yoshiyuki Kiyasu
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Kenji Kawada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| | - Hideyo Hirai
- Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryotaro Ogawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Keita Hanada
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hideyuki Masui
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Gen Nishikawa
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takamasa Yamamoto
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Rei Mizuno
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yoshiro Itatani
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masayuki Kai
- Oncology Research Laboratories, Oncology R&D Unit, R&D Division, Kyowa Kirin Co., Ltd., 3-6-6 Asahi-machi, Machida, Tokyo, 194-8533, Japan
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshiharu Sakai
- Departments of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
178
|
Liu D, Zhao X, Tang A, Xu X, Liu S, Zha L, Ma W, Zheng J, Shi M. CRISPR screen in mechanism and target discovery for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188378. [PMID: 32413572 DOI: 10.1016/j.bbcan.2020.188378] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
CRISPR/Cas-based genetic perturbation screens have emerged as powerful tools for large-scale identification of new targets for cancer immunotherapy. Various strategies of CRISPR screen have been used for immune-oncology (IO) target discovery. The genomic sequences targeted by CRISPR/Cas system range from coding sequences to non-coding RNA/DNA, including miRNAs, LncRNAs, circRNAs, promoters, and enhancers, which may be potential targets for future pharmacological and therapeutic interventions. Rapid progresses have been witnessed in finding novel targets for enhancing tumor antigen presentation, sensitizing of tumor cells to immune-mediated cytotoxicity, and reinvigorating tumor-specific T cells by using CRISPR technologies. In combination with other strategies, the detailed characteristics of the targets for immunotherapy have been obtained by CRISPR screen. In this review, we present an overview of recent progresses in the development of CRISPR-based screens for IO target identification and discuss the challenges and possible solutions in this rapidly growing field.
Collapse
Affiliation(s)
- Dan Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Xuan Zhao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Anqun Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Xiyue Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Shuci Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li Zha
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Wen Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Ming Shi
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| |
Collapse
|
179
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
180
|
Pistillo MP, Carosio R, Banelli B, Morabito A, Mastracci L, Ferro P, Varesano S, Venè R, Poggi A, Roncella S. IFN-γ upregulates membranous and soluble PD-L1 in mesothelioma cells: potential implications for the clinical response to PD-1/PD-L1 blockade. Cell Mol Immunol 2020; 17:410-411. [PMID: 31217525 PMCID: PMC7109117 DOI: 10.1038/s41423-019-0245-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Maria Pia Pistillo
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Roberta Carosio
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Barbara Banelli
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Anna Morabito
- Tumor Epigenetics Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Luca Mastracci
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132 Genoa, Italy
- Anatomic Pathology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Paola Ferro
- Histopathology and Cytopathology Division, Azienda Sanitaria Locale 5, 19121 La Spezia, Italy
| | - Serena Varesano
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvio Roncella
- AIL, Associazione italiana contro le leucemie, linfomi e mieloma, 19121 La Spezia, Italy
| |
Collapse
|
181
|
p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene 2020; 39:3939-3951. [PMID: 32203167 PMCID: PMC7210073 DOI: 10.1038/s41388-020-1270-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023]
Abstract
Blockade of programmed death-ligand 1 (PD-L1) by therapeutic antibodies has shown to be a promising strategy in cancer therapy, yet clinical response in many types of cancer, including prostate cancer (PCa), is limited. Tumor cells secrete PD-L1 through exosomes or splice variants, which has been described as a new mechanism for the resistance to PD-L1 blockade therapy in multiple cancers, including PCa. This suggests that cutting off the secretion or expression of PD-L1 might improve the response rate of PD-L1 blockade therapy in PCa treatment. Here we report that p300/CBP inhibition by a small molecule p300/CBP inhibitor dramatically enhanced the efficacy of PD-L1 blockade treatment in a syngeneic model of PCa by blocking both the intrinsic and interferon gamma (IFN-γ)-induced PD-L1 expression. Mechanistically, p300/CBP could be recruited to the promoter of CD274 (encoding PD-L1) by the transcription factor IRF-1, which induced the acetylation of Histone H3 at CD274 promoter followed by the transcription of CD274. A485, a p300/CBP inhibitor, abrogated this process and cut off the secretion of exosomal PD-L1 by blocking the transcription of CD274, which combined with the anti-PD-L1 antibody to reactivate T cells function for tumor attack. This finding reports a new mechanism of how cancer cells regulate PD-L1 expression through epigenetic factors and provides a novel therapeutic approach to enhance the efficacy of immune checkpoint inhibitors treatment.
Collapse
|
182
|
Wang Y, Bao Y, Zhang S, Wang Z. Splicing dysregulation in cancer: from mechanistic understanding to a new class of therapeutic targets. SCIENCE CHINA-LIFE SCIENCES 2020; 63:469-484. [PMID: 32086672 DOI: 10.1007/s11427-019-1605-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
RNA splicing dysregulation is widespread in cancer. Accumulating evidence demonstrates that splicing defects resulting from splicing dysregulation play critical roles in cancer pathogenesis and can serve as new biomarkers and therapeutic targets for cancer intervention. These findings have greatly deepened the mechanistic understandings of the regulation of alternative splicing in cancer cells, leading to rapidly growing interests in targeting cancer-related splicing defects as new therapies. Here we summarize the current research progress on splicing dysregulation in cancer and highlight the strategies available or under development for targeting RNA splicing defects in cancer.
Collapse
Affiliation(s)
- Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yufang Bao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Sirui Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
183
|
Yanagitani N, Uchibori K, Koike S, Tsukahara M, Kitazono S, Yoshizawa T, Horiike A, Ohyanagi F, Tambo Y, Nishikawa S, Fujita N, Katayama R, Nishio M. Drug resistance mechanisms in Japanese anaplastic lymphoma kinase-positive non-small cell lung cancer and the clinical responses based on the resistant mechanisms. Cancer Sci 2020; 111:932-939. [PMID: 31961053 PMCID: PMC7060465 DOI: 10.1111/cas.14314] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
The treatment for anaplastic lymphoma kinase (ALK)-positive lung cancer has been rapidly evolving since the introduction of several ALK tyrosine kinase inhibitors (ALK-TKI) in clinical practice. However, the acquired resistance to these drugs has become an important issue. In this study, we collected a total of 112 serial biopsy samples from 32 patients with ALK-positive lung cancer during multiple ALK-TKI treatments to reveal the resistance mechanisms to ALK-TKI. Among 32 patients, 24 patients received more than two ALK-TKI. Secondary mutations were observed in 8 of 12 specimens after crizotinib failure (G1202R, G1269A, I1171T, L1196M, C1156Y and F1245V). After alectinib failure, G1202R and I1171N mutations were detected in 7 of 15 specimens. G1202R, F1174V and G1202R, and P-gp overexpression were observed in 3 of 7 samples after ceritinib treatment. L1196M + G1202R, a compound mutation, was detected in 1 specimen after lorlatinib treatment. ALK-TKI treatment duration was longer in the on-target treatment group than that in the off-target group (13.0 vs 1.2 months). In conclusion, resistance to ALK-TKI based on secondary mutation in this study was similar to that in previous reports, except for crizotinib resistance. Understanding the appropriate treatment matching resistance mechanisms contributes to the efficacy of multiple ALK-TKI treatment strategies.
Collapse
Affiliation(s)
- Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ken Uchibori
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sumie Koike
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mika Tsukahara
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoru Kitazono
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takahiro Yoshizawa
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Atsushi Horiike
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Fumiyoshi Ohyanagi
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yuichi Tambo
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shingo Nishikawa
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryohei Katayama
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
184
|
The importance of exosomal PDL1 in tumour immune evasion. Nat Rev Immunol 2020; 20:209-215. [DOI: 10.1038/s41577-019-0264-y] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/01/2023]
|
185
|
Aggen DH, Drake CG, Rini BI. Targeting PD-1 or PD-L1 in Metastatic Kidney Cancer: Combination Therapy in the First-Line Setting. Clin Cancer Res 2020; 26:2087-2095. [PMID: 31948999 DOI: 10.1158/1078-0432.ccr-19-3323] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 11/16/2022]
Abstract
Recent FDA approvals of regimens targeting programmed death 1 (PD-1) in combination with anti-CTLA-4 or with VEGF tyrosine kinase inhibitors are reshaping front-line therapy for metastatic kidney cancer. In parallel, therapeutics specific for programmed death ligand 1 (PD-L1), one of the two major ligands for PD-1, are under continued investigation. Surprisingly, not all PD-1 and PD-L1 agents lead to similar clinical outcomes, potentially due to biological differences in the cellular expression and regulation of these targets. Here, we review current clinical data on combination immune checkpoint inhibitor therapy in metastatic kidney cancer and discuss the relevant biology of PD-1 and PD-L1. The design of future rational combination therapy trials in metastatic renal cell carcinoma will rely upon an understanding of this biology, along with an evolving understanding of immune cell populations and their functional states in the tumor microenvironment.
Collapse
Affiliation(s)
- David H Aggen
- Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Charles G Drake
- Herbert Irving Cancer Center, New York-Presbyterian/Columbia University Medical Center, New York, New York
| | - Brian I Rini
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
186
|
Dieu-Nosjean MC, Caux C. [The biology of PD1 and CTLA-4 as immunotherapeutic targets and the issue of biomarkers]. Med Sci (Paris) 2020; 35:957-965. [PMID: 31903900 DOI: 10.1051/medsci/2019192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The identification in the 1990's of the role of CTLA-4 and PD-1, two inhibitory receptors of T lymphocytes, in the control of the anti-tumor immune responses, led to the awarding of the Nobel Prize in Physiology or Medicine in 2018 to Dr. James Allison and Dr. Tasuku Honjo. These inhibitory receptors called immune checkpoints are essential to prevent any deleterious impact of on-going immune responses against pathogens or cancer cells on healthy tissues and, hence, guarantee the integrity of the host. These major discoveries have led James Allison and Tasuku Honjo to develop anti-CTLA-4 and anti-PD1/L-1 antibodies, respectively, in order to switch off these immune "brakes", making it possible to efficiently attack tumor cells. CTLA-4 regulates the amplitude of the early T-cell activation and inhibits the activity of CD28, a major activating co-receptor expressed by T cells. PD-1 is expressed by memory and effector T lymphocytes and is involved in the regulation of chronically activated cells, as observed during inflammatory processes. Immunotherapeutic treatments resulting from these discoveries have now a major place in the arsenal of anti-cancer therapies. This review presents firstly a synthesis of knowledge on CTLA-4, PD-1 and their ligands, their mechanisms of action and regulation and, secondly, an overview of biomarkers that have been associated with clinical response to anti-PD-1/PD-L1 and anti-CTLA-4 antibody therapies.
Collapse
Affiliation(s)
- Marie-Caroline Dieu-Nosjean
- Sorbonne Université UMRS1135, Inserm U1135, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Faculté de Médecine Sorbonne Université, Paris, France
| | - Christophe Caux
- UMR Inserm 1052, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
187
|
Chamoto K, Hatae R, Honjo T. Current issues and perspectives in PD-1 blockade cancer immunotherapy. Int J Clin Oncol 2020; 25:790-800. [PMID: 31900651 PMCID: PMC7192862 DOI: 10.1007/s10147-019-01588-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
Programmed cell death 1 (PD-1) signal receptor blockade has revolutionized the field of cancer therapy. Despite their considerable potential for treating certain cancers, drugs targeting PD-1 still present two main drawbacks: the substantial number of unresponsive patients and/or patients showing recurrences, and side effects associated with the autoimmune response. These drawbacks highlight the need for further investigation of the mechanisms underlying the therapeutic effects, as well as the need to develop novel biomarkers to predict the lack of treatment response and to monitor potential adverse events. Combination therapy is a promising approach to improve the efficacy of PD-1 blockade therapy. Considering the increasing number of patients with cancer worldwide, solving the above issues is central to the field of cancer immunotherapy. In this review, we discuss these issues and clinical perspectives associated with PD-1 blockade cancer immunotherapy.
Collapse
Affiliation(s)
- Kenji Chamoto
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ryusuke Hatae
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
188
|
Marone G, Gambardella AR, Mattei F, Mancini J, Schiavoni G, Varricchi G. Basophils in Tumor Microenvironment and Surroundings. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:21-34. [PMID: 32036602 DOI: 10.1007/978-3-030-35723-8_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basophils represent approximately 1% of human peripheral blood leukocytes. Their effector functions were initially appreciated in the 1970s when basophils were shown to express the high-affinity receptor (FcεRI) for IgE and to release proinflammatory mediators (histamine and cysteinyl leukotriene C4) and immunoregulatory cytokines (i.e., IL-4 and IL-13). Basophils in the mouse were subsequently identified and immunologically characterized. There are many similarities but also several differences between human and mouse basophils. Basophil-deficient mice have enabled to examine the in vivo roles of basophils in several immune disorders and, more recently, in tumor immunity. Activated human basophils release several proangiogenic molecules such as vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor-B (VEGF-B), CXCL8, angiopoietin 1 (ANGPT1), and hepatocyte growth factor (HGF). On the other side, basophils can exert anti-tumorigenic effects by releasing granzyme B, TNF-α, and histamine. Circulating basophils have been associated with certain human hematologic (i.e., chronic myeloid leukemia) and solid tumors. Basophils have been found in tumor microenvironment (TME) of human lung adenocarcinoma and pancreatic cancer. Basophils played a role in melanoma rejection in basophil-deficient mouse model. By contrast, basophils appear to play a pro-tumorigenic role in experimental and human pancreatic cancer. In conclusion, the roles of basophils in experimental and human cancers have been little investigated and remain largely unknown. The elucidation of the roles of basophils in tumor immunity will demand studies on increasing complexity beyond those assessing basophil density and their microlocalization in TME. There are several fundamental questions to be addressed in experimental models and clinical studies before we understand whether basophils are an ally, adversary, or even innocent bystanders in cancers.
Collapse
Affiliation(s)
- Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Azienda Ospedaliera dei Colli-Monaldi Hospital Pharmacy, Naples, Italy
| | | | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Gilda Varricchi
- Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.
- WAO Center of Excellence, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy.
| |
Collapse
|
189
|
Mechanisms of Resistance to Checkpoint Blockade Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1248:83-117. [PMID: 32185708 DOI: 10.1007/978-981-15-3266-5_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Immune checkpoint blockades (ICBs), as a major breakthrough in cancer immunotherapy, target CTLA-4 and the PD-1/PD-L1 axis and reinvigorate anti-tumor activities by disrupting co-inhibitory T-cell signaling. With unprecedented performance in clinical trials, ICBs have been approved by FDA for the treatment of malignancies such as melanoma, non-small-cell lung cancer, colorectal cancer, and hepatocellular carcinoma. However, while ICBs are revolutionizing therapeutic algorithms for cancers, the frequently observed innate, adaptive or acquired drug resistance remains an inevitable obstacle to a durable antitumor activity, thus leading to non-response or tumor relapse. Researches have shown that resistance could occur at each stage of the tumor's immune responses. From the current understanding, the molecular mechanisms for the resistance of ICB can be categorized into the following aspects: 1. Tumor-derived mechanism, 2. T cell-based mechanism, and 3. Tumor microenvironment-determined resistance. In order to overcome resistance, potential therapeutic strategies include enhancing antigen procession and presentation, reinforcing the activity and infiltration of T cells, and destroying immunosuppression microenvironment. In future, determining the driving factors behind ICB resistance by tools of precision medicine may maximize clinical benefits from ICBs. Moreover, efforts in individualized dosing, intermittent administration and/or combinatory regimens have opened new directions for overcoming ICB resistance.
Collapse
|
190
|
Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San Nicolas M. WNT Signaling in Tumors: The Way to Evade Drugs and Immunity. Front Immunol 2019; 10:2854. [PMID: 31921125 PMCID: PMC6934036 DOI: 10.3389/fimmu.2019.02854] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
WNT/β-catenin signaling is involved in many physiological processes. Its implication in embryonic development, cell migration, and polarization has been shown. Nevertheless, alterations in this signaling have also been related with pathological events such as sustaining and proliferating the cancer stem cell (CSC) subset present in the tumor bulk. Related with this, WNT signaling has been associated with the maintenance, expansion, and epithelial-mesenchymal transition of stem cells, and furthermore with two distinctive features of this tumor population: therapeutic resistance (MDR, multidrug resistance) and immune escape. These mechanisms are developed and maintained by WNT activation through the transcriptional control of the genes involved in such processes. This review focuses on the description of the best known WNT pathways and the molecules involved in them. Special attention is given to the WNT cascade proteins deregulated in tumors, which have a decisive role in tumor survival. Some of these proteins function as extrusion pumps that, in the course of chemotherapy, expel the drugs from the cells; others help the tumoral cells hide from the immune effector mechanisms. Among the WNT targets involved in drug resistance, the drug extrusion pump MDR-1 (P-GP, ABCB1) and the cell adhesion molecules from the CD44 family are highlighted. The chemokine CCL4 and the immune checkpoint proteins CD47 and PD-L1 are included in the list of WNT target molecules with a role in immunity escape. This pathway should be a main target in cancer therapy as WNT signaling activation is essential for tumor progression and survival, even in the presence of the anti-tumoral immune response and/or antineoplastic drugs. The appropriate design and combination of anti-tumoral strategies, based on the modulation of WNT mediators and/or protein targets, could negatively affect the growth of tumoral cells, improving the efficacy of these types of therapies.
Collapse
Affiliation(s)
- Elena Martin-Orozco
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain.,Biomedical Research Institute of Murcia (IMIB), ARADyAL, Murcia, Spain
| | - Ana Sanchez-Fernandez
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Irene Ortiz-Parra
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Ayala-San Nicolas
- Department of Biochemistry and Molecular Biology (B) and Immunology, School of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
191
|
Ng KW, Attig J, Young GR, Ottina E, Papamichos SI, Kotsianidis I, Kassiotis G. Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. eLife 2019; 8:e50256. [PMID: 31729316 PMCID: PMC6877088 DOI: 10.7554/elife.50256] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Immune regulation is a finely balanced process of positive and negative signals. PD-L1 and its receptor PD-1 are critical regulators of autoimmune, antiviral and antitumoural T cell responses. Although the function of its predominant membrane-bound form is well established, the source and biological activity of soluble PD-L1 (sPD-L1) remain incompletely understood. Here, we show that sPD-L1 in human healthy tissues and tumours is produced by exaptation of an intronic LINE-2A (L2A) endogenous retroelement in the CD274 gene, encoding PD-L1, which causes omission of the transmembrane domain and the regulatory sequence in the canonical 3' untranslated region. The alternatively spliced CD274-L2A transcript forms the major source of sPD-L1 and is highly conserved in hominids, but lost in mice and a few related species. Importantly, CD274-L2A-encoded sPD-L1 lacks measurable T cell inhibitory activity. Instead, it functions as a receptor antagonist, blocking the inhibitory activity of PD-L1 bound on cellular or exosomal membranes.
Collapse
Affiliation(s)
- Kevin W Ng
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - Jan Attig
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - George R Young
- Retrovirus-Host Interactions, The Francis Crick InstituteLondonUnited Kingdom
| | - Eleonora Ottina
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
| | - Spyros I Papamichos
- Department of HaematologyDemocritus University of Thrace Medical SchoolAlexandroupolisGreece
| | - Ioannis Kotsianidis
- Department of HaematologyDemocritus University of Thrace Medical SchoolAlexandroupolisGreece
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick InstituteLondonUnited Kingdom
- Department of MedicineFaculty of Medicine, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
192
|
Abu Hejleh T, Furqan M, Ballas Z, Clamon G. The clinical significance of soluble PD-1 and PD-L1 in lung cancer. Crit Rev Oncol Hematol 2019; 143:148-152. [DOI: 10.1016/j.critrevonc.2019.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/31/2019] [Accepted: 08/30/2019] [Indexed: 01/09/2023] Open
|
193
|
Abstract
The engagement of programmed cell death protein 1 (PD-1; encoded by the PDCD1 gene) receptor expressed on activated T cells and its ligand, programmed death-ligand 1 (PD-L1; encoded by the CD274 gene), is a major co-inhibitory checkpoint signaling that controls T cell activities. Various types of cancers express high levels of PD-L1 and exploit PD-L1/PD-1 signaling to evade T cell immunity. Blocking the PD-L1/PD-1 pathway has consistently shown remarkable anti-tumor effects in patients with advanced cancers and is recognized as the gold standard for developing new immune checkpoint blockade (ICB) and combination therapies. However, the response rates of anti-PD-L1 have been limited in several solid tumors. Therefore, furthering our understanding of the regulatory mechanisms of PD-L1 can bring substantial benefits to patients with cancer by improving the efficacy of current PD-L1/PD-1 blockade or other ICBs. In this review, we provide current knowledge of PD-L1 regulatory mechanisms at the transcriptional, posttranscriptional, post-translational, and extracellular levels, and discuss the implications of these findings in cancer diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Jong-Ho Cha
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
| | - Li-Chuan Chan
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Wei Li
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L Hsu
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
194
|
Xie F, Xu M, Lu J, Mao L, Wang S. The role of exosomal PD-L1 in tumor progression and immunotherapy. Mol Cancer 2019; 18:146. [PMID: 31647023 PMCID: PMC6813045 DOI: 10.1186/s12943-019-1074-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1), a type I transmembrane protein, binds to its receptor PD-1 to suppress the activation of T cells, thereby maintaining immunological homeostasis. In contrast, tumor cells highly express PD-L1, which binds to receptor PD-1 expressed on activated T cells, leading to immune escape. Anti-PD-1/PD-L1 immune checkpoint therapy blocks the binding of PD-1/PD-L1 to reinvigorate the exhausted T cells, thereby inhibiting tumor growth. Exosomes are biologically active lipid-bilayer nanovesicles secreted by various cell types that mediate intercellular signal communication. Numerous studies have shown that tumor cells are able to promote tumor epithelial-mesenchymal transition, angiogenesis, and immune escape by releasing exosomes. Recent studies imply that tumor-derived exosomes could carry PD-L1 in the same membrane topology as the cell surface, thereby resisting immune checkpoint therapy. In this review, we mainly discuss the role of exosomes in the regulation of tumor progression and the potential resistance mechanism to immunotherapy via exosomal PD-L1. In addition, we propose that exosomal PD-L1 may have the potential to be a target to overcome resistance to anti-PD-1/PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Feiting Xie
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mengxue Xu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jian Lu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, 212013, China. .,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
195
|
Zhang M, Liu K, Wang M. Development of cancer immunotherapy based on PD-1/PD-L1 pathway blockade. RSC Adv 2019; 9:33903-33911. [PMID: 35528929 PMCID: PMC9073714 DOI: 10.1039/c9ra04590b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022] Open
Abstract
Programmed death receptor 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy has achieved considerable success in various tumours. However, only a fraction of patients benefit from its clinical application, and some patients might be suffer from tumour resistance against PD-1/PD-L1 blockade therapy after the original response. In this review, we summarized the main reasons that caused the low response rate of PD-/PD-L1 blockade therapy: firstly, the off-target of PD-1/PD-L1 blocking agents, which is also the main factor of the side effect of autoimmune disorders; secondly, the insufficient infiltration of T cells in a tumour microenvironment; thirdly, the low immunogenicity of tumor cells; fourth, other immunosuppressive components impairing the therapeutic efficacy of the immunotherapy based on the PD-/PD-L1 blockade, and introducing some updated the delivery system of PD-1/PD-L1 blocking agents and the combination therapy based on PD-1/PD-L1 inhibitors and other therapeutics that can complement and promote each other to achieve improved immune response.
Collapse
Affiliation(s)
- Min Zhang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Kehai Liu
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University 999 Hucheng Ring Road Shanghai 201306 China
- University Hong Kong, School of Biological Sciences Pokfulam Road Hong Kong 999077 China
| |
Collapse
|
196
|
Terlizzi M, Colarusso C, Pinto A, Sorrentino R. Drug resistance in non-small cell lung Cancer (NSCLC): Impact of genetic and non-genetic alterations on therapeutic regimen and responsiveness. Pharmacol Ther 2019; 202:140-148. [DOI: 10.1016/j.pharmthera.2019.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
|
197
|
Costantini A, Takam Kamga P, Dumenil C, Chinet T, Emile JF, Giroux Leprieur E. Plasma Biomarkers and Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: New Tools for Better Patient Selection? Cancers (Basel) 2019; 11:cancers11091269. [PMID: 31470546 PMCID: PMC6769436 DOI: 10.3390/cancers11091269] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for patients with non-small cell lung cancer (NSCLC). Although some patients can experience important response rates and improved survival, many others do not benefit from ICIs developing hyper-progressive disease or immune-related adverse events. This underlines the need to select biomarkers for ICIs use in order to better select patients. There is currently no universally validated robust biomarker for daily use of ICIs. Programmed death-ligand 1 (PD-L1) or tumor mutational burden (TMB) are sometimes used but still have several limitations. Plasma biomarkers are a promising approach in ICI treatment. This review will describe the development of novel plasma biomarkers such as soluble proteins, circulating tumor DNA (ctDNA), blood TMB, and blood microbiome in NSCLC patients treated with ICIs and their potential use in predicting response and toxicity.
Collapse
Affiliation(s)
- Adrien Costantini
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Paul Takam Kamga
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Coraline Dumenil
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Thierry Chinet
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
| | - Jean-François Emile
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France
- Department of Pathology, APHP-Hôpital Ambroise Pare, 92100 Boulogne-Billancourt, France
| | - Etienne Giroux Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP-Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France.
- EA 4340 BECCOH, UVSQ, Université Paris Saclay, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
198
|
Shergold AL, Millar R, Nibbs RJ. Understanding and overcoming the resistance of cancer to PD-1/PD-L1 blockade. Pharmacol Res 2019; 145:104258. [DOI: 10.1016/j.phrs.2019.104258] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
|
199
|
García-Aranda M, Redondo M. Targeting Protein Kinases to Enhance the Response to anti-PD-1/PD-L1 Immunotherapy. Int J Mol Sci 2019; 20:E2296. [PMID: 31075880 PMCID: PMC6540309 DOI: 10.3390/ijms20092296] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
The interaction between programmed cell death protein (PD-1) and its ligand (PD-L1) is one of the main pathways used by some tumors to escape the immune response. In recent years, immunotherapies based on the use of antibodies against PD-1/PD-L1 have been postulated as a great promise for cancer treatment, increasing total survival compared to standard therapy in different tumors. Despite the hopefulness of these results, a significant percentage of patients do not respond to such therapy or will end up evolving toward a progressive disease. Besides their role in PD-L1 expression, altered protein kinases in tumor cells can limit the effectiveness of PD-1/PD-L1 blocking therapies at different levels. In this review, we describe the role of kinases that appear most frequently altered in tumor cells and that can be an impediment for the success of immunotherapies as well as the potential utility of protein kinase inhibitors to enhance the response to such treatments.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol. Autovía A7, km 187. Marbella, 29603 Málaga, Spain.
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), 28029 Madrid, Spain.
- Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain.
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Universidad de Málaga, Campus Universitario de Teatinos, 29010 Málaga, Spain.
| |
Collapse
|