151
|
The production in vivo of microcin E492 with antibacterial activity depends on salmochelin and EntF. J Bacteriol 2008; 190:5464-71. [PMID: 18502859 DOI: 10.1128/jb.00351-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin E492 is a channel-forming bacteriocin that is found in two forms, namely, a posttranslationally modified form obtained by the covalent linkage of salmochelin-like molecules to serine 84 and an unmodified form. The production of modified microcin E492 requires the synthesis of enterochelin, which is subsequently glycosylated by MceC and converted into salmochelin. mceC mutants produced inactive microcin E492, and this phenotype was reversed either by complementation with iroB from Salmonella enterica or by the addition of exogenous salmochelin. Cyclic salmochelin uptake by Escherichia coli occurred mainly through the outer membrane catecholate siderophore receptor Fiu. The production of inactive microcin E492 by mutants in entB and entC was reverted by the addition of the end product of the respective mutated pathway (2,3-dihydroxybenzoic acid and enterochelin/salmochelin, respectively), while mutants in entF did not produce active microcin E492 in the presence of enterochelin or salmochelin. The EntF adenylation domain was the only domain required for this microcin E492 maturation step. Inactivation of the enzymatic activity of this domain by site-directed mutagenesis did not prevent the synthesis of active microcin E492 in the presence of salmochelin, indicating that the adenylation activity is not essential for the function of EntF at this stage of microcin E492 maturation.
Collapse
|
152
|
Nolan EM, Fischbach MA, Koglin A, Walsh CT. Biosynthetic tailoring of microcin E492m: post-translational modification affords an antibacterial siderophore-peptide conjugate. J Am Chem Soc 2007; 129:14336-47. [PMID: 17973380 PMCID: PMC2522288 DOI: 10.1021/ja074650f] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present work reveals that four proteins, MceCDIJ, encoded by the MccE492 gene cluster are responsible for the remarkable post-translational tailoring of microcin E492 (MccE492), an 84-residue protein toxin secreted by Klebsiella pneumonaie RYC492 that targets neighboring Gram-negative species. This modification results in attachment of a linearized and monoglycosylated derivative of enterobactin, a nonribosomal peptide and iron scavenger (siderophore), to the MccE492m C-terminus. MceC and MceD derivatize enterobactin by C-glycosylation at the C5 position of a N-(2,3-dihydroxybenzoyl)serine (DHB-Ser) moiety and regiospecific hydrolysis of an ester linkage in the trilactone scaffold, respectively. MceI and MceJ form a protein complex that attaches C-glycosylated enterobactins to the C-terminal serine residue of both a C10 model peptide and full-length MccE492. In the enzymatic product, the C-terminal serine residue is covalently attached to the C4' oxygen of the glucose moiety. Nonenzymatic and base-catalyzed migration of the peptide to the C6' position affords the C6' glycosyl ester linkage observed in the mature toxin, MccE492m, isolated from bacterial cultures.
Collapse
Affiliation(s)
- Elizabeth M. Nolan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Michael A. Fischbach
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Alexander Koglin
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Christopher T. Walsh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
153
|
Abstract
High-affinity iron acquisition is mediated by siderophore-dependent pathways in the majority of pathogenic and nonpathogenic bacteria and fungi. Considerable progress has been made in characterizing and understanding mechanisms of siderophore synthesis, secretion, iron scavenging, and siderophore-delivered iron uptake and its release. The regulation of siderophore pathways reveals multilayer networks at the transcriptional and posttranscriptional levels. Due to the key role of many siderophores during virulence, coevolution led to sophisticated strategies of siderophore neutralization by mammals and (re)utilization by bacterial pathogens. Surprisingly, hosts also developed essential siderophore-based iron delivery and cell conversion pathways, which are of interest for diagnostic and therapeutic studies. In the last decades, natural and synthetic compounds have gained attention as potential therapeutics for iron-dependent treatment of infections and further diseases. Promising results for pathogen inhibition were obtained with various siderophore-antibiotic conjugates acting as "Trojan horse" toxins and siderophore pathway inhibitors. In this article, general aspects of siderophore-mediated iron acquisition, recent findings regarding iron-related pathogen-host interactions, and current strategies for iron-dependent pathogen control will be reviewed. Further concepts including the inhibition of novel siderophore pathway targets are discussed.
Collapse
Affiliation(s)
- Marcus Miethke
- Philipps Universität Marburg, FB Chemie Biochemie, Hans Meerwein Strasse, D-35032 Marburg, Germany
| | | |
Collapse
|
154
|
Smajs D, Strouhal M, Matejková P, Cejková D, Cursino L, Chartone-Souza E, Smarda J, Nascimento AMA. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli. Plasmid 2007; 59:1-10. [PMID: 17936903 DOI: 10.1016/j.plasmid.2007.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 08/20/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
The complete sequence of the plasmid MccC7-H22 encoding microcin C7, isolated from probiotic E. coli H22, was determined and analyzed. DNA of pMccC7-H22 comprises 32,014 bp and contains 39 predicted ORFs. Two main gene clusters, i.e., genes involved in plasmid replication and maintenance and genes encoding microcin C7 synthesis, are separated by several ORFs homologous to ORFs present in IS (insertion sequence) elements and transposons. Additional 14 ORFs code for proteins with similarities to known proteins (4 ORFs) or for hypothetical proteins with unknown function (10 ORFs). The differences in G+C content of individual ORFs and gene clusters of pMccC7-H22 indicate a mosaic structure for the plasmid, resulting from recombination events. Real-time PCR quantification was applied to measure the copy number of pMccC7-H22. Escherichia coli H22 carries approximately 5 copies of pMccC7-H22 per chromosome and thus pMccC7-H22 belongs to the group of relatively low-copy-number plasmids. Following 360 generations, all bacterial colonies (out of 100 tested) synthesized microcin C7 indicating that pMccC7-H22 is stably maintained in E. coli H22. Screening of 105 E. coli strains isolated from human fecal samples revealed 2 (1.9%) strains that produced microcin C7.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00 Brno, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 2007; 24:708-34. [PMID: 17653356 DOI: 10.1039/b516237h] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microcins are gene-encoded antibacterial peptides, with molecular masses below 10 kDa, produced by enterobacteria. They are secreted under conditions of nutrient depletion and exert potent antibacterial activity against closely related species. Typical gene clusters encoding the microcin precursor, the self-immunity factor, the secretion proteins and frequently the post-translational modification enzymes are located either on plasmids or on the chromosome. In contrast to most of the antibiotics of microbial origin, which are non-ribosomally synthesized by multimodular enzymes termed peptide synthetases, microcins are ribosomally synthesized as precursors, which are further modified enzymatically. They form a restricted class of potent antibacterial peptides. Fourteen microcins have been reported so far, among which only seven have been isolated and characterized. Despite the low number of known representatives, microcins exhibit a diversity of structures and antibacterial mechanisms. This review provides an updated overview of microcin structures, antibacterial activities, genetic systems and biosyntheses, as well as of their mechanisms of action.
Collapse
Affiliation(s)
- Sophie Duquesne
- Laboratory of Chemistry and Biochemistry of Natural Substances, UMR 5154 CNRS, Department of Regulations, Development and Molecular Diversity, National Museum of Natural History, CP 54, 57 rue Cuvier, 75005, Paris, France
| | | | | | | |
Collapse
|
156
|
Henker J, Laass M, Blokhin BM, Bolbot YK, Maydannik VG, Elze M, Wolff C, Schulze J. The probiotic Escherichia coli strain Nissle 1917 (EcN) stops acute diarrhoea in infants and toddlers. Eur J Pediatr 2007; 166:311-8. [PMID: 17287932 PMCID: PMC1802727 DOI: 10.1007/s00431-007-0419-x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/20/2006] [Accepted: 12/29/2006] [Indexed: 12/12/2022]
Abstract
In most cases, acute diarrhoea will become self-limiting during the first few days after onset. For young children, however, health risks may develop when the disease lasts longer than 3 days. The purpose of the present trial was to determine whether the stool frequency of infants and toddlers suffering from acute diarrhoea could be normalised more quickly by administering the probiotic Escherichia coli Nissle 1917 (EcN) solution than by administering a placebo. The safety of EcN were also assessed. A total of 113 children (aged 2-47 months) with acute diarrhoea (> three watery or loose stools in 24 h) were randomised to either a group receiving the probiotic EcN suspension (n = 55) or a group receiving the placebo suspension (n = 58) in a confirmative, double-blind clinical trial. Depending on the age of patients, 1-3 ml per day of verum suspension (10(8) viable EcN cells per millilitre) or placebo were administered orally. The causes of the diarrhoea were viral rather than bacterial, but they were mainly unspecific infections. The median onset of treatment response (reduction of daily stool frequency to </= three watery or loose stools over at least 2 consecutive days) occurred more rapidly in the children receiving the EcN solution (2.5 days) than in those receiving the placebo (4.8 days), a significant difference (2.3 days; p = 0.0007). The number of patients showing a response was clearly higher (p < 0.0001) in the EcN group (52/55; 94.5%) than in the placebo group (39/58; 67.2%). EcN was found to be safe and well-tolerated, and it showed a significant superiority compared to the placebo in the treatment of acute diarrhoea in infants and toddlers.
Collapse
Affiliation(s)
- Jobst Henker
- Department of Paediatrics, University Hospital Carl-Gustav-Carus, Fetscherstrasse 74, 01307, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Avgustin JA, Grabnar M. Sequence analysis of the plasmid pColG from the Escherichia coli strain CA46. Plasmid 2007; 57:89-93. [PMID: 16870252 DOI: 10.1016/j.plasmid.2006.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The complete 4715 nucleotide sequence of the plasmid pColG from the Escherichia coli strain CA46, which was originally assumed to code for colicin G activity, has been determined. Based on the nucleotide sequence homology of the 1828bp replication region, with an average G+C content of 48%, pColG was classified as a ColE1-like plasmid. Computer assisted analysis of the remaining 2887bp nucleotide sequence with an average G+C content of 34% revealed three putative OFRs. To find out whether one or all of the three ORFs code for a possible bacteriocin, a DNA fragment encompassing these ORFs has been cloned and the recombinant colonies tested for bacteriocin production. None of the colonies had an inhibitory activity against E. coli strains DH5, HB101 and MC4100. The assumption that the plasmid pColG from the E. coli strain CA46 codes for a bacteriocin thus could not be confirmed.
Collapse
Affiliation(s)
- Jerneja Ambrozic Avgustin
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Vecna pot 111, 1000 Ljubljana, Slovenia.
| | | |
Collapse
|
158
|
Bieler S, Silva F, Soto C, Belin D. Bactericidal activity of both secreted and nonsecreted microcin E492 requires the mannose permease. J Bacteriol 2006; 188:7049-61. [PMID: 17015644 PMCID: PMC1636244 DOI: 10.1128/jb.00688-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin E492 (MccE492) is a bactericidal protein secreted by Klebsiella pneumoniae that is active against various species of Enterobacteriaceae. Interaction of MccE492 with target cells leads to the depolarization and permeabilization of their inner membranes. Several MccE492-specific proteins are required for the maturation and secretion of active MccE492. Surprisingly, the expression of only MceA, the polypeptide backbone of MccE492, is shown here to be toxic by itself. We refer to this phenomenon as endogenous MceA bactericidal activity to differentiate it from the action of extracellularly secreted MccE492. The toxicity of endogenous MceA is enhanced by an efficient targeting to the inner membrane. However, a periplasmic intermediate state is not required for MceA toxicity. Indeed, endogenous MceA remains fully active when it is fused to thioredoxin-1, a fast-folding protein that promotes retention of the C terminus of MceA in the cytoplasm. The C-terminal domain of MccE492 is required only for delivery from the extracellular environment to the periplasm, and it is not required for inner membrane damage. A common component is absolutely essential for the bactericidal activity of both endogenous MceA and extracellular MccE492. Indeed, toxicity is strictly dependent on the presence of ManYZ, an inner membrane protein complex involved in mannose uptake. Based on these findings, we propose a new model for cell entry, inner membrane insertion, and toxic activity of MccE492.
Collapse
Affiliation(s)
- Sylvain Bieler
- Department of Pathology and Immunology, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
159
|
Splíchal I, Fagerhol MK, Trebichavský I, Splíchalová A, Schulze J. The effect of intestinal colonization of germ-free pigs with Escherichia coli on calprotectin levels in plasma, intestinal and bronchoalveolar lavages. Immunobiology 2006; 209:681-7. [PMID: 15804046 DOI: 10.1016/j.imbio.2004.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Calprotectin levels were measured by ELISA in plasma, terminal small bowel lavage and bronchoalveolar lavage from 8-day-old germ-free piglets or gnotobiotic piglets 24 h after colonization with one of the following Escherichia coli strains: non-pathogenic O86, probiotic Nissle 1917 or enteropathogenic O55. The concentration of calprotectin in plasma was about 30 ng/ml only in germ-free piglets and piglets associated with non-pathogenic E. coli. Piglets infected with O55 showed a significant increase of plasma calprotectin and the highest mean level of calprotectin in the bronchoalveolar lavage, which was coincident with septicaemia. However, in the lumen of the small intestine, E. coli Nissle 1917 alone elicited a significant increase of the calprotectin level which was confirmed by immunofluorescence and APAAP immunohistochemistry on cryostat sections through the small bowel. The relevance of this finding to the therapeutic effect of E. coli Nissle 1917 in inflammatory bowel disease is discussed.
Collapse
Affiliation(s)
- Igor Splíchal
- Division of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Doly 183, 54922 Nový Hrádek, Czech Republic.
| | | | | | | | | |
Collapse
|
160
|
Abstract
Microcins are ribosomally synthesized peptide antibiotics that are produced by enterobacterial strains. Although the first studies concentrated on plasmid-encoded activities, in the last years three chromosome-encoded microcins have been described: H47, E492, and M. Here, a new microcin, I47, is presented as a fourth member of this group. Common features exhibited by chromosome-encoded microcins were searched for. The comparison of the genetic clusters responsible for microcin production revealed a preserved general scheme. The clusters essentially comprise a pair of activity-immunity genes which determine antibiotic specificity and a set of microcin maturation and secretion genes which are invariably present and whose protein products are highly homologous among the different producing strains. A strict functional relationship between the maturation and secretion pathways of microcins H47, I47, and E492 was demonstrated through genetic analyses, which included heterologous complementation assays. The peptide precursors of these microcins share a maturation process which implies the addition of a catecholate siderophore of the salmochelin type. Microcins thus acquire the ability to enter gram-negative cells through the catechol receptors. In addition, they employ a common mode of secretion to reach the external milieu by means of a type I export apparatus. The results presented herein lead us to propose that chromosome-encoded microcins constitute a defined subgroup of peptide antibiotics which are strictly related by their modes of synthesis, secretion, and uptake.
Collapse
Affiliation(s)
- María Eloisa Poey
- Sección Fisiología y Genética Bacterianas, Facultad de Ciencias, Iguá 4225, Montevideo 11.400, Uruguay
| | | | | |
Collapse
|
161
|
Fischbach MA, Lin H, Liu DR, Walsh CT. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2006; 2:132-8. [PMID: 16485005 DOI: 10.1038/nchembio771] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many bacteria, including numerous human pathogens, synthesize small molecules known as siderophores to scavenge iron. Enterobactin, a siderophore produced by enteric bacteria, is surprisingly ineffective as an iron-scavenging agent for bacteria growing in animals because of its hydrophobicity and its sequestration by the mammalian protein siderocalin, a component of the innate immune system. However, pathogenic strains of Escherichia coli and Salmonella use enzymes encoded by the iroA gene cluster to tailor enterobactin by glycosylation and linearization. The resulting modified forms of enterobactin, known as salmochelins, can evade siderocalin and are less hydrophobic than enterobactin, restoring this siderophore's iron-scavenging ability in mammals.
Collapse
Affiliation(s)
- Michael A Fischbach
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
162
|
Destoumieux-Garzón D, Peduzzi J, Thomas X, Djediat C, Rebuffat S. Parasitism of Iron-siderophore Receptors of Escherichia Coli by the Siderophore-peptide Microcin E492m and its Unmodified Counterpart. Biometals 2006; 19:181-91. [PMID: 16718603 DOI: 10.1007/s10534-005-4452-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 10/26/2005] [Indexed: 11/27/2022]
Abstract
Microcin E492 (MccE492) is an antibacterial peptide naturally secreted by Klebsiella pneumoniae RYC492. Initially described as an 84-residue unmodified peptide, it was also recently isolated in a posttranslationally modified form, MccE492m. The production of MccE492m is dependent on the synthesis of enterobactin and the mceABCDEFGHIJ gene cluster. The posttranslational modification was characterized as a trimer of N-(2,3-dihydroxybenzoyl)-L-serine (DHBS) linked to the Ser84-carboxylate via a beta-D-glucose moiety. MccE492m was shown to bind ferric ions through the trimer of DHBS. This is the first example of a novel type of antibacterial peptide termed siderophore-peptide. Recognition of MccE492m, but also of the unmodified MccE492, was shown to be mediated by the catecholate siderophore receptors FepA, Cir and Fiu at the outer membrane of E. coli. The siderophore-type modification was shown to be responsible for a significant enhancement of the microcin antibacterial activity. Therefore, we propose that MccE492 and MccE492m use iron-siderophore receptors for uptake into the target bacteria and that improvement of MccE492 antimicrobial activity upon modification results from an increase in the microcin/receptor affinity.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Chemistry, Biochemistry of Natural Substances, Department Regulations, Development and Molecular Diversity, UMR 5154 CNRS--National Museum of Natural History, 63 rue Buffon, 75005, Paris, France
| | | | | | | | | |
Collapse
|
163
|
Duncker SC, Lorentz A, Schroeder B, Breves G, Bischoff SC. Effect of orally administered probiotic E. coli strain Nissle 1917 on intestinal mucosal immune cells of healthy young pigs. Vet Immunol Immunopathol 2006; 111:239-50. [PMID: 16530848 DOI: 10.1016/j.vetimm.2006.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 12/08/2005] [Accepted: 01/16/2006] [Indexed: 11/22/2022]
Abstract
Several beneficial effects of probiotics have been described in studies using rodent disease models and in human patients; however, the underlying mechanisms remained mostly unclear. Only a few studies focused on the effects of probiotics on the intestinal mucosal immune system. Here, we studied the effect of the probiotic strain E. coli Nissle 1917 (EcN) administered orally to young pigs at two concentrations (10(9) and 10(11)CFU/d for 21 days) on the gut-associated lymphatic tissue. This probiotic strain was shown recently to reduce recurrence of inflammation in ulcerative colitis patients. We quantified the number and distribution of intestinal immune cells (granulocytes, mast cells, CD4+, CD8+, CD25+, IgA+ lymphocytes) and the mucosal mRNA expression of cytokines (IFN-gamma, TNF-alpha, TGF-beta, IL-10) and antimicrobial peptides (PR-39, NK-lysin, prepro-defensin-beta 1, protegrins). The number and distribution of cells were highly different between small intestinal and colon segments in all groups, but were not influenced by EcN, except high dose EcN fed pigs (10(11) CFU/d) showing an increase in mucosal CD8+ cells in the ascending colon. The mRNA analysis revealed no changes associated with EcN feeding. In conclusion, according to our analyses EcN has only minor effects on the distribution of mucosal immune cells in the gut of healthy individuals. The well-established preventive effects of EcN might therefore be relate to other mechanisms than simple modulation of immune cell distribution.
Collapse
Affiliation(s)
- Swantje C Duncker
- Department of Physiology, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | |
Collapse
|
164
|
Ukena SN, Westendorf AM, Hansen W, Rohde M, Geffers R, Coldewey S, Suerbaum S, Buer J, Gunzer F. The host response to the probiotic Escherichia coli strain Nissle 1917: specific up-regulation of the proinflammatory chemokine MCP-1. BMC MEDICAL GENETICS 2005; 6:43. [PMID: 16351713 PMCID: PMC1326229 DOI: 10.1186/1471-2350-6-43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 12/13/2005] [Indexed: 02/06/2023]
Abstract
Background The use of live microorganisms to influence positively the course of intestinal disorders such as infectious diarrhea or chronic inflammatory conditions has recently gained increasing interest as a therapeutic alternative. In vitro and in vivo investigations have demonstrated that probiotic-host eukaryotic cell interactions evoke a large number of responses potentially responsible for the effects of probiotics. The aim of this study was to improve our understanding of the E. coli Nissle 1917-host interaction by analyzing the gene expression pattern initiated by this probiotic in human intestinal epithelial cells. Methods Gene expression profiles of Caco-2 cells treated with E. coli Nissle 1917 were analyzed with microarrays. A second human intestinal cell line and also pieces of small intestine from BALB/c mice were used to confirm regulatory data of selected genes by real-time RT-PCR and cytometric bead array (CBA) to detect secretion of corresponding proteins. Results Whole genome expression analysis revealed 126 genes specifically regulated after treatment of confluent Caco-2 cells with E. coli Nissle 1917. Among others, expression of genes encoding the proinflammatory molecules monocyte chemoattractant protein-1 ligand 2 (MCP-1), macrophage inflammatory protein-2 alpha (MIP-2α) and macrophage inflammatory protein-2 beta (MIP-2β) was increased up to 10 fold. Caco-2 cells cocultured with E. coli Nissle 1917 also secreted high amounts of MCP-1 protein. Elevated levels of MCP-1 and MIP-2α mRNA could be confirmed with Lovo cells. MCP-1 gene expression was also up-regulated in mouse intestinal tissue. Conclusion Thus, probiotic E. coli Nissle 1917 specifically upregulates expression of proinflammatory genes and proteins in human and mouse intestinal epithelial cells.
Collapse
Affiliation(s)
- Sya N Ukena
- German Research Centre for Biotechnology, Mucosal Immunity Group, Mascheroder Weg 1, 38124 Braunschweig, Germany
- Medical School Hannover, Department of Medical Microbiology and Hospital Epidemiology, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Astrid M Westendorf
- German Research Centre for Biotechnology, Mucosal Immunity Group, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Wiebke Hansen
- German Research Centre for Biotechnology, Mucosal Immunity Group, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Manfred Rohde
- German Research Centre for Biotechnology, Department of Microbiology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Robert Geffers
- German Research Centre for Biotechnology, Mucosal Immunity Group, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Sina Coldewey
- Medical School Hannover, Department of Medical Microbiology and Hospital Epidemiology, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Sebastian Suerbaum
- Medical School Hannover, Department of Medical Microbiology and Hospital Epidemiology, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Jan Buer
- German Research Centre for Biotechnology, Mucosal Immunity Group, Mascheroder Weg 1, 38124 Braunschweig, Germany
- Medical School Hannover, Department of Medical Microbiology and Hospital Epidemiology, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Florian Gunzer
- Medical School Hannover, Department of Medical Microbiology and Hospital Epidemiology, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| |
Collapse
|
165
|
Strahsburger E, Baeza M, Monasterio O, Lagos R. Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrob Agents Chemother 2005; 49:3083-6. [PMID: 15980406 PMCID: PMC1168642 DOI: 10.1128/aac.49.7.3083-3086.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin E492 uptake by FepA, Fiu, and Cir is cooperative, with FepA being the main receptor. No TonB-mediated interaction with the ferric catecholate receptors is needed for microcin to exert action at the cytoplasmic membrane. Microcin E492 uptake by the receptors is inhibited by the dimer and trimer of dihydroxybenzoylserine.
Collapse
Affiliation(s)
- Erwin Strahsburger
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | |
Collapse
|
166
|
Sun J, Gunzer F, Westendorf AM, Buer J, Scharfe M, Jarek M, Gössling F, Blöcker H, Zeng AP. Genomic peculiarity of coding sequences and metabolic potential of probiotic Escherichia coli strain Nissle 1917 inferred from raw genome data. J Biotechnol 2005; 117:147-61. [PMID: 15823404 DOI: 10.1016/j.jbiotec.2005.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/16/2004] [Accepted: 01/07/2005] [Indexed: 10/25/2022]
Abstract
Probiotic Escherichia coli strain Nissle 1917 (O6:K5:H1) is a commensal E. coli isolate that has a long tradition in medicine for the treatment of various intestinal disorders in humans. To elucidate the molecular basis of its probiotic nature, we started sequencing the genome of this organism with a whole-genome shotgun approach. A 7.8-fold coverage of the genomic sequence has been generated and is now in the finishing stage. To exploit the genome data as early as possible and to generate hypotheses for functional studies, the unfinished sequencing data were analyzed in this work using a new method [Sun, J., Zeng, A.P., 2004. IdentiCS--identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5, 112] which is particularly suitable for the prediction of coding sequences (CDSs) from unannotated genome sequence. The CDSs predicted for E. coli Nissle 1917 were compared with those of all five other sequenced E. coli strains (E. coli K-12 MG1655, E. coli K-12 W3110, E. coli CFT073, EHEC O157:H7 EDL933 and EHEC O157:H7 Sakai) published to date. Five thousand one hundred and ninety-two CDSs were predicted for E. coli Nissle 1917, of which 1065 were assigned with enzyme EC numbers. The comparison of all predicted CDSs of E. coli Nissle 1917 to the other E. coli strains revealed 108 CDSs specific for this isolate. They are organized as four big genome islands and many other smaller gene clusters. Based on CDSs with EC numbers for enzymes, the potential metabolic network of Nissle 1917 was reconstructed and compared to those of the other five E. coli strains. Overall, the comparative genomic analysis sheds light on the genomic peculiarity of the probiotic E. coli strain Nissle 1917 and is helpful for designing further functional studies long before the sequencing project is completely finished.
Collapse
Affiliation(s)
- Jibin Sun
- GBF - German Research Centre for Biotechnology, Experimental Bioinformatics, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Zhu M, Valdebenito M, Winkelmann G, Hantke K. Functions of the siderophore esterases IroD and IroE in iron-salmochelin utilization. Microbiology (Reading) 2005; 151:2363-2372. [PMID: 16000726 DOI: 10.1099/mic.0.27888-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The siderophore salmochelin is produced under iron-poor conditions bySalmonellaand many uropathogenicEscherichia colistrains. The production of salmochelin, a C-glucosylated enterobactin, is dependent on the synthesis of enterobactin and theiroBCDENgene cluster. AnE. coliIroD protein with an N-terminal His-tag cleaved cyclic salmochelin S4 to the linear trimer salmochelin S2, the dimer salmochelin S1, and the monomers dihydroxybenzoylserine and C-glucosylated dihydroxybenzoylserine (salmochelin SX, pacifarinic acid). The periplasmic IroE protein was purified as a MalE–IroE fusion protein. This enzyme degraded salmochelin S4 and ferric-salmochelin S4 to salmochelin S2 and ferric-salmochelin S2, respectively. InE. coli, uptake of ferric-salmochelin S4 was dependent on the cleavage by IroE, and independent of the FepBDGC ABC transporter in the cytoplasmic membrane. IroC, which has similarities to ABC-multidrug-resistance proteins, was necessary for the uptake of salmochelin S2 from the periplasm into the cytoplasm. IroE did not function as a classical binding protein since salmochelin S2 was taken up in the absence of a functional IroE protein. IroC mediated the uptake of iron via enterobactin in afepBmutant. IroE was also necessary in this case for the uptake of ferric-enterobactin, which indicated that only the linear degradation products of enterobactin were taken up via IroC. PfeE, thePseudomonas aeruginosaIroE homologue, was cloned, and its enzymic activity was shown to be very similar to that of IroE. It is suggested that homologues in other bacteria are also periplasmic IroE-type esterases of siderophores.
Collapse
Affiliation(s)
- Mingang Zhu
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Marianne Valdebenito
- Mikrobiologie/Biotechnologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Günther Winkelmann
- Mikrobiologie/Biotechnologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Klaus Hantke
- Mikrobiologie/Membranphysiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
168
|
Rychlik I, Barrow PA. Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol Rev 2005; 29:1021-40. [PMID: 16023758 DOI: 10.1016/j.femsre.2005.03.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 03/04/2005] [Accepted: 03/30/2005] [Indexed: 01/13/2023] Open
Abstract
The enteric pathogen Salmonella enterica is exposed to a number of stressful environments during its life cycle within and outside its various hosts. During intestinal colonisation Salmonella is successively exposed to acid pH in the stomach, to the detergent-like activity of bile, to decreasing oxygen supply, to the presence of multiple metabolites produced by the normal gut microflora and finally it is exposed to cationic antimicrobial peptides present on the surface of epithelial cells. There are four major regulators controlling relevant stress responses in Salmonella, namely RpoS, PhoPQ, Fur and OmpR/EnvZ. Except for Fur, inactivation of genes encoding the other stress regulators results in attenuated virulence and such mutants can therefore be considered as vaccine candidates. In contrast, a decrease in oxygen supply monitored by Fnr and ArcAB, or oxidative stress controlled by OxyR and SoxRS is not regarded as a stress associated with host colonisation since inactivation of either of these systems does not result in reductions in colonisation. The role of quorum-sensing through luxS and sdiA is also considered as a regulator of virulence and colonisation.
Collapse
Affiliation(s)
- Ivan Rychlik
- Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic.
| | | |
Collapse
|
169
|
Westendorf AM, Gunzer F, Deppenmeier S, Tapadar D, Hunger JK, Schmidt MA, Buer J, Bruder D. Intestinal immunity of Escherichia coli NISSLE 1917: a safe carrier for therapeutic molecules. ACTA ACUST UNITED AC 2005; 43:373-84. [PMID: 15708311 DOI: 10.1016/j.femsim.2004.10.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 05/25/2004] [Accepted: 10/06/2004] [Indexed: 12/20/2022]
Abstract
The development of novel approaches that allow accurate targeting of therapeutics to the intestinal mucosa is a major task in the research on intestinal inflammation. For the first time, a live genetically modified bacterial strain has been approved by Dutch authorities as a therapeutic agent for experimental therapy of intestinal bowel disease (IBD) in humans. Genetically modified probiotics can very well be used as carriers for localized antigen delivery into the intestine. Therapeutic safety, however, of such a carrier organism, is crucial, especially when a specific probiotic strain has to be used under diseased conditions. In this study, we tested the potential of Escherichia coli NISSLE 1917 to serve as a safe carrier for targeted delivery of recombinant proteins to the intestinal mucosa. In a well-defined and very sensitive immunological system, we demonstrate that intestinal recombinant E. coli NISSLE 1917 has no effect on migration, clonal expansion and activation status of specific CD4+ T cells, neither in healthy mice nor in animals with acute colitis. Furthermore, recombinant E. coli NISSLE 1917 has no effect on the induction or breakdown of peripheral T-cell tolerance in an autoimmune environment. The excellent colonization properties of E. coli NISSLE 1917 render this strain an ideal candidate as carrier organism for gut-focused in situ synthesis of therapeutic molecules.
Collapse
Affiliation(s)
- Astrid M Westendorf
- Arbeitsgruppe Mukosale Immunität, Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Zhang Z, Gosset G, Barabote R, Gonzalez CS, Cuevas WA, Saier MH. Functional interactions between the carbon and iron utilization regulators, Crp and Fur, in Escherichia coli. J Bacteriol 2005; 187:980-90. [PMID: 15659676 PMCID: PMC545712 DOI: 10.1128/jb.187.3.980-990.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 10/26/2004] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, the ferric uptake regulator (Fur) controls expression of the iron regulon in response to iron availability while the cyclic AMP receptor protein (Crp) regulates expression of the carbon regulon in response to carbon availability. We here identify genes subject to significant changes in expression level in response to the loss of both Fur and Crp. Many iron transport genes and several carbon metabolic genes are subject to dual control, being repressed by the loss of Crp and activated by the loss of Fur. However, the sodB gene, encoding superoxide dismutase, and the aceBAK operon, encoding the glyoxalate shunt enzymes, show the opposite responses, being activated by the loss of Crp and repressed by the loss of Fur. Several other genes including the sdhA-D, sucA-D, and fumA genes, encoding key constituents of the Krebs cycle, proved to be repressed by the loss of both transcription factors. Finally, the loss of both Crp and Fur activated a heterogeneous group of genes under sigmaS control encoding, for example, the cyclopropane fatty acid synthase, Cfa, the glycogen synthesis protein, GlgS, the 30S ribosomal protein, S22, and the mechanosensitive channel protein, YggB. Many genes appeared to be regulated by the two transcription factors in an apparently additive fashion, but apparent positive or negative cooperativity characterized several putative Crp/Fur interactions. Relevant published data were evaluated, putative Crp and Fur binding sites were identified, and representative results were confirmed by real-time PCR. Molecular explanations for some, but not all, of these effects are provided.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Carbon/metabolism
- Cyclic AMP Receptor Protein
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Glucose/metabolism
- Iron/metabolism
- Kinetics
- Nucleic Acid Hybridization
- Phenotype
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Regulatory Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zhongge Zhang
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | | | | | | | | | | |
Collapse
|
171
|
Grozdanov L, Raasch C, Schulze J, Sonnenborn U, Gottschalk G, Hacker J, Dobrindt U. Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917. J Bacteriol 2004; 186:5432-41. [PMID: 15292145 PMCID: PMC490877 DOI: 10.1128/jb.186.16.5432-5441.2004] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonpathogenic Escherichia coli strain Nissle 1917 (O6:K5:H1) is used as a probiotic agent in medicine, mainly for the treatment of various gastroenterological diseases. To gain insight on the genetic level into its properties of colonization and commensalism, this strain's genome structure has been analyzed by three approaches: (i) sequence context screening of tRNA genes as a potential indication of chromosomal integration of horizontally acquired DNA, (ii) sequence analysis of 280 kb of genomic islands (GEIs) coding for important fitness factors, and (iii) comparison of Nissle 1917 genome content with that of other E. coli strains by DNA-DNA hybridization. PCR-based screening of 324 nonpathogenic and pathogenic E. coli isolates of different origins revealed that some chromosomal regions are frequently detectable in nonpathogenic E. coli and also among extraintestinal and intestinal pathogenic strains. Many known fitness factor determinants of strain Nissle 1917 are localized on four GEIs which have been partially sequenced and analyzed. Comparison of these data with the available knowledge of the genome structure of E. coli K-12 strain MG1655 and of uropathogenic E. coli O6 strains CFT073 and 536 revealed structural similarities on the genomic level, especially between the E. coli O6 strains. The lack of defined virulence factors (i.e., alpha-hemolysin, P-fimbrial adhesins, and the semirough lipopolysaccharide phenotype) combined with the expression of fitness factors such as microcins, different iron uptake systems, adhesins, and proteases, which may support its survival and successful colonization of the human gut, most likely contributes to the probiotic character of E. coli strain Nissle 1917.
Collapse
Affiliation(s)
- Lubomir Grozdanov
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
172
|
Dezfulian H, Tremblay D, Harel J. Molecular characterization of extraintestinal pathogenic Escherichia coli(ExPEC) pathogenicity islands in F165-positive E. colistrain from a diseased animal. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09773.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
173
|
Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J, Hacker J, Oelschlaeger TA. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. ACTA ACUST UNITED AC 2004; 40:223-9. [PMID: 15039098 DOI: 10.1016/s0928-8244(03)00368-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Revised: 11/10/2003] [Accepted: 11/14/2003] [Indexed: 12/19/2022]
Abstract
The probiotic Escherichia coli strain Nissle 1917 (Mutaflor) of serotype O6:K5:H1 was reported to protect gnotobiotic piglets from infection with Salmonella enterica serovar Typhimurium. An important virulence property of Salmonella is invasion of host epithelial cells. Therefore, we tested for interference of E. coli strain Nissle 1917 with Salmonella invasion of INT407 cells. Simultaneous administration of E. coli strain Nissle 1917 and Salmonella resulted in up to 70% reduction of Salmonella invasion efficiency. Furthermore, invasion of Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and even of Listeria monocytogenes were inhibited by the probiotic E. coli strain Nissle 1917 without affecting the viability of the invasive bacteria. The observed inhibition of invasion was not due to the production of microcins by the Nissle 1917 strain because its isogenic microcin-negative mutant SK22D was as effective as the parent strain. Reduced invasion rates were also achieved if strain Nissle 1917 was separated from the invasive bacteria as well as from the INT407 monolayer by a membrane non-permeable for bacteria. We conclude E. coli Nissle 1917 to interfere with bacterial invasion of INT407 cells via a secreted component and not relying on direct physical contact with either the invasive bacteria or the epithelial cells.
Collapse
Affiliation(s)
- Artur Altenhoefer
- Institut für Molekulare Infektionsbiologie, Röntgenring 11, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
174
|
Thomas X, Destoumieux-Garzón D, Peduzzi J, Afonso C, Blond A, Birlirakis N, Goulard C, Dubost L, Thai R, Tabet JC, Rebuffat S. Siderophore Peptide, a New Type of Post-translationally Modified Antibacterial Peptide with Potent Activity. J Biol Chem 2004; 279:28233-42. [PMID: 15102848 DOI: 10.1074/jbc.m400228200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microcin E492 (MccE492, 7886 Da), the 84-amino acid antimicrobial peptide from Klebsiella pneumoniae, was purified in a post-translationally modified form, MccE492m (8717 Da), from culture supernatants of either the recombinant Escherichia coli VCS257 strain harboring the pJAM229 plasmid or the K. pneumoniae RYC492 strain. Chymotrypsin digestion of MccE492m led to the MccE492m-(74-84) C-terminal fragment that carries the modification and that was analyzed by mass spectrometry and nuclear magnetic resonance at natural abundance. The 831-Da post-translational modification consists of a trimer of N-(2,3-dihydroxybenzoyl)-l-serine linked via a C-glycosidic linkage to a beta-d-glucose moiety, itself linked to the MccE492m Ser-84-carboxyl through an O-glycosidic bond. This modification, which mimics a catechol-type siderophore, was shown to bind ferric ions by analysis of the collision-induced dissociation pattern obtained for MccE492m-(74-84) by electrospray ion trap mass spectrometry experiments in the presence of FeCl(3). By using a series of wild-type and mutant isogenic strains, the three catechol-type siderophore receptors Fiu, Cir, and FepA were shown to be responsible for the recognition of MccE492m at the outer membrane of sensitive bacteria. Because MccE492m shows a broader spectrum of antibacterial activity and is more potent than MccE492, we propose that by increasing the microcin/receptor affinity, the modification leads to a better recognition and subsequently to a higher antimicrobial activity of the microcin. Therefore, MccE492m is the first member of a new class of antimicrobial peptides carrying a siderophore-like post-translational modification and showing potent activity, which we term siderophore-peptides.
Collapse
Affiliation(s)
- Xavier Thomas
- Laboratoire de Chimie et Biochimie des Substances Naturelles, UMR 5154 CNRS USM 502, the Département Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, 63 Rue Buffon, 75005 Paris
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Azpiroz MF, Laviña M. Involvement of enterobactin synthesis pathway in production of microcin H47. Antimicrob Agents Chemother 2004; 48:1235-41. [PMID: 15047525 PMCID: PMC375329 DOI: 10.1128/aac.48.4.1235-1241.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin H47 (MccH47) is a gene-encoded peptide antibiotic produced by an Escherichia coli clinical isolate which is active on strains of gram-negative bacteria. Its uptake by E. coli K-12-susceptible cells depends on the presence of any of the outer membrane proteins Cir, Fiu, and FepA, the three catechol receptors of this organism. The nucleotide sequence of a portion of the MccH47 genetic system that had not yet been studied was elucidated. Five open reading frames were identified, three of which corresponded to genes encoding functions related to catechol-type siderophores: mchA and mchS1 are iroB and iroD homologues, respectively, and mchS4 was found to promote the production of the catecholate siderophore enterobactin. The possible relationship between enterobactin synthesis and MccH47 production was studied. Enterobactin-deficient strains failed to produce MccH47 when transformed with the antibiotic genetic determinants and upon introduction of the ent genetic cluster, the production of both the siderophore and MccH47 was restored. Further studies demonstrated that at least the enterobactin nonribosomal peptide synthase EntF is necessary for MccH47 synthesis. The relationship found between MccH47 and catecholate siderophore production is discussed, and a model outlining MccH47 synthesis is proposed.
Collapse
Affiliation(s)
- María F Azpiroz
- Sección de Fisiología y Genética Bacterianas, Facultad de Ciencias, Montevideo 11.400, Uruguay
| | | |
Collapse
|