151
|
Charif N, Li Y, Targa L, Zhang L, Ye J, Li Y, Stoltz J, Han H, de Isla N. Aging of bone marrow mesenchymal stromal/stem cells: Implications on autologous regenerative medicine. Biomed Mater Eng 2017; 28:S57-S63. [DOI: 10.3233/bme-171624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- N. Charif
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - Y.Y. Li
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - L. Targa
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| | - L. Zhang
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche Biomedicale, Calmette Hospital, Kunming, China
| | - J.S. Ye
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche Biomedicale, Calmette Hospital, Kunming, China
| | - Y.P. Li
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- College Médical, Université de Wuhan, Wuhan, Chine
| | - J.F. Stoltz
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- CHRU de Nancy, Unité de Thérapie Cellulaire et Tissulaire (UTCT) (FR CNRS-INSERM-UL-CHU), Vandoeuvre-Lès-Nancy, France
| | - H.Z. Han
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
- Centre de Recherche sur les cellules souches, Beijing et Tianjin, China
| | - N. de Isla
- CNRS-UL, UMR 7365, IMoPA, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
- CNRS – GDRI 0851, France-Chine ≪ Stem cells and Regenerative medicine ≫
| |
Collapse
|
152
|
Li J, Chen J, Chen Z, Yang H, Hou K. [Effect of pregnant rat adipose-derived stem cells on repair of acute liver injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:357-362. [PMID: 29806268 DOI: 10.7507/1002-1892.201610076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To assess the effect of pregnant rat adipose-derived stem cells (ADSCs) on repair of acute liver injury. Methods ADSCs were isolated from 18-week pregnant Sprague Dawley rats and were identified by flow cytometry. Twenty Sprague Dawley rats were randomly divided into groups A, B, C, and D ( n=5); rats in group A were not treated as normal controls; rats in groups B, C, and D were injected intraperitoneally with CCl 4 to establish the acute liver injury model. At 2 hours after modeling, DPBS, 0.1 mL normal rat ADSCs (2×10 6cells/mL), and pregnant rat ADSCs (2×10 6cells/mL) were injected into the spleen in groups A, C, and D respectively; rats in group B was not treated. After 7 days, total bilirubin (TBIL), alanine aminotransferase (ALT), aspartic acid transaminase (AST), albumin (ALB), and total protein (TP) in serum were measured. The liver tissue sections were stained with HE. The expressions of Ki67, alpha-fetoprotein (AFP), and ALB were measured by immunohistochemistry. Results The serum levels of TBIL, ALT, and AST in group B were significantly higher than those in groups A, C, and D ( P<0.05), but ALB and TP were significantly lower than those in groups A, C, and D ( P<0.05). The levels of TBIL, ALT, and AST were significantly higher in groups C and D than group A, and in group C than group D ( P<0.05). There was no significant difference in serum levels of ALB among groups A, C, and D ( P>0.05). The serum level of TP in groups C and D was significantly lower than that in group A ( P<0.05), but no significant difference was found between group C and group D ( P>0.05). HE staining showed that the liver tissue of group A had clear structure; the cells arranged neatly with uniform size. The hepatocytes in group B showed obvious edema, disorderly arrangement, dot necrosis in liver lobules, and diffuse infiltration of inflammatory cells. In groups C and D, the inflammation and hepatocellular necrosis were obviously reduced when compared with group B, and the number of vacuoles caused by dilation of mitochondria and rough endoplasmic reticulum was decreased; especially in group D, improvement of liver injury was more effective. The Ki67 positive cell rate was significantly higher in groups C and D than groups A and B ( P<0.05), in group B than group A ( P<0.05), and in group D than group C ( P<0.05). There was no expression of AFP in groups A and B, but positive expression was observed in groups C and D, and AFP positive cell rate of group D was significantly higher than that of group C ( t=3.006, P=0.017). ALB expression was significantly higher in groups C and D than groups A and B ( P<0.05), and in group D than group C ( P<0.05). Conclusion Pregnant rat ADSCs could promote repair of liver injury induced by CCl 4.
Collapse
Affiliation(s)
- Junnan Li
- Department of Bone and Trauma Surgery, the Fourth Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Jiayong Chen
- Department of Emergency Medicine, the Second Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000,
| | - Zhong Chen
- Department of Bone and Trauma Surgery, the Fourth Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Hongchang Yang
- Department of Bone and Trauma Surgery, the Fourth Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| | - Kaiyu Hou
- Department of Bone and Trauma Surgery, the Fourth Affiliated Hospital of Kunming Medical University, Kunming Yunnan, 650000, P.R.China
| |
Collapse
|
153
|
Reduced aldehyde dehydrogenase expression in preeclamptic decidual mesenchymal stem/stromal cells is restored by aldehyde dehydrogenase agonists. Sci Rep 2017; 7:42397. [PMID: 28205523 PMCID: PMC5304324 DOI: 10.1038/srep42397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
High resistance to oxidative stress is a common feature of mesenchymal stem/stromal cells (MSC) and is associated with higher cell survival and ability to respond to oxidative damage. Aldehyde dehydrogenase (ALDH) activity is a candidate “universal” marker for stem cells. ALDH expression was significantly lower in decidual MSC (DMSC) isolated from preeclamptic (PE) patients. ALDH gene knockdown by siRNA transfection was performed to create a cell culture model of the reduced ALDH expression detected in PE-DMSC. We showed that ALDH activity in DMSC is associated with resistance to hydrogen peroxide (H2O2)-induced toxicity. Our data provide evidence that ALDH expression in DMSC is required for cellular resistance to oxidative stress. Furthermore, candidate ALDH activators were screened and two of the compounds were effective in upregulating ALDH expression. This study provides a proof-of-principle that the restoration of ALDH activity in diseased MSC is a rational basis for a therapeutic strategy to improve MSC resistance to cytotoxic damage.
Collapse
|
154
|
Wu M, Gu L, Gong Q, Sun J, Ma Y, Wu H, Wang Y, Guo G, Li X, Zhu H. Strategies to reduce the intracellular effects of iron oxide nanoparticle degradation. Nanomedicine (Lond) 2017; 12:555-570. [PMID: 28181458 DOI: 10.2217/nnm-2016-0328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have a significant self-renewal capacity and can differentiate into a variety of cell types. Cell labeling is crucial as it is difficult to detect cell fate after transplantation in vivo. MSCs labeled with iron oxide nanoparticles (IONPs), which can be tracked by MRI, have tremendous potential in regenerative medicine and oncological research. As a part of nanoparticle, the iron oxide core is a key aspect that can exhibit adverse or beneficial effects on MSCs labeled for tracking. Some IONPs exhibit adverse effects, such as cytotoxicity and apoptosis, while other IONPs exhibit beneficial functions that can promote both MSC proliferation and homing efficiency. This review reveals the cytotoxic mechanisms and potential functions of the iron oxide core of IONPs in cell labeling as well as strategies for minimizing the intracellular effects of IONPs.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Gu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jiayu Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yiqi Ma
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haoxing Wu
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yu Wang
- College of Life Science, Sichuan Normal University, Chengdu 610068, China
| | - Gang Guo
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xue Li
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
155
|
DNA damage induced by Strontium-90 exposure at low concentrations in mesenchymal stromal cells: the functional consequences. Sci Rep 2017; 7:41580. [PMID: 28134299 PMCID: PMC5278504 DOI: 10.1038/srep41580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
90Sr is one of the radionuclides released after nuclear accidents that can significantly impact human health in the long term. 90Sr accumulates mostly in the bones of exposed populations. Previous research has shown that exposure induces changes in bone physiology both in humans and in mice. We hypothesize that, due to its close location with bone marrow stromal cells (BMSCs), 90Sr could induce functional damage to stromal cells that may explain these biological effects due to chronic exposure to 90Sr. The aim of this work was to verify this hypothesis through the use of an in vitro model of MS5 stromal cell lines exposed to 1 and 10 kBq.mL-1 of 90Sr. Results indicated that a 30-minute exposure to 90Sr induced double strand breaks in DNA, followed by DNA repair, senescence and differentiation. After 7 days of exposure, MS5 cells showed a decreased ability to proliferate, changes in cytokine expression, and changes in their ability to support hematopoietic progenitor proliferation and differentiation. These results demonstrate that chronic exposure to a low concentration of 90Sr can induce functional changes in BMSCs that in turn may explain the health effects observed in following chronic 90Sr exposure.
Collapse
|
156
|
Subramani B, Subbannagounder S, Ramanathanpullai C, Palanivel S, Ramasamy R. Impaired redox environment modulates cardiogenic and ion-channel gene expression in cardiac-resident and non-resident mesenchymal stem cells. Exp Biol Med (Maywood) 2017; 242:645-656. [PMID: 28092181 DOI: 10.1177/1535370216688568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Redox homeostasis plays a crucial role in the regulation of self-renewal and differentiation of stem cells. However, the behavioral actions of mesenchymal stem cells in redox imbalance state remain elusive. In the present study, the effect of redox imbalance that was induced by either hydrogen peroxide (H2O2) or ascorbic acid on human cardiac-resident (hC-MSCs) and non-resident (umbilical cord) mesenchymal stem cells (hUC-MSCs) was evaluated. Both cells were sensitive and responsive when exposed to either H2O2 or ascorbic acid at a concentration of 400 µmol/L. Ascorbic acid pre-treated cells remarkably ameliorated the reactive oxygen species level when treated with H2O2. The endogenous antioxidative enzyme gene (Sod1, Sod2, TRXR1 and Gpx1) expressions were escalated in both MSCs in response to reactive oxygen species elevation. In contrast, ascorbic acid pre-treated hUC-MSCs attenuated considerable anti-oxidative gene (TRXR1 and Gpx1) expressions, but not the hC-MSCs. Similarly, the cardiogenic gene (Nkx 2.5, Gata4, Mlc2a and β-MHC) and ion-channel gene ( IKDR, IKCa, Ito and INa.TTX) expressions were significantly increased in both MSCs on the oxidative state. On the contrary, reduced environment could not alter the ion-channel gene expression and negatively regulated the cardiogenic gene expressions except for troponin-1 in both cells. In conclusion, redox imbalance potently alters the cardiac-resident and non-resident MSCs stemness, cardiogenic, and ion-channel gene expressions. In comparison with cardiac-resident MSC, non-resident umbilical cord-MSC has great potential to tolerate the redox imbalance and positively respond to cardiac regeneration. Impact statement Human mesenchymal stem cells (h-MSCs) are highly promising candidates for tissue repair in cardiovascular diseases. However, the retention of cells in the infarcted area has been a major challenge due to its poor viability and/or low survival rate after transplantation. The regenerative potential of mesenchymal stem cells (MSCs) repudiate and enter into premature senescence via oxidative stress. Thus, various strategies have been attempted to improve the MSC survival in 'toxic' conditions. Similarly, we investigated the response of cardiac resident MSC (hC-MSCs) and non-resident MSCs against the oxidative stress induced by H2O2. Supplementation of ascorbic acid (AA) into MSCs culture profoundly rescued the stem cells from oxidative stress induced by H2O2. Our data showed that the pre-treatment of AA is able to inhibit the cell death and thus preserving the viability and differentiation potential of MSCs.
Collapse
Affiliation(s)
- Baskar Subramani
- 1 Nichi-Asia Life Science Sdn Bhd., Petaling Jaya 47810, Selangor, Malaysia
- 2 Department of Microbiology, Bharathiyar University, Coimbatore, Tamil Nadu 641046, India
| | | | | | - Sekar Palanivel
- 3 Department of Zoology, Arignar Anna Government Arts College, Namakkal, Tamil Nadu 637002, India
| | - Rajesh Ramasamy
- 4 Stem Cell & Immunity Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang 43400, Malaysia
- 5 Stem Cell Research Laboratory, Genetic and Regenerative Medicine Research Center, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
157
|
Stem cell therapy: An emerging modality in glomerular diseases. Cytotherapy 2017; 19:333-348. [PMID: 28089754 DOI: 10.1016/j.jcyt.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/17/2016] [Accepted: 11/03/2016] [Indexed: 12/12/2022]
Abstract
The kidney has been considered a highly terminally differentiated organ with low proliferative potential and thus unlikely to undergo regeneration. Glomerular disease progresses to end-stage renal disease (ESRD), which requires dialysis or renal transplantation for better quality of life for patients with ESRD. Because of the shortage of implantable kidneys and complications such as immune rejection, septicemia and toxicity of immunosuppression, kidney transplantation remains a challenge. Therapeutic options available for glomerular disease include symptomatic treatment and strategies to delay progression. In an attempt to develop innovative treatments by promoting the limited capability of regeneration and repair after kidney injury and overcome the progressive pathological process that is uncontrolled with conventional treatment modalities, stem cell-based therapy has emerged as novel intervention due to its ability to inhibit inflammation and promote regeneration. Recent developments in cell therapy have demonstrated promising therapeutic outcomes in terms of restoration of renal structure and function. This review focuses on stem cell therapy approaches for the treatment of glomerular disease, including the various cell sources used and recent advances in preclinical and clinical studies.
Collapse
|
158
|
Yulyana Y, Tovmasyan A, Ho IAW, Sia KC, Newman JP, Ng WH, Guo CM, Hui KM, Batinic-Haberle I, Lam PYP. Redox-Active Mn Porphyrin-based Potent SOD Mimic, MnTnBuOE-2-PyP(5+), Enhances Carbenoxolone-Mediated TRAIL-Induced Apoptosis in Glioblastoma Multiforme. Stem Cell Rev Rep 2016; 12:140-55. [PMID: 26454429 DOI: 10.1007/s12015-015-9628-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme is the most malignant tumor of the brain and is challenging to treat due to its highly invasive nature and heterogeneity. Malignant brain tumor displays high metabolic activity which perturbs its redox environment and in turn translates to high oxidative stress. Thus, pushing the oxidative stress level to achieve the maximum tolerable threshold that induces cell death is a potential strategy for cancer therapy. Previously, we have shown that gap junction inhibitor, carbenoxolone (CBX), is capable of enhancing tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis in glioma cells. Since CBX is known to induce oxidative stress, we hypothesized that the addition of another potent mediator of oxidative stress, powerful SOD mimic MnTnBuOE-2-PyP(5+) (MnBuOE), could further enhance TRAIL-driven therapeutic efficacy in glioma cells. Our results showed that combining TRAIL + CBX with MnBuOE significantly enhances cell death of glioma cell lines and this enhancement could be further potentiated by CBX pretreatment. MnBuOE-driven cytotoxicity is due to its ability to take advantage of oxidative stress imposed by CBX + TRAIL system, and enhance it in the presence of endogenous reductants, ascorbate and thiol, thereby producing cytotoxic H2O2, and in turn inducing death of glioma cells but not normal astrocytes. Most importantly, combination treatment significantly reduces viability of TRAIL-resistant Asian patient-derived glioma cells, thus demonstrating the potential clinical use of our therapeutic system. It was reported that H2O2 is involved in membrane depolarization-based sensitization of cancer cells toward TRAIL. MnBuOE is entering Clinical Trials as a normal brain radioprotector in glioma patients at Duke University increasing Clinical relevance of our studies.
Collapse
Affiliation(s)
- Yulyana Yulyana
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Artak Tovmasyan
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA
| | - Ivy A W Ho
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National Neuroscience Institute, Singapore, Singapore
| | - Kian Chuan Sia
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore.,National University of Singapore, Singapore, Singapore
| | - Jennifer P Newman
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Wai Hoe Ng
- Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - Chang Ming Guo
- Department of Orthopedics, Singapore General Hospital, Singapore, Singapore
| | - Kam Man Hui
- Bek Chai Heah Laboratory of Cancer Genomics, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre of Singapore, Singapore, Singapore.,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Proteos, Singapore
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University Medical Center, Research Drive 281b/285 MSRB I, Box 3455, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Centre, Durham, NC, USA.
| | - Paula Y P Lam
- Laboratory of Cancer Gene Therapy, Cellular and Molecular Research Division, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 11 Hospital Drive, Singapore, 169610, Singapore. .,Cancer and Stem Cells Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
159
|
Jiang P, Huang P, Yen SH, Zubair AC, Dickson DW. Genetic modification of H2AX renders mesenchymal stromal cell-derived dopamine neurons more resistant to DNA damage and subsequent apoptosis. Cytotherapy 2016; 18:1483-1492. [PMID: 27720638 PMCID: PMC6010316 DOI: 10.1016/j.jcyt.2016.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/27/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Aberrant production of reactive oxygen species (ROS) and its impact on the integrity of genomic DNA have been considered one of the major risk factors for the loss of dopaminergic neurons in Parkinson's disease (PD). Stem cell transplantation as a strategy to replenish new functional neurons has great potential for PD treatment. However, limited survival of stem cells post-transplantation has always been an obstacle ascribed to the existence of neurotoxic environment in PD patients. METHODS To improve the survival of transplanted stem cells for PD treatment, we explored a new strategy based on the function of the H2AX gene (H2A histone family, member X) in determination of DNA repair and cell apoptosis. We introduced a mutant form Y142F of H2AX into dopamine (DA) neuron-like cells differentiated from bone marrow-derived mesenchymal stromal cells (BMSCs). RESULTS Expression of H2AX(Y142F) renders DA neuron-like cells more resistant to DNA damage and subsequent cell death induced by ultraviolet irradiation and 1-methyl-4-phenylpyridinium (MPP+) treatment. DISCUSSION This is a meaningful attempt to improve the sustainability of BMSC-derived dopamine neurons under a brain neurotoxic environment. Further studies are needed to evaluate the implications of our findings in stem cell therapy for PD and related diseases.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA.
| | - Peng Huang
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Shu-Hui Yen
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Abba C Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, USA.
| |
Collapse
|
160
|
Bruna F, Arango-Rodríguez M, Plaza A, Espinoza I, Conget P. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma. Stem Cell Res 2016; 18:5-13. [PMID: 27939557 DOI: 10.1016/j.scr.2016.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/01/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023] Open
Abstract
Multipotent stromal cells (MSCs) are envisioned as a powerful therapeutic tool. As they home into tumors, secrete trophic and vasculogenic factors, and suppress immune response their role in carcinogenesis is a matter of controversy. Worldwide oral squamous cell carcinoma (OSCC) is the fifth most common epithelial cancer. Our aim was to determine whether MSC administration at precancerous stage modifies the natural progression of OSCC. OSCC was induced in Syrian hamsters by topical application of DMBA in the buccal pouch. At papilloma stage, the vehicle or 3×106 allogenic bone marrow-derived MSCs were locally administered. Four weeks later, the lesions were studied according to: volume, stratification (histology), proliferation (Ki-67), apoptosis (Caspase 3 cleaved), vasculature (ASMA), inflammation (Leukocyte infiltrate), differentiation (CK1 and CK4) and gene expression profile (mRNA). Tumors found in individuals that received MSCs were smaller than those presented in the vehicle group (87±80 versus 54±62mm3, p<0.05). The rate of proliferation was two times lower and the apoptosis was 2.5 times higher in lesions treated with MSCs than in untreated ones. While the laters presented dedifferentiated cells, the former maintained differentiated cells (cytokeratin and gene expression profile similar to normal tissue). Thus, MSC administration at papilloma stage precludes tumor growth and epithelial dedifferentiation of OSCC.
Collapse
Affiliation(s)
- Flavia Bruna
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| | - Martha Arango-Rodríguez
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Anita Plaza
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Iris Espinoza
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.
| |
Collapse
|
161
|
Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In Vitro Cell Dev Biol Anim 2016; 53:328-335. [PMID: 27864663 DOI: 10.1007/s11626-016-0115-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022]
Abstract
The apoptosis of retinal ganglion cells leads to visual impairment and blindness in ocular neurodegenerative diseases, especially in diabetic retinopathy (DR). Mounting evidence suggests that oxidative stress contributes to the pathogenesis of DR. In the present study, we investigated whether bone mesenchymal stem cells (BMSCs) have protective ability to relieve hydrogen peroxide (H2O2)-induced injury on retinal ganglion cells in vitro. An immortalized retinal ganglion cells, RGC-5 cells, were exposed to an indicated concentration of H2O2 for 24 h. Cell viability was analyzed by CCK-8 assay to find out a certain concentration to build H2O2 oxidative damage model. Morphological changes in RGC-5 cells were observed under optical microscope, and cell apoptosis was detected with Hoechst fluorescence staining. Then, BMSCs were co-cultured with RGC-5 cells in a transwell culture system for 24 h and 48 h. Flow cytometry was performed to qualify the apoptosis rate of RGC-5 cells. Conditioned medium was collected for evaluation the inflammatory cytokines by ELISA. The content of intracellular malondialdehyde (MDA) and superoxide dismutase (SOD) was assayed by thiobarbituric acid and xanthine oxidase method, respectively. qRT-PCR and ELISA were conducted for analysis of the expression changes in brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), respectively. After H2O2 exposure, the morphological varieties were observed as cytoplasm shrinking and paramorphia together with nuclear gathering. Meanwhile, the apoptotic cells had hyperfluorescence with Hoechst 33258 staining. Co-culture with BMSCs significantly inhibited retinal cell death. It was found that BMSCs reduced H2O2-induced inflammatory factors IL-1β and TNF-α, down-regulated intracellular oxidant factor MDA, up-regulated intracellular antioxidant factor SOD, and increased neurotrophins BDNF and CNTF expression. BMSCs may enhance protective effect of RGC-5 cells in H2O2-induced damage through improving antioxidant capacity, inhibiting pro-inflammatory cytokine secretion, and promoting neurotrophin expression.
Collapse
|
162
|
Román F, Urra C, Porras O, Pino AM, Rosen CJ, Rodríguez JP. Real-Time H 2 O 2 Measurements in Bone Marrow Mesenchymal Stem Cells (MSCs) Show Increased Antioxidant Capacity in Cells From Osteoporotic Women. J Cell Biochem 2016; 118:585-593. [PMID: 27632788 DOI: 10.1002/jcb.25739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 01/21/2023]
Abstract
Oxidative stress (OS) derived from an increase in intracellular reactive oxygen species (ROS) is a major determinant of aging and lifespan. It has also been associated with several age-related disorders, like postmenopausal osteoporosis of Mesenchymal stem cells (MSCs). MSCs are the common precursors for osteoblasts and adipocytes; appropriate commitment and differentiation of MSCs into a specific phenotype is modulated, among other factors, by ROS balance. MSCs have shown more resistance to ROS than differentiated cells, and their redox status depends on complex and abundant anti-oxidant mechanisms. The purpose of this work was to analyze in real time, H2 O2 signaling in individual h-MSCs, and to compare the kinetic parameters of H2 O2 management by cells derived from both control (c-) and osteoporotic (o-) women. For these purposes, cells were infected with a genetically encoded fluorescent biosensor named HyPer, which is specific for detecting H2 O2 inside living cells. Subsequently, cells were sequentially challenged with 50 and 500 μM H2 O2 pulses, and the cellular response was recorded in real time. The results demonstrated adequate expression of the biosensor allowing registering fluorescence from HyPer at a single cell level. Comparison of the response of c- and o-MSCs to the oxidant challenges demonstrated improved antioxidant activity in o-MSCs. This was further corroborated by measuring the relative expression of mRNAs for catalase, superoxide dismutase-1, thioredoxine, and peroxiredoxine, as well as by cell-surviving capacity under short-term H2 O2 treatment. We conclude that functional differences exist between healthy and osteoporotic human MSCs. The mechanism for these differences requires further study. J. Cell. Biochem. 118: 585-593, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Flavia Román
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carla Urra
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Omar Porras
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Ana María Pino
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | | | - Juan Pablo Rodríguez
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| |
Collapse
|
163
|
Doster DL, Jensen AR, Khaneki S, Markel TA. Mesenchymal stromal cell therapy for the treatment of intestinal ischemia: Defining the optimal cell isolate for maximum therapeutic benefit. Cytotherapy 2016; 18:1457-1470. [PMID: 27745788 DOI: 10.1016/j.jcyt.2016.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/16/2016] [Accepted: 08/02/2016] [Indexed: 02/06/2023]
Abstract
Intestinal ischemia is a devastating intraabdominal emergency that often necessitates surgical intervention. Mortality rates can be high, and patients who survive often have significant long-term morbidity. The implementation of traditional medical therapies to prevent or treat intestinal ischemia have been sparse over the last decade, and therefore, the use of novel therapies are becoming more prevalent. Cellular therapy using mesenchymal stromal cells is one such treatment modality that is attracting noteworthy attention in the scientific community. Several groups have seen benefit with cellular therapy, but the optimal cell line has not been identified. The purpose of this review is to: 1) Review the mechanism of intestinal ischemia and reperfusion injury, 2) Identify the mechanisms of how cellular therapy may be therapeutic for this disease, and 3) Compare various MSC tissue sources to maximize potential therapeutic efficacy in the treatment of intestinal I/R diseases.
Collapse
Affiliation(s)
- Dominique L Doster
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Amanda R Jensen
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sina Khaneki
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Indiana University Health, Indianapolis, IN, USA; The Indiana University School of Medicine, Indianapolis, IN, USA; Section of Pediatric Surgery, Indiana University Health, Indianapolis, IN, USA; Riley Hospital for Children, Indiana University Health, Indianapolis, IN, USA.
| |
Collapse
|
164
|
Israel Y, Ezquer F, Quintanilla ME, Morales P, Ezquer M, Herrera-Marschitz M. Intracerebral Stem Cell Administration Inhibits Relapse-like Alcohol Drinking in Rats. Alcohol Alcohol 2016; 52:1-4. [PMID: 27651282 DOI: 10.1093/alcalc/agw068] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
Study describes the blockade of relapse-like alcohol drinking by mesenchymal stem cells (MSCs). High alcohol-intake bred rats consumed alcohol for 3 months and were subjected to repeated alcohol deprivations for 7-14 days, followed by alcohol reaccess. Upon reaccess, animals consumed 2.2 g alcohol/kg in 60 minutes. A single intra-cerebroventricular MSC administration inhibited relapse-like drinking up to 80-85% for 40 days (P < 0.001). An alcohol-use-disorder was prevented.
Collapse
Affiliation(s)
- Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
165
|
Zhou X, Dai X, Wu X, Ji J, Karaplis A, Goltzman D, Yang X, Miao D. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment. Sci Rep 2016; 6:29171. [PMID: 27373231 PMCID: PMC4931581 DOI: 10.1038/srep29171] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022] Open
Abstract
To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1-84 knockin (Pthrp(KI/KI)) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a Pthrp(KI/KI) mice overexpressing Bmi1 in lymphocytes and compared them with Pthrp(KI/KI) and WT littermates. Overexpression of Bmi1 in Pthrp(KI/KI) mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in Pthrp(KI/KI) mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment.
Collapse
Affiliation(s)
- Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiuliang Dai
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuan Wu
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ji Ji
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
- Department of Fundamentals of Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Andrew Karaplis
- The Department of Medicine, McGill University, Montreal, Canada
| | - David Goltzman
- The Department of Medicine, McGill University, Montreal, Canada
| | - Xiangjiao Yang
- The Department of Medicine, McGill University, Montreal, Canada
- Rosalind & Morris Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine, the Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
166
|
Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells. Exp Neurol 2016; 283:179-87. [PMID: 27317990 DOI: 10.1016/j.expneurol.2016.06.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/29/2022]
Abstract
Infants born very preterm are at high risk for neurological deficits including cerebral palsy. In this study we assessed the neuroprotective effects of umbilical cord blood cells (UCBCs) and optimal administration timing in a fetal sheep model of preterm brain injury. 50 million allogeneic UCBCs were intravenously administered to fetal sheep (0.7 gestation) at 12h or 5d after acute hypoxia-ischemia (HI) induced by umbilical cord occlusion. The fetal brains were collected at 10d after HI. HI (n=7) was associated with reduced number of oligodendrocytes (Olig2+) and myelin density (CNPase+), and increased density of activated microglia (Iba-1+) in cerebral white matter compared to control fetuses (P<0.05). UCBCs administered at 12h, but not 5d after HI, significantly protected white matter structures and suppressed cerebral inflammation. Activated microglial density showed a correlation with decreasing oligodendrocyte number (P<0.001). HI caused cell death (TUNEL+) in the internal capsule and cell proliferation (Ki-67+) in the subventricular zone compared to control (P<0.05), while UCBCs at 12h or 5d ameliorated these effects. Additionally, UCBCs at 12h induced a significant systemic increase in interleukin-10 at 10d, and reduced oxidative stress (malondialdehyde) following HI (P<0.05). UCBC administration at 12h after HI reduces preterm white matter injury, via anti-inflammatory and antioxidant actions.
Collapse
|
167
|
Effects of Oxidative Stress on Mesenchymal Stem Cell Biology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2989076. [PMID: 27413419 PMCID: PMC4928004 DOI: 10.1155/2016/2989076] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/29/2016] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity.
Collapse
|
168
|
Popov AL, Popova NR, Selezneva II, Akkizov AY, Ivanov VK. Cerium oxide nanoparticles stimulate proliferation of primary mouse embryonic fibroblasts in vitro. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:406-413. [PMID: 27524035 DOI: 10.1016/j.msec.2016.05.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/21/2016] [Accepted: 05/23/2016] [Indexed: 11/25/2022]
Abstract
The increasing application of cell therapy technologies in the treatment of various diseases requires the development of new effective methods for culturing primary cells. The major limitation for the efficient use of autologous cell material is the low rate of cell proliferation. Successful cell therapy requires sufficient amounts of cell material over a short period of time with the preservation of their differentiation and proliferative potential. In this regard, the development of novel, highly efficient stimulators of proliferative activity in stem cells is a truly urgent task. In this paper we have demonstrated that citrate-stabilized cerium oxide nanoparticles (nanoceria) enhance the proliferative activity of primary mouse embryonic fibroblasts in vitro. Cerium oxide nanoparticles stimulate cell proliferation in a wide range of concentrations (10(-3)М-10(-9)M) through reduction of intracellular levels of reactive oxygen species (ROS) during the lag phase of cell growth and by modulating the expression level of the major antioxidant enzymes. We found the optimal concentration of nanoceria, which provides the greatest acceleration of cell proliferation in vitro, while maintaining the levels of intracellular ROS and mRNA of antioxidant enzymes in the physiological range. Our results confirm that nanocrystalline ceria can be considered as a basis for effective and inexpensive supplements in cell culturing.
Collapse
Affiliation(s)
- Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia.
| | - Nelly R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Irina I Selezneva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region, Russia; Pushchino State Institute of Natural sciences, Pushchino, Moscow region, Russia
| | | | - Vladimir K Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia; National Research Tomsk State University, Tomsk, Russia
| |
Collapse
|
169
|
Mesenchymal stem cells suppress cardiac alternans by activation of PI3K mediated nitroso-redox pathway. J Mol Cell Cardiol 2016; 98:138-45. [PMID: 27238412 DOI: 10.1016/j.yjmcc.2016.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/03/2016] [Accepted: 05/25/2016] [Indexed: 01/06/2023]
Abstract
BACKGROUND The paracrine action of non-cardiac progenitor cells is robust, but not well understood. Mesenchymal stem cells (MSC) have been shown to enhance calcium (Ca(++)) cycling in myocytes. Therefore, we hypothesized that MSCs can suppress cardiac alternans, an important arrhythmia substrate, by paracrine action on Ca(++) cycling. METHODS AND RESULTS Human cardiac myocyte monolayers derived from iPS cells (hCM) were cultured without or with human MSCs (hMSC) directly or plated on a transwell insert. Ca(++) transient alternans (Ca(++) ALT) and Ca(++) transient duration (CaD) were measured from hCM monolayers following application of 200μM H2O2. Ca(++) ALT in hCM was significantly decreased when cultured with hMSCs directly (97%, p<0.0001) and when cultured with hMSC in the transwell insert (80%, p<0.0001). When hCM with hMSCs were pretreated with PI3K or eNOS inhibitors, Ca(++) ALT was larger than baseline by 20% (p<0.0001) and 36% (p<0.0001), respectively. In contrast, Ca(++) ALT was reduced by 89% compared to baseline (p<0.0001) when hCM monolayers without hMSCs were pretreated with 20μM GSNO. In all experiments, changes in Ca(++) ALT were mirrored by changes in CaD. Finally, real time quantitative PCR revealed no significant differences in mRNA expression of RyR2, SERCA2a, and phospholamban between hCM cultured with or without hMSCs. CONCLUSION Ca(++) ALT is suppressed by hMSCs in a paracrine fashion due to activation of a PI3K-mediated nitroso-redox pathway. These findings demonstrate, for the first time, how stem cell therapy might be antiarrhythmic by suppressing cardiac alternans through paracrine action on Ca(++) cycling.
Collapse
|
170
|
Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Combination therapies for neurobehavioral and cognitive recovery after experimental traumatic brain injury: Is more better? Prog Neurobiol 2016; 142:45-67. [PMID: 27166858 DOI: 10.1016/j.pneurobio.2016.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/26/2016] [Accepted: 05/01/2016] [Indexed: 12/18/2022]
Abstract
Traumatic brain injury (TBI) is a significant health care crisis that affects two million individuals in the United Sates alone and over ten million worldwide each year. While numerous monotherapies have been evaluated and shown to be beneficial at the bench, similar results have not translated to the clinic. One reason for the lack of successful translation may be due to the fact that TBI is a heterogeneous disease that affects multiple mechanisms, thus requiring a therapeutic approach that can act on complementary, rather than single, targets. Hence, the use of combination therapies (i.e., polytherapy) has emerged as a viable approach. Stringent criteria, such as verification of each individual treatment plus the combination, a focus on behavioral outcome, and post-injury vs. pre-injury treatments, were employed to determine which studies were appropriate for review. The selection process resulted in 37 papers that fit the specifications. The review, which is the first to comprehensively assess the effects of combination therapies on behavioral outcomes after TBI, encompasses five broad categories (inflammation, oxidative stress, neurotransmitter dysregulation, neurotrophins, and stem cells, with and without rehabilitative therapies). Overall, the findings suggest that combination therapies can be more beneficial than monotherapies as indicated by 46% of the studies exhibiting an additive or synergistic positive effect versus on 19% reporting a negative interaction. These encouraging findings serve as an impetus for continued combination studies after TBI and ultimately for the development of successful clinically relevant therapies.
Collapse
Affiliation(s)
- Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States, United States; Psychology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, United States.
| | - Jacob B Leary
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Hannah L Radabaugh
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, United States; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15213, United States; Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| |
Collapse
|
171
|
Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther 2016; 7:42. [PMID: 26983784 PMCID: PMC4793534 DOI: 10.1186/s13287-016-0299-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023] Open
Abstract
Background Diabetic retinopathy is a common complication of diabetes and the leading cause of irreversible vision loss in the Western world. The reduction in color/contrast sensitivity due to the loss of neural cells in the ganglion cell layer of the retina is an early event in the onset of diabetic retinopathy. Multipotent mesenchymal stromal cells (MSCs) are an attractive tool for the treatment of neurodegenerative diseases, since they could differentiate into neuronal cells, produce high levels of neurotrophic factors and reduce oxidative stress. Our aim was to determine whether the intravitreal administration of adipose-derived MSCs was able to prevent the loss of retinal ganglion cells in diabetic mice. Methods Diabetes was induced in C57BL6 mice by the administration of streptozotocin. When retinal pro-damage mechanisms were present, animals received a single intravitreal dose of 2 × 105 adipose-derived MSCs or the vehicle. Four and 12 weeks later we evaluated: (a) retinal ganglion cell number (immunofluorescence); (b) neurotrophic factor levels (real-time quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA)); (c) retinal apoptotic rate (TUNEL); (d) retinal levels of reactive oxygen species and oxidative damage (ELISA); (e) electrical response of the retina (electroretinography); (f) pro-angiogenic and anti-angiogenic factor levels (RT-qPCR and ELISA); and (g) retinal blood vessels (angiography). Furthermore, 1, 4, 8 and 12 weeks post-MSC administration, the presence of donor cells in the retina and their differentiation into neural and perivascular-like cells were assessed (immunofluorescence and flow cytometry). Results MSC administration completely prevented retinal ganglion cell loss. Donor cells remained in the vitreous cavity and did not differentiate into neural or perivascular-like cells. Nevertheless, they increased the intraocular levels of several potent neurotrophic factors (nerve growth factor, basic fibroblast growth factor and glial cell line-derived neurotrophic factor) and reduced the oxidative damage in the retina. Additionally, MSC administration has a neutral effect on the electrical response of the retina and did not result in a pathological neovascularization. Conclusions Intravitreal administration of adipose-derived MSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Thus, MSCs represent an interesting tool in order to prevent diabetic retinopathy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0299-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Cristhian A Urzua
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Chile, Av. Independencia 1027, Santiago, Chile
| | - Scarleth Montecino
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Karla Leal
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Paulette Conget
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, 7710162, Chile.
| |
Collapse
|
172
|
Kusuma GD, Abumaree MH, Pertile MD, Perkins AV, Brennecke SP, Kalionis B. Mesenchymal Stem/Stromal Cells Derived From a Reproductive Tissue Niche Under Oxidative Stress Have High Aldehyde Dehydrogenase Activity. Stem Cell Rev Rep 2016; 12:285-97. [DOI: 10.1007/s12015-016-9649-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
173
|
Phenotypic and Functional Characterization of Mesenchymal Stem/Multipotent Stromal Cells from Decidua Basalis of Human Term Placenta. Stem Cells Int 2016; 2016:5184601. [PMID: 27087815 PMCID: PMC4764756 DOI: 10.1155/2016/5184601] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapies for the treatment of diseases associated with inflammation and oxidative stress employ primarily bone marrow MSCs (BMMSCs) and other MSC types such as MSC from the chorionic villi of human term placentae (pMSCs). These MSCs are not derived from microenvironments associated with inflammation and oxidative stress, unlike MSCs from the decidua basalis of the human term placenta (DBMSCs). DBMSCs were isolated and then extensively characterized. Differentiation of DBMSCs into three mesenchymal lineages (adipocytes, osteocytes, and chondrocytes) was performed. Real-time polymerase chain reaction (PCR) and flow cytometry techniques were also used to characterize the gene and protein expression profiles of DBMSCs, respectively. In addition, sandwich enzyme-linked immunosorbent assay (ELISA) was performed to detect proteins secreted by DBMSCs. Finally, the migration and proliferation abilities of DBMSCs were also determined. DBMSCs were positive for MSC markers and HLA-ABC. DBMSCs were negative for hematopoietic and endothelial markers, costimulatory molecules, and HLA-DR. Functionally, DBMSCs differentiated into three mesenchymal lineages, proliferated, and migrated in response to a number of stimuli. Most importantly, these cells express and secrete a distinct combination of cytokines, growth factors, and immune molecules that reflect their unique microenvironment. Therefore, DBMSCs could be attractive, alternative candidates for MSC-based therapies that treat diseases associated with inflammation and oxidative stress.
Collapse
|
174
|
Hsu YC, Wu YT, Yu TH, Wei YH. Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol 2016; 52:119-31. [PMID: 26868759 DOI: 10.1016/j.semcdb.2016.02.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized to have the capacity of self-renewal and the potential to differentiate into mesoderm, ectoderm-like and endoderm-like cells. MSCs hold great promise for cell therapies due to their multipotency in vitro and therapeutic advantage of hypo-immunogenicity and lower tumorigenicity. Moreover, it has been shown that MSCs can serve as a vehicle to transfer mitochondria into cells after cell transplantation. Mitochondria produce most of the energy through oxidative phosphorylation in differentiated cells. It has been increasingly clear that the switch of energy supply from glycolysis to aerobic metabolism is essential for successful differentiation of MSCs. Post-translational modifications of proteins have been established to regulate mitochondrial function and metabolic shift during MSCs differentiation. In this article, we review and provide an integrated view on the roles of different protein kinases and sirtuins in the maintenance and differentiation of MSCs. Importantly, we provide evidence to suggest that alteration in the expression of Sirt3 and Sirt5 and relative changes in the acylation levels of mitochondrial proteins might be involved in the activation of mitochondrial function and adipogenic differentiation of adipose-derived MSCs. We summarize their roles in the regulation of mitochondrial biogenesis and metabolism, oxidative responses and differentiation of MSCs. On the other hand, we discuss recent advances in the study of mitochondrial dynamics and mitochondrial transfer as well as their roles in the differentiation and therapeutic application of MSCs to improve cell function in vitro and in animal models. Accumulating evidence has substantiated that the therapeutic potential of MSCs is conferred not only by cell replacement and paracrine effects but also by transferring mitochondria into injured tissues or cells to modulate the cellular metabolism in situ. Therefore, elucidation of the underlying mechanisms in the regulation of mitochondrial metabolism of MSCs may ultimately improve therapeutic outcomes of stem cell therapy in the future.
Collapse
Affiliation(s)
- Yi-Chao Hsu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan
| | - Yu-Ting Wu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Ting-Hsien Yu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Yau-Huei Wei
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 252, Taiwan; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
175
|
The Favorable Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties Changed after Alkali Burns. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5843809. [PMID: 27057279 PMCID: PMC4736412 DOI: 10.1155/2016/5843809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/16/2015] [Indexed: 01/03/2023]
Abstract
The aim of this study was to examine whether mesenchymal stem cells (MSCs) and/or corneal limbal epithelial stem cells (LSCs) influence restoration of an antioxidant protective mechanism in the corneal epithelium and renewal of corneal optical properties changed after alkali burns. The injured rabbit corneas (with 0.25 N NaOH) were untreated or treated with nanofiber scaffolds free of stem cells, with nanofiber scaffolds seeded with bone marrow MSCs (BM-MSCs), with adipose tissue MSCs (Ad-MSCs), or with LSCs. On day 15 following the injury, after BM-MSCs or LSCs nanofiber treatment (less after Ad-MSCs treatment) the expression of antioxidant enzymes was restored in the regenerated corneal epithelium and the expressions of matrix metalloproteinase 9 (MMP9), inducible nitric oxide synthase (iNOS), α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1), and vascular endothelial factor (VEGF) were low. The central corneal thickness (taken as an index of corneal hydration) increased after the injury and returned to levels before the injury. In injured untreated corneas the epithelium was absent and numerous cells revealed the expressions of iNOS, MMP9, α-SMA, TGF-β1, and VEGF. In conclusion, stem cell treatment accelerated regeneration of the corneal epithelium, restored the antioxidant protective mechanism, and renewed corneal optical properties.
Collapse
|
176
|
Mitochondrial emitted electromagnetic signals mediate retrograde signaling. Med Hypotheses 2015; 85:810-8. [DOI: 10.1016/j.mehy.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022]
|
177
|
Shi F, He H, Wang Y, Liu D, Hu M, Wang C. Mitochondrial swelling and restorable fragmentation stimulated by femtosecond laser. BIOMEDICAL OPTICS EXPRESS 2015; 6:4539-45. [PMID: 26601016 PMCID: PMC4646560 DOI: 10.1364/boe.6.004539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 05/08/2023]
Abstract
Mitochondria play a key role in all cellular physiology, processes, and behaviors. It is very difficult to precisely stimulate single mitochondria noninvasively in traditional biomedical research. In this study, we report that femtosecond laser can stimulate fragmentation or swelling of single mitochondria in human mesenchymal stem cells rather than physical disruption or ablation. In experiments, fragmented mitochondria can recover normal very soon but swelling ones cannot. At the same time, laser-induced generation of mitochondrial reactive oxygen species and opening of mitochondria permeability transition pores are involved in mitochondrial responses to photostimulation. Furthermore, the localized translocation of proapoptotic molecules are found in those stimulated mitochondria. Those results suggest femtosecond-laser photostimulation as a noninvasive and precise method for mitochondrial manipulation and related research.
Collapse
Affiliation(s)
- Fan Shi
- Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Hao He
- Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yintao Wang
- Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Dayong Liu
- Department of Endodontics, School of Stomatology, Tianjin Medical University, Tianjin, 300072, China
| | - Minglie Hu
- Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Chingyue Wang
- Ultrafast Laser Laboratory, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
178
|
Gallina C, Capelôa T, Saviozzi S, Accomasso L, Catalano F, Tullio F, Martra G, Penna C, Pagliaro P, Turinetto V, Giachino C. Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart. J Nanobiotechnology 2015; 13:77. [PMID: 26510588 PMCID: PMC4625930 DOI: 10.1186/s12951-015-0141-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/22/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Treatment of myocardial infarction with mesenchymal stem cells (MSCs) has proven beneficial effects in both animal and clinical studies. Engineered silica nanoparticles (SiO2-NPs) have been extensively used as contrast agents in regenerative medicine, due to their resistance to degradation and ease of functionalization. However, there are still controversies on their effective biosafety on cellular systems. In this perspective, the aims of the present study are: 1) to deeply investigate the impact of amorphous 50 nm SiO2-NPs on viability and function of human bone marrow-derived MSCs (hMSCs); 2) to optimize a protocol of harmless hMSCs labelling and test its feasibility in a beating heart model. RESULTS Optimal cell labelling is obtained after 16 h exposure of hMSCs to fluorescent 50 nm SiO2-NPs (50 µg mL(-1)); interestingly, lysosomal activation consequent to NPs storage is not associated to oxidative stress. During prolonged culture hMSCs do not undergo cyto- or genotoxicity, preserve their proliferative potential and their stemness/differentiation properties. Finally, the bright fluorescence emitted by internalized SiO2-NPs allows both clear visualization of hMSCs in normal and infarcted rat hearts and ultrastructural analysis of cell engraftment inside myocardial tissue. CONCLUSIONS Overall, 50 nm SiO2-NPs display elevated compatibility with hMSCs in terms of lack of cyto- and genotoxicity and maintenance of important features of these cells. The demonstrated biosafety, combined with proper cell labelling and visualization in histological sections, make these SiO2-NPs optimal candidates for the purpose of stem cell tracking inside heart tissue.
Collapse
Affiliation(s)
- Clara Gallina
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Tânia Capelôa
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Silvia Saviozzi
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Lisa Accomasso
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Federico Catalano
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy. .,Department of Chemistry, Interdepartmental Centre "Nanostructured Interfaces and Surfaces", University of Turin, 7, Via P. Giuria, CAP 10125, Turin, Italy.
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Gianmario Martra
- Department of Chemistry, Interdepartmental Centre "Nanostructured Interfaces and Surfaces", University of Turin, 7, Via P. Giuria, CAP 10125, Turin, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Valentina Turinetto
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10, Regione Gonzole, CAP 10043, Orbassano, TO, Italy.
| |
Collapse
|
179
|
Park WS, Sung SI, Ahn SY, Sung DK, Im GH, Yoo HS, Choi SJ, Chang YS. Optimal Timing of Mesenchymal Stem Cell Therapy for Neonatal Intraventricular Hemorrhage. Cell Transplant 2015; 25:1131-44. [PMID: 26440762 DOI: 10.3727/096368915x689640] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We recently showed that intraventricular transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) significantly attenuated posthemorrhagic hydrocephalus (PHH) and brain injury after severe intraventricular hemorrhage (IVH) in newborn rat pups. The purpose of this study was to optimize the timing of MSC transplantation for severe IVH. Severe IVH was induced by injecting 100 µl of blood into each ventricle of Sprague-Dawley rats on postnatal day 4 (P4). Human UCB-derived MSCs (1 × 10(5) cells in 10 µl of normal saline) were transplanted intraventricularly under stereotaxic guidance either early at P6 or late at P11. Serial brain MRIs and behavioral function tests, such as negative geotaxis and rotarod tests, were performed. At P32, brain tissue samples were obtained for histological and biochemical analyses. Intracerebroventricular transplantation of MSCs significantly attenuated the development of PHH, behavioral impairment, increased apoptosis and astrogliosis, reduced corpus callosum thickness and brain myelination, and upregulated inflammatory cytokines including interleukin (IL)-1α, IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) at P6 but not at P11 after induction of severe IVH. Intracerebroventricular transplantation of human UCB-derived MSCs attenuated PHH and brain injury after severe IVH in newborn rats in a time-dependent manner. Significant neuroprotection was only demonstrated when administered early at 2 days after induction but not late at 7 days after induction of severe IVH.
Collapse
Affiliation(s)
- Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Visweswaran M, Pohl S, Arfuso F, Newsholme P, Dilley R, Pervaiz S, Dharmarajan A. Multi-lineage differentiation of mesenchymal stem cells - To Wnt, or not Wnt. Int J Biochem Cell Biol 2015; 68:139-47. [PMID: 26410622 DOI: 10.1016/j.biocel.2015.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent precursor cells originating from several adult connective tissues. MSCs possess the ability to self-renew and differentiate into several lineages, and are recognized by the expression of unique cell surface markers. Several lines of evidence suggest that various signal transduction pathways and their interplay regulate MSC differentiation. To that end, a critical player in regulating MSC differentiation is a group of proteins encoded by the Wnt gene family, which was previously known for influencing various stages of embryonic development and cell fate determination. As MSCs have gained significant clinical attention for their potential applications in regenerative medicine, it is imperative to unravel the mechanisms by which molecular regulators control differentiation of MSCs for designing cell-based therapeutics. It is rather coincidental that the functional outcome(s) of Wnt-induced signals share similarities with cellular redox-mediated networks from the standpoint of MSC biology. Furthermore, there is evidence for a crosstalk between Wnt and redox signalling, which begs the question whether Wnt-mediated differentiation signals involve the intermediary role of reactive oxygen species. In this review, we summarize the impact of Wnt signalling on multi-lineage differentiation of MSCs, and attempt to unravel the intricate interplay between Wnt and redox signals.
Collapse
Affiliation(s)
- Malini Visweswaran
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Sebastian Pohl
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Philip Newsholme
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Rodney Dilley
- Ear Sciences Centre, University of Western Australia and Ear Science Institute Australia, Perth, Western Australia 6008, Australia
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia 6102, Australia.
| |
Collapse
|
181
|
Controlling Redox Status for Stem Cell Survival, Expansion, and Differentiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:105135. [PMID: 26273419 PMCID: PMC4530287 DOI: 10.1155/2015/105135] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Reactive oxygen species (ROS) have long been considered as pathological agents inducing apoptosis under adverse culture conditions. However, recent findings have challenged this dogma and physiological levels of ROS are now considered as secondary messengers, mediating numerous cellular functions in stem cells. Stem cells represent important tools for tissue engineering, drug screening, and disease modeling. However, the safe use of stem cells for clinical applications still requires culture improvements to obtain functional cells. With the examples of mesenchymal stem cells (MSCs) and pluripotent stem cells (PSCs), this review investigates the roles of ROS in the maintenance of self-renewal, proliferation, and differentiation of stem cells. In addition, this work highlights that the tight control of stem cell microenvironment, including cell organization, and metabolic and mechanical environments, may be an effective approach to regulate endogenous ROS generation. Taken together, this paper indicates the need for better quantification of ROS towards the accurate control of stem cell fate.
Collapse
|
182
|
Zeng W, Xiao J, Zheng G, Xing F, Tipoe GL, Wang X, He C, Chen ZY, Liu Y. Antioxidant treatment enhances human mesenchymal stem cell anti-stress ability and therapeutic efficacy in an acute liver failure model. Sci Rep 2015; 5:11100. [PMID: 26057841 PMCID: PMC4460871 DOI: 10.1038/srep11100] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/12/2015] [Indexed: 02/07/2023] Open
Abstract
One of the major problems influencing the therapeutic efficacy of stem cell therapy is the poor cell survival following transplantation. This is partly attributed to insufficient resistance of transplanted stem cells to oxidative and inflammatory stresses at the injured sites. In the current study, we demonstrated the pivotal role of antioxidant levels in human umbilical cord mesenchymal stem cells (hUCMSCs) dynamic in vitro anti-stress abilities against lipopolysaccharide (LPS)/H2O2 intoxication and in vivo therapeutic efficacy in a murine acute liver failure model induced by D-galactosamine/LPS (Gal/LPS) by either reducing the antioxidant levels with diethyl maleate (DEM) or increasing antioxidant levels with edaravone. Both the anti- and pro-oxidant treatments dramatically influenced the survival, apoptosis, and reactive oxygen species (ROS) production of hUCMSCs through the MAPK-PKC-Nrf2 pathway in vitro. When compared with untreated and DEM-treated cells, edaravone-treated hUCMSCs rescued NOD/SCID mice from Gal/LPS-induced death, significantly improved hepatic functions and promoted host liver regeneration. These effects were probably from increased stem cell homing, promoted proliferation, decreased apoptosis and enhanced secretion of hepatocyte growth factor (HGF) under hepatic stress environment. In conclusion, elevating levels of antioxidants in hUCMSCs with edaravone can significantly influence their hepatic tissue repair capacity.
Collapse
Affiliation(s)
- Wen Zeng
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jia Xiao
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China.,Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China.,Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Gang Zheng
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feiyue Xing
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - George L Tipoe
- Department of Anatomy, The University of Hong Kong, Hong Kong, China
| | - Xiaogang Wang
- Department of Immunobiology, Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Chengyi He
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhi-Ying Chen
- Laboratory for Gene and Cell Therapy, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingxia Liu
- State key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| |
Collapse
|
183
|
Proregenerative Microenvironment Triggered by Donor Mesenchymal Stem Cells Preserves Renal Function and Structure in Mice with Severe Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164703. [PMID: 26167475 PMCID: PMC4475763 DOI: 10.1155/2015/164703] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023]
Abstract
The aim of our work was to evaluate, in an animal model of severe diabetes mellitus, the effect of mesenchymal stem cells (MSCs) administration on diabetic nephropathy (DN) progression. After diabetes induction, one group of mice received the vehicle (DM) and other group received a single dose of MSCs (DM + MSCs). DM + MSCs mice showed a significant improvement in functional parameters of the kidney compared with untreated mice. While DM mice presented marked histopathological changes characteristics of advanced stages of DN (fibrosis, glomerulosclerosis, glomerular basement membrane thickening, capillary occlusion, decreased podocyte density, and effacement of foot processes), DM + MSCs mice showed only slight tubular dilatation. The renoprotection was not associated with an improvement in diabetic condition and very low number of donor cells was found in the kidney of DM + MSCs mice, suggesting that renoprotection could be mediated by paracrine effects. Indeed, DM + MSC mice presented increased renal proliferation index, decreased renal apoptotic index and the restoration of proregenerative factors, and anti-inflammatory cytokines levels. Moreover, macrophage infiltration and oxidative stress damage were also reduced in DM + MSCs mice. Our data demonstrate that MSC administration triggers a proregenerative microenvironment in DN kidney, which allows the preservation of the renal function even if diabetes was uncorrected.
Collapse
|
184
|
Arango-Rodriguez ML, Ezquer F, Ezquer M, Conget P. Could cancer and infection be adverse effects of mesenchymal stromal cell therapy? World J Stem Cells 2015; 7:408-417. [PMID: 25815124 PMCID: PMC4369496 DOI: 10.4252/wjsc.v7.i2.408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/01/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells [also referred to as mesenchymal stem cells (MSCs)] are a heterogeneous subset of stromal cells. They can be isolated from bone marrow and many other types of tissue. MSCs are currently being tested for therapeutic purposes (i.e., improving hematopoietic stem cell engraftment, managing inflammatory diseases and regenerating damaged organs). Their tropism for tumors and inflamed sites and their context-dependent potential for producing trophic and immunomodulatory factors raises the question as to whether MSCs promote cancer and/or infection. This article reviews the effect of MSCs on tumor establishment, growth and metastasis and also susceptibility to infection and its progression. Data published to date shows a paradoxical effect regarding MSCs, which seems to depend on isolation and expansion, cells source and dose and the route and timing of administration. Cancer and infection may thus be adverse or therapeutic effects arising form MSC administration.
Collapse
|
185
|
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015; 24:1150-63. [PMID: 25603196 PMCID: PMC4424969 DOI: 10.1089/scd.2014.0484] [Citation(s) in RCA: 482] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva , University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
186
|
Lee S, Choi E, Cha MJ, Hwang KC. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:632902. [PMID: 25722795 PMCID: PMC4333334 DOI: 10.1155/2015/632902] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/19/2015] [Indexed: 12/13/2022]
Abstract
The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Republic of Korea
- Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City 404-834, Republic of Korea
| |
Collapse
|
187
|
Liu HY, Huang CF, Lin TC, Tsai CY, Tina Chen SY, Liu A, Chen WH, Wei HJ, Wang MF, Williams DF, Deng WP. Delayed animal aging through the recovery of stem cell senescence by platelet rich plasma. Biomaterials 2014; 35:9767-9776. [DOI: 10.1016/j.biomaterials.2014.08.034] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/21/2014] [Indexed: 11/28/2022]
|
188
|
Urata Y, Goto S, Luo L, Doi H, Kitajima Y, Masuda S, Ono Y, Li TS. Enhanced Nox1 expression and oxidative stress resistance in c-kit-positive hematopoietic stem/progenitor cells. Biochem Biophys Res Commun 2014; 454:376-80. [DOI: 10.1016/j.bbrc.2014.10.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 12/15/2022]
|
189
|
Touboul C, Vidal F, Pasquier J, Lis R, Rafii A. Role of mesenchymal cells in the natural history of ovarian cancer: a review. J Transl Med 2014; 12:271. [PMID: 25303976 PMCID: PMC4197295 DOI: 10.1186/s12967-014-0271-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer is the deadliest gynaecologic malignancy. Despite progresses in chemotherapy and ultra-radical surgeries, this locally metastatic disease presents a high rate of local recurrence advocating for the role of a peritoneal niche. For several years, it was believed that tumor initiation, progression and metastasis were merely due to the changes in the neoplastic cell population and the adjacent non-neoplastic tissues were regarded as bystanders. The importance of the tumor microenvironment and its cellular component emerged from studies on the histopathological sequence of changes at the interface between putative tumor cells and the surrounding non-neoplastic tissues during carcinogenesis. Method In this review we aimed to describe the pro-tumoral crosstalk between ovarian cancer and mesenchymal stem cells. A PubMed search was performed for articles published pertaining to mesenchymal stem cells and specific to ovarian cancer. Results Mesenchymal stem cells participate to an elaborate crosstalk through direct and paracrine interaction with ovarian cancer cells. They play a role at different stages of the disease: survival and peritoneal infiltration at early stage, proliferation in distant sites, chemoresistance and recurrence at later stage. Conclusion The dialogue between ovarian and mesenchymal stem cells induces the constitution of a pro-tumoral mesencrine niche. Understanding the dynamics of such interaction in a clinical setting might propose new therapeutic strategies.
Collapse
Affiliation(s)
- Cyril Touboul
- Department of Obstetrics and Gynecology, Hôpital Intercommunal de Créteil, Université Paris Est, UPEC-Paris XII, 12 avenue de Verdun, 94000, Créteil, France. .,UMR INSERM U965: Angiogenèse et Recherche translationnelle Hôpital Lariboisière, 49 bd de la chapelle, 75010, Paris, France.
| | - Fabien Vidal
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA. .,Department of Genetic Medicine and Obstetrics and Gynecology, Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar-Foundation PO: 24144, Doha, Qatar.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| | - Raphael Lis
- Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Education City, Qatar Foundation, Doha, Qatar. .,Department Genetic Medicine, Weill Cornell Medical College, Manhattan, NY, USA.
| |
Collapse
|
190
|
Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O, Lapidot T. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal 2014; 21:1605-19. [PMID: 24762207 PMCID: PMC4175025 DOI: 10.1089/ars.2014.5941] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. RECENT ADVANCES ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROS(high) short-term repopulating stem cells, and ROS(low) quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. CRITICAL ISSUES Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. FUTURE DIRECTIONS Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development.
Collapse
Affiliation(s)
- Aya Ludin
- 1 Department of Immunology, Weizmann Institute of Science , Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Li J, McDonald CA, Fahey MC, Jenkin G, Miller SL. Could cord blood cell therapy reduce preterm brain injury? Front Neurol 2014; 5:200. [PMID: 25346720 PMCID: PMC4191167 DOI: 10.3389/fneur.2014.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022] Open
Abstract
Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia–ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia–ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.
Collapse
Affiliation(s)
- Jingang Li
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia
| | | | - Michael C Fahey
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Paediatrics, Monash University , Clayton, VIC , Australia
| | - Graham Jenkin
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| | - Suzanne L Miller
- The Ritchie Centre, MIMR-PHI Institute , Clayton, VIC , Australia ; Department of Obstetrics and Gynaecology, Monash University , Clayton, VIC , Australia
| |
Collapse
|
192
|
Zhang EJ, Song CH, Ko YK, Lee WH. Intrathecal administration of mesenchymal stem cells reduces the reactive oxygen species and pain behavior in neuropathic rats. Korean J Pain 2014; 27:239-45. [PMID: 25031809 PMCID: PMC4099236 DOI: 10.3344/kjp.2014.27.3.239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/13/2014] [Accepted: 06/19/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Neuropathic pain induced by spinal or peripheral nerve injury is very resistant to common pain killers, nerve block, and other pain management approaches. Recently, several studies using stem cells suggested a new way to control the neuropatic pain. In this study, we used the spinal nerve L5 ligation (SNL) model to investigate whether intrathecal rat mesenchymal stem cells (rMSCs) were able to decrease pain behavior, as well as the relationship between rMSCs and reactive oxygen species (ROS). METHODS Neuropathic pain of the left hind paw was induced by unilateral SNL in Sprague-Dawley rats (n = 10 in each group). Mechanical sensitivity was assessed using Von Frey filaments at 3, 7, 10, 12, 14, 17, and 24 days post-ligation. rMSCs (10 µl, 1 × 10(5)) or phosphate buffer saline (PBS, 10 µl) was injected intrathecally at 7 days post-ligation. Dihydroethidium (DHE), an oxidative fluorescent dye, was used to detect ROS at 24 days post-ligation. RESULTS Tight ligation of the L5 spinal nerve induced allodynia in the left hind paw after 3 days post-ligation. ROS expression was increased significantly (P < 0.05) in spinal dorsal horn of L5. Intrathecal rMSCs significantly (P < 0.01) alleviated the allodynia at 10 days after intrathecal injection (17 days post-ligation). Intrathecal rMSCs administration significantly (P < 0.05) reduced ROS expression in the spinal dorsal horn. CONCLUSIONS These results suggest that rMSCs may modulate neuropathic pain generation through ROS expression after spinal nerve ligation.
Collapse
Affiliation(s)
- En Ji Zhang
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Chang Hwa Song
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young Kwon Ko
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Won Hyung Lee
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
193
|
Wang L, Gu H, Turrentine M, Wang M. Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery 2014; 156:243-52. [PMID: 24957669 DOI: 10.1016/j.surg.2014.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/02/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Studies from our group and others have indicated that paracrine function is one of major mechanisms underlying stem cell-mediated cardioprotection. To improve therapeutic efficacy of cardiac stem cells (CSCs), modification of CSCs to enhance their paracrine actions is of great interest. We have shown previously that stem cells from female sex produced greater levels of protective growth factors compared with male stem cells. In addition, 17β-estradiol (E2)-treated mesenchymal stem cells provided better protection in the ischemia/reperfusion (I/R)-injured myocardium compared with untreated cells. In this study, therefore, we hypothesized that (1) treatment with E2 would improve CSC-mediated acute protection of cardiac function after global I/R; and (2) this greater protection in E2-treated CSCs would be attributable to the beneficial effect of E2 on paracrine actions of CSCs. METHOD CSCs were harvested from C57BL mouse hearts. Myocardial I/R was performed in isolated mouse hearts via a Langendorff model. A total of 0.1 × 10(6)/mL of untreated CSCs or E2-treated CSCs was infused into mouse hearts before ischemia or during the initiation of reperfusion. Heart tissue was used for analysis of activation of caspase-3 and STAT3. Secretion of vascular endothelial growth factor and stromal cell-derived factor 1α by CSCs and E2-treated CSCs was determined. In addition, the conditioned medium from the cultivation of CSCs and E2-modified CSCs was used to treat cardiomyocytes during hypoxia. RESULTS E2-treated CSCs produced greater levels of vascular endothelial growth factor and stromal cell-derived factor 1α compared with untreated CSCs. Preischemic infusion of CSCs and E2-treated CSCs improved myocardial function, increased activation of myocardial STAT3 (a prosurvival signaling), and reduced active caspase-3 after acute I/R compared with the vehicle group. The greater protection was observed in E2-treated CSC group than in CSC group. Additionally, infusion of E2-treated CSCs, but not untreated CSCs, during the initiation of reperfusion protected cardiac function after I/R, further indicating the beneficial effect of E2 on CSC protective function. CONCLUSION Treatment with E2 enhanced CSC-derived protective factor production and improved CSC-mediated protection of cardiac function and myocyte survival after acute I/R, suggesting that in vitro modification of CSCs may improve their therapeutic outcome.
Collapse
Affiliation(s)
- Lina Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Hongmei Gu
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Mark Turrentine
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN.
| |
Collapse
|
194
|
Stem cell-based cell therapy for glomerulonephritis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:124730. [PMID: 25003105 PMCID: PMC4070530 DOI: 10.1155/2014/124730] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/27/2014] [Indexed: 01/09/2023]
Abstract
Glomerulonephritis (GN), characterized by immune-mediated inflammatory changes in the glomerular, is a common cause of end stage renal disease. Therapeutic options for glomerulonephritis applicable to all cases mainly include symptomatic treatment and strategies to delay progression. In the attempt to yield innovative interventions fostering the limited capability of regeneration of renal tissue after injury and the uncontrolled pathological process by current treatments, stem cell-based therapy has emerged as novel therapy for its ability to inhibit inflammation and promote regeneration. Many basic and clinical studies have been performed that support the ability of various stem cell populations to ameliorate glomerular injury and improve renal function. However, there is a long way before putting stem cell-based therapy into clinical practice. In the present article, we aim to review works performed with respect to the use of stem cell of different origins in GN, and to discuss the potential mechanism of therapeutic effect and the challenges for clinical application of stem cells.
Collapse
|
195
|
Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 2014; 35:6219-35. [PMID: 24816362 DOI: 10.1016/j.biomaterials.2014.04.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/06/2014] [Indexed: 02/06/2023]
Abstract
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 m) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and βIII tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates.
Collapse
Affiliation(s)
- Greeshma Thrivikraman
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
196
|
Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G, Piroddi M, Papa S, Reiter RJ, Galli F. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res 2014; 56:382-97. [PMID: 24650016 DOI: 10.1111/jpi.12133] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/14/2014] [Indexed: 12/12/2022]
Abstract
Among the numerous functions of melatonin, the control of survival and differentiation of mesenchymal stem cells (MSCs) has been recently proposed. MSCs are a heterogeneous population of multipotent elements resident in tissues such as bone marrow, muscle, and adipose tissue, which are primarily involved in developmental and regeneration processes, gaining thus increasing interest for tissue repair and restoration therapeutic protocols. Receptor-dependent and receptor-independent responses to melatonin are suggested to occur in these cells. These involve antioxidant or redox-dependent functions of this indolamine as well as secondary effects resulting from autocrine and paracrine responses. Inflammatory cytokines and adipokines, proangiogenic/mitogenic stimuli, and other mediators that influence the differentiation processes may affect the survival and functional integrity of these mesenchymal precursor cells. In this scenario, melatonin seems to regulate signaling pathways that drive commitment and differentiation of MSC into osteogenic, chondrogenic, adipogenic, or myogenic lineages. Common pathways suggested to be involved as master regulators of these processes are the Wnt/β-catenin pathway, the MAPKs and the, TGF-β signaling. In this respect melatonin emerges a novel and potential modulator of MSC lineage commitment and adipogenic differentiation. These and other aspects of the physiological and pharmacological effects of melatonin as regulator of MSC are discussed in this review.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
SIGNIFICANCE Stem cells are characterized by the properties of self-renewal and the ability to differentiate into multiple cell types, and thus maintain tissue homeostasis. Reactive oxygen species (ROS) are a natural byproduct of aerobic metabolism and have roles in cell signaling. Regulation of ROS has a vital role in maintaining "stemness" and differentiation of the stem cells, as well as in progression of stem-cell-associated diseases. RECENT ADVANCES As of late, much research has been done on the adverse effects of ROS in stem cells. However, recently it has become apparent that in some cases redox status of the stem cell does have a role in maintaining its identity as such. Both pluripotent and multipotent stem cell types have been reported to possess enzymatic and nonenzymatic mechanisms for detoxification of ROS and to correct oxidative damage to the genome as well as the proteome. CRITICAL ISSUES Although context dependent and somewhat varied among different stem cell types, the correlation seems to exist between antioxidant defense level and stem cell fate change (i.e., proliferation, differentiation, and death). Changes in stem cell redox regulation may affect the pathogenesis of various human diseases. FUTURE DIRECTIONS Dissecting the defined roles of ROS in distinct stem cell types will greatly enhance their basic and translational applications. Here, we discuss the various roles of ROS in adult, embryonic, and induced pluripotent stem cells.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | |
Collapse
|
198
|
Kim SU, Park YH, Kim JM, Sun HN, Song IS, Huang SM, Lee SH, Chae JI, Hong S, Sik Choi S, Choi SC, Lee TH, Kang SW, Rhee SG, Chang KT, Lee SH, Yu DY, Lee DS. Dominant Role of Peroxiredoxin/JNK Axis in Stemness Regulation During Neurogenesis from Embryonic Stem Cells. Stem Cells 2014; 32:998-1011. [DOI: 10.1002/stem.1593] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Redox balance has been suggested as an important determinant of “stemness” in embryonic stem cells (ESCs). In this study, we demonstrate that peroxiredoxin (Prx) plays a pivotal role in maintenance of ESC stemness during neurogenesis through suppression of reactive oxygen species (ROS)-sensitive signaling. During neurogenesis, Prx I and Oct4 are expressed in a mutually dependent manner and their expression is abruptly downregulated by an excess of ROS. Thus, in Prx I−/− or Prx II−/− ESCs, rapid loss of stemness can occur due to spontaneous ROS overload, leading to their active commitment into neurons; however, stemness is restored by the addition of an antioxidant or an inhibitor of c-Jun N-terminal kinase (JNK). In addition, Prx I and Prx II appear to have a tight association with the mechanism underlying the protection of ESC stemness in developing teratomas. These results suggest that Prx functions as a protector of ESC stemness by opposing ROS/JNK cascades during neurogenesis. Therefore, our findings have important implications for understanding of maintenance of ESC stemness through involvement of antioxidant enzymes and may lead to development of an alternative stem cell-based therapeutic strategy for production of high-quality neurons in large quantity. Stem Cells 2014;32:998–1011
Collapse
Affiliation(s)
- Sun-Uk Kim
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics University of Science and Technology (UST), Daejeon, Republic of Korea
- National Primate Research Center, KRIBB, Chungcheongbuk-do, Republic of Korea
- Division of Life Sciences and Biotechnology Korea University, Seoul, Republic of Korea
| | - Young-Ho Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics University of Science and Technology (UST), Daejeon, Republic of Korea
- National Primate Research Center, KRIBB, Chungcheongbuk-do, Republic of Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine Chungnam National University, Daejeon, Republic of Korea
| | - Hu-Nan Sun
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - In-Sung Song
- Cardiovascular and Metabolic Disease Center Inje University, Busan, Republic of Korea
| | - Song Mei Huang
- Department of Pathology, College of Medicine Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Hee Lee
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Il Chae
- Department of Oral Pharmacology School of Dentistry and Institute of Dental Bioscience BK21 plus project, Chonbuk National University, Jeonju, Republic of Korea
| | - Su Hong
- Division of Life Sciences and Biotechnology Korea University, Seoul, Republic of Korea
| | - Sung Sik Choi
- Division of Life Sciences and Biotechnology Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Division of Life Sciences and Biotechnology Korea University, Seoul, Republic of Korea
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, College of Dentistry Chonnam National University, Gwangju, Republic of Korea
| | - Sang Won Kang
- Division of Life and Pharmaceutical Sciences Ewha Womans University, Seoul, Republic of Korea
| | - Sue Goo Rhee
- Division of Life and Pharmaceutical Sciences Ewha Womans University, Seoul, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center, KRIBB, Chungcheongbuk-do, Republic of Korea
| | - Sang Ho Lee
- Division of Life Sciences and Biotechnology Korea University, Seoul, Republic of Korea
| | - Dae-Yeul Yu
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Dong-Seok Lee
- College of Natural Sciences BK21 plus project, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
199
|
Neirinckx V, Cantinieaux D, Coste C, Rogister B, Franzen R, Wislet-Gendebien S. Concise Review: Spinal Cord Injuries: How Could Adult Mesenchymal and Neural Crest Stem Cells Take Up the Challenge? Stem Cells 2014; 32:829-43. [DOI: 10.1002/stem.1579] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Virginie Neirinckx
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Dorothée Cantinieaux
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Cécile Coste
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Bernard Rogister
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
- GIGA, Development, Stem Cells and Regenerative Medicine Unit; University of Liège; Liège Belgium
- Department of Neurology; Centre Hospitalier Universitaire de Liège; Liège Belgium
| | - Rachelle Franzen
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| | - Sabine Wislet-Gendebien
- Groupe Interdisciplinaire de Génoprotéomique appliquée (GIGA); Neurosciences Unit; Liège Belgium
| |
Collapse
|
200
|
Wu X, Luo Y, Chen J, Pan R, Xiang B, Du X, Xiang L, Shao J, Xiang C. Transplantation of human menstrual blood progenitor cells improves hyperglycemia by promoting endogenous progenitor differentiation in type 1 diabetic mice. Stem Cells Dev 2014; 23:1245-57. [PMID: 24499421 DOI: 10.1089/scd.2013.0390] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recently, a unique population of progenitor cells was isolated from human menstrual blood. The human menstrual blood progenitor cells (MBPCs) possess many advantages, such as the noninvasive acquisition procedure, broad multipotency, a higher proliferative rate, and low immunogenicity, and have attracted extensive attention in regenerative medicine. Preclinical studies to test the safety and efficacy of MBPCs have been underway in several animal models. However, relevant studies in type 1 diabetes mellitus (T1DM) have not yet been proceeded. Herein, we studied the therapeutic effect of MBPCs and the mechanism of β-cell regeneration after MBPC transplantation in the T1DM model. Intravenous injection of MBPCs can reverse hyperglycemia and weight loss, prolong lifespan, and increase insulin production in diabetic mice. Histological and immunohistochemistry analyses indicated that T1DM mice with MBPC transplantation recovered islet structures and increased the β-cell number. We further analyzed in vivo distribution of MBPCs and discovered that a majority of MBPCs migrated into damaged pancreas and located at the islet, duct, and exocrine tissue. MBPCs did not differentiate into insulin-producing cells, but enhanced neurogenin3 (ngn3) expression, which represented endocrine progenitors that were activated. Ngn3(+) cells were not only in the ductal epithelium, but also in the islet and exocrine tissue. We analyzed a series of genes associated with the embryonic mode of β-cell development by real-time polymerase chain reaction and the results showed that the levels of those gene expressions all increased after cell transplantation. According to the results, we concluded that MBPCs stimulated β-cell regeneration through promoting differentiation of endogenous progenitor cells.
Collapse
Affiliation(s)
- Xiaoxing Wu
- 1 State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|