151
|
Wirth TC, Xue HH, Rai D, Sabel JT, Bair T, Harty JT, Badovinac VP. Repetitive antigen stimulation induces stepwise transcriptome diversification but preserves a core signature of memory CD8(+) T cell differentiation. Immunity 2010; 33:128-40. [PMID: 20619696 PMCID: PMC2912220 DOI: 10.1016/j.immuni.2010.06.014] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 12/21/2022]
Abstract
Repetitive antigen stimulation by prime-boost vaccination or pathogen reencounter increases memory CD8(+) T cell numbers, but the impact on memory CD8(+) T cell differentiation is unknown. Here we showed that repetitive antigen stimulations induced accumulation of memory CD8(+) T cells with uniform effector memory characteristics. However, genome-wide microarray analyses revealed that each additional antigen challenge resulted in the differential regulation of several hundred new genes in the ensuing memory CD8(+) T cell populations and, therefore, in stepwise diversification of CD8(+) T cell transcriptomes. Thus, primary and repeatedly stimulated (secondary, tertiary, and quaternary) memory CD8(+) T cells differed substantially in their molecular signature while sharing expression of a small group of genes and biological pathways, which may constitute a core signature of memory differentiation. These results reveal the complex regulation of memory CD8(+) T cell differentiation and identify potential new molecular targets to dissect the function of memory cells generated by repeated antigen stimulation.
Collapse
Affiliation(s)
- Thomas C Wirth
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
- Department of Gastroenterology, Hepatology and Endocrinology; Medical School Hannover, Hannover, Germany
| | - Hai-Hui Xue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology; University of Iowa, Iowa City, IA 52242
| | - Deepa Rai
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Jaime T Sabel
- Department of Pathology, University of Iowa, Iowa City, IA 52242
| | - Tom Bair
- DNA Facility, University of Iowa, Iowa City, IA 52242
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology; University of Iowa, Iowa City, IA 52242
| | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology; University of Iowa, Iowa City, IA 52242
| |
Collapse
|
152
|
Zhang W, Jiang B, Guo Z, Sardet C, Zou B, Lam CSC, Li J, He M, Lan HY, Pang R, Hung IFN, Tan VPY, Wang J, Wong BCY. Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis 2010; 31:1220-1229. [PMID: 20460358 DOI: 10.1093/carcin/bgq094] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND AND AIMS Cancer invasion and metastasis may associate with the phenotype transition called epithelial-mesenchymal transition (EMT). We aim to evaluate the impact of four-and-a-half LIM protein 2 (FHL2) on EMT and invasion of colon cancer. METHODS The functional role of FHL2 in EMT was determined by overexpression or small interfering RNA-mediated depletion of FHL2. Mechanisms of FHL2 on expression or activity of E-cadherin and beta-catenin were assessed. RESULTS FHL2 was highly expressed in primary and metastatic colon cancer but not in normal tissues. FHL2 was critical for cancer cell adhesion to extracellular matrix, migration and invasion. FHL2 expression was stimulated by transforming growth factor (TGF)-beta1. Moreover, FHL2 acted as a potent EMT inducer by stimulating vimentin and matrix metalloproteinase-9 expressions and causing a loss of E-cadherin, whereas those alterations of EMT markers were not affected by silencing of Smad molecules (typical TGF-beta signal mediators) in FHL2 stable transfectant cells. Therefore, FHL2 induced EMT in a TGF-beta-dependent and Smad-independent manner. FHL2 downregulated E-cadherin expression and inhibited the formation of membrane-associated E-cadherin-beta-catenin complex. FHL2 also stabilized nuclear beta-catenin, resulting in enforcement of beta-catenin transactivation activity. CONCLUSION FHL2 is a potent EMT inducer and might be an important mediator for invasion and/or metastasis of colon cancer.
Collapse
Affiliation(s)
- Wenjing Zhang
- Guangdong Provincial key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Oztas E, Avci ME, Ozcan A, Sayan AE, Tulchinsky E, Yagci T. Novel monoclonal antibodies detect Smad-interacting protein 1 (SIP1) in the cytoplasm of human cells from multiple tumor tissue arrays. Exp Mol Pathol 2010; 89:182-9. [PMID: 20515682 DOI: 10.1016/j.yexmp.2010.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 05/24/2010] [Accepted: 05/24/2010] [Indexed: 10/19/2022]
Abstract
Smad-interacting protein 1 (SIP1, also known as ZEB2) represses the transcription of E-cadherin and mediates epithelial-mesenchymal transition in development and tumor metastasis. Due to the lack of human SIP1-specific antibodies, its expression in human tumor tissues has not been studied in detail by immunohistochemistry. Hence, we generated two anti-SIP1 monoclonal antibodies, clones 1C6 and 6E5, with IgG1 and IgG2a isotypes, respectively. The specificity of these antibodies was shown by Western blotting studies using siRNA mediated downregulation of SIP1 and ZEB1 in a human osteosarcoma cell line. In the same context, we also compared them with 5 commercially available SIP1 antibodies. Antibody specificity was further verified in an inducible cell line system by immunofluorescence. By using both antibodies, we evaluated the tissue expression of SIP1 in paraffin-embedded tissue microarrays consisting of 22 normal and 101 tumoral tissues of kidney, colon, stomach, lung, esophagus, uterus, rectum, breast and liver. Interestingly, SIP1 predominantly displayed a cytoplasmic expression, while the nuclear localization of SIP1 was observed in only 6 cases. Strong expression of SIP1 was found in distal tubules of kidney, glandular epithelial cells of stomach and hepatocytes, implicating a co-expression of SIP1 and E-cadherin. Squamous epithelium of the esophagus and surface epithelium of colon and rectum were stained with moderate to weak intensity. Normal uterus, breast and lung tissues remained completely negative. By comparison with their normal tissues, we observed SIP1 overexpression in cancers of the kidney, breast, lung and uterus. However, SIP1 expression was found to be downregulated in tumors from colon, rectum, esophagus, liver and stomach tissues. Finally we did nuclear/cytoplasmic fractionation in 3 carcinoma cell lines and detected SIP1 in both fractions, nucleus being the dominant one. To our best knowledge, this is the first comprehensive immunohistochemical study of the expression of SIP1 in a series of human cancers. Our finding that SIP1 is not exclusively localized to nucleus suggests that the subcellular localization of SIP1 is regulated in normal and tumor tissues. These novel monoclonal antibodies may help elucidate the role of SIP1 in tumor development.
Collapse
Affiliation(s)
- Emin Oztas
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
154
|
Induction of EMT-like phenotypes by an active metabolite of leflunomide and its contribution to pulmonary fibrosis. Cell Death Differ 2010; 17:1882-95. [PMID: 20489727 DOI: 10.1038/cdd.2010.64] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drug-induced interstitial lung disease (ILD), particularly pulmonary fibrosis, is a serious clinical concern and myofibroblasts have been suggested to have a major role, with it recently being revealed that some of these myofibroblasts are derived from lung epithelial cells through epithelial-mesenchymal transition (EMT). In this study, we examined the EMT-inducing abilities of drugs known to induce ILD clinically. EMT-like phenotypes were induced by A771726, an active metabolite of leflunomide having an inhibitory effect on dihydroorotate dehydrogenase (DHODH). Smad-interacting protein 1 (a transcription factor regulating EMT) and the Notch-signaling pathway but not transforming growth factor-β was shown to be involved in A771726-induced EMT-like phenotypes. When the cultures were supplemented with exogenous uridine, the A771726-induced EMT-like phenotypes and activation of the Notch-signaling pathway disappeared. Similarly, an A771726 analog without inhibitory activity on DHODH produced no induction, suggesting that this process is mediated through the inhibition of DHODH. In vivo, administration of leflunomide stimulated bleomycin-induced EMT-like phenomenon in pulmonary tissue, and exacerbated bleomycin-induced pulmonary fibrosis, both of which were suppressed by coadministration of uridine. Taken together, these findings suggest that leflunomide-dependent exacerbation of bleomycin-induced pulmonary fibrosis is mediated by stimulation of EMT of lung epithelial cells, providing the first evidence that drug-induced pulmonary fibrosis involves EMT of these cells.
Collapse
|
155
|
Yanagawa J, Walser TC, Zhu LX, Hong L, Fishbein MC, Mah V, Chia D, Goodglick L, Elashoff DA, Luo J, Magyar CE, Dohadwala M, Lee JM, St John MA, Strieter RM, Sharma S, Dubinett SM. Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma. Clin Cancer Res 2009; 15:6820-9. [PMID: 19887480 DOI: 10.1158/1078-0432.ccr-09-1558] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE As a transcriptional repressor of E-cadherin, Snail has predominantly been associated with epithelial-mesenchymal transition, invasion, and metastasis. However, other important Snail-dependent malignant phenotypes have not been fully explored. Here, we investigate the contributions of Snail to the progression of non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN Immunohistochemistry was done to quantify and localize Snail in human lung cancer tissues, and tissue microarray analysis was used to correlate these findings with survival. NSCLC cell lines gene-modified to stably overexpress Snail were evaluated in vivo in two severe combined immunodeficiency murine tumor models. Differential gene expression between Snail-overexpressing and control cell lines was evaluated using gene expression microarray analysis. RESULTS Snail is upregulated in human NSCLC tissue, and high levels of Snail expression correlate with decreased survival (P < 0.026). In a heterotopic model, mice bearing Snail-overexpressing tumors developed increased primary tumor burden (P = 0.008). In an orthotopic model, mice bearing Snail-overexpressing tumors also showed a trend toward increased metastases. In addition, Snail overexpression led to increased angiogenesis in primary tumors as measured by MECA-32 (P < 0.05) positivity and CXCL8 (P = 0.002) and CXCL5 (P = 0.0003) concentrations in tumor homogenates. Demonstrating the importance of these proangiogenic chemokines, the Snail-mediated increase in tumor burden was abrogated with CXCR2 blockade. Gene expression analysis also revealed Snail-associated differential gene expression with the potential to affect angiogenesis and diverse aspects of lung cancer progression. CONCLUSION Snail upregulation plays a role in human NSCLC by promoting tumor progression mediated by CXCR2 ligands.
Collapse
Affiliation(s)
- Jane Yanagawa
- Lung Cancer Research Program, Division of Pulmonary and Critical Care Medicine, 10833 Le Conte Avenue, 37-131 CHS, Los Angeles, CA 90095-1690, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Charron CE, Chou PC, Coutts DJC, Kumar V, To M, Akashi K, Pinhu L, Griffiths M, Adcock IM, Barnes PJ, Ito K. Hypoxia-inducible factor 1alpha induces corticosteroid-insensitive inflammation via reduction of histone deacetylase-2 transcription. J Biol Chem 2009; 284:36047-36054. [PMID: 19880520 DOI: 10.1074/jbc.m109.025387] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Corticosteroids are potent anti-inflammatory agents, but corticosteroid insensitivity is a major barrier for the treatment of some chronic inflammatory diseases. Here, we show that hypoxia induces corticosteroid-insensitive inflammation via reduced transcription of histone deacetylase-2 (HDAC2) in lung epithelial and macrophage cells. HDAC2 mRNA and protein expression was reduced under hypoxic conditions (1% O(2)). Hypoxia enhanced interleukin-1beta-induced interleukin-8 (CXCL8) production in A549 cells and decreased the ability of dexamethasone to suppress the CXCL8 production. Deletion or point mutation studies revealed that binding of the transcription factor hypoxia-inducible factor (HIF) 1alpha to a HIF response element at position -320, but not HIF-1beta or HIF-2alpha, results in reduced polymerase II binding at the site, leading to reduced promoter activity of HDAC2. Our results suggest that activation of HIF-1alpha by hypoxia decreases HDAC2 levels, resulting in amplified inflammation and corticosteroid resistance.
Collapse
Affiliation(s)
- Catherine E Charron
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom.
| | - Pai-Chien Chou
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom; Department of Thoracic Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei 10507, Taiwan
| | - David J C Coutts
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Vaibhav Kumar
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Masako To
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Kenichi Akashi
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Liao Pinhu
- Unit of Critical Care, Imperial College Royal Brompton Hospital Campus, London SW3 6NP, United Kingdom
| | - Mark Griffiths
- Unit of Critical Care, Imperial College Royal Brompton Hospital Campus, London SW3 6NP, United Kingdom
| | - Ian M Adcock
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Peter J Barnes
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| | - Kazuhiro Ito
- Section of Airway Disease, National Heart and Lung Institute, Imperial College London, London SW3 6LY, United Kingdom
| |
Collapse
|
157
|
Belair C, Darfeuille F, Staedel C. Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009; 15:806-12. [PMID: 19702585 DOI: 10.1111/j.1469-0691.2009.02960.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic infection by Helicobacter pylori is a major risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. H. pylori possesses a set of virulence factors, including the CagA effector, which interferes with intracellular signalling pathways and mediates phenotypic alterations, strongly evoking neoplasic transformation. MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression involved in development, cell proliferation and immune responses. miRNAs are frequently altered in cancers, revealing their functions as oncogenes or tumour suppressors. However, the role, if any, that miRNAs play in the host cell responses to H. pylori remains unknown. This review considers the possible involvement of some miRNAs, including miR-146, miR-155, miR-21, miR-27a, miR-106-93-25 and miR-221-222 clusters and the miR-200 family in H. pylori-induced infection and gastric cancers. Further exploration of miRNA-mediated gene silencing, taking into account the relationship between host targets and bacterial effectors, will most certainly bring new insights into the control of gene expression in human gastric cells chronically infected by H. pylori.
Collapse
Affiliation(s)
- C Belair
- INSERM U869, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, Bordeaux, France
| | | | | |
Collapse
|
158
|
SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc Natl Acad Sci U S A 2009; 106:14884-9. [PMID: 19706487 DOI: 10.1073/pnas.0902042106] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Two ZEB family members, ZEB1 and ZEB2(SIP1), inhibit transcription of the E-cadherin gene and induce EMT in vitro. However, their relevance to human cancer is insufficiently studied. Here, we performed a comparative study of SIP1 and ZEB1 proteins in cancer cell lines and in one form of human malignancy, carcinoma of the bladder. Whereas ZEB1 protein was expressed in all E-cadherin-negative carcinoma cell lines, being in part responsible for the high motility of bladder cancer cells, SIP1 was hardly ever detectable in carcinoma cells in culture. However, SIP1 represented an independent factor of poor prognosis (P = 0.005) in a series of bladder cancer specimens obtained from patients treated with radiotherapy. In contrast, ZEB1 was rarely expressed in tumor tissues; and E-cadherin status did not correlate with the patients' survival. SIP1 protected cells from UV- and cisplatin-induced apoptosis in vitro but had no effect on the level of DNA damage. The anti-apoptotic effect of SIP1 was independent of either cell cycle arrest or loss of cell-cell adhesion and was associated with reduced phosphorylation of ATM/ATR targets in UV-treated cells. The prognostic value of SIP1 and its role in DNA damage response establish a link between genetic instability and metastasis and suggest a potential importance for this protein as a therapeutic target. In addition, we conclude that the nature of an EMT pathway rather than the deregulation of E-cadherin per se is critical for the progression of the disease and patients' survival.
Collapse
|
159
|
Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA (NEW YORK, N.Y.) 2009; 15:1443-1461. [PMID: 19561119 PMCID: PMC2714746 DOI: 10.1261/rna.1534709] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Transformation of normal cells into malignant tumors requires the acquisition of six hallmark traits, e.g., self-sufficiency in growth signals, insensitivity to antigrowth signals and self-renewal, evasion of apoptosis, limitless replication potential, angiogenesis, invasion, and metastasis, which are common to all cancers (Hanahan and Weinberg 2000). These new cellular traits evolve from defects in major regulatory microcircuits that are fundamental for normal homeostasis. The discovery of microRNAs (miRNAs) as a new class of small non-protein-coding RNAs that control gene expression post-transcriptionally by binding to various mRNA targets suggests that these tiny RNA molecules likely act as molecular switches in the extensive regulatory web that involves thousands of transcripts. Most importantly, accumulating evidence suggests that numerous microRNAs are aberrantly expressed in human cancers. In this review, we discuss the emergent roles of microRNAs as switches that function to turn on/off known cellular microcircuits. We outline recent compelling evidence that deregulated microRNA-mediated control of cellular microcircuits cooperates with other well-established regulatory mechanisms to confer the hallmark traits of the cancer cell. Furthermore, these exciting insights into aberrant microRNA control in cancer-associated circuits may be exploited for cancer therapies that will target deregulated miRNA switches.
Collapse
Affiliation(s)
- Georgia Sotiropoulou
- Department of Pharmacy, School of Health Sciences, University of Patras, Rion-Patras 26500, Greece.
| | | | | | | |
Collapse
|
160
|
Evdokimova V, Tognon C, Ng T, Ruzanov P, Melnyk N, Fink D, Sorokin A, Ovchinnikov LP, Davicioni E, Triche TJ, Sorensen PHB. Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell 2009; 15:402-15. [PMID: 19411069 DOI: 10.1016/j.ccr.2009.03.017] [Citation(s) in RCA: 372] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 10/30/2008] [Accepted: 03/06/2009] [Indexed: 12/30/2022]
Abstract
Increased expression of the transcription/translation regulatory protein Y-box binding protein-1 (YB-1) is associated with cancer aggressiveness, particularly in breast carcinoma. Here we establish that YB-1 levels are elevated in invasive breast cancer cells and correlate with reduced expression of E-cadherin and poor patient survival. Enforced expression of YB-1 in noninvasive breast epithelial cells induced an epithelial-mesenchymal transition (EMT) accompanied by enhanced metastatic potential and reduced proliferation rates. YB-1 directly activates cap-independent translation of messenger RNAs encoding Snail1 and other transcription factors implicated in downregulation of epithelial and growth-related genes and activation of mesenchymal genes. Hence, translational regulation by YB-1 is a restriction point enabling coordinated expression of a network of EMT-inducing transcription factors, likely acting together to promote metastatic spread.
Collapse
Affiliation(s)
- Valentina Evdokimova
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Klein EA, Assoian RK. Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2009; 121:3853-7. [PMID: 19020303 DOI: 10.1242/jcs.039131] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eric A Klein
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
162
|
Fedorova LV, Raju V, El-Okdi N, Shidyak A, Kennedy DJ, Vetteth S, Giovannucci DR, Bagrov AY, Fedorova OV, Shapiro JI, Malhotra D. The cardiotonic steroid hormone marinobufagenin induces renal fibrosis: implication of epithelial-to-mesenchymal transition. Am J Physiol Renal Physiol 2009; 296:F922-34. [PMID: 19176701 DOI: 10.1152/ajprenal.90605.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We recently demonstrated that the cardiotonic steroid marinobufagenin (MBG) induced fibrosis in rat hearts through direct stimulation of collagen I secretion by cardiac fibroblasts. This stimulation was also responsible for the cardiac fibrosis seen in experimental renal failure. In this study, the effect of MBG on the development of renal fibrosis in rats was investigated. Four weeks of MBG infusion triggered mild periglomerular and peritubular fibrosis in the cortex and the appearance of fibrotic scars in the corticomedullary junction of the kidney. MBG also significantly increased the protein levels and nuclear localization of the transcription factor Snail in the tubular epithelia. It is known that activation of Snail is associated with epithelial-to-mesenchymal transition (EMT) during renal fibrosis. To examine whether MBG alone can trigger EMT, we used the porcine proximal tubular cell line LLC-PK1. MBG (100 nM) caused LLC-PK1 cells grown to confluence to acquire a fibroblast-like shape and have an invasive motility. The expressions of the mesenchymal proteins collagen I, fibronectin, and vimentin were increased twofold. However, the total level of E-cadherin remained unchanged. These alterations in LLC-PK1 cells in the presence of MBG were accompanied by elevated expression and nuclear translocation of Snail. During the time course of EMT, MBG did not have measurable inhibitory effects on the ion pumping activity of its natural ligand, Na(+)-K(+)-ATPase. Our data suggest that the MBG may be an important factor in inducing EMT and, through this mechanism, elevated levels of MBG in chronic renal failure may play a role in the progressive fibrosis.
Collapse
Affiliation(s)
- Larisa V Fedorova
- Division of Nephrology, Dept. of Medicine, Univ. of Toledo College of Medicine, 3000 Arlington Ave., Toledo Ohio, 43614-2598, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, Huber O, González-Mariscal L. Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 2008; 20:1102-17. [PMID: 19056685 DOI: 10.1091/mbc.e08-03-0277] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Here, we have studied the effect of the tight junction protein zona occludens (ZO)-2 on cyclin D1 (CD1) protein expression. CD1 is essential for cell progression through the G1 phase of the cell cycle. We have found that in cultures of synchronized Madin-Darby canine kidney cells, ZO-2 inhibits cell proliferation at G0/G1 and decreases CD1 protein level. These effects occur in response to a diminished CD1 translation and an augmented CD1 degradation at the proteosome triggered by ZO-2. ZO-2 overexpression decreases the amount of Glycogen synthase kinase-3beta phosphorylated at Ser9 and represses beta-catenin target gene expression. We have also explored the expression of ZO-2 through the cell cycle and demonstrate that ZO-2 enters the nucleus at the late G1 phase and leaves the nucleus when the cell is in mitosis. These results thus explain why in confluent quiescent epithelia ZO-2 is absent from the nucleus and localizes at the cellular borders, whereas in sparse proliferating cultures ZO-2 is conspicuously present at the nucleus.
Collapse
Affiliation(s)
- Rocio Tapia
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies (CINVESTAV), Mexico, D.F., 07360, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Methyl jasmonate downregulates expression of proliferating cell nuclear antigen and induces apoptosis in human neuroblastoma cell lines. Anticancer Drugs 2008; 19:573-81. [PMID: 18525316 DOI: 10.1097/cad.0b013e3282fc46b0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent evidence indicates that methyl jasmonate, a plant stress hormone, exhibits anticancer activity on human cancer cells. Whether methyl jasmonate could inhibit the growth of human neuroblastoma cells still, however, remains largely unknown. In this study, administration of methyl jasmonate to cultured neuroblastoma cell lines, SK-N-SH and BE(2)-C, resulted in a decrease of cell viability in a dose-dependent and time-dependent manner as demonstrated by MTT colorimetry and colony formation assay. The results from RT-PCR indicated that the expression of proliferating cell nuclear antigen, but not of cyclin D1, was downregulated by methyl jasmonate. Accordingly, the cell cycle of methyl jasmonate-treated neuroblastoma cells was arrested at the G0/G1 phase. Moreover, incubation of SK-N-SH and BE(2)-C cells with methyl jasmonate resulted in characteristic changes of apoptosis, as demonstrated by acridine orange-ethidium bromide (AO/EB) staining, Hoechst 33258 staining and flow cytometry. Moreover, methyl jasmonate decreased the expression of the X-linked inhibitor of apoptosis protein and survivin, critical members of the inhibitors of apoptosis protein family, in neuroblastoma cells. These findings indicate that methyl jasmonate suppresses the growth of cultured human neuroblastoma cells associated with downregulation of proliferating cell nuclear antigen, and induces apoptosis accompanied by downregulation of the X-linked inhibitor of apoptosis protein and survivin, which lays the groundwork for further investigation into the mechanisms of methyl jasmonate-mediated anticancer activities.
Collapse
|
165
|
Kim S, Choi M, Cho KH. Identifying the target mRNAs of microRNAs in colorectal cancer. Comput Biol Chem 2008; 33:94-9. [PMID: 18723399 DOI: 10.1016/j.compbiolchem.2008.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 01/22/2023]
Abstract
MicroRNAs (miRNAs) play an important role in gene regulatory networks by inhibiting the expression of target mRNAs. There is a growing interest in identifying the relationship between miRNAs and their target mRNAs. Various experimental studies have been carried out to discover miRNAs involved in cancer and to identify their target genes. At the same time, a large volume of miRNA and mRNA expression profiles have become available owing to the development of high-throughput measurement technologies. So, there is now a pressing need to develop a computational method by which we can identify the target mRNAs of given miRNAs from such massive expression data sets. In this respect, we propose an effective linear model based identification method to unravel the relationship between miRNAs and their target mRNAs in colorectal cancer by using microarray expression profiles and sequence data.
Collapse
Affiliation(s)
- Shinuk Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Gwanak-gu, Seoul, Republic of Korea
| | | | | |
Collapse
|
166
|
Abstract
The acquisition of a fully malignant phenotype is limited by several barriers, including cellular senescence and the requirement to undergo an epithelial-mesenchymal transition (EMT). Deregulation of these processes is believed to occur by largely independent events. In this issue of Cancer Cell, Ansieau et al. (2008) challenge this view.
Collapse
Affiliation(s)
- Marjon A Smit
- Division of Molecular Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
167
|
Knudsen BS, Vande Woude G. Showering c-MET-dependent cancers with drugs. Curr Opin Genet Dev 2008; 18:87-96. [PMID: 18406132 DOI: 10.1016/j.gde.2008.02.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/05/2008] [Indexed: 11/18/2022]
Abstract
The receptor tyrosine kinase, c-MET and its ligand hepatocyte growth factor/scatter factor (HGF/SF) have become leading candidates for targeted cancer therapies. Inappropriate c-MET signaling through autocrine, paracrine, amplification, and mutational activation occurs in virtually all types of solid tumors (http://www.vai.org/met), contributing to one or a combination of proliferative, invasive, survival, or angiogenic cancer phenotypes. c-MET and HGF/SF participate in all stages of malignant progression and represent promising drug targets in a variety of cancer types, including carcinomas, sarcomas, and brain tumors. While many are in pre-clinical testing, a few inhibitors have entered clinical trials. With hundreds of thousands of potential responding cancers that express c-MET, the interest in this molecule as a drug target is not surprising. However, the cognate c-MET diagnostic tests lag behind. In addition, despite the great enthusiasm based on response rates in phase I trials, there is a need for caution. It is almost without question that combination therapies with c-MET-HGF/SF inhibitors will be required for most cancers to achieve a cytotoxic tumor response.
Collapse
Affiliation(s)
- Beatrice S Knudsen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, United States
| | | |
Collapse
|
168
|
Acloque H, Thiery JP, Nieto MA. The physiology and pathology of the EMT. Meeting on the epithelial-mesenchymal transition. EMBO Rep 2008; 9:322-6. [PMID: 18323854 PMCID: PMC2288772 DOI: 10.1038/embor.2008.30] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/07/2008] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias de Alicante, CSIC-UMH, Apartado 18, San Juan de Alicante, 03550 Spain
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673 Singapore
| | - M. Angela Nieto
- Instituto de Neurociencias de Alicante, CSIC-UMH, Apartado 18, San Juan de Alicante, 03550 Spain
| |
Collapse
|