151
|
Studentsov YY, Burk RD. Development of a non-denaturing electrophoresis system for characterization of neutralizing epitopes on HPV virus-like particles. J Virol Methods 2007; 139:208-19. [PMID: 17137641 DOI: 10.1016/j.jviromet.2006.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 09/29/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
The precise structure of the HPV16 major neutralizing epitope recognized by H16.V5 monoclonal antibody is unknown. This paper describes a novel polyacrylamide gel electrophoresis (PAGE) for separation of HPV virus-like particles (VLPs) using cetyltrimethylammonium chloride (CTAC) as a solubilizing agent. CTAC PAGE employs KOH/CH3CO2H (pH 4-5.4) as a buffer system, K+ as the leading ion and 3-aminopropionic acid as a trailing ion. The unique characteristics of a cationic electrophoresis system allow separation of VLPs without heat denaturation. HPV VLP gel migration patterns were dependent on pre-treatment conditions: (1) thiol-agent reduction alone resulted in a 174 kDa band (interpreted as a L1 trimer), a 53 kDa band (size of the L1 monomer), as well as higher Mr aggregates consistent with a pentamer size; (2) both heat denaturation and thiol-agent reduction resulted in a 53 kDa band. Western blot analysis showed that the 174 kDa L1 trimer was strongly immunoreactive with H16.V5 and HPV16 VLP ELISA positive human sera, whereas no reactivity was seen with the monomeric L1 unit. These data suggest that a structure consistent with the migration pattern of a L1 trimer contains the major neutralizing epitope recognized by the H16.V5 MAb and human sera.
Collapse
Affiliation(s)
- Yevgeniy Y Studentsov
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Ullmann Bldg., Rm. 519, Bronx, NY 10461, USA.
| | | |
Collapse
|
152
|
Bishop B, Dasgupta J, Chen XS. Structure-based engineering of papillomavirus major capsid l1: controlling particle assembly. Virol J 2007; 4:3. [PMID: 17210082 PMCID: PMC1781933 DOI: 10.1186/1743-422x-4-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 01/08/2007] [Indexed: 11/29/2022] Open
Abstract
The outer shell of the papillomavirus particle is comprised of 72 pentamers of the major capsid L1 protein arranged on a T = 7 icosahedral lattice. The recombinant L1 can form T = 7 virus-like particles in vitro. The crystal structure of a T = 7 papilloma virion has not yet been determined; however, the crystal structure of a T = 1 particle containing 12 pentamers is known. The T = 1 structure reveals that helix-helix interactions, through three helices–h2, h3, and h4–near the C-terminus of L1, mediate the inter-pentameric bonding that is responsible for T = 1 assembly. Based on the T = 1 crystal structure, we have generated a set of internal deletions to test the role of the three C-terminal helices in T = 7 assembly. We have demonstrated that the h2, h3, and h4 near the C-terminal end of L1 are important for the L1 structure and particle assembly. In particular, we found that h2 and h3 are essential for L1 folding and pentamer formation, whereas h4 is indispensable for the assembly of not only T1, but also of the T7 virus-like particle.
Collapse
Affiliation(s)
- Brooke Bishop
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Genetics, University of Colorado HSC, Denver, CO 80262, USA
| | - Jhimli Dasgupta
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
153
|
Twarock R. Mathematical virology: a novel approach to the structure and assembly of viruses. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:3357-73. [PMID: 17090464 DOI: 10.1098/rsta.2006.1900] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Understanding the structure and life cycle of viruses is a fascinating challenge with a crucial impact on the public health sector. In the early 1960s, Caspar & Klug (Caspar & Klug 1962 Cold Spring Harbor Symp. Quant. Biol. 27, 1-24) established a theory for the prediction of the surface structures of the protein shells, called viral capsids, which encapsulate and hence provide protection for the viral genome. It is of fundamental importance in virology, with a broad spectrum of applications ranging from the image analysis and classification of experimental data to the construction of assembly models. However, experimental results have provided evidence for the fact that it is incomplete and, in particular, cannot account for the structures of Papovaviridae, which are of particular interest because they contain cancer-causing viruses. This gap has recently been closed by the viral tiling theory, which describes the locations of the protein subunits and inter-subunit bonds in viral capsids based on mathematical tools from the area of quasicrystals. The predictions and various recent applications of the new theory are presented, and it is discussed how further research along these lines may lead to new insights in virology and the design of anti-viral therapeutics.
Collapse
Affiliation(s)
- Reidun Twarock
- Departments of Mathematics and Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
154
|
Neugebauer M, Walders B, Brinkman M, Ruehland C, Schumacher T, Bertling WM, Geuther E, Reiser COA, Reichel C, Strich S, Hess J. Development of a vaccine marker technology: Display of B cell epitopes on the surface of recombinant polyomavirus-like pentamers and capsoids induces peptide-specific antibodies in piglets after vaccination. Biotechnol J 2006; 1:1435-46. [PMID: 17109492 DOI: 10.1002/biot.200600149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Highly immunogenic capsomers (pentamers) and virus-like particles (VLPs) were generated through insertion of foreign B cell epitopes into the surface-exposed loops of the VP1 protein of murine polyomavirus and via heterologous expression of the recombinant fusion proteins in E. coli. Usually, complex proteins like the keyhole limpet hemocyanin (KLH) act as standard carrier devices for the display of such immunogenic peptides after chemical linkage. Here, a comparative analysis revealed that antibody responses raised against the carrier entities, KLH or VP1 pentamers, did not significantly differ up to 18 weeks, demonstrating the highly immunogenic nature of VP1-based particulate structures. The carrier-specific antibody response was reproducibly detected in the meat juice after processing. More importantly, chimeric VP1 pentamers and VLPs carrying peptides of 12 and 14 amino acids in length, inserted into the BC2 loop, induced a strong and long-lasting humoral immune response against VP1 and the inserted foreign epitope. Remarkably, the epitope-specific antibody response was only moderately decreased when VP1 pentamers were used instead of VLPs. In conclusion, we identified polyomavirus VP1-based structures displaying surface-exposed immunodominant B cell epitopes as being an efficient carrier system for the induction of potent peptide-specific antibodies. The application of this approach in vaccine marker technology in livestock holding and the meat production chain is discussed.
Collapse
|
155
|
Hegde RS. Papillomavirus proteins and their potential as drug design targets. Future Virol 2006. [DOI: 10.2217/17460794.1.6.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The papillomaviruses are a family of small, double-stranded DNA viruses that infect the basal cells of cutaneous and mucosal epithelium. While a large percentage of the population is benignly infected with various strains of human papillomavirus (HPV), long-term infection by a subset of HPV strains is associated with malignant transformation. The prospects for prophylaxis against HPV infection have recently received an enormous boost with the approval by the US FDA of a vaccine targeted against the most common cancer-associated HPV strains. However, the large number of people already infected, the high cost of the vaccination regimen (particularly in poorer countries) and the HPV infections that these vaccines do not protect against underscore the need for therapeutic strategies. The elucidation of molecular details underlying fundamental processes in the viral life cycle, such as virus replication, transcription and HPV-induced carcinogenesis, is required to meet this aim. This article provides an overview of high-resolution structures of papillomavirus proteins and their functional complexes, with particular reference to mechanistic and structural features that could be exploited in the rational design of antiviral agents.
Collapse
Affiliation(s)
- Rashmi S Hegde
- Cincinnati Children’s Hospital Medical Center, Division of Developmental Biology, University of Cincinnati School of Medicine, Department of Pediatrics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
156
|
Abstract
A wealth of epidemiological and molecular evidence has led to the conclusion that virtually all cases of cervical cancer and its precursor intra-epithelial lesions are a result of infection with one or other of a subset of genital human papillomaviruses (HPVs) suggesting that prevention of infection by prophylactic vaccination would be an effective anti-cancer strategy. The papillomaviruses cannot be grown in large amounts in culture in vitro, but the ability to generate HPV virus like particles (VLPs) by the synthesis and self-assembly in vitro of the major virus capsid protein L1 provides for a potentially effective sub unit vaccine. HPV L1 VLP vaccines are immunogenic and have a good safety profile. Published data from proof of principle trials and preliminary reports from large Phase III efficacy trials suggest strongly that they will protect against persistent HPV infection and cervical intra epithelial neoplasia. However, the duration of protection provided by these vaccines is not known, the antibody responses induced are probably HPV type specific and immunisation should occur pre-exposure to the virus. Second generation vaccines could include an early antigen for protection post-exposure and alternative delivery systems may be needed for the developing world.
Collapse
|
157
|
Chromy LR, Oltman A, Estes PA, Garcea RL. Chaperone-mediated in vitro disassembly of polyoma- and papillomaviruses. J Virol 2006; 80:5086-91. [PMID: 16641302 PMCID: PMC1472060 DOI: 10.1128/jvi.80.10.5086-5091.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hsp70 chaperones play a role in polyoma- and papillomavirus assembly, as evidenced by their interaction in vivo with polyomavirus capsid proteins at late times after virus infection and by their ability to assemble viral capsomeres into capsids in vitro. We studied whether Hsp70 chaperones might also participate in the uncoating reaction. In vivo, Hsp70 co-immunoprecipitated with polyomavirus virion VP1 at 3 h after infection of mouse cells. In vitro, prokaryotic and eukaryotic Hsp70 chaperones efficiently disassembled polyoma- and papillomavirus-like particles and virions in energy-dependent reactions. These observations support a role for cell chaperones in the disassembly of these viruses.
Collapse
Affiliation(s)
- Laura R Chromy
- University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
158
|
Shepherd CM, Reddy VS. Extent of protein-protein interactions and quasi-equivalence in viral capsids. Proteins 2006; 58:472-7. [PMID: 15558545 DOI: 10.1002/prot.20311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Viral capsids are composed of multiple copies of one or a few gene products that self-assemble on their own or in the presence of the viral genome and/or auxiliary proteins into closed shells (capsids). We have analyzed 75 high-resolution virus capsid structures by calculating the average fraction of the solvent-accessible surface area of the coat protein subunits buried in the viral capsids. This fraction ranges from 0 to 1 and represents a normalized protein-protein interaction (PPI) index and is a measure of the extent of protein-protein interactions. The PPI indices were used to compare the extent of association of subunits among different capsids. We further examined the variation of the PPI indices as a function of the molecular weight of the coat protein subunit and the capsid diameter. Our results suggest that the PPI indices in T=1 and pseudo-T=3 capsids vary linearly with the molecular weight of the subunit and capsid size. This is in contrast to quasi-equivalent capsids with T>or=3, where the extent of protein-protein interactions is relatively independent of the subunit and capsid sizes. The striking outcome of this analysis is the distinctive clustering of the "T=2" capsids, which are distinguished by higher subunit molecular weights and a much lower degree of protein-protein interactions. Furthermore, the calculated residual (R(sym)) of the fraction buried surface areas of the structurally unique subunits in capsids with T>1 was used to calculate the quasi-equivalence of different subunit environments.
Collapse
Affiliation(s)
- Craig M Shepherd
- Department of Molecular Biology, TPC-06, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
159
|
Keef T, Micheletti C, Twarock R. Master equation approach to the assembly of viral capsids. J Theor Biol 2006; 242:713-21. [PMID: 16782135 DOI: 10.1016/j.jtbi.2006.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/06/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
The distribution of inequivalent geometries occurring during self-assembly of the major capsid protein in thermodynamic equilibrium is determined based on a master equation approach. These results are implemented to characterize the assembly of SV40 virus and to obtain information on the putative pathways controlling the progressive build-up of the SV40 capsid. The experimental testability of the predictions is assessed and an analysis of the geometries of the assembly intermediates on the dominant pathways is used to identify targets for anti-viral drug design.
Collapse
Affiliation(s)
- T Keef
- Department of Mathematics, University of York, York, UK.
| | | | | |
Collapse
|
160
|
Abstract
HPVs (human papillomaviruses) infect epithelial cells and cause a variety of lesions ranging from common warts/verrucas to cervical neoplasia and cancer. Over 100 different HPV types have been identified so far, with a subset of these being classified as high risk. High-risk HPV DNA is found in almost all cervical cancers (>99.7%), with HPV16 being the most prevalent type in both low-grade disease and cervical neoplasia. Productive infection by high-risk HPV types is manifest as cervical flat warts or condyloma that shed infectious virions from their surface. Viral genomes are maintained as episomes in the basal layer, with viral gene expression being tightly controlled as the infected cells move towards the epithelial surface. The pattern of viral gene expression in low-grade cervical lesions resembles that seen in productive warts caused by other HPV types. High-grade neoplasia represents an abortive infection in which viral gene expression becomes deregulated, and the normal life cycle of the virus cannot be completed. Most cervical cancers arise within the cervical transformation zone at the squamous/columnar junction, and it has been suggested that this is a site where productive infection may be inefficiently supported. The high-risk E6 and E7 proteins drive cell proliferation through their association with PDZ domain proteins and Rb (retinoblastoma), and contribute to neoplastic progression, whereas E6-mediated p53 degradation prevents the normal repair of chance mutations in the cellular genome. Cancers usually arise in individuals who fail to resolve their infection and who retain oncogene expression for years or decades. In most individuals, immune regression eventually leads to clearance of the virus, or to its maintenance in a latent or asymptomatic state in the basal cells.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
161
|
Hebner CM, Laimins LA. Human papillomaviruses: basic mechanisms of pathogenesis and oncogenicity. Rev Med Virol 2006; 16:83-97. [PMID: 16287204 DOI: 10.1002/rmv.488] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomaviruses (HPVs) are small double-stranded DNA viruses that infect the cutaneous and mucosal epithelium. Infection by specific HPV types has been linked to the development of cervical carcinoma. HPV infects epithelial cells that undergo terminal differentiation and so encode multiple mechanisms to override the normal regulation of differentiation to produce progeny virions. Two viral proteins, E6 and E7, alter cell cycle control and are the main arbitrators of HPV-induced oncogenesis. Recent data suggest that E6 and E7 also play a major role in the inhibition of the host cell innate immune response to HPV. The E1 and E2 proteins, in combination with various cellular factors, mediate viral replication. In addition, E2 has been implicated in both viral and cellular transcriptional control. Despite decades of research, the function of other viral proteins still remains unclear. While prophylactic vaccines to block genital HPV infection will soon be available, the widespread nature of HPV infection requires greater understanding of both the HPV life cycle as well as the mechanisms underlying HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Christy M Hebner
- Department of Microbiology-Immunology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
162
|
Riolobos L, Reguera J, Mateu MG, Almendral JM. Nuclear Transport of Trimeric Assembly Intermediates Exerts a Morphogenetic Control on the Icosahedral Parvovirus Capsid. J Mol Biol 2006; 357:1026-38. [PMID: 16469332 DOI: 10.1016/j.jmb.2006.01.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 01/10/2023]
Abstract
The connection between nuclear transport and morphogenesis of a large macromolecular entity has been investigated using the karyophylic capsid of the parvovirus minute virus of mice (MVM) as a model. The VP1 (82 kDa) and VP2 (63 kDa) proteins forming the T = 1 icosahedral MVM capsid at the respective 1:5 molar ratio of synthesis, could be covalently cross-linked with dimethyl suberimidate into two types of oligomeric assemblies, which were present at stoichiometric amounts in infected cell extracts and purified viral particles. The larger species contained VP1 and corresponded in size (200 kDa) to a heterotrimer of one VP1 and two VP2 subunits. The smaller species contained VP2 only and corresponded in size (180 kDa) to a homotrimer. The introduction of bulky residues or the truncation of side-chains involved in multiple interactions at the interfaces between trimers of VPs in the MVM capsid, produced the accumulation of trimeric intermediates that were competent in nuclear translocation but not in capsid assembly. These results indicate that MVM maturation proceeds by cytoplasmic oligomerization of the capsid subunits into two types of trimers, which are the assembly intermediates competent to translocate across the nuclear membrane. Consistent with this conclusion, mutations at basic residues that inactivate a previously identified beta-stranded nuclear localization motif, which notably are not involved in inter or intra-subunit contacts, led to cytoplasmic retention of the two types of trimers, with no evidence for other assembly intermediates. Although a fraction of the VP1-containing trimers were translocated into the nucleus driven by the conventional nuclear transport signal of VP1 N terminus, their further assembly in the absence of the VP2-only trimers yielded large molecular mass amorphous aggregates. Therefore, the nuclear transport stoichiometry of assembly intermediates may exert a morphogenetic quality control on macromolecular complexes like the MVM capsid.
Collapse
Affiliation(s)
- Laura Riolobos
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Cantoblanco, Madrid, Spain
| | | | | | | |
Collapse
|
163
|
Kämper N, Day PM, Nowak T, Selinka HC, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M. A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 2006; 80:759-68. [PMID: 16378978 PMCID: PMC1346844 DOI: 10.1128/jvi.80.2.759-768.2006] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Papillomaviruses are internalized via clathrin-dependent endocytosis. However, the mechanism by which viral genomes pass endosomal membranes has not been elucidated. In this report we show that the minor capsid protein L2 is required for egress of viral genomes from endosomes but not for initial uptake and uncoating and that a 23-amino-acid peptide at the C terminus of L2 is necessary for this function. Pseudogenomes encapsidated by L1 and L2 lacking this peptide accumulated in vesicular compartments similar to that observed with L1-only viral particles, and these mutant pseudoviruses were noninfectious. This L2 peptide displayed strong membrane-disrupting activity, induced cytolysis of bacteria and eukaryotic cells in a pH-dependent manner, and permeabilized cells after exogenous addition. Fusions between green fluorescent protein and the L2 peptide integrated into cellular membranes like the wild type but not like C-terminal mutants of L2. Our data indicate that the L2 C terminus facilitates escape of viral genomes from the endocytic compartment and that this feature is conserved among papillomaviruses. Furthermore, the characteristic of this peptide differs from the classical virus-encoded membrane-penetrating peptides.
Collapse
Affiliation(s)
- Nadine Kämper
- Institute of Medical Microbiology and Hygiene, Johannes Gutenberg-Universität Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Ionescu RM, Przysiecki CT, Liang X, Garsky VM, Fan J, Wang B, Troutman R, Rippeon Y, Flanagan E, Shiver J, Shi L. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J Pharm Sci 2006; 95:70-9. [PMID: 16315228 DOI: 10.1002/jps.20493] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report the preparation and the immunogenicity of a conjugate vaccine obtained by chemically conjugating a variant of the extracellular peptide fragment of influenza type A M2 protein to the human papillomavirus (HPV) viruslike particle (VLP). Conjugates comprised of approximately 4,000 copies of the antigenic peptide per VLP are obtained as the result of the reaction between a C-terminal cysteine residue on the peptide and the maleimide-activated HPV VLP. The resulting conjugates have an average particle size slightly larger than the carrier and present enhanced overall stability against chemical and thermal-induced denaturation. The M2-HPV VLP conjugates lost the binding affinity for anti-HPV conformational antibodies but retained reactivity to a M2-specific monoclonal antibody. The conjugate vaccine formulated with aluminum adjuvant and delivered in two doses of 30-ng peptide was found to be highly immunogenic and conferred good protection against lethal challenge of influenza virus in mice. These results suggest that HPV VLP can be used as a carrier for synthetic or small antigens for the development of subunit vaccines.
Collapse
Affiliation(s)
- Roxana M Ionescu
- Biologics and Vaccines PR&D, Merck Research Laboratories, Merck & Co., Inc., P.O Box 4, West Point, Pennsylvania 19486-0004, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Wolf M, DeRosier DJ, Grigorieff N. Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 2005; 106:376-82. [PMID: 16384646 DOI: 10.1016/j.ultramic.2005.11.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 11/09/2005] [Accepted: 11/11/2005] [Indexed: 11/24/2022]
Abstract
Most algorithms for three-dimensional (3D) reconstruction from electron micrographs assume that images correspond to projections of the 3D structure. This approximation limits the attainable resolution of the reconstruction when the dimensions of the structure exceed the depth of field of the microscope. We have developed two methods to calculate a reconstruction that corrects for the depth of field. Either method applied to synthetic data representing a large virus yields a higher resolution reconstruction than a method lacking this correction.
Collapse
Affiliation(s)
- Matthias Wolf
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | |
Collapse
|
166
|
Twarock R, Hendrix RW. Crosslinking in viral capsids via tiling theory. J Theor Biol 2005; 240:419-24. [PMID: 16337970 DOI: 10.1016/j.jtbi.2005.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 08/12/2005] [Accepted: 10/07/2005] [Indexed: 11/18/2022]
Abstract
A vital part of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. It has been shown in Twarock [2004. A tiling approach to vius capsids assembly explaining a structural puzzle in virology. J. Theor. Biol. 226, 477-482] that the surface structures of viruses with icosahedrally symmetric capsids can be modelled in terms of tilings that encode the locations of the protein subunits. This theory is extended here to multi-level tilings in order to model crosslinking structures. The new framework is demonstrated for the case of bacteriophage HK97, and it is shown, how the theory can be used in general to decide if crosslinking, and what type of crosslinking, is compatible from a mathematical point of view with the geometrical surface structure of a virus.
Collapse
Affiliation(s)
- R Twarock
- Departments of Mathematics and Biology, University of York, Heslington, York YO10 5DD, UK.
| | | |
Collapse
|
167
|
Zhao Q, Guo HH, Wang Y, Washabaugh MW, Sitrin RD. Visualization of discrete L1 oligomers in human papillomavirus 16 virus-like particles by gel electrophoresis with Coomassie staining. J Virol Methods 2005; 127:133-40. [PMID: 15894387 DOI: 10.1016/j.jviromet.2005.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 03/08/2005] [Accepted: 03/14/2005] [Indexed: 11/28/2022]
Abstract
The recombinant major capsid protein (L1) of human papillomavirus (HPV) can self-assemble into virus-like particles (VLPs) with 360 L1 molecules per VLP. These tightly associated L1 oligomers in the assembled VLPs were disrupted in a pH-, denaturant-, time-, and temperature-dependent fashion. With non-reducing Laemmli-type SDS-PAGE, primarily the monomeric L1 protein ( approximately 55 kDa) is observed when analyzing VLP preparations. When the pH was lowered to pH 7.0 in NuPAGE system and the gel temperature during electrophoresis was maintained at a lower temperature ( approximately 7 degrees C), a ladder of protein bands in approximately 55 kDa increments were detected above the monomeric p55 band. These discrete bands visualized as a ladder are likely the disulfide-linked L1 oligomers. In addition to the gel running conditions, an increase in pH, temperature, or SDS concentration during sample treatment was also shown to significantly reduce the amount of detectable oligomers, further corroborating the labile nature of these oligomers. Altogether, the results also implicate the redox-responsive nature of the HPV capsid comprising of >95% L1 protein. Molecular basis of the facile disulfide bond inter-change is discussed. This electrophoretic technique for trapping the disulfide-linked oligomers may be employed to detect the oligomeric status of other protein aggregates or assembled particles.
Collapse
Affiliation(s)
- Qinjian Zhao
- Department of Bioprocess & Bioanalytical Research, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | |
Collapse
|
168
|
Abstract
A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Assembly models are developed for viral capsids built from protein building blocks that can assume different local bonding structures in the capsid. This situation occurs, for example, for viruses in the family of Papovaviridae, which are linked to cancer and are hence of particular interest for the health sector. More specifically, the viral capsids of the (pseudo-) T = 7 particles in this family consist of pentamers that exhibit two different types of bonding structures. While this scenario cannot be described mathematically in terms of Caspar-Klug theory (Caspar D L D and Klug A 1962 Cold Spring Harbor Symp. Quant. Biol. 27 1), it can be modelled via tiling theory (Twarock R 2004 J. Theor. Biol. 226 477). The latter is used to encode the local bonding environment of the building blocks in a combinatorial structure, called the assembly tree, which is a basic ingredient in the derivation of assembly models for Papovaviridae along the lines of the equilibrium approach of Zlotnick (Zlotnick A 1994 J. Mol. Biol. 241 59). A phase space formalism is introduced to characterize the changes in the assembly pathways and intermediates triggered by the variations in the association energies characterizing the bonds between the building blocks in the capsid. Furthermore, the assembly pathways and concentrations of the statistically dominant assembly intermediates are determined. The example of Simian virus 40 is discussed in detail.
Collapse
Affiliation(s)
- T Keef
- Department of Mathematics, University of York, York YO10 5DD, UK.
| | | | | |
Collapse
|
169
|
Arias-Pulido H, Peyton CL, Torrez-Martínez N, Anderson DN, Wheeler CM. Human papillomavirus type 18 variant lineages in United States populations characterized by sequence analysis of LCR-E6, E2, and L1 regions. Virology 2005; 338:22-34. [PMID: 15936050 DOI: 10.1016/j.virol.2005.04.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 04/01/2005] [Accepted: 04/22/2005] [Indexed: 11/20/2022]
Abstract
While HPV 16 variant lineages have been well characterized, the knowledge about HPV 18 variants is limited. In this study, HPV 18 nucleotide variations in the E2 hinge region were characterized by sequence analysis in 47 control and 51 tumor specimens. Fifty of these specimens were randomly selected for sequencing of an LCR-E6 segment and 20 samples representative of LCR-E6 and E2 sequence variants were examined across the L1 region. A total of 2770 nucleotides per HPV 18 variant genome were considered in this study. HPV 18 variant nucleotides were linked among all gene segments analyzed and grouped into three main branches: Asian-American (AA), European (E), and African (Af). These three branches were equally distributed among controls and cases and when stratified by Hispanic and non-Hispanic ethnicities. Among invasive cervical cancer cases, no significant differences in the three HPV variant branches were observed among ethnic groups or when stratified by histopathology (squamous vs. adenocarcinoma). The Af branch showed the greatest nucleotide variability when compared to the HPV 18 reference sequence and was more closely related to HPV 45 than either AA or E branches. Our data also characterize nucleotide and amino acid variations in the L1 capsid gene among HPV 18 variants, which may be relevant to vaccine strategies and subsequent studies of naturally occurring HPV 18 variants. Several novel HPV 18 nucleotide variations were identified in this study.
Collapse
Affiliation(s)
- Hugo Arias-Pulido
- Department of Molecular Genetics and Microbiology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, NM 87111, USA.
| | | | | | | | | |
Collapse
|
170
|
Abstract
Papillomaviruses infect epithelial cells, and depend on epithelial differentiation for completion of their life cycle. The expression of viral gene products is closely regulated as the infected basal cell migrates towards the epithelial surface. Expression of E6 and E7 in the lower epithelial layers drives cells into S-phase, which creates an environment that is conducive for viral genome replication and cell proliferation. Genome amplification, which is necessary for the production of infectious virions, is prevented until the levels of viral replication proteins rise, and depends on the co-expression of several viral proteins. Virus capsid proteins are expressed in cells that also express E4 as the infected cell enters the upper epithelial layers. The timing of these events varies depending on the infecting papillomavirus, and in the case of the high-risk human papillomaviruses (HPVs), on the severity of neoplasia. Viruses that are evolutionarily related, such as HPV1 and canine oral papillomavirus (COPV), generally organize their productive cycle in a similar way, despite infecting different hosts and epithelial sites. In some instances, such as following HPV16 infection of the cervix or cottontail rabbit papillomavirus (CRPV) infection of domestic rabbits, papillomaviruses can undergo abortive infections in which the productive cycle of the virus is not completed. As with other DNA tumour viruses, such abortive infections can predispose to cancer.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
171
|
Orozco JJ, Carter JJ, Koutsky LA, Galloway DA. Humoral immune response recognizes a complex set of epitopes on human papillomavirus type 6 l1 capsomers. J Virol 2005; 79:9503-14. [PMID: 16014913 PMCID: PMC1181614 DOI: 10.1128/jvi.79.15.9503-9514.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although epitope mapping has identified residues on the human papillomavirus (HPV) major capsid protein (L1) that are important for binding mouse monoclonal antibodies, epitopes recognized by human antibodies are not known. To map epitopes on HPV type 6 (HPV6) L1, surface-exposed loops were mutated to the corresponding sequence of HPV11 L1. HPV6 L1 capsomers had one to six regions mutated, including the BC, DE, EF, FG, and HI loops and the 139 C-terminal residues. After verifying proper conformation, hybrid capsomers were used in enzyme-linked immunosorbent assays with 36 HPV6-seropositive sera from women enrolled in a study of incident HPV infection. Twelve sera were HPV6 specific, while the remainder reacted with both HPV6 and HPV11 L1. By preadsorption studies, 6/11 of these sera were shown to be cross-reactive. Among the HPV6-specific sera there was no immunodominant epitope recognized by all sera. Six of the 12 sera recognized epitopes that contained residues from combinations of the BC, DE, and FG loops, one serum recognized an epitope that consisted partially of the C-terminal arm, and three sera recognized complex epitopes to which reactivity was eliminated by switching all five loops. Reactivity in two sera was not eliminated even with all six regions swapped. The patterns of epitope recognition did not change over time in women whose sera were examined 9 years after their first-seropositive visit.
Collapse
Affiliation(s)
- Johnnie J Orozco
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
172
|
Urquiza M, Guevara T, Espejo F, Bravo MM, Rivera Z, Patarroyo ME. Two L1-peptides are excellent tools for serological detection of HPV-associated cervical carcinoma lesions. Biochem Biophys Res Commun 2005; 332:224-32. [PMID: 15896321 DOI: 10.1016/j.bbrc.2005.04.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2005] [Accepted: 04/19/2005] [Indexed: 11/29/2022]
Abstract
A persistent high risk human papillomavirus (HR-HPV) infection causes cervical intraepithelial lesions and cervical carcinoma. There is evidence that detecting anti-L1 antibodies could be successfully used for discriminating between cervical lesion patients and women having normal cytology. It was found that peptides 18283 (55PNNNKILVPKVSGLQYRVFR74) and 18294 (284LYIKGSGSTANLASSNYFPT300) from the L1-surface exposed regions were specifically recognised by antibodies from the cervical lesion patient sera. These peptides were tested against 165 womens' normal cytology sera and 148 cervical lesion or cervical cancer patients' sera. Less than 3.6% of women's normal cytology sera recognised peptides 18283 or 18294; on the contrary, 91% to 96% of the cervical lesion (CIN I to CIN III) or cervical cancer patient sera recognised peptides 18283 and 18294. These data show that anti-peptide 18283 and 18294 antibodies in the patients' sera are strongly associated with the presence of HR-HPV associated cervical lesions, showing 92-97% sensitivity and 89-95% specificity in recognising precancerous and cervical cancer patients. These two peptides could be excellent tools for use in large-scale serological screening of women populations at risk of developing cervical carcinoma.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Cra 50 #26-00, Bogota, Colombia
| | | | | | | | | | | |
Collapse
|
173
|
Nilsson J, Miyazaki N, Xing L, Wu B, Hammar L, Li TC, Takeda N, Miyamura T, Cheng RH. Structure and assembly of a T=1 virus-like particle in BK polyomavirus. J Virol 2005; 79:5337-45. [PMID: 15827148 PMCID: PMC1082729 DOI: 10.1128/jvi.79.9.5337-5345.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In polyomaviruses the pentameric capsomers are interlinked by the long C-terminal arm of the structural protein VP1. The T=7 icosahedral structure of these viruses is possible due to an intriguing adaptability of this linker arm to the different local environments in the capsid. To explore the assembly process, we have compared the structure of two virus-like particles (VLPs) formed, as we found, in a calcium-dependent manner by the VP1 protein of human polyomavirus BK. The structures were determined using electron cryomicroscopy (cryo-EM), and the three-dimensional reconstructions were interpreted by atomic modeling. In the small VP1 particle, 26.4 nm in diameter, the pentameric capsomers form an icosahedral T=1 surface lattice with meeting densities at the threefold axes that interlinked three capsomers. In the larger particle, 50.6 nm in diameter, the capsomers form a T=7 icosahedral shell with three unique contacts. A folding model of the BKV VP1 protein was obtained by alignment with the VP1 protein of simian virus 40 (SV40). The model fitted well into the cryo-EM density of the T=7 particle. However, residues 297 to 362 of the C-terminal arm had to be remodeled to accommodate the higher curvature of the T=1 particle. The loops, before and after the C-terminal short helix, were shown to provide the hinges that allowed curvature variation in the particle shell. The meeting densities seen at the threefold axes in the T=1 particle were consistent with the triple-helix interlinking contact at the local threefold axes in the T=7 structure.
Collapse
Affiliation(s)
- Josefina Nilsson
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Steven AC, Heymann JB, Cheng N, Trus BL, Conway JF. Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr Opin Struct Biol 2005; 15:227-36. [PMID: 15837183 PMCID: PMC1351302 DOI: 10.1016/j.sbi.2005.03.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
For many viruses, the final stage of assembly involves structural transitions that convert an innocuous precursor particle into an infectious agent. This process -- maturation -- is controlled by proteases that trigger large-scale conformational changes. In this context, protease inhibitor antiviral drugs act by blocking maturation. Recent work has succeeded in determining the folds of representative examples of the five major proteins -- major capsid protein, scaffolding protein, portal, protease and accessory protein -- that are typically involved in capsid assembly. These data provide a framework for detailed mechanistic investigations and elucidation of mutations that affect assembly in various ways. The nature of the conformational change has been elucidated: it entails rigid-body rotations and translations of the arrayed subunits that transfer the interactions between them to different molecular surfaces, accompanied by refolding and redeployment of local motifs. Moreover, it has been possible to visualize maturation at the submolecular level in movies based on time-resolved cryo-electron microscopy.
Collapse
Affiliation(s)
- Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
175
|
Abstract
The papillomavirus capsid is a nonenveloped icosahedral shell formed by the viral major structural protein, L1. It is known that disulfide bonds between neighboring L1 molecules help to stabilize the capsid. However, the kinetics of inter-L1 disulfide bond formation during particle morphogenesis have not previously been examined. We have recently described a system for producing high-titer papillomavirus-based gene transfer vectors (also known as pseudoviruses) in mammalian cells. Here we show that papillomavirus capsids produced using this system undergo a maturation process in which the formation of inter-L1 disulfide bonds drives condensation and stabilization of the capsid. Fully mature capsids exhibit improved regularity and resistance to proteolytic digestion. Although capsid maturation for other virus types has been reported to occur in seconds or minutes, papillomavirus capsid maturation requires overnight incubation. Maturation of the capsids of human papillomavirus types 16 and 18 proceeds through an ordered accumulation of dimeric and trimeric L1 species, whereas the capsid of bovine papillomavirus type 1 matures into more extensively cross-linked forms. The presence of encapsidated DNA or the minor capsid protein, L2, did not have major effects on the kinetics or extent of capsid maturation. Immature capsids and capsids formed from L1 mutants with impaired disulfide bond formation are infectious but physically fragile. Consequently, capsid maturation is essential for efficient purification of papillomavirus-based gene transfer vectors. Despite their obvious morphological differences, mature and immature capsids are similarly neutralizable by various L1- and L2-specific antibodies.
Collapse
Affiliation(s)
- Christopher B Buck
- Laboratory of Cellular Oncology, Building 37, Room 4106, 9000 Rockville Pike, Bethesda, MD 20892-4263, USA
| | | | | | | | | |
Collapse
|
176
|
Rommel O, Dillner J, Fligge C, Bergsdorf C, Wang X, Selinka HC, Sapp M. Heparan sulfate proteoglycans interact exclusively with conformationally intact HPV L1 assemblies: basis for a virus-like particle ELISA. J Med Virol 2005; 75:114-21. [PMID: 15543569 DOI: 10.1002/jmv.20245] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this article, we demonstrate that interaction of human papillomavirus-like particles (HPV-VLPs) with the putative glucosaminoglycan binding receptor is strictly dependent on conformational integrity. Such conformations are present on VLPs and capsomeres but not on monomers of the major capsid protein, L1, confirming reports that capsomeres can induce virus-neutralizing antibodies. Furthermore, we show the suitability of this specific interaction for development of VLP-based enzyme-linked immunosorbent assays (ELISAs), using heparin for indirect coupling of VLPs to microtiter plates, which may add an intrinsic quality control. This avoids presentation of linear, often highly cross-reactive epitopes of L1. In addition, heparin specifically interacts with a wide variety of HPV types, making it a prime candidate for a universal capture molecule.
Collapse
|
177
|
Borgnia MJ, Shi D, Zhang P, Milne JLS. Visualization of alpha-helical features in a density map constructed using 9 molecular images of the 1.8 MDa icosahedral core of pyruvate dehydrogenase. J Struct Biol 2005; 147:136-45. [PMID: 15193642 DOI: 10.1016/j.jsb.2004.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/03/2004] [Indexed: 11/26/2022]
Abstract
Strategies to achieve the highest resolutions in structures of protein complexes determined by cryo-electron microscopy generally involve averaging information from large numbers of individual molecular images. However, significant limitations are posed by heterogeneity in image quality and in protein conformation that are inherent to large data sets of images. Here, we demonstrate that the combination of iterative refinement and stringent molecular sorting is an effective method to obtain substantial improvements in map quality of the 1.8 MDa icosahedral catalytic core of the pyruvate dehydrogenase complex from Bacillus stearothermophilus. From a starting set of 42,945 images of the core complex, we show that using only the best 139 particles in the data set produces a map that is superior to those constructed with greater numbers of images, and that the location of many of the alpha-helices in the structure can be unambiguously visualized in a map constructed from as few as 9 particles.
Collapse
Affiliation(s)
- Mario J Borgnia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
178
|
Velázquez-Muriel JA, Sorzano COS, Scheres SHW, Carazo JM. SPI-EM: towards a tool for predicting CATH superfamilies in 3D-EM maps. J Mol Biol 2005; 345:759-71. [PMID: 15588824 DOI: 10.1016/j.jmb.2004.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 10/29/2004] [Accepted: 11/02/2004] [Indexed: 11/16/2022]
Abstract
In this paper the theoretical framework used to build a superfamily probability in electron microscopy (SPI-EM) is presented. SPI-EM is a new tool for determining the homologous superfamily to which a protein domain belongs looking at its three-dimensional electron microscopy map. The homologous superfamily is assigned according to the domain-architecture database CATH. Our method follows a probabilistic approach applied to the results of fitting protein domains into maps of proteins and the computation of local cross-correlation coefficient measures. The method has been tested and its usefulness proven with isolated domains at a resolution of 8 A and 12 A. Results obtained with simulated and experimental data at 10 A suggest that it is also feasible to detect the correct superfamily of the domains when dealing with electron microscopy maps containing multi-domain proteins. The inherent difficulties and limitations that multi-domain proteins impose are discussed. Our procedure is complementary to other techniques existing in the field to detect structural elements in electron microscopy maps like alpha-helices and beta-sheets. Based on the proposed methodology, a database of relevant distributions is being built to serve the community.
Collapse
|
179
|
Tama F, Brooks CL. Diversity and Identity of Mechanical Properties of Icosahedral Viral Capsids Studied with Elastic Network Normal Mode Analysis. J Mol Biol 2005; 345:299-314. [PMID: 15571723 DOI: 10.1016/j.jmb.2004.10.054] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 10/12/2004] [Accepted: 10/16/2004] [Indexed: 11/30/2022]
Abstract
We analyze the mechanical properties and putative dynamical fluctuations of a variety of viral capsids comprising different sizes and quasi-equivalent symmetries by performing normal mode analysis using the elastic network model. The expansion of the capsid to a swollen state is studied using normal modes and is compared with the experimentally observed conformational change for three of the viruses for which experimental data exist. We show that a combination of one or two normal modes captures remarkably well the overall translation that dominates the motion between the two conformational states, and reproduces the overall conformational change. We observe for all of the viral capsids that the nature of the modes is different. In particular for the T=7 virus, HK97, for which the shape of the capsid changes from spherical to faceted polyhedra, two modes are necessary to accomplish the conformational transition. In addition, we extend our study to viral capsids with other T numbers, and discuss the similarities and differences in the features of virus capsid conformational dynamics. We note that the pentamers generally have higher flexibility and propensity to move freely from the other capsomers, which facilitates the shape adaptation that may be important in the viral life cycle.
Collapse
Affiliation(s)
- Florence Tama
- Department of Molecular Biology (TPC6), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
180
|
Abstract
A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence protects the viral genome. The surface structures of a large number of icosahedral viruses can be modelled via Caspar-Klug Theory, which has hence become one of the fundamental concepts in virology. However, growing experimental evidence have shown that a significant fraction of viruses falls out of the remit of this theory. Among them are the Papovaviridae, which are of particular interest for the medical sector as they contain cancer causing viruses. A novel approach for the prediction of the protein stoichiometry and bonding structure of icosahedral viruses based on tiling theory is discussed here. It generalises Caspar-Klug Theory, and is in particular applicable also to Papovaviridae. Besides describing the surface structures of the viruses, this approach also provides a tool for the classification of cross-linking structures and the construction of assembly models.
Collapse
Affiliation(s)
- R. Twarock
- Departments of Mathematics and Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
181
|
Si-Mohamed A, Ndjoyi-Mbiguino A, Cuschieri K, Onas IN, Colombet I, Ozouaki F, Goff JL, Cubie H, Bélec L. High prevalence of high-risk oncogenic human papillomaviruses harboring atypical distribution in women of childbearing age living in Libreville, Gabon. J Med Virol 2005; 77:430-8. [PMID: 16173023 DOI: 10.1002/jmv.20472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The extent of human papillomavirus (HPV) genital shedding and type-specific diversity were evaluated in 354 consecutive women of childbearing age living in Libreville, Gabon. Detection of HPV DNA was performed by PCR using the MY09/MY11 primer set on DNA extracted from endocervical swabs. All PCR positive specimens were subjected to direct sequencing and HPV genotypes were identified on the basis of >95% sequence homology in the L1 region. Reverse line blot hybridization assay was used when a genotype could not be resolved by sequencing alone. HPV DNA was detected in 163 (46%) women, all clinically asymptomatic for HPV-related lesions. The highest prevalence of genital HPV detection (45%) was in the age group from 22 to 29 years. A total of 90 women (55%) harbored high-risk (HR) genotypes, with the most common being HPV-53 (19; 12%), HPV-58 (17; 11%), and HPV-16 (16; 10%). Low-risk genotypes were found in 36 (22%) women with HPV-54 and HPV-70 being the most frequently detected (17; 11% and 10; 6%, respectively). Finally 37 women (23%) tested positive for genotypes of unknown oncogenic risk, the most common in this category being HPV-83 (20; 12%). Multiple infections were detected in 35 (21%) women. By multivariate analysis, HPV genital shedding was significantly associated with young age (OR: 0.34; P < 0.007). The multivalent vaccine currently available against cervical carcinomas, is only active against HPV-16 and HPV-18, and will thus have a low impact in this setting.
Collapse
Affiliation(s)
- Ali Si-Mohamed
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Casini GL, Graham D, Heine D, Garcea RL, Wu DT. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 2004; 325:320-7. [PMID: 15246271 DOI: 10.1016/j.virol.2004.04.034] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Revised: 03/24/2004] [Accepted: 04/13/2004] [Indexed: 11/27/2022]
Abstract
Pentamers of the L1 major capsid protein of human papillomavirus (HPV type 11) were purified after expression in E. coli and analyzed for the kinetics of in vitro capsid self-assembly using multi-angle light scattering (MALS). Pentamers self-assembled into capsid-like structures at a rate that was a function of protein concentration. The kinetics of capsid formation were sigmoidal with a concentration-dependent lag phase, followed by a rapid increase in polymerization. Nucleation size and the rate order of subsequent subunit addition were calculated from the concentration dependence of the extent of capsid formation and the rate of the fast phase, respectively. Assembly was second order with a nucleation size of two pentamers. Thus, we suggest that dimers of pentamers are the nucleus for L1 assembly into capsid-like structures, with rapid sequential addition of single pentamers to the growing shell. Although studied in vitro without accessory factors that may be present in vivo, these data are in contrast with the "five-around-one" assembly nucleus previously proposed for polyomaviruses.
Collapse
Affiliation(s)
- Greg L Casini
- Section of Pediatric Hematology/Oncology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
183
|
Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Müller M, Streeck RE, Sapp M. Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol 2004; 78:5546-53. [PMID: 15140951 PMCID: PMC415841 DOI: 10.1128/jvi.78.11.5546-5553.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Minor capsid protein L2 of papillomaviruses plays an essential role in virus assembly by recruiting viral components to PML bodies, the proposed sites of virus morphogenesis. We demonstrate here that the function of L2 in virus assembly requires the chaperone Hsc70. Hsc70 was found dispersed in naturally infected keratinocytes and cultured cells. A dramatic relocation of Hsc70 from the cytoplasm to PML bodies was induced in these cells by L2 expression. Hsc70-L2 complex formation was confirmed by coimmunoprecipitation. The complex was modulated by the cochaperones Hip and Bag-1, which stabilize and destabilize Hsc70-substrate complexes, respectively. Cytoplasmic depletion of Hsc70 caused retention of wild-type and N-terminally truncated L2, but not of C-terminally truncated L2, in the cytoplasm. This retention was partially reversed by overexpression of Hsc70 fused to green fluorescent protein but not by ATPase-negative Hsc70. Hsc70 associated with L1-L2 virus-like particles (VLPs) but not with VLPs composed either of L1 alone or of L1 and C-terminally truncated L2. Moreover, displacement of Hsc70 from L1-L2 VLPs by encapsidation of DNA, generating pseudovirions, was found. These data indicate that Hsc70 transiently associates with viral capsids during the integration of L2, possibly via the L2 C terminus. Completion of virus assembly results in displacement of Hsc70 from virions.
Collapse
Affiliation(s)
- Luise Florin
- Institut für Medizinische Mikrobiologie und Hygiene, Johannes Gutenberg-Universität Mainz, Hochhaus am Augustusplatz, D-55101 Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
Collapse
Affiliation(s)
- Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
185
|
Twarock R. A tiling approach to virus capsid assembly explaining a structural puzzle in virology. J Theor Biol 2004; 226:477-82. [PMID: 14759653 DOI: 10.1016/j.jtbi.2003.10.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 09/29/2003] [Accepted: 10/06/2003] [Indexed: 10/26/2022]
Abstract
A novel approach for the description of the protein stoichiometry of viral capsids, that is the protein shells protecting the viral genome, is introduced based on tiling theory. This approach generalizes Caspar-Klug theory of quasi-equivalence to account also for non-quasi-equivalent subunit arrangements in icosahedral virus capsids that have been observed experimentally but are not covered by the Caspar-Klug approach. In particular, the new approach is used to explain the structure of polyoma virus, Simian Virus 40 and L-A virus capsids, which are considered structural puzzles in view of Caspar-Klug theory.
Collapse
Affiliation(s)
- R Twarock
- Centre for Mathematical Science, City University, Northampton Square, London EC1V 0HB, UK.
| |
Collapse
|
186
|
Selinka HC, Giroglou T, Nowak T, Christensen ND, Sapp M. Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol 2004; 77:12961-7. [PMID: 14645552 PMCID: PMC296061 DOI: 10.1128/jvi.77.24.12961-12967.2003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface heparan sulfate proteoglycans (HSPGs) serve as primary attachment receptors for human papillomaviruses (HPVs). To demonstrate that a biologically functional HPV-receptor interaction is restricted to a specific subset of HSPGs, we first explored the role of HSPG glucosaminoglycan side chain modifications. We demonstrate that HSPG O sulfation is essential for HPV binding and infection, whereas de-N-sulfated heparin interfered with VLP binding but not with HPV pseudoinfection. This points to differences in VLP-HSPG and pseudovirion-HSPG interactions. Interestingly, internalization kinetics of VLPs and pseudovirions, as measured by fluorescence-activated cell sorting analysis, also differ significantly with approximate half times of 3.5 and 7.5 h, respectively. These data suggest that differences in HSPG binding significantly influence postbinding events. We also present evidence that pseudovirions undergo a conformational change after cell attachment. A monoclonal antibody (H33.J3), which displays negligible effectiveness in preattachment neutralization assays, efficiently neutralizes cell-bound virions. However, no difference in H33.J3 binding to pseudovirions and VLPs was observed in enzyme-linked immunosorbent assay and virus capture assays. In contrast to antibody H33.B6, which displays equal efficiencies in pre- and postattachment neutralization assays, H33.J3 does not block VLP binding to heparin, demonstrating that it interferes with steps subsequent to virus binding. Our data strongly suggest that H33.J3 recognizes a conformation-dependent epitope in capsid protein L1, which undergoes a structural change after cell attachment.
Collapse
Affiliation(s)
- Hans-Christoph Selinka
- Institute for Medical Microbiology and Hygiene, University of Mainz, D-55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
187
|
Carter JJ, Wipf GC, Benki SF, Christensen ND, Galloway DA. Identification of a human papillomavirus type 16-specific epitope on the C-terminal arm of the major capsid protein L1. J Virol 2003; 77:11625-32. [PMID: 14557648 PMCID: PMC229369 DOI: 10.1128/jvi.77.21.11625-11632.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To characterize epitopes on human papillomavirus (HPV) virus-like particles (VLPs), a panel of mutated HPV-16 VLPs was created. Each mutated VLP had residues substituted from HPV-31 or HPV-52 L1 sequences to the HPV-16 L1 backbone. Mutations were created on the HPV-31 and -52 L1 proteins to determine if HPV-16 type-specific recognition could be transferred. Correct folding of the mutated proteins was verified by resistance to trypsin digestion and by binding to one or more conformation-dependent monoclonal antibodies. Several of the antibodies tested were found to bind to regions already identified as being important for HPV VLP recognition (loops DE, EF, FG, and HI). Sequences at both ends of the long FG loop (amino acids 260 to 290) were required for both H16.V5 and H16.E70 reactivity. A new antibody-binding site was discovered on the C-terminal arm of L1 between positions 427 and 445. Recognition of these residues by the H16.U4 antibody suggests that this region is surface exposed and supports a recently proposed molecular model of HPV VLPs.
Collapse
Affiliation(s)
- Joseph J Carter
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | | | |
Collapse
|
188
|
Varsani A, Williamson AL, de Villiers D, Becker I, Christensen ND, Rybicki EP. Chimeric human papillomavirus type 16 (HPV-16) L1 particles presenting the common neutralizing epitope for the L2 minor capsid protein of HPV-6 and HPV-16. J Virol 2003; 77:8386-93. [PMID: 12857908 PMCID: PMC165259 DOI: 10.1128/jvi.77.15.8386-8393.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both the Human papillomavirus (HPV) major (L1) and minor (L2) capsid proteins have been well investigated as potential vaccine candidates. The L1 protein first oligomerizes into pentamers, and these capsomers assemble into virus-like particles (VLPs) that are highly immunogenic. Here we examine the potential of using HPV type 16 (HPV-16) L1 subunits to display a well-characterized HPV-16 L2 epitope (LVEETSFIDAGAP), which is a common-neutralizing epitope for HPV types 6 and 16, in various regions of the L1 structure. The L2 sequence was introduced by PCR (by replacing 13 codons) into sequences coding for L1 surface loops D-E (chideltaC-L2), E-F (chideltaA-L2), and an internal loop C-D (chideltaH-L2); into the h4 helix (chideltaF-L2); and between h4 and beta-J structural regions (chideltaE-L2). The chimeric protein product was characterized using a panel of monoclonal antibodies (MAbs) that bind to conformational and linear epitopes, as well as a polyclonal antiserum raised to the L2 epitope. All five chimeras reacted with the L2 serum. ChideltaA-L2, chideltaE-L2, and chideltaF-L2 reacted with all the L1 antibodies, chideltaC-L2 did not bind H16:V5 and H16:E70, and chideltaH-L2 did not bind any conformation-dependent MAb. The chimeric particles elicited high-titer anti-L1 immune responses in BALB/c mice. Of the five chimeras tested only chideltaH-L2 did not elicit an L2 response, while chideltaF-L2 elicited the highest L2 response. This study provides support for the use of PV particles as vectors to deliver various epitopes in a number of locations internal to the L1 protein and for the potential of using chimeric PV particles as multivalent vaccines. Moreover, it contributes to knowledge of the structure of HPV-16 L1 VLPs and their derivatives.
Collapse
Affiliation(s)
- Arvind Varsani
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa and Department of Pathology, The Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
189
|
Onda T, Carter JJ, Koutsky LA, Hughes JP, Lee SK, Kuypers J, Kiviat N, Galloway DA. Characterization of IgA response among women with incident HPV 16 infection. Virology 2003; 312:213-21. [PMID: 12890634 DOI: 10.1016/s0042-6822(03)00196-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have characterized the prevalence and duration of serum IgG antibodies to human papillomavirus type 16 (HPV 16) in a well-studied cohort of college women, using viruslike particle- (VLP) based ELISAs. In this study IgA antibodies in cervical secretions and sera were examined using a newly developed capsomer-based ELISA and the patterns observed for serum IgG, serum IgA, and cervical IgA antibodies were compared. The median time to antibody detection from the first detection of HPV 16 DNA was 10.5 months for IgA in cervical secretions and 19.1 months for serum IgA. Serum IgA antibody conversion was observed less frequently and occurred later than IgA conversion in cervical secretions (P = 0.011) or serum IgG conversion (P = 0.051). The median time to antibody reversion, following seroconversion, was 12.0 months for IgA in cervical secretions and 13.6 months for serum IgA, whereas approximately 20% of women with serum IgG antibodies reverted within 36 months. Thus, the duration of IgA in cervical secretions and sera was shorter than the duration of serum IgG (P = 0.007 and 0.001).
Collapse
Affiliation(s)
- Takashi Onda
- Program in Cancer Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
The human papillomavirus (HPV) capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers on a T=7 icosahedral lattice, with substoichiometric amounts of the minor capsid protein, L2. In order to understand the arrangement of L2 within the HPV virion, we have defined and biochemically characterized a domain of L2 that interacts with L1 pentamers. We utilized an in vivo binding assay involving the coexpression of recombinant HPV type 11 (HPV11) L1 and HPV11 glutathione S-transferase (GST) L2 fusion proteins in Escherichia coli. In this system, L1 forms pentamers, GST=L2 associates with these pentamers, and L1+L2 complexes are subsequently isolated by using the GST tag on L2. The stoichiometry of L1:L2 in purified L1+L2 complexes was 5:1, indicating that a single molecule of L2 interacts with an L1 pentamer. Coexpression of HPV11 L1 with deletion mutants of HPV11 L2 defined an L1-binding domain contained within amino acids 396 to 439 near the carboxy terminus of L2. L2 proteins from eight different human and animal papillomavirus serotypes were tested for their ability to interact with HPV11 L1. This analysis targeted a hydrophobic region within the L1-binding domain of L2 as critical for L1 binding. Introduction of negative charges into this hydrophobic region by site-directed mutagenesis disrupted L1 binding. L1-L2 interactions were not significantly disrupted by treatment with high salt concentrations (2 M NaCl), weak detergents, and urea concentrations of up to 2 M, further indicating that L1 binding by this domain is mediated by strong hydrophobic interactions. L1+L2 protein complexes were able to form virus-like particles in vitro at pH 5.2 and also at pH 6.8, a pH that is nonpermissive for assembly of L1 protein alone. Thus, L1/L2 interactions are primarily hydrophobic, encompass a relatively short stretch of amino acids, and have significant effects upon in vitro assembly.
Collapse
Affiliation(s)
- Renée L Finnen
- Section of Pediatric Hematology/Oncology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|