151
|
Mallm JP, Iskar M, Ishaque N, Klett LC, Kugler SJ, Muino JM, Teif VB, Poos AM, Großmann S, Erdel F, Tavernari D, Koser SD, Schumacher S, Brors B, König R, Remondini D, Vingron M, Stilgenbauer S, Lichter P, Zapatka M, Mertens D, Rippe K. Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks. Mol Syst Biol 2019; 15:e8339. [PMID: 31118277 PMCID: PMC6529931 DOI: 10.15252/msb.20188339] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/02/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL), a diverse set of genetic mutations is embedded in a deregulated epigenetic landscape that drives cancerogenesis. To elucidate the role of aberrant chromatin features, we mapped DNA methylation, seven histone modifications, nucleosome positions, chromatin accessibility, binding of EBF1 and CTCF, as well as the transcriptome of B cells from CLL patients and healthy donors. A globally increased histone deacetylase activity was detected and half of the genome comprised transcriptionally downregulated partially DNA methylated domains demarcated by CTCF CLL samples displayed a H3K4me3 redistribution and nucleosome gain at promoters as well as changes of enhancer activity and enhancer linkage to target genes. A DNA binding motif analysis identified transcription factors that gained or lost binding in CLL at sites with aberrant chromatin features. These findings were integrated into a gene regulatory enhancer containing network enriched for B-cell receptor signaling pathway components. Our study predicts novel molecular links to targets of CLL therapies and provides a valuable resource for further studies on the epigenetic contribution to the disease.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics and Heidelberg Center for Personalized Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara C Klett
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sabrina J Kugler
- Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Jose M Muino
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Vladimir B Teif
- School of Biological Sciences, University of Essex, Colchester, UK
| | - Alexandra M Poos
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute Jena, Jena, Germany
| | - Sebastian Großmann
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Fabian Erdel
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
- Centre de Biologie Intégrative (CBI), CNRS, UPS, Toulouse, France
| | - Daniele Tavernari
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Sandra D Koser
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabrina Schumacher
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer König
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
- Network Modeling, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute Jena, Jena, Germany
| | - Daniel Remondini
- Department of Physics and Astronomy, Bologna University, Bologna, Italy
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Mertens
- Mechanisms of Leukemogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| |
Collapse
|
152
|
Rao RA, Ketkar AA, Kedia N, Krishnamoorthy VK, Lakshmanan V, Kumar P, Mohanty A, Kumar SD, Raja SO, Gulyani A, Chaturvedi CP, Brand M, Palakodeti D, Rampalli S. KMT1 family methyltransferases regulate heterochromatin-nuclear periphery tethering via histone and non-histone protein methylation. EMBO Rep 2019; 20:e43260. [PMID: 30858340 PMCID: PMC6501005 DOI: 10.15252/embr.201643260] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
Euchromatic histone methyltransferases (EHMTs), members of the KMT1 family, methylate histone and non-histone proteins. Here, we uncover a novel role for EHMTs in regulating heterochromatin anchorage to the nuclear periphery (NP) via non-histone methylation. We show that EHMTs methylate and stabilize LaminB1 (LMNB1), which associates with the H3K9me2-marked peripheral heterochromatin. Loss of LMNB1 methylation or EHMTs abrogates heterochromatin anchorage at the NP We further demonstrate that the loss of EHMTs induces many hallmarks of aging including global reduction of H3K27methyl marks and altered nuclear morphology. Consistent with this, we observe a gradual depletion of EHMTs, which correlates with loss of methylated LMNB1 and peripheral heterochromatin in aging human fibroblasts. Restoration of EHMT expression reverts peripheral heterochromatin defects in aged cells. Collectively, our work elucidates a new mechanism by which EHMTs regulate heterochromatin domain organization and reveals their impact on fundamental changes associated with the intrinsic aging process.
Collapse
Affiliation(s)
- Radhika Arasala Rao
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
- Sastra University, Tirumalaisamudram, Thanjavur, Tamilnadu, India
| | - Alhad Ashok Ketkar
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Neelam Kedia
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Vignesh K Krishnamoorthy
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Vairavan Lakshmanan
- Sastra University, Tirumalaisamudram, Thanjavur, Tamilnadu, India
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Pankaj Kumar
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Abhishek Mohanty
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Shilpa Dilip Kumar
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Sufi O Raja
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Akash Gulyani
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Chandra Prakash Chaturvedi
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Marjorie Brand
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dasaradhi Palakodeti
- Technologies for the Advancement of Science, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| | - Shravanti Rampalli
- Centre For Inflammation and Tissue Homeostasis, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, Karnataka, India
| |
Collapse
|
153
|
Boukas L, Havrilla JM, Hickey PF, Quinlan AR, Bjornsson HT, Hansen KD. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res 2019; 29:532-542. [PMID: 30858344 PMCID: PMC6442390 DOI: 10.1101/gr.239442.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Coding variants in epigenetic regulators are emerging as causes of neurological dysfunction and cancer. However, a comprehensive effort to identify disease candidates within the human epigenetic machinery (EM) has not been performed; it is unclear whether features exist that distinguish between variation-intolerant and variation-tolerant EM genes, and between EM genes associated with neurological dysfunction versus cancer. Here, we rigorously define 295 genes with a direct role in epigenetic regulation (writers, erasers, remodelers, readers). Systematic exploration of these genes reveals that although individual enzymatic functions are always mutually exclusive, readers often also exhibit enzymatic activity (dual-function EM genes). We find that the majority of EM genes are very intolerant to loss-of-function variation, even when compared to the dosage sensitive transcription factors, and we identify 102 novel EM disease candidates. We show that this variation intolerance is driven by the protein domains encoding the epigenetic function, suggesting that disease is caused by a perturbed chromatin state. We then describe a large subset of EM genes that are coexpressed within multiple tissues. This subset is almost exclusively populated by extremely variation-intolerant genes and shows enrichment for dual-function EM genes. It is also highly enriched for genes associated with neurological dysfunction, even when accounting for dosage sensitivity, but not for cancer-associated EM genes. Finally, we show that regulatory regions near epigenetic regulators are genetically important for common neurological traits. These findings prioritize novel disease candidate EM genes and suggest that this coexpression plays a functional role in normal neurological homeostasis.
Collapse
Affiliation(s)
- Leandros Boukas
- Human Genetics Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - James M Havrilla
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Peter F Hickey
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah 84108, USA
- USTAR Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84108, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
- Landspitali University Hospital, 101 Reykjavík, Iceland
| | - Kasper D Hansen
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
154
|
Winterbottom EF, Moroishi Y, Halchenko Y, Armstrong DA, Beach PJ, Nguyen QP, Capobianco AJ, Ayad NG, Marsit CJ, Li Z, Karagas MR, Robbins DJ. Prenatal arsenic exposure alters the placental expression of multiple epigenetic regulators in a sex-dependent manner. Environ Health 2019; 18:18. [PMID: 30819207 PMCID: PMC6396530 DOI: 10.1186/s12940-019-0455-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/22/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND Prenatal exposure to arsenic has been linked to a range of adverse health conditions in later life. Such fetal origins of disease are frequently the result of environmental effects on the epigenome, leading to long-term alterations in gene expression. Several studies have demonstrated effects of prenatal arsenic exposure on DNA methylation; however the impact of arsenic on the generation and decoding of post-translational histone modifications (PTHMs) is less well characterized, and has not been studied in the context of prenatal human exposures. METHODS In the current study, we examined the effect of exposure to low-to-moderate levels of arsenic in a US birth cohort, on the expression of 138 genes encoding key epigenetic regulators in the fetal portion of the placenta. Our candidate genes included readers, writers and erasers of PTHMs, and chromatin remodelers. RESULTS Arsenic exposure was associated with the expression of 27 of the 138 epigenetic genes analyzed. When the cohort was stratified by fetal sex, arsenic exposure was associated with the expression of 40 genes in male fetal placenta, and only 3 non-overlapping genes in female fetal placenta. In particular, we identified an inverse relationship between arsenic exposure and expression of the gene encoding the histone methyltransferase, PRDM6 (p < 0.001). Mutation of PRDM6 has been linked to the congenital heart defect, patent ductus arteriosus. CONCLUSIONS Our findings suggest that prenatal arsenic exposure may have sex-specific effects on the fetal epigenome, which could plausibly contribute to its subsequent health impacts.
Collapse
Affiliation(s)
- Emily F. Winterbottom
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Yuliya Halchenko
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - David A. Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Paul J. Beach
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Quang P. Nguyen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Anthony J. Capobianco
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Nagi G. Ayad
- Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, The Miami Project to Cure Paralysis, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136 USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health at Emory University, Atlanta, GA 30322 USA
| | - Zhigang Li
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755 USA
| | - David J. Robbins
- Molecular Oncology Program, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
155
|
Lioznova AV, Khamis AM, Artemov AV, Besedina E, Ramensky V, Bajic VB, Kulakovskiy IV, Medvedeva YA. CpG traffic lights are markers of regulatory regions in human genome. BMC Genomics 2019; 20:102. [PMID: 30709331 PMCID: PMC6359853 DOI: 10.1186/s12864-018-5387-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over genomic regions in the downstream bioinformatic analysis. Results We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable marker of such inactivation. Conclusions CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to directly measuring gene expression due to more stable nature of DNA. Electronic supplementary material The online version of this article (10.1186/s12864-018-5387-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna V Lioznova
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Elizaveta Besedina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vasily Ramensky
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ivan V Kulakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia. .,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
156
|
TBL1 is required for the mesenchymal phenotype of transformed breast cancer cells. Cell Death Dis 2019; 10:95. [PMID: 30705280 PMCID: PMC6355934 DOI: 10.1038/s41419-019-1310-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/21/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) and its reversion (MET) are related to tumor cell dissemination and migration, tumor circulating cell generation, cancer stem cells, chemoresistance, and metastasis formation. To identify chromatin and epigenetic factors possibly involved in the process of EMT, we compare the levels of expression of epigenetic genes in a transformed human breast epithelial cell line (HMEC-RAS) versus a stable clone of the same cell line expressing the EMT master regulator ZEB1 (HMEC-RAS-ZEB1). One of the factors strongly induced in the HMEC-RAS-ZEB1 cells was Transducin beta-like 1 (TBL1), a component of the NCoR complex, which has both corepressor and coactivator activities. We show that TBL1 interacts with ZEB1 and that both factors cooperate to repress the promoter of the epithelial gene E-cadherin (CDH1) and to autoactivate the ZEB1 promoter. Consistent with its central role, TBL1 is required for mesenchymal phenotypes of transformed breast epithelial and breast cancer cell lines of the claudin-low subtype. Importantly, a high expression of the TBL1 gene correlates with poor prognosis and increased proportion of metastasis in breast cancer patients, indicating that the level of TBL1 expression can be used as a prognostic marker.
Collapse
|
157
|
Kim P, Zhou X. FusionGDB: fusion gene annotation DataBase. Nucleic Acids Res 2019; 47:D994-D1004. [PMID: 30407583 PMCID: PMC6323909 DOI: 10.1093/nar/gky1067] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/05/2018] [Accepted: 11/01/2018] [Indexed: 12/26/2022] Open
Abstract
Gene fusion is one of the hallmarks of cancer genome via chromosomal rearrangement initiated by DNA double-strand breakage. To date, many fusion genes (FGs) have been established as important biomarkers and therapeutic targets in multiple cancer types. To better understand the function of FGs in cancer types and to promote the discovery of clinically relevant FGs, we built FusionGDB (Fusion Gene annotation DataBase) available at https://ccsm.uth.edu/FusionGDB. We collected 48 117 FGs across pan-cancer from three representative fusion gene resources: the improved database of chimeric transcripts and RNA-seq data (ChiTaRS 3.1), an integrative resource for cancer-associated transcript fusions (TumorFusions), and The Cancer Genome Atlas (TCGA) fusions by Gao et al. For these ∼48K FGs, we performed functional annotations including gene assessment across pan-cancer fusion genes, open reading frame (ORF) assignment, and retention search of 39 protein features based on gene structures of multiple isoforms with different breakpoints. We also provided the fusion transcript and amino acid sequences according to multiple breakpoints and transcript isoforms. Our analyses identified 331, 303 and 667 in-frame FGs with retaining kinase, DNA-binding, and epigenetic factor domains, respectively, as well as 976 FGs lost protein-protein interaction. FusionGDB provides six categories of annotations: FusionGeneSummary, FusionProtFeature, FusionGeneSequence, FusionGenePPI, RelatedDrug and RelatedDisease.
Collapse
Affiliation(s)
- Pora Kim
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
158
|
Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells. Nat Commun 2019; 10:34. [PMID: 30604769 PMCID: PMC6318327 DOI: 10.1038/s41467-018-08006-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/11/2018] [Indexed: 01/18/2023] Open
Abstract
The majority of mammalian genomes are devoted to transposable elements (TEs). Whilst TEs are increasingly recognized for their important biological functions, they are a potential danger to genomic stability and are carefully regulated by the epigenetic system. However, the full complexity of this regulatory system is not understood. Here, using mouse embryonic stem cells, we show that TEs are suppressed by heterochromatic marks like H3K9me3, and are also labelled by all major types of chromatin modification in complex patterns, including bivalent activatory and repressive marks. We identified 29 epigenetic modifiers that significantly deregulated at least one type of TE. The loss of Setdb1, Ncor2, Rnf2, Kat5, Prmt5, Uhrf1, and Rrp8 caused widespread changes in TE expression and chromatin accessibility. These effects were context-specific, with different chromatin modifiers regulating the expression and chromatin accessibility of specific subsets of TEs. Our work reveals the complex patterns of epigenetic regulation of TEs. Transposable elements (TEs) fulfill essential but poorly understood roles in genome organization and gene expression control. Here the authors show that the regulation of TEs occurs through overlapping epigenetic mechanisms that control the expression and chromatin signatures at TEs.
Collapse
|
159
|
Roy A, Palli SR. Epigenetic modifications acetylation and deacetylation play important roles in juvenile hormone action. BMC Genomics 2018; 19:934. [PMID: 30547764 PMCID: PMC6295036 DOI: 10.1186/s12864-018-5323-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic modifications including DNA methylation and post-translational modifications of histones are known to regulate gene expression. Antagonistic activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate transcriptional reprogramming during insect development as shown in Drosophila melanogaster and other insects. Juvenile hormones (JH) play vital roles in the regulation of growth, development, metamorphosis, reproduction and other physiological processes. However, our current understanding of epigenetic regulation of JH action is still limited. Hence, we studied the role of CREB binding protein (CBP, contains HAT domain) and Trichostatin A (TSA, HDAC inhibitor) on JH action. RESULTS Exposure of Tribolium castaneum cells (TcA cells) to JH or TSA caused an increase in expression of Kr-h1 (a known JH-response gene) and 31 or 698 other genes respectively. Knockdown of the gene coding for CBP caused a decrease in the expression of 456 genes including Kr-h1. Interestingly, the expression of several genes coding for transcription factors, nuclear receptors, P450 and fatty acid synthase family members that are known to mediate JH action were affected by CBP knockdown or TSA treatment. CONCLUSIONS These data suggest that acetylation and deacetylation mediated by HATs and HDACs play an important role in JH action.
Collapse
Affiliation(s)
- Amit Roy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
- Faculty of Forestry and Wood Sciences, EXTEMIT-K, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 21 Suchdol, Czech Republic
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546 USA
| |
Collapse
|
160
|
Kehl T, Schneider L, Kattler K, Stöckel D, Wegert J, Gerstner N, Ludwig N, Distler U, Tenzer S, Gessler M, Walter J, Keller A, Graf N, Meese E, Lenhof HP. The role of TCF3 as potential master regulator in blastemal Wilms tumors. Int J Cancer 2018; 144:1432-1443. [PMID: 30155889 DOI: 10.1002/ijc.31834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/05/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
Wilms tumors are the most common type of pediatric kidney tumors. While the overall prognosis for patients is favorable, especially tumors that exhibit a blastemal subtype after preoperative chemotherapy have a poor prognosis. For an improved risk assessment and therapy stratification, it is essential to identify the driving factors that are distinctive for this aggressive subtype. In our study, we compared gene expression profiles of 33 tumor biopsies (17 blastemal and 16 other tumors) after neoadjuvant chemotherapy. The analysis of this dataset using the Regulator Gene Association Enrichment algorithm successfully identified several biomarkers and associated molecular mechanisms that distinguish between blastemal and nonblastemal Wilms tumors. Specifically, regulators involved in embryonic development and epigenetic processes like chromatin remodeling and histone modification play an essential role in blastemal tumors. In this context, we especially identified TCF3 as the central regulatory element. Furthermore, the comparison of ChIP-Seq data of Wilms tumor cell cultures from a blastemal mouse xenograft and a stromal tumor provided further evidence that the chromatin states of blastemal cells share characteristics with embryonic stem cells that are not present in the stromal tumor cell line. These stem-cell like characteristics could potentially add to the increased malignancy and chemoresistance of the blastemal subtype. Along with TCF3, we detected several additional biomarkers that are distinctive for blastemal Wilms tumors after neoadjuvant chemotherapy and that may provide leads for new therapeutic regimens.
Collapse
Affiliation(s)
- Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Lara Schneider
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Daniel Stöckel
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, Würzburg University, Würzburg, Germany
| | - Nico Gerstner
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Nicole Ludwig
- Human Genetics, Saarland University, Homburg, Germany
| | - Ute Distler
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Tenzer
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, Würzburg University, Würzburg, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Norbert Graf
- Department of Pediatric Oncology and Hematology, Medical School, Saarland University, Homburg, Germany
| | - Eckart Meese
- Human Genetics, Saarland University, Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| |
Collapse
|
161
|
Youn A, Kim KI, Rabadan R, Tycko B, Shen Y, Wang S. A pan-cancer analysis of driver gene mutations, DNA methylation and gene expressions reveals that chromatin remodeling is a major mechanism inducing global changes in cancer epigenomes. BMC Med Genomics 2018; 11:98. [PMID: 30400878 PMCID: PMC6218985 DOI: 10.1186/s12920-018-0425-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background Recent large-scale cancer sequencing studies have discovered many novel cancer driver genes (CDGs) in human cancers. Some studies also suggest that CDG mutations contribute to cancer-associated epigenomic and transcriptomic alterations across many cancer types. Here we aim to improve our understanding of the connections between CDG mutations and altered cancer cell epigenomes and transcriptomes on pan-cancer level and how these connections contribute to the known association between epigenome and transcriptome. Method Using multi-omics data including somatic mutation, DNA methylation, and gene expression data of 20 cancer types from The Cancer Genome Atlas (TCGA) project, we conducted a pan-cancer analysis to identify CDGs, when mutated, have strong associations with genome-wide methylation or expression changes across cancer types, which we refer as methylation driver genes (MDGs) or expression driver genes (EDGs), respectively. Results We identified 32 MDGs, among which, eight are known chromatin modification or remodeling genes. Many of the remaining 24 MDGs are connected to chromatin regulators through either regulating their transcription or physically interacting with them as potential co-factors. We identified 29 EDGs, 26 of which are also MDGs. Further investigation on target genes’ promoters methylation and expression alteration patterns of these 26 overlapping driver genes shows that hyper-methylation of target genes’ promoters are significantly associated with down-regulation of the same target genes and hypo-methylation of target genes’ promoters are significantly associated with up-regulation of the same target genes. Conclusion This finding suggests a pivotal role for genetically driven changes in chromatin remodeling in shaping DNA methylation and gene expression patterns during tumor development. Electronic supplementary material The online version of this article (10.1186/s12920-018-0425-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ahrim Youn
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.,The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Kyung In Kim
- The Jackson Laboratory For Genomic Medicine, Farmington, Connecticut, USA
| | - Raul Rabadan
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Benjamin Tycko
- Division of Genetics & Epigenetics, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Yufeng Shen
- Department of System Biology, Columbia University, New York, New York, USA.,Department of Biomedical Informatics, Columbia University, New York, New York, USA.,Columbia Genome Center, Columbia University, New York, New York, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.
| |
Collapse
|
162
|
Dominguez Gutierrez G, Xin Y, Okamoto H, Kim J, Lee AH, Ni M, Adler C, Yancopoulos GD, Murphy AJ, Gromada J. Gene Signature of Proliferating Human Pancreatic α Cells. Endocrinology 2018; 159:3177-3186. [PMID: 30010845 DOI: 10.1210/en.2018-00469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Pancreatic α cells proliferate at a low rate, and little is known about the control of this process. Here we report the characterization of human α cells by large-scale, single-cell RNA sequencing coupled with pseudotime ordering. We identified two large subpopulations and a smaller cluster of proliferating α cells with increased expression of genes involved in cell-cycle regulation. The proliferating α cells were differentiated, had normal levels of GCG expression, and showed no signs of cellular stress. Proliferating α cells were detected in both the G1S and G2M phases of the cell cycle. Human α cells proliferate at a fivefold higher rate than human β cells and express lower levels of the cell-cycle inhibitors CDKN1A and CDKN1C. Collectively, this study provides the gene signatures of human α cells and the genes involved in their cell division. The lower expression of two cell-cycle inhibitors in human α cells could account for their higher rate of proliferation compared with their insulin-producing counterparts.
Collapse
Affiliation(s)
| | - Yurong Xin
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Jinrang Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | | | |
Collapse
|
163
|
Chromatin Accessibility Dynamics during iPSC Reprogramming. Cell Stem Cell 2018; 21:819-833.e6. [PMID: 29220666 DOI: 10.1016/j.stem.2017.10.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/30/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Cell-fate decisions remain poorly understood at the chromatin level. Here, we map chromatin remodeling dynamics during induction of pluripotent stem cells. ATAC-seq profiling of MEFs expressing Oct4-Sox2-Klf4 (OSK) reveals dynamic changes in chromatin states shifting from open to closed (OC) and closed to open (CO), with an initial burst of OC and an ending surge of CO. The OC loci are largely composed of genes associated with a somatic fate, while the CO loci are associated with pluripotency. Factors/conditions known to impede reprogramming prevent OSK-driven OC and skew OC-CO dynamics. While the CO loci are enriched for OSK motifs, the OC loci are not, suggesting alternative mechanisms for chromatin closing. Sap30, a Sin3A corepressor complex component, is required for the OC shift and facilitates reduced H3K27ac deposition at OC loci. These results reveal a chromatin accessibility logic during reprogramming that may apply to other cell-fate decisions.
Collapse
|
164
|
Elsen GE, Bedogni F, Hodge RD, Bammler TK, MacDonald JW, Lindtner S, Rubenstein JLR, Hevner RF. The Epigenetic Factor Landscape of Developing Neocortex Is Regulated by Transcription Factors Pax6→ Tbr2→ Tbr1. Front Neurosci 2018; 12:571. [PMID: 30186101 PMCID: PMC6113890 DOI: 10.3389/fnins.2018.00571] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Epigenetic factors (EFs) regulate multiple aspects of cerebral cortex development, including proliferation, differentiation, laminar fate, and regional identity. The same neurodevelopmental processes are also regulated by transcription factors (TFs), notably the Pax6→ Tbr2→ Tbr1 cascade expressed sequentially in radial glial progenitors (RGPs), intermediate progenitors, and postmitotic projection neurons, respectively. Here, we studied the EF landscape and its regulation in embryonic mouse neocortex. Microarray and in situ hybridization assays revealed that many EF genes are expressed in specific cortical cell types, such as intermediate progenitors, or in rostrocaudal gradients. Furthermore, many EF genes are directly bound and transcriptionally regulated by Pax6, Tbr2, or Tbr1, as determined by chromatin immunoprecipitation-sequencing and gene expression analysis of TF mutant cortices. Our analysis demonstrated that Pax6, Tbr2, and Tbr1 form a direct feedforward genetic cascade, with direct feedback repression. Results also revealed that each TF regulates multiple EF genes that control DNA methylation, histone marks, chromatin remodeling, and non-coding RNA. For example, Tbr1 activates Rybp and Auts2 to promote the formation of non-canonical Polycomb repressive complex 1 (PRC1). Also, Pax6, Tbr2, and Tbr1 collectively drive massive changes in the subunit isoform composition of BAF chromatin remodeling complexes during differentiation: for example, a novel switch from Bcl7c (Baf40c) to Bcl7a (Baf40a), the latter directly activated by Tbr2. Of 11 subunits predominantly in neuronal BAF, 7 were transcriptionally activated by Pax6, Tbr2, or Tbr1. Using EFs, Pax6→ Tbr2→ Tbr1 effect persistent changes of gene expression in cell lineages, to propagate features such as regional and laminar identity from progenitors to neurons.
Collapse
Affiliation(s)
- Gina E. Elsen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Francesco Bedogni
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Rebecca D. Hodge
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, University of California, San Francisco, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Robert F. Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
165
|
Recurrent loss of heterozygosity correlates with clinical outcome in pancreatic neuroendocrine cancer. NPJ Genom Med 2018; 3:18. [PMID: 30062048 PMCID: PMC6054670 DOI: 10.1038/s41525-018-0058-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are uncommon cancers arising from pancreatic islet cells. Here we report the analysis of gene mutation, copy number, and RNA expression of 57 sporadic well-differentiated pNETs. pNET genomes are dominated by aneuploidy, leading to concordant changes in RNA expression at the level of whole chromosomes and chromosome segments. We observed two distinct patterns of somatic pNET aneuploidy that are associated with tumor pathology and patient prognosis. Approximately 26% of the patients in this series had pNETs with genomes characterized by recurrent loss of heterozygosity (LoH) of 10 specific chromosomes, accompanied by bi-allelic MEN1 inactivation and generally poor clinical outcome. Another ~40% of patients had pNETs that lacked this recurrent LoH pattern but had chromosome 11 LoH, bi-allelic MEN1 inactivation, and universally good clinical outcome. The somatic aneuploidy allowed pathogenic germline variants (e.g., ATM) to be expressed unopposed, with RNA expression patterns showing inactivation of downstream tumor suppressor pathways. No prognostic associations were found with tumor morphology, single gene mutation, or expression of RNAs reflecting the activity of immune, differentiation, proliferative or tumor suppressor pathways. In pNETs, single gene mutations appear to be less important than aneuploidy, with MEN1 the only statistically significant recurrently mutated driver gene. In addition, only one pNET in the series had clearly actionable single nucleotide variants (SNVs) (in PTEN and FLCN) confirmed by corroborating RNA expression changes. The two clinically relevant patterns of LoH described here define a novel oncogenic mechanism and a plausible route to genomic precision oncology for this tumor type.
Collapse
|
166
|
Ci X, Hao J, Dong X, Choi SY, Xue H, Wu R, Qu S, Gout PW, Zhang F, Haegert AM, Fazli L, Crea F, Ong CJ, Zoubeidi A, He HH, Gleave ME, Collins CC, Lin D, Wang Y. Heterochromatin Protein 1α Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Res 2018; 78:2691-2704. [PMID: 29487201 DOI: 10.1158/0008-5472.can-17-3677] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/19/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is a lethal subtype of prostate cancer arising mostly from adenocarcinoma via neuroendocrine transdifferentiation following androgen deprivation therapy. Mechanisms contributing to both NEPC development and its aggressiveness remain elusive. In light of the fact that hyperchromatic nuclei are a distinguishing histopathologic feature of NEPC, we utilized transcriptomic analyses of our patient-derived xenograft (PDX) models, multiple clinical cohorts, and genetically engineered mouse models to identify 36 heterochromatin-related genes that are significantly enriched in NEPC. Longitudinal analysis using our unique, first-in-field PDX model of adenocarcinoma-to-NEPC transdifferentiation revealed that, among those 36 heterochromatin-related genes, heterochromatin protein 1α (HP1α) expression increased early and steadily during NEPC development and remained elevated in the developed NEPC tumor. Its elevated expression was further confirmed in multiple PDX and clinical NEPC samples. HP1α knockdown in the NCI-H660 NEPC cell line inhibited proliferation, ablated colony formation, and induced apoptotic cell death, ultimately leading to tumor growth arrest. Its ectopic expression significantly promoted NE transdifferentiation in adenocarcinoma cells subjected to androgen deprivation treatment. Mechanistically, HP1α reduced expression of androgen receptor and RE1 silencing transcription factor and enriched the repressive trimethylated histone H3 at Lys9 mark on their respective gene promoters. These observations indicate a novel mechanism underlying NEPC development mediated by abnormally expressed heterochromatin genes, with HP1α as an early functional mediator and a potential therapeutic target for NEPC prevention and management.Significance: Heterochromatin proteins play a fundamental role in NEPC, illuminating new therapeutic targets for this aggressive disease. Cancer Res; 78(10); 2691-704. ©2018 AACR.
Collapse
Affiliation(s)
- Xinpei Ci
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Jun Hao
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Stephen Y Choi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Sifeng Qu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Peter W Gout
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Fang Zhang
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Anne M Haegert
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francesco Crea
- School of Life, Health and Chemical Sciences, the Open University, Walton Hall, Milton Keynes, United Kingdom
| | - Christopher J Ong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Housheng H He
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin C Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dong Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Experimental Therapeutics, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
167
|
Chuang JH, Yarmishyn AA, Hwang DK, Hsu CC, Wang ML, Yang YP, Chien KH, Chiou SH, Peng CH, Chen SJ. Expression profiling of cell-intrinsic regulators in the process of differentiation of human iPSCs into retinal lineages. Stem Cell Res Ther 2018; 9:140. [PMID: 29751772 PMCID: PMC5948821 DOI: 10.1186/s13287-018-0848-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Differentiation of human induced pluripotent stem cells (hiPSCs) into retinal lineages offers great potential for medical application. Therefore, it is of crucial importance to know the key intrinsic regulators of differentiation and the specific biomarker signatures of cell lineages. METHODS In this study, we used microarrays to analyze transcriptomes of terminally differentiated retinal ganglion cell (RGC) and retinal pigment epithelium (RPE) lineages, as well as intermediate retinal progenitor cells of optic vesicles (OVs) derived from hiPSCs. In our analysis, we specifically focused on the classes of transcripts that encode intrinsic regulators of gene expression: the transcription factors (TFs) and epigenetic chromatin state regulators. We applied two criteria for the selection of potentially important regulators and markers: firstly, the magnitude of fold-change of upregulation; secondly, the contrasted pattern of differential expression between OV, RGC and RPE lineages. RESULTS We found that among the most highly overexpressed TF-encoding genes in the OV/RGC lineage were three members of the Collier/Olfactory-1/Early B-cell family: EBF1, EBF2 and EBF3. Knockdown of EBF1 led to significant impairment of differentiation of hiPSCs into RGCs. EBF1 was shown to act upstream of ISL1 and BRN3A, the well-characterized regulators of RGC lineage specification. TF-encoding genes DLX1, DLX2 and INSM1 were the most highly overexpressed genes in the OVs, indicating their important role in the early stages of retinal differentiation. Along with MITF, the two paralogs, BHLHE41 and BHLHE40, were the most robust TF markers of RPE cells. The markedly contrasted expression of ACTL6B, encoding the component of chromatin remodeling complex SWI/SNF, discriminated hiPSC-derived OV/RGC and RPE lineages. CONCLUSIONS We identified novel, potentially important intrinsic regulators of RGC and RPE cell lineage specification in the process of differentiation from hiPSCs. We demonstrated the crucial role played by EBF1 in differentiation of RGCs. We identified intrinsic regulator biomarker signatures of these two retinal cell types that can be applied with high confidence to confirm the cell lineage identities.
Collapse
Affiliation(s)
- Jen-Hua Chuang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Aliaksandr A Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - De-Kuang Hwang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Chien Hsu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Ke-Hung Chien
- Department of Ophthalmology, Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Hsien Peng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Ophthalmology, Shin Kong Wu Ho-Su Memorial Hospital and Fu Jen Catholic University, Taipei, Taiwan.
| | - Shih-Jen Chen
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Ophthalmology, Tri-Service General Hospital & National Defense Medical Center, Taipei, Taiwan. .,School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
168
|
Ulff-Møller CJ, Asmar F, Liu Y, Svendsen AJ, Busato F, Grønbaek K, Tost J, Jacobsen S. Twin DNA Methylation Profiling Reveals Flare-Dependent Interferon Signature and B Cell Promoter Hypermethylation in Systemic Lupus Erythematosus. Arthritis Rheumatol 2018; 70:878-890. [PMID: 29361205 DOI: 10.1002/art.40422] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) has limited monozygotic twin concordance, implying a role for pathogenic factors other than genetic variation, such as epigenetic changes. Using the disease-discordant twin model, we investigated genome-wide DNA methylation changes in sorted CD4+ T cells, monocytes, granulocytes, and B cells in twin pairs with at least 1 SLE-affected twin. METHODS Peripheral blood obtained from 15 SLE-affected twin pairs (6 monozygotic and 9 dizygotic) was processed using density-gradient centrifugation for the granulocyte fraction. CD4+ T cells, monocytes, and B cells were further isolated using magnetic beads. Genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChips. When comparing probes from SLE-affected twins and co-twins, differential DNA methylation was considered statistically significant when the P value was less than 0.01 and biologically relevant when the median DNA methylation difference was >7%. Findings were validated by pyrosequencing and replicated in an independent case-control sample. RESULTS In paired analyses of twins discordant for SLE restricted to the gene promoter and start region, we identified 55, 327, 247, and 1,628 genes with differentially methylated CpGs in CD4+ T cells, monocytes, granulocytes, and B cells, respectively. All cell types displayed marked hypomethylation in interferon-regulated genes, such as IFI44L, PARP9, and IFITM1, which was more pronounced in twins who experienced a disease flare within the past 2 years. In contrast to what was observed in the other cell types, differentially methylated CpGs in B cells were predominantly hypermethylated, and the most important upstream regulators included TNF and EP300. CONCLUSION Hypomethylation of interferon-regulated genes occurs in all major cellular compartments in SLE-affected twins. The observed B cell promoter hypermethylation is a novel finding with potential significance in SLE pathogenesis.
Collapse
Affiliation(s)
- Constance J Ulff-Møller
- Rigshospitalet and University of Copenhagen, Copenhagen, Denmark, and Commissariat à l'énergie atomique et aux énergies alternatives, Institut de Biologie Francois Jacob, Evry, France
| | | | - Yi Liu
- Commissariat à l'énergie atomique et aux énergies alternatives, Institut de Biologie Francois Jacob, Evry, France
| | | | - Florence Busato
- Commissariat à l'énergie atomique et aux énergies alternatives, Institut de Biologie Francois Jacob, Evry, France
| | - Kirsten Grønbaek
- Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Jörg Tost
- Commissariat à l'énergie atomique et aux énergies alternatives, Institut de Biologie Francois Jacob, Evry, France
| | - Søren Jacobsen
- Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
169
|
Pratx L, Rancurel C, Da Rocha M, Danchin EGJ, Castagnone-Sereno P, Abad P, Perfus-Barbeoch L. Genome-wide expert annotation of the epigenetic machinery of the plant-parasitic nematodes Meloidogyne spp., with a focus on the asexually reproducing species. BMC Genomics 2018; 19:321. [PMID: 29724186 PMCID: PMC5934874 DOI: 10.1186/s12864-018-4686-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Background The renewed interest in epigenetics has led to the understanding that both the environment and individual lifestyle can directly interact with the epigenome to influence its dynamics. Epigenetic phenomena are mediated by DNA methylation, stable chromatin modifications and non-coding RNA-associated gene silencing involving specific proteins called epigenetic factors. Multiple organisms, ranging from plants to yeast and mammals, have been used as model systems to study epigenetics. The interactions between parasites and their hosts are models of choice to study these mechanisms because the selective pressures are strong and the evolution is fast. The asexually reproducing root-knot nematodes (RKN) offer different advantages to study the processes and mechanisms involved in epigenetic regulation. RKN genomes sequencing and annotation have identified numerous genes, however, which of those are involved in the adaption to an environment and potentially relevant to the evolution of plant-parasitism is yet to be discovered. Results Here, we used a functional comparative annotation strategy combining orthology data, mining of curated genomics as well as protein domain databases and phylogenetic reconstructions. Overall, we show that (i) neither RKN, nor the model nematode Caenorhabditis elegans possess any DNA methyltransferases (DNMT) (ii) RKN do not possess the complete machinery for DNA methylation on the 6th position of adenine (6mA) (iii) histone (de)acetylation and (de)methylation pathways are conserved between C. elegans and RKN, and the corresponding genes are amplified in asexually reproducing RKN (iv) some specific non-coding RNA families found in plant-parasitic nematodes are dissimilar from those in C. elegans. In the asexually reproducing RKN Meloidogyne incognita, expression data from various developmental stages supported the putative role of these proteins in epigenetic regulations. Conclusions Our results refine previous predictions on the epigenetic machinery of model species and constitute the most comprehensive description of epigenetic factors relevant to the plant-parasitic lifestyle and/or asexual mode of reproduction of RKN. Providing an atlas of epigenetic factors in RKN is an informative resource that will enable researchers to explore their potential role in adaptation of these parasites to their environment. Electronic supplementary material The online version of this article (10.1186/s12864-018-4686-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Loris Pratx
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Corinne Rancurel
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Martine Da Rocha
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Etienne G J Danchin
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Philippe Castagnone-Sereno
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Pierre Abad
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France.,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France
| | - Laetitia Perfus-Barbeoch
- Université Côte d'Azur, INRA, ISA, Sophia Antipolis, France. .,Institut Sophia Agrobiotech, 400, route des chappes, BP 167 - 06903, Sophia Antipolis Cedex, France.
| |
Collapse
|
170
|
Imgenberg-Kreuz J, Sandling JK, Björk A, Nordlund J, Kvarnström M, Eloranta ML, Rönnblom L, Wahren-Herlenius M, Syvänen AC, Nordmark G. Transcription profiling of peripheral B cells in antibody-positive primary Sjögren's syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature. Scand J Immunol 2018; 87:e12662. [PMID: 29655283 DOI: 10.1111/sji.12662] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
B cells play a key role in the pathogenesis of primary Sjögren's syndrome (pSS). The aim of this study was to analyse the transcriptome of CD19+ B cells from patients with pSS and healthy controls to decipher the B cell-specific contribution to pSS. RNA from purified CD19+ B cells from 12 anti-SSA antibody-positive untreated female patients with pSS and 20 healthy blood donors was subjected to whole transcriptome sequencing. A false discovery rate corrected significance threshold of α < 0.05 was applied to define differential gene expression. As validation, gene expression in B cells from 17 patients with pSS and 16 healthy controls was analysed using a targeted gene panel. RNA-sequencing identified 4047 differentially expressed autosomal genes in pSS B cells. Upregulated expression of type I and type II interferon (IFN)-induced genes was observed, establishing an IFN signature in pSS B cells. Among the top upregulated and validated genes were CX3CR1, encoding the fractalkine receptor involved in regulation of B-cell malignancies, CCL5/RANTES and CCR1. Increased expression of several members of the TNF superfamily was also identified; TNFSF4/Ox40L, TNFSF10/TRAIL, TNFSF13B/BAFF, TNFRSF17/BCMA as well as S100A8 and -A9/calprotectin, TLR7, STAT1 and STAT2. Among genes with downregulated expression in pSS B cells were SOCS1 and SOCS3, CD70 and TNFAIP3/A20. We conclude that B cells from patients with anti-SSA antibody-positive pSS display immune activation with upregulated expression of chemokines, chemokine receptors and a prominent type I and type II IFN signature, while suppressors of cytokine signalling are downregulated. This adds insight into the autoimmune process and suggests potential targets for future functional studies.
Collapse
Affiliation(s)
- J Imgenberg-Kreuz
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - J K Sandling
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - A Björk
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Kvarnström
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M-L Eloranta
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - L Rönnblom
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - M Wahren-Herlenius
- Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A-C Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - G Nordmark
- Department of Medical Sciences, Rheumatology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
171
|
Yun MR, Lim SM, Kim SK, Choi HM, Pyo KH, Kim SK, Lee JM, Lee YW, Choi JW, Kim HR, Hong MH, Haam K, Huh N, Kim JH, Kim YS, Shim HS, Soo RA, Shih JY, Yang JCH, Kim M, Cho BC. Enhancer Remodeling and MicroRNA Alterations Are Associated with Acquired Resistance to ALK Inhibitors. Cancer Res 2018; 78:3350-3362. [PMID: 29669761 DOI: 10.1158/0008-5472.can-17-3146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 04/12/2018] [Indexed: 11/16/2022]
Abstract
Anaplastic lymphoma kinase (ALK) inhibitors are highly effective in patients with ALK fusion-positive lung cancer, but acquired resistance invariably emerges. Identification of secondary mutations has received considerable attention, but most cases cannot be explained by genetic causes alone, raising the possibility of epigenetic mechanisms in acquired drug resistance. Here, we investigated the dynamic changes in the transcriptome and enhancer landscape during development of acquired resistance to ALK inhibitors. Histone H3 lysine 27 acetylation (H3K27ac) was profoundly altered during acquisition of resistance, and enhancer remodeling induced expression changes in both miRNAs and mRNAs. Decreased H3K27ac levels and reduced miR-34a expression associated with the activation of target genes such as AXL. Panobinostat, a pan-histone deacetylase inhibitor, altered the H3K27ac profile and activated tumor-suppressor miRNAs such as miR-449, another member of the miR-34 family, and synergistically induced antiproliferative effects with ALK inhibitors on resistant cells, xenografts, and EML4-ALK transgenic mice. Paired analysis of patient samples before and after treatment with ALK inhibitors revealed that repression of miR-34a or miR-449a and activation of AXL were mutually exclusive of secondary mutations in ALK. Our findings indicate that enhancer remodeling and altered expression of miRNAs play key roles in cancer drug resistance and suggest that strategies targeting epigenetic pathways represent a potentially effective method for overcoming acquired resistance to cancer therapy.Significance: Epigenetic deregulation drives acquired resistance to ALK inhibitors in ALK-positive lung cancer. Cancer Res; 78(12); 3350-62. ©2018 AACR.
Collapse
Affiliation(s)
- Mi Ran Yun
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Kyungbuk, Korea.,Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hun Mi Choi
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Pyo
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Keun Kim
- Department of Internal Medicine, Division of Medical Oncology, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Ji Min Lee
- Department of Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - You Won Lee
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Woo Choi
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Ryun Kim
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Min Hee Hong
- Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Keeok Haam
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Nanhyung Huh
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Jong-Hwan Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Yong Sung Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Ross Andrew Soo
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Jin-Yuan Shih
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - James Chih-Hsin Yang
- Graduate Institute of Oncology, National Taiwan University; and Department of Oncology, National Taiwan University Hospital, Taipei City, Taiwan
| | - Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Byoung Chul Cho
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Kyungbuk, Korea. .,Department of Internal Medicine, Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
172
|
Jean-Quartier C, Jeanquartier F, Jurisica I, Holzinger A. In silico cancer research towards 3R. BMC Cancer 2018; 18:408. [PMID: 29649981 PMCID: PMC5897933 DOI: 10.1186/s12885-018-4302-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/26/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost. MAIN BODY We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell's functional organization up to model building for predictive systems. CONCLUSION Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest refined translational models and testing methods based on integrative analyses and the incorporation of computational biology within cancer research.
Collapse
Affiliation(s)
- Claire Jean-Quartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Fleur Jeanquartier
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| | - Igor Jurisica
- Krembil Research Institute, University Health Network; Depts. of Medical Bioph. and Comp. Sci., University of Toronto; Institute of Neuroimmunology, Slovak Academy of Sciences, Toronto, Canada
| | - Andreas Holzinger
- Holzinger Group, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Graz, Austria
- Institute of Interactive Systems and Data Science, Graz University of Technology, Graz, Austria
| |
Collapse
|
173
|
Naveja JJ, Oviedo-Osornio CI, Medina-Franco JL. Computational Methods for Epigenetic Drug Discovery: A Focus on Activity Landscape Modeling. COMPUTATIONAL MOLECULAR MODELLING IN STRUCTURAL BIOLOGY 2018; 113:65-83. [DOI: 10.1016/bs.apcsb.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
174
|
Neuron-specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:35-45. [PMID: 29254826 DOI: 10.1016/j.mcn.2017.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The brain has long been known to display the most complex pattern of alternative splicing, thereby producing diverse protein isoforms compared to other tissues. Recent evidence indicates that many alternative exons are neuron-specific, evolutionarily conserved, and found in regulators of transcription including DNA-binding protein and histone modifying enzymes. This raises a possibility that neurons adopt unique mechanisms of transcription. Given that transcriptional machineries are frequently mutated in neurodevelopmental disorders with cognitive dysfunction, it is important to understand how neuron-specific alternative splicing contributes to proper transcriptional regulation in the brain. In this review, we summarize current knowledge regarding how neuron-specific splicing events alter the function of transcriptional regulators and shape unique gene expression patterns in the brain and the implications of neuronal splicing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
175
|
Wen CH, Ou SM, Guo XB, Liu CF, Shen YB, You N, Cai WH, Shen WJ, Wang XQ, Tan HZ. B-CAN: a resource sharing platform to improve the operation, visualization and integrated analysis of TCGA breast cancer data. Oncotarget 2017; 8:108778-108785. [PMID: 29312567 PMCID: PMC5752480 DOI: 10.18632/oncotarget.21947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/28/2017] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is a high-risk heterogeneous disease with myriad subtypes and complicated biological features. The Cancer Genome Atlas (TCGA) breast cancer database provides researchers with the large-scale genome and clinical data via web portals and FTP services. Researchers are able to gain new insights into their related fields, and evaluate experimental discoveries with TCGA. However, it is difficult for researchers who have little experience with database and bioinformatics to access and operate on because of TCGA's complex data format and diverse files. For ease of use, we build the breast cancer (B-CAN) platform, which enables data customization, data visualization, and private data center. The B-CAN platform runs on Apache server and interacts with the backstage of MySQL database by PHP. Users can customize data based on their needs by combining tables from original TCGA database and selecting variables from each table. The private data center is applicable for private data and two types of customized data. A key feature of the B-CAN is that it provides single table display and multiple table display. Customized data with one barcode corresponding to many records and processed customized data are allowed in Multiple Tables Display. The B-CAN is an intuitive and high-efficient data-sharing platform.
Collapse
Affiliation(s)
- Can-Hong Wen
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Shao-Min Ou
- Department of Physics and Computer Applications, Shantou University Medical College, Guangzhou, China
| | - Xiao-Bo Guo
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Chen-Feng Liu
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Bo Shen
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Na You
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Hong Cai
- Department of Computer Science, Shantou University, Guangzhou, China
| | - Wen-Jun Shen
- Department of Bioinformatics, Shantou University Medical College, Guangzhou, China
| | - Xue-Qin Wang
- Joint Institute of Engineering, Sun Yat-Sen University, Carnegie Mellon University, Guangzhou, China
- Department of Statistical Science, School of Mathematics, Sun Yat-Sen University, Guangzhou, China
- Southern Research Center for Statistical Science, Sun Yat-Sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hai-Zhu Tan
- Department of Physics and Computer Applications, Shantou University Medical College, Guangzhou, China
| |
Collapse
|
176
|
Monitoring transcription initiation activities in rat and dog. Sci Data 2017; 4:170173. [PMID: 29182598 PMCID: PMC5704677 DOI: 10.1038/sdata.2017.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/04/2017] [Indexed: 12/27/2022] Open
Abstract
The promoter landscape of several non-human model organisms is far from complete. As a part of FANTOM5 data collection, we generated 13 profiles of transcription initiation activities in dog and rat aortic smooth muscle cells, mesenchymal stem cells and hepatocytes by employing CAGE (Cap Analysis of Gene Expression) technology combined with single molecule sequencing. Our analyses show that the CAGE profiles recapitulate known transcription start sites (TSSs) consistently, in addition to uncover novel TSSs. Our dataset can be thus used with high confidence to support gene annotation in dog and rat species. We identified 28,497 and 23,147 CAGE peaks, or promoter regions, for rat and dog respectively, and associated them to known genes. This approach could be seen as a standard method for improvement of existing gene models, as well as discovery of novel genes. Given that the FANTOM5 data collection includes dog and rat matched cell types in human and mouse as well, this data would also be useful for cross-species studies.
Collapse
|
177
|
Abstract
Crucial, natural protection against tumour onset in humans is orchestrated by the dynamic protein p53. The best-characterised functions of p53 relate to its cellular stress responses. In this review, we explore emerging insights into p53 activities and their functional consequences. We compare p53 in humans and elephants, in search of salient features of cancer protection.
Collapse
Affiliation(s)
- Sue Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Ygal Haupt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Department of Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
178
|
Daniunaite K, Dubikaityte M, Gibas P, Bakavicius A, Rimantas Lazutka J, Ulys A, Jankevicius F, Jarmalaite S. Clinical significance of miRNA host gene promoter methylation in prostate cancer. Hum Mol Genet 2017; 26:2451-2461. [PMID: 28398479 DOI: 10.1093/hmg/ddx138] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/04/2017] [Indexed: 11/13/2022] Open
Abstract
Only a part of prostate cancer (PCa) patients has aggressive malignancy requiring adjuvant treatment after radical prostatectomy (RP). Biomarkers capable to predict biochemical PCa recurrence (BCR) after RP would significantly improve preoperative risk stratification and treatment decisions. MicroRNA (miRNA) deregulation has recently emerged as an important phenomenon in tumor development and progression, however, the mechanisms remain largely unstudied. In the present study, based on microarray profiling of DNA methylation in 9 pairs of PCa and noncancerous prostate tissues (NPT), host genes of miR-155-5p, miR-152-3p, miR-137, miR-31-5p, and miR-642a, -b were analyzed for promoter methylation in 129 PCa, 35 NPT, and 17 benign prostatic hyperplasia samples (BPH) and compared to the expression of mature miRNAs and their selected targets (DNMT1, KDM1A, and KDM5B). The Cancer Genome Atlas dataset was utilized for validation. Methylation of mir-155, mir-152, and mir-137 host genes was PCa-specific, and downregulation of miR-155-5p significantly correlated with promoter methylation. Higher KDM5B expression was observed in samples with methylated mir-155 or mir-137 promoters, whereas upregulation of KDM1A and DNMT1 was associated with mir-155 and mir-152 methylation status, respectively. Promoter methylation of mir-155, mir-152, and mir-31 was predictive of BCR-free survival in various Cox models and increased the prognostic value of clinicopathologic factors. In conclusion, methylated mir-155, mir-152, mir-137, and mir-31 host genes are promising diagnostic and/or prognostic biomarkers of PCa. Methylation status of particular miRNA host genes as independent variables or in combinations might assist physicians in identifying poor prognosis PCa patients preoperatively.
Collapse
Affiliation(s)
- Kristina Daniunaite
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius LT-10257, Lithuania
| | - Monika Dubikaityte
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius LT-10257, Lithuania
| | - Povilas Gibas
- Department of Biological DNA Modification, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius LT-10257, Lithuania
| | - Arnas Bakavicius
- National Cancer Institute, Vilnius LT-08660.,Urology Centre, Vilnius University, Vilnius LT-08661, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius LT-10257, Lithuania
| | | | - Feliksas Jankevicius
- National Cancer Institute, Vilnius LT-08660.,Faculty of Medicine, Vilnius University, Vilnius LT-03101, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius LT-10257, Lithuania.,National Cancer Institute, Vilnius LT-08660
| |
Collapse
|
179
|
Wang H, Bender A, Wang P, Karakose E, Inabnet WB, Libutti SK, Arnold A, Lambertini L, Stang M, Chen H, Kasai Y, Mahajan M, Kinoshita Y, Fernandez-Ranvier G, Becker TC, Takane KK, Walker LA, Saul S, Chen R, Scott DK, Ferrer J, Antipin Y, Donovan M, Uzilov AV, Reva B, Schadt EE, Losic B, Argmann C, Stewart AF. Insights into beta cell regeneration for diabetes via integration of molecular landscapes in human insulinomas. Nat Commun 2017; 8:767. [PMID: 28974674 PMCID: PMC5626682 DOI: 10.1038/s41467-017-00992-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Although diabetes results in part from a deficiency of normal pancreatic beta cells, inducing human beta cells to regenerate is difficult. Reasoning that insulinomas hold the “genomic recipe” for beta cell expansion, we surveyed 38 human insulinomas to obtain insights into therapeutic pathways for beta cell regeneration. An integrative analysis of whole-exome and RNA-sequencing data was employed to extensively characterize the genomic and molecular landscape of insulinomas relative to normal beta cells. Here, we show at the pathway level that the majority of the insulinomas display mutations, copy number variants and/or dysregulation of epigenetic modifying genes, most prominently in the polycomb and trithorax families. Importantly, these processes are coupled to co-expression network modules associated with cell proliferation, revealing candidates for inducing beta cell regeneration. Validation of key computational predictions supports the concept that understanding the molecular complexity of insulinoma may be a valuable approach to diabetes drug discovery. Diabetes results in part from a deficiency of functional pancreatic beta cells. Here, the authors study the genomic and epigenetic landscapes of human insulinomas to gain insight into possible pathways for therapeutic beta cell regeneration, highlighting epigenetic genes and pathways.
Collapse
Affiliation(s)
- Huan Wang
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Aaron Bender
- The Graduate School, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Peng Wang
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Esra Karakose
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William B Inabnet
- The Department of Surgery, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven K Libutti
- The Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Andrew Arnold
- Center for Molecular Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Luca Lambertini
- The Departments of Environmental Medicine and Public Health and Obstetrics, Gynecology, and Reproductive Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Micheal Stang
- The Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Herbert Chen
- The Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Yumi Kasai
- The New York Genome Center, New York, NY, 10013, USA
| | - Milind Mahajan
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yayoi Kinoshita
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Thomas C Becker
- The Sarah W. Stedman Center for Nutrition and Metabolism, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen K Takane
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Laura A Walker
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shira Saul
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rong Chen
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Donald K Scott
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jorge Ferrer
- The Department of Genetics in Medicine, Imperial College, London, W12 0NN, UK
| | - Yevgeniy Antipin
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Michael Donovan
- The Department of Pathology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew V Uzilov
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Boris Reva
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Bojan Losic
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carmen Argmann
- The Department of Genetics and Genomic Sciences and The Icahn Institute for Genomics and Multiscale Biology, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Andrew F Stewart
- The Diabetes Obesity and Metabolism Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
180
|
Gošev I, Zeljko M, Đurić Ž, Nikolić I, Gošev M, Ivčević S, Bešić D, Legčević Z, Paić F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenetics 2017; 9:106. [PMID: 29026447 PMCID: PMC5627415 DOI: 10.1186/s13148-017-0406-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy. This is especcialy the case for small non-coding microRNAs but was also, although in a smaller scale, convincingly demonstrated for other members of cellular epigenome landscape. Equally important, and clinically most relevant, the reported data indicate that epigenetic marks, particularly certain microRNA signatures, could represent useful non-invasive biomarkers that reflect the disease progression and patients prognosis for recovery after the valve replacement surgery.
Collapse
Affiliation(s)
- Igor Gošev
- Department of Surgery, University of Rochester Medical center, Rochester, NY USA
| | - Martina Zeljko
- Department of Cardiology, Clinical Unit of Internal Medicine, Clinical Hospital Merkur, Zajćeva 19, 10 000 Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Center Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Ivana Nikolić
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Milorad Gošev
- School of Medicine, University of Josip Juraj Strossmayer, Trg Svetog trojstva 3, 31 000 Osijek, Croatia
| | - Sanja Ivčević
- Department of Physiology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Dino Bešić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Legčević
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Frane Paić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
181
|
SWI/SNF Infobase-An exclusive information portal for SWI/SNF remodeling complex subunits. PLoS One 2017; 12:e0184445. [PMID: 28961249 PMCID: PMC5621669 DOI: 10.1371/journal.pone.0184445] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Chromatin remodeling complexes facilitate the access of condensed genomic DNA during transcription, replication, and repair, by altering the histone-DNA contacts in the nucleosome structures. SWI/SNF (SWItch/Sucrose Non-Fermentable) family of ATP dependent chromatin remodeling complexes have been documented for their tumour suppressor function. Recent studies have reported the high frequency of cancer causing mutations in this protein family. There exist multiple subunits for this complex and can form context-dependent sub-complexes. The cataloguing of individual subunits of this complex is essential for understanding their specific functions and their mechanism of action during chromatin remodeling. This would also facilitate further studies to characterize cancer causing mutations in SWI/SNF subunits. In the current study, a database containing information on the subunits of SWI/SNF-α (BRG1/BRM-Associated Factors (BAF)) and SWI/SNF-β (Polybromo-Associated BAF (PBAF)) sub classes of SWI/SNF family has been curated and catalogued. The database hosts information on 27 distinct SWI/SNF subunits from 20 organisms spanning a wide evolutionary range of eukaryotes. A non-redundant set of 522 genes coding for SWI/SNF subunits have been documented in the database. A detailed annotation on each subunit, including basic protein/gene information, protein sequence, functional domains, homologs and missense mutations of human proteins have been provided with a user-friendly graphical interface. The SWI/SNF Infobase presented here, would be a first of its kind exclusive information portal on SWI/SNF complex subunits and would be a valuable resource for the research community working on chromatin remodeling. The database is available at http://scbt.sastra.edu/swisnfdb/index.php.
Collapse
|
182
|
A computational method using the random walk with restart algorithm for identifying novel epigenetic factors. Mol Genet Genomics 2017; 293:293-301. [PMID: 28932904 DOI: 10.1007/s00438-017-1374-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Epigenetic regulation has long been recognized as a significant factor in various biological processes, such as development, transcriptional regulation, spermatogenesis, and chromosome stabilization. Epigenetic alterations lead to many human diseases, including cancer, depression, autism, and immune system defects. Although efforts have been made to identify epigenetic regulators, it remains a challenge to systematically uncover all the components of the epigenetic regulation in the genome level using experimental approaches. The advances of constructing protein-protein interaction (PPI) networks provide an excellent opportunity to identify novel epigenetic factors computationally in the genome level. In this study, we identified potential epigenetic factors by using a computational method that applied the random walk with restart (RWR) algorithm on a protein-protein interaction (PPI) network using reported epigenetic factors as seed nodes. False positives were identified by their specific roles in the PPI network or by a low-confidence interaction and a weak functional relationship with epigenetic regulators. After filtering out the false positives, 26 candidate epigenetic factors were finally accessed. According to previous studies, 22 of these are thought to be involved in epigenetic regulation, suggesting the robustness of our method. Our study provides a novel computational approach which successfully identified 26 potential epigenetic factors, paving the way on deepening our understandings on the epigenetic mechanism.
Collapse
|
183
|
Horie M, Kaczkowski B, Ohshima M, Matsuzaki H, Noguchi S, Mikami Y, Lizio M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest ARR, Takai D, Yamaguchi Y, Micke P, Saito A, Nagase T. Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. Mol Cancer Res 2017; 15:1354-1365. [PMID: 28698358 DOI: 10.1158/1541-7786.mcr-17-0191] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/12/2017] [Accepted: 06/28/2017] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of cancer driver mutations have been identified; however, relevant epigenetic regulation involved in tumorigenesis has only been fragmentarily analyzed. Epigenetically regulated genes have a great theranostic potential, especially in tumors with no apparent driver mutations. Here, epigenetically regulated genes were identified in lung cancer by an integrative analysis of promoter-level expression profiles from Cap Analysis of Gene Expression (CAGE) of 16 non-small cell lung cancer (NSCLC) cell lines and 16 normal lung primary cell specimens with DNA methylation data of 69 NSCLC cell lines and 6 normal lung epithelial cells. A core set of 49 coding genes and 10 long noncoding RNAs (lncRNA), which are upregulated in NSCLC cell lines due to promoter hypomethylation, was uncovered. Twenty-two epigenetically regulated genes were validated (upregulated genes with hypomethylated promoters) in the adenocarcinoma and squamous cell cancer subtypes of lung cancer using The Cancer Genome Atlas data. Furthermore, it was demonstrated that multiple copies of the REP522 DNA repeat family are prominently upregulated due to hypomethylation in NSCLC cell lines, which leads to cancer-specific expression of lncRNAs, such as RP1-90G24.10, AL022344.4, and PCAT7. Finally, Myeloma Overexpressed (MYEOV) was identified as the most promising candidate. Functional studies demonstrated that MYEOV promotes cell proliferation, survival, and invasion. Moreover, high MYEOV expression levels were associated with poor prognosis.Implications: This report identifies a robust list of 22 candidate driver genes that are epigenetically regulated in lung cancer; such genes may complement the known mutational drivers.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/15/10/1354/F1.large.jpg Mol Cancer Res; 15(10); 1354-65. ©2017 AACR.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division for Health Service Promotion, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Bogumil Kaczkowski
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan.
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Fukushima, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Marina Lizio
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako, Saitama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- Telethon Kids Institute, the University of Western Australia, Perth, Western Australia, Australia
| | - Piero Carninci
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | | | - Alistair R R Forrest
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia, Australia
| | - Daiya Takai
- Department of Clinical Laboratory, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
- Division of Functional Morphology Dental Research Center Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Division for Health Service Promotion, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
184
|
|
185
|
Dates CR, Tollefsbol TO. Transforming Cancer Epigenetics Using Nutritive Approaches and Noncoding RNAs. Curr Cancer Drug Targets 2017; 18:32-38. [PMID: 28176654 DOI: 10.2174/1568009617666170203165326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/17/2015] [Accepted: 09/30/2016] [Indexed: 12/31/2022]
Abstract
Cancer is considered one of the leading causes of death in the United States. Although preventive strategies, early detection, and improved treatment options have been developed, novel targets and therapeutics are still needed. Since concluding that cancer is mediated by genetic and epigenetic alterations of the cell, many research groups are now focusing on other means of prevention and therapy via nutrition, epigenetic mechanisms, and non-coding RNAs which have been shown to control gene expression and have many different functions at the cellular level. With the advent of high-throughput sequencing in human cancer, the potential to identify novel biomarkers and therapeutic targets of disease has increased tremendously and led to the identification of many non-coding RNAs that are dysregulated in various cancers. Gene expression and regulation is important in maintaining the homeostasis of normal tissues and cells. Not uncommonly, up- or down-regulation of particular genes are associated with cancer as a result of increased or decreased expression of transcriptional targets. This review focuses on the role of nutrition in cancer and the dysregulation of non-coding RNAs with particular emphasis on long non-coding RNAs and microRNAs in different cancer types.
Collapse
Affiliation(s)
- Centdrika R Dates
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Clinical Nutrition Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
186
|
Kudrin RA, Mironov AA, Stavrovskaya ED. Chromatin and Polycomb: Biology and bioinformatics. Mol Biol 2017. [DOI: 10.1134/s0026893316060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
187
|
Lin Y, Chen J, Shen B. Interactions Between Genetics, Lifestyle, and Environmental Factors for Healthcare. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1005:167-191. [PMID: 28916933 DOI: 10.1007/978-981-10-5717-5_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The occurrence and progression of diseases are strongly associated with a combination of genetic, lifestyle, and environmental factors. Understanding the interplay between genetic and nongenetic components provides deep insights into disease pathogenesis and promotes personalized strategies for people healthcare. Recently, the paradigm of systems medicine, which integrates biomedical data and knowledge at multidimensional levels, is considered to be an optimal way for disease management and clinical decision-making in the era of precision medicine. In this chapter, epigenetic-mediated genetics-lifestyle-environment interactions within specific diseases and different ethnic groups are systematically discussed, and data sources, computational models, and translational platforms for systems medicine research are sequentially presented. Moreover, feasible suggestions on precision healthcare and healthy longevity are kindly proposed based on the comprehensive review of current studies.
Collapse
Affiliation(s)
- Yuxin Lin
- Center for Systems Biology, Soochow University, No.1 Shizi Street, Suzhou, Jiangsu, 215006, China
| | - Jiajia Chen
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, No.1 Kerui road, Suzhou, Jiangsu, 215011, China
| | - Bairong Shen
- Center for Systems Biology, Soochow University, No.1 Shizi Street, Suzhou, Jiangsu, 215006, China. .,Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China. .,Medical College of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
188
|
ARN: Analysis and Visualization System for Adipogenic Regulation Network Information. Sci Rep 2016; 6:39347. [PMID: 27982098 PMCID: PMC5159821 DOI: 10.1038/srep39347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Adipogenesis is the process of cell differentiation through which preadipocytes become adipocytes. Lots of research is currently ongoing to identify genes, including their gene products and microRNAs, that correlate with fat cell development. However, information fragmentation hampers the identification of key regulatory genes and pathways. Here, we present a database of literature-curated adipogenesis-related regulatory interactions, designated the Adipogenesis Regulation Network (ARN, http://210.27.80.93/arn/), which currently contains 3101 nodes (genes and microRNAs), 1863 regulatory interactions, and 33,969 expression records associated with adipogenesis, based on 1619 papers. A sentence-based text-mining approach was employed for efficient manual curation of regulatory interactions from approximately 37,000 PubMed abstracts. Additionally, we further determined 13,103 possible node relationships by searching miRGate, BioGRID, PAZAR and TRRUST. ARN also has several useful features: i) regulatory map information; ii) tests to examine the impact of a query node on adipogenesis; iii) tests for the interactions and modes of a query node; iv) prediction of interactions of a query node; and v) analysis of experimental data or the construction of hypotheses related to adipogenesis. In summary, ARN can store, retrieve and analyze adipogenesis-related information as well as support ongoing adipogenesis research and contribute to the discovery of key regulatory genes and pathways.
Collapse
|
189
|
Sundar IK, Rahman I. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1245-L1258. [PMID: 27793800 DOI: 10.1152/ajplung.00253.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/23/2016] [Indexed: 01/23/2023] Open
Abstract
Chromatin-modifying enzymes mediate DNA methylation and histone modifications on recruitment to specific target gene loci in response to various stimuli. The key enzymes that regulate chromatin accessibility for maintenance of modifications in DNA and histones, and for modulation of gene expression patterns in response to cigarette smoke (CS), are not known. We hypothesize that CS exposure alters the gene expression patterns of chromatin-modifying enzymes, which then affects multiple downstream pathways involved in the response to CS. We have, therefore, analyzed chromatin-modifying enzyme profiles and validated by quantitative real-time PCR (qPCR). We also performed immunoblot analysis of targeted histone marks in C57BL/6J mice exposed to acute and subchronic CS, and of lungs from nonsmokers, smokers, and patients with chronic obstructive pulmonary disease (COPD). We found a significant increase in expression of several chromatin modification enzymes, including DNA methyltransferases, histone acetyltransferases, histone methyltransferases, and SET domain proteins, histone kinases, and ubiquitinases. Our qPCR validation data revealed a significant downregulation of Dnmt1, Dnmt3a, Dnmt3b, Hdac2, Hdac4, Hat1, Prmt1, and Aurkb We identified targeted chromatin histone marks (H3K56ac and H4K12ac), which are induced by CS. Thus CS-induced genotoxic stress differentially affects the expression of epigenetic modulators that regulate transcription of target genes via DNA methylation and site-specific histone modifications. This may have implications in devising epigenetic-based therapies for COPD and lung cancer.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
190
|
Lizio M, Harshbarger J, Abugessaisa I, Noguchi S, Kondo A, Severin J, Mungall C, Arenillas D, Mathelier A, Medvedeva YA, Lennartsson A, Drabløs F, Ramilowski JA, Rackham O, Gough J, Andersson R, Sandelin A, Ienasescu H, Ono H, Bono H, Hayashizaki Y, Carninci P, Forrest ARR, Kasukawa T, Kawaji H. Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. Nucleic Acids Res 2016; 45:D737-D743. [PMID: 27794045 PMCID: PMC5210666 DOI: 10.1093/nar/gkw995] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022] Open
Abstract
Upon the first publication of the fifth iteration of the Functional Annotation of Mammalian Genomes collaborative project, FANTOM5, we gathered a series of primary data and database systems into the FANTOM web resource (http://fantom.gsc.riken.jp) to facilitate researchers to explore transcriptional regulation and cellular states. In the course of the collaboration, primary data and analysis results have been expanded, and functionalities of the database systems enhanced. We believe that our data and web systems are invaluable resources, and we think the scientific community will benefit for this recent update to deepen their understanding of mammalian cellular organization. We introduce the contents of FANTOM5 here, report recent updates in the web resource and provide future perspectives.
Collapse
Affiliation(s)
- Marina Lizio
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jayson Harshbarger
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Imad Abugessaisa
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shuei Noguchi
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Kondo
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jessica Severin
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Chris Mungall
- Genomics Division, Lawrence Berkeley National Laboratory, 84R01, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital Research, Department of Medical Genetics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0372 Oslo, Norway
| | - Yulia A Medvedeva
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Science, Leninsky prospect, 33, build. 2, 119071 Moscow, Russia.,Vavilov Institute of General Genetics, Russian Academy of Science, Gubkina str. 3, Moscow 119991, Russia
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Hälsovägen 7-9, 14183 Huddinge, Sweden
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), P.O. Box 8905, NO-7491 Trondheim, Norway
| | - Jordan A Ramilowski
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Owen Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke's National University of Singapore Medical School, 8 College Road, Singapore 169857, Singapore
| | - Julian Gough
- Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB UK
| | - Robin Andersson
- The Bioinformatics Centre, Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Albin Sandelin
- Section for Computational and RNA Biology, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Hans Ienasescu
- Section for Computational and RNA Biology, Department of Biology & Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes Vej 5, DK-2200 Copenhagen, Denmark
| | - Hiromasa Ono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima 411-8540, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), 1111 Yata, Mishima 411-8540, Japan
| | - Yoshihide Hayashizaki
- Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.,Systems biology and Genomics, Harry Perkins Institute of MedicalResearch, PO Box 7214, 6 Verdun Street, Nedlands, Perth, Western Australia 6008, Australia
| | - Piero Carninci
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Alistair R R Forrest
- RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takeya Kasukawa
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hideya Kawaji
- Division of Genomic Technologies (DGT), RIKEN Center for Life Science Technologie, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan .,RIKEN Preventive Medicine and Diagnosis Innovation Program, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Preventive medicine and applied genomics unit, RIKEN Advanced Center for Computing and Communication, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
191
|
Liu Z, Fang H, Slikker W, Tong W. Potential Reuse of Oncology Drugs in the Treatment of Rare Diseases. Trends Pharmacol Sci 2016; 37:843-857. [DOI: 10.1016/j.tips.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022]
|
192
|
Panchin AY, Makeev VJ, Medvedeva YA. Preservation of methylated CpG dinucleotides in human CpG islands. Biol Direct 2016; 11:11. [PMID: 27005429 PMCID: PMC4804638 DOI: 10.1186/s13062-016-0113-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CpG dinucleotides are extensively underrepresented in mammalian genomes. It is widely accepted that genome-wide CpG depletion is predominantly caused by an elevated CpG > TpG mutation rate due to frequent cytosine methylation in the CpG context. Meanwhile the CpG content in genomic regions called CpG islands (CGIs) is noticeably higher. This observation is usually explained by lower CpG > TpG substitution rates within CGIs due to reduced cytosine methylation levels. RESULTS By combining genome-wide data on substitutions and methylation levels in several human cell types we have shown that cytosine methylation in human sperm cells was strongly and consistently associated with increased CpG > TpG substitution rates. In contrast, this correlation was not observed for embryonic stem cells or fibroblasts. Surprisingly, the decreased sperm CpG methylation level was insufficient to explain the reduced CpG > TpG substitution rates in CGIs. CONCLUSIONS While cytosine methylation in human sperm cells is strongly associated with increased CpG > TpG substitution rates, substitution rates are significantly reduced within CGIs even after sperm CpG methylation levels and local GC content are controlled for. Our findings are consistent with strong negative selection preserving methylated CpGs within CGIs including intergenic ones.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, GSP-1, 119991, Russia.,Research Institute for Genetics and Selection of Industrial Microorganisms, Moscow, 117545, Russia.,Moscow Institute of Physics and Technology, Moscow Regoin, 141700, Russia
| | - Yulia A Medvedeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, GSP-1, 119991, Russia. .,Center for Bioengineering, Research Center of Biotechnology RAS, Russian Academy of Science, Moscow, 117312, Russia.
| |
Collapse
|
193
|
Bai W, Yang W, Wang W, Wang Y, Liu C, Jiang Q, Hua J, Liao M. GED: a manually curated comprehensive resource for epigenetic modification of gametogenesis. Brief Bioinform 2016; 18:98-104. [DOI: 10.1093/bib/bbw007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/29/2015] [Indexed: 12/13/2022] Open
|
194
|
Cacabelos R, Teijido O, Carril JC. Can cloud-based tools accelerate Alzheimer’s disease drug discovery? Expert Opin Drug Discov 2016; 11:215-23. [DOI: 10.1517/17460441.2016.1141892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|