151
|
Hemani S, Lane O, Agarwal S, Yu SP, Woodbury A. Systematic Review of Erythropoietin (EPO) for Neuroprotection in Human Studies. Neurochem Res 2021; 46:732-739. [PMID: 33521906 DOI: 10.1007/s11064-021-03242-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Erythropoietin (EPO) is an exciting neurotherapeutic option. Despite its potential, concerns exist regarding the potential for thrombosis and adverse events with EPO administration in normonemic adults. Systematic review of literature using PRISMA guidelines to examine the application and risks of EPO as a treatment option for neuroprotection in normonemic adults. Independent, systematic searches were performed in July 2019. PubMed (1960-2019) and the Cochrane Controlled Trials Register (1960-2019) were screened. Search terms included erythropoietin, neuroprotection, and humans. The PubMed search resulted in the following search strategy: ("erythropoietin" [MeSH Terms] OR "erythropoietin" [All Fields] OR "epoetin alfa" [MeSH Terms] OR ("epoetin" [All Fields] AND "alfa" [All Fields]) OR "epoetin alfa" [All Fields]) AND ("neuroprotection" [MeSH Terms] OR "neuroprotection" [All Fields]) AND "humans" [MeSH Terms]. PubMed, Cochrane Controlled Trials Register, and articles based on prior searches yielded 388 citations. 50 studies were included, comprising of 4351 patients. There were 13 studies that noted adverse effects from EPO. Three attributed serious adverse effects to EPO and complications were statistically significant. Two of these studies related the adverse events to the co-administration of EPO with tPA. Minor adverse effects associated with the EPO group included nausea, pyrexia, headache, generalized weakness and superficial phlebitis. Most published studies focus on spinal cord injury, peri-surgical outcomes and central effects of EPO. We found no studies to date evaluating the role of EPO in post-operative pain. Future trials could evaluate this application in persistent post-surgical pain and in the peri-operative period.
Collapse
Affiliation(s)
- Salman Hemani
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Olabisi Lane
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Sunil Agarwal
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Shan Ping Yu
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Healthcare System, Decatur, GA, 30033, USA
| | - Anna Woodbury
- Division of Pain Medicine, Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Atlanta Veterans Affairs Healthcare System, Decatur, GA, 30033, USA
| |
Collapse
|
152
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Hashemi F, Moghadam ER, Owrang M, Hashemi F, Makvandi P, Goharrizi MASB, Najafi M, Khan H. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell Signal 2021; 78:109871. [PMID: 33279671 DOI: 10.1016/j.cellsig.2020.109871] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
Cisplatin (CP) is a well-known chemotherapeutic agent with excellent clinical effects. The anti-tumor activity of CP has been demonstrated in different cancers such as breast, cervical, reproductive, lung, brain, and prostate cancers. However, resistance of cancer cells to CP chemotherapy has led to its failure in eradication of cancer cells, and subsequent death of patients with cancer. Fortunately, much effort has been put to identify molecular pathways and mechanisms involved in CP resistance/sensitivity. It seems that microRNAs (miRs) are promising candidates in mediating CP resistance/sensitivity, since they participate in different biological aspects of cells such as proliferation, migration, angiogenesis, and differentiation. In this review, we focus on miRs and their regulation in CP chemotherapy of lung cancer, as the most malignant tumor worldwide. Oncogenic miRs trigger CP resistance in lung cancer cells via targeting various pathways such as Wnt/β-catenin, Rab6, CASP2, PTEN, and Apaf-1. In contrast, onco-suppressor miRs inhibit oncogene pathways such as STAT3 to suppress CP resistance. These topics are discussed to determine the role of miRs in CP resistance/sensitivity. We also describe the upstream modulators of miRs such as lncRNAs, circRNAs, NF-κB, SOX2 and TRIM65 and their association with CP resistance/sensitivity in lung cancer cells. Finally, the effect of anti-tumor plant-derived natural compounds on miR expression during CP sensitivity of lung cancer cells is discussed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Owrang
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardin Hashemi
- Student Research Committee, Department of Physiotherapy, Faculty of Rehabilitation, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | | | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
153
|
Wie J, Liu Z, Song H, Tropea TF, Yang L, Wang H, Liang Y, Cang C, Aranda K, Lohmann J, Yang J, Lu B, Chen-Plotkin AS, Luk KC, Ren D. A growth-factor-activated lysosomal K + channel regulates Parkinson's pathology. Nature 2021; 591:431-437. [PMID: 33505021 DOI: 10.1038/s41586-021-03185-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenjiang Liu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Thomas F Tropea
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lu Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Huanhuan Wang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Yuling Liang
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chunlei Cang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly Aranda
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey Lohmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jing Yang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Alice S Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Dejian Ren
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
154
|
Janysek DC, Kim J, Duijf PHG, Dray E. Clinical use and mechanisms of resistance for PARP inhibitors in homologous recombination-deficient cancers. Transl Oncol 2021; 14:101012. [PMID: 33516088 PMCID: PMC7847957 DOI: 10.1016/j.tranon.2021.101012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/14/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cells are continuously subjected to DNA damaging agents. DNA damages are repaired by one of the many pathways guarding genomic integrity. When one or several DNA damage pathways are rendered inefficient, cells can accumulate mutations, which modify normal cellular pathways, favoring abnormal cell growth. This supports malignant transformation, which can occur when cells acquire resistance to cell cycle checkpoints, apoptosis, or growth inhibition signals. Mutations in genes involved in the repair of DNA double strand breaks (DSBs), such as BRCA1, BRCA2, or PALB2, significantly increase the risk of developing cancer of the breast, ovaries, pancreas, or prostate. Fortunately, the inability of these tumors to repair DNA breaks makes them sensitive to genotoxic chemotherapies, allowing for the development of therapies precisely tailored to individuals' genetic backgrounds. Unfortunately, as with many anti-cancer agents, drugs used to treat patients carrying a BRCA1 or BRCA2 mutation create a selective pressure, and over time tumors can become drug resistant. Here, we detail the cellular function of tumor suppressors essential in DNA damage repair pathways, present the mechanisms of action of inhibitors used to create synthetic lethality in BRCA carriers, and review the major molecular sources of drug resistance. Finally, we present examples of the many strategies being developed to circumvent drug resistance.
Collapse
Affiliation(s)
- Dawn C Janysek
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Jennifer Kim
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Pascal H G Duijf
- Queensland University of Technology, IHBI at the Translational Research Institute, Brisbane, QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, QLD, Australia; University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Mays Cancer Center, UT Health San Antonio MD Anderson, San Antonio, TX, United States.
| |
Collapse
|
155
|
Yan J, Xie Y, Si J, Gan L, Li H, Sun C, Di C, Zhang J, Huang G, Zhang X, Zhang H. Crosstalk of the Caspase Family and Mammalian Target of Rapamycin Signaling. Int J Mol Sci 2021; 22:E817. [PMID: 33467535 PMCID: PMC7830632 DOI: 10.3390/ijms22020817] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cell can integrate the caspase family and mammalian target of rapamycin (mTOR) signaling in response to cellular stress triggered by environment. It is necessary here to elucidate the direct response and interaction mechanism between the two signaling pathways in regulating cell survival and determining cell fate under cellular stress. Members of the caspase family are crucial regulators of inflammation, endoplasmic reticulum stress response and apoptosis. mTOR signaling is known to mediate cell growth, nutrition and metabolism. For instance, over-nutrition can cause the hyperactivation of mTOR signaling, which is associated with diabetes. Nutrition deprivation can inhibit mTOR signaling via SH3 domain-binding protein 4. It is striking that Ras GTPase-activating protein 1 is found to mediate cell survival in a caspase-dependent manner against increasing cellular stress, which describes a new model of apoptosis. The components of mTOR signaling-raptor can be cleaved by caspases to control cell growth. In addition, mTOR is identified to coordinate the defense process of the immune system by suppressing the vitality of caspase-1 or regulating other interferon regulatory factors. The present review discusses the roles of the caspase family or mTOR pathway against cellular stress and generalizes their interplay mechanism in cell fate determination.
Collapse
Affiliation(s)
- Junfang Yan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yi Xie
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jing Si
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Hongyan Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| | - Jinhua Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guomin Huang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuetian Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000, China; (J.Y.); (J.S.); (L.G.); (H.L.); (C.S.); (C.D.); (J.Z.); (G.H.); (X.Z.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516029, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
156
|
Dobbin SJ, Petrie MC, Myles RC, Touyz RM, Lang NN. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 2021; 135:71-100. [PMID: 33404052 PMCID: PMC7812690 DOI: 10.1042/cs20200305] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
The development of new therapies for cancer has led to dramatic improvements in survivorship. Angiogenesis inhibitors represent one such advancement, revolutionising treatment for a wide range of malignancies. However, these drugs are associated with cardiovascular toxicities which can impact optimal cancer treatment in the short-term and may lead to increased morbidity and mortality in the longer term. Vascular endothelial growth factor inhibitors (VEGFIs) are associated with hypertension, left ventricular systolic dysfunction (LVSD) and heart failure as well as arterial and venous thromboembolism, QTc interval prolongation and arrhythmia. The mechanisms behind the development of VEGFI-associated LVSD and heart failure likely involve the combination of a number of myocardial insults. These include direct myocardial effects, as well as secondary toxicity via coronary or peripheral vascular damage. Cardiac toxicity may result from the 'on-target' effects of VEGF inhibition or 'off-target' effects resulting from inhibition of other tyrosine kinases. Similar mechanisms may be involved in the development of VEGFI-associated right ventricular (RV) dysfunction. Some VEGFIs can be associated with QTc interval prolongation and an increased risk of ventricular and atrial arrhythmia. Further pre-clinical and clinical studies and trials are needed to better understand the impact of VEGFI on the cardiovascular system. Once mechanisms are elucidated, therapies can be investigated in clinical trials and surveillance strategies for identifying VEGFI-associated cardiovascular complications can be developed.
Collapse
Affiliation(s)
- Stephen J.H. Dobbin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Mark C. Petrie
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rachel C. Myles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| | - Ninian N. Lang
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, United Kingdom, G12 8TA
| |
Collapse
|
157
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
158
|
Chang Y, Jiang Y, Li C, Wang Q, Zhang F, Qin CF, Wu QF, Li J, Xu Z. Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 18:737-748. [PMID: 33418086 PMCID: PMC8377042 DOI: 10.1016/j.gpb.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/17/2019] [Accepted: 08/02/2019] [Indexed: 12/27/2022]
Abstract
The association of Zika virus (ZIKV) infection with microcephaly has raised alarm worldwide. Their causal link has been confirmed in different animal models infected by ZIKV. However, the molecular mechanisms underlying ZIKV pathogenesis are far from clear. Hence, we performed global gene expression analysis of ZIKV-infected mouse brains to unveil the biological and molecular networks underpinning microcephaly. We found significant dysregulation of the sub-networks associated with brain development, immune response, cell death, microglial cell activation, and autophagy amongst others. We provided detailed analysis of the related complicated gene networks and the links between them. Additionally, we analyzed the signaling pathways that were likely to be involved. This report provides systemic insights into not only the pathogenesis, but also a path to the development of prophylactic and therapeutic strategies against ZIKV infection.
Collapse
Affiliation(s)
- Yafei Chang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yisheng Jiang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Li
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qin Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Zhang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
159
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
160
|
Deleonardis A, Papale M. Methods to Study Posttranslational Modification Patterns in Cytotoxic T-Cells and Cancer. Methods Mol Biol 2021; 2325:137-153. [PMID: 34053056 DOI: 10.1007/978-1-0716-1507-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein posttranslational modifications (PTMs) regulate intracellular signaling associated with development and progression of many diseases; thus, they are key to understanding pathological mechanisms and set up more tailored therapies. In addition, many posttranslationally modified proteins are released into biological fluids and can be used as new and more specific biomarkers. Based on this evidence, we analyzed the role of some PTMs in cancer and described the correlation between specific PTMs and T-cells activation/inhibition in cancer microenvironment. In the second part of this chapter, we analyzed the most commonly used approaches for qualitative and quantitative determination of PTMs. The comparison of three distinct but often complementary methodologies such as immunoblotting, mass spectrometry, and ELISA assays has allowed to highlight the pros and cons of each approach with a focus on their current application and their future developments to obtain more confident biomarkers and therapeutic targets useful for diagnosis, prognosis, and monitoring of the response to therapy.
Collapse
Affiliation(s)
- Annamaria Deleonardis
- R&D Unit, Fluidia srl, Foggia, Italy
- Section of Nephrology, Dialysis and Transplantation, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Bari, Italy
| | - Massimo Papale
- Clinical Pathology Unit, Department of Laboratory Diagnostics, Policlinic University Hospital "Riuniti", Foggia, Italy.
| |
Collapse
|
161
|
NOTCH3, a crucial target of miR-491-5p/miR-875-5p, promotes gastric carcinogenesis by upregulating PHLDB2 expression and activating Akt pathway. Oncogene 2021; 40:1578-1594. [PMID: 33452458 PMCID: PMC7932926 DOI: 10.1038/s41388-020-01579-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
Aberrant Notch activation has been implicated in multiple malignancies and the identification of NOTCH receptors and related pathways is critical for targeted therapy. In this study, we aim to delineate the most prominent dysregulated NOTCH receptor and comprehensively reveal its deregulation in gastric cancer (GC). In the four Notch members, NOTCH3 was found uniformly upregulated and associated with poor clinical outcomes in multiple GC datasets. siRNA-mediated NOTCH3 knockdown demonstrated antitumor effects by suppressing cell proliferation, inhibiting monolayer formation, and impairing cell invasion abilities. Its depletion also induced early and late apoptosis. NOTCH3 was confirmed to be a direct target of two tumor suppressor microRNAs (miRNAs), namely miR-491-5p and miR-875-5p. The activation of NOTCH3 is partly due to the silence of these two miRNAs. Through RNA-seq profiling and functional validation, PHLDB2 was identified as a potent functional downstream modulator for NOTCH3 in gastric carcinogenesis. PHLDB2 expression demonstrated a positive correlation with NOTCH3, but was negatively correlated with miR-491-5p. Akt-mTOR was revealed as the downstream signaling of PHLDB2. The NOTCH3-PHLDB2-Akt co-activation was found in 33.7% GC patients and the activation of this axis predicted poor clinical outcome. GC cells treated with siNOTCH3, siPHLDB2, miR-491-5p, miR-875-5p, were more sensitive to Cisplatin and 5-FU. Taken together, the NOTCH3-PHLDB2-Akt cascade plays oncogenic role in gastric carcinogenesis and serves as a therapeutic target. Our study provided insights into Notch-mediated underlying molecular mechanisms and implied translational potential.
Collapse
|
162
|
Walker KA, Chawla S, Nogueras-Ortiz C, Coresh J, Sharrett AR, Wong DF, Jack CR, Spychalla AJ, Gottesman RF, Kapogiannis D. Neuronal insulin signaling and brain structure in nondemented older adults: the Atherosclerosis Risk in Communities Study. Neurobiol Aging 2021; 97:65-72. [PMID: 33160263 PMCID: PMC7736127 DOI: 10.1016/j.neurobiolaging.2020.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
Abstract
We used plasma neuronal extracellular vesicles to examine how neuronal insulin signaling proteins relate cross-sectionally to brain structure in nondemented older adults with varying levels of cortical amyloid. Extracellular vesicles enriched for neuronal origin by anti-L1CAM immunoabsorption were isolated from plasma of Atherosclerosis Risk in Communities-Positron Emission Tomography study participants (n = 88; mean age: 77 years [standard deviation: 6]). Neuronal extracellular vesicle levels of phosphorylated insulin signaling cascade proteins were quantified. Brain volume and white matter hyperintensity (WMH) volume were assessed using 3T magnetic resonance imaging. After adjusting for demographic variables and extracellular vesicle marker Alix, higher levels of a neuronal insulin signaling composite measure were associated with lower WMH and greater temporal lobe volume. Secondary analyses found the levels of downstream protein kinases involved in cell survival (p70S6K) and tau phosphorylation/neuroinflammation (GSK-3β) to be most strongly associated with WMH and temporal lobe volume, respectively. Associations between neuronal insulin signaling and lower WMH volume were attenuated in participants with elevated cortical amyloid. These results suggest that enhanced neuronal proximal insulin signaling is associated with preserved brain structure in nondemented older adults.
Collapse
Affiliation(s)
- Keenan A Walker
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Sahil Chawla
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Carlos Nogueras-Ortiz
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - A Richey Sharrett
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Dean F Wong
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MS, USA
| | | | | | - Rebecca F Gottesman
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
163
|
Wu H, Xiao C, Zhao Y, Yin H, Yu M. Liraglutide Improves Endothelial Function via the mTOR Signaling Pathway. J Diabetes Res 2021; 2021:2936667. [PMID: 34447854 PMCID: PMC8384515 DOI: 10.1155/2021/2936667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) is crucial for endothelial function. This study is aimed at assessing whether the glucagon-like peptide-1 (GLP-1) analogue liraglutide has a protective effect on endothelial function via the mTOR signaling pathway. METHODS Human umbilical vein endothelial cells (HUVECs) were administered liraglutide (100 nM) for 0, 10, 30, 60, 720, and 1440 minutes, respectively. Then, the expression and phosphorylation levels of mTOR, mTOR-Raptor complex (mTORC1), and mTOR-Rictor complex (mTORC2) were determined by Western blot and immunoprecipitation, while mTORC1 and mTORC2 expression was blocked by siRNA-Raptor and siRNA-Rictor, respectively. Akt phosphorylation was detected by Western blot. HUVECs were then incubated with liraglutide in the absence or presence of Akt inhibitor IV. Nitric oxide (NO) release was assessed by the nitrate reductase method. Phosphorylated endothelial nitric oxide synthase (eNOS), human telomerase reverse transcriptase (hTERT), and apoptosis-related effectors were assessed for protein levels by Western blot. Telomerase activity was evaluated by ELISA. RESULTS Sustained mTOR phosphorylation, mTORC2 formation, and mTORC2-dependent Akt phosphorylation were induced by liraglutide. In addition, eNOS phosphorylation, NO production, nuclear hTERT accumulation, and nuclear telomerase activity were enhanced by mTORC2-mediated Akt activation. Liraglutide also showed an antiapoptotic effect by upregulating antiapoptotic proteins and downregulating proapoptotic proteins in an mTORC2-Akt activation-dependent manner. CONCLUSION Liraglutide significantly improves endothelial function, at least partially via the mTORC2/Akt signaling pathway.
Collapse
Affiliation(s)
- Han Wu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cheng Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yiting Zhao
- Department of PET-CT Center, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
164
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini Rev Med Chem 2021; 21:288-301. [PMID: 33019927 DOI: 10.2174/1389557520666201005143818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.
Collapse
Affiliation(s)
- Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | | | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The research center for preclinical medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
165
|
Bao X, Song Y, Li T, Zhang S, Huang L, Zhang S, Cao J, Liu X, Zhang J. Comparative Transcriptome Profiling of Ovary Tissue between Black Muscovy Duck and White Muscovy Duck with High- and Low-Egg Production. Genes (Basel) 2020; 12:57. [PMID: 33396489 PMCID: PMC7824526 DOI: 10.3390/genes12010057] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
The egg-laying rate is an important indicator for evaluating fertility of poultry. In order to better understand the laying mechanism of Muscovy ducks, gene expression profiles and pathways of ovarian tissues in high- and low-laying black (BH and BL) and white Muscovy ducks (WH and WL) during the peak production period were performed by using RNA-seq. The total number of reads produced for each ovarian sample ranged from 44,344,070 to 47,963,328. A total of 113, 619 and 87 differentially expressed genes (DEGs) were identified in BH-vs-WH, BL-vs-BH and BL-vs-WL, respectively. Among them, 54, 356 and 49 genes were up regulated and 59, 263 and 38 genes were down regulated. In addition, there were only 10 up-regulated genes in WL-vs-WH. In the comparison of DEGs in black and white Muscovy ducks, two co-expressed DEG genes were detected between BH-vs-WH and BL-vs-WL and seven DEGs were co-expressed between BL-vs-BH and WL-vs-WH. The RNA-Seq data were confirmed to be reliable by qPCR. Numerous DEGs known to be involved in ovarian development were identified, including TGFβ2, NGFR, CEBPD, CPEB2, POSTN, SMOC1, FGF18, EFNA5 and SDC4. Gene Ontology (GO) annotations indicated that DEGs related to ovarian development were mainly enriched in biological processes of "circadian sleep/wake cycle process," "negative regulation of transforming growth factor-β secretion," "positive regulation of calcium ion transport" in BH-vs-WH and "cell surface receptor signaling pathway," "Notch signaling pathway" and "calcium ion transport" in BL-vs-BH. Besides, "steroid biosynthetic process," "granulosa cell development" and "egg coat formation" were mainly enriched in BL-vs-WL and "reproduction," "MAPK cascade" and "mitotic cell cycle" were mainly enriched in WL-vs-WH. KEGG pathway analysis showed that the PI3K-Akt signaling pathway and ovarian steroidogenesis were the most enriched in Muscovy duck ovary transcriptome data. This work highlights potential genes and pathways that may affect ovarian development in Muscovy duck.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (X.B.); (Y.S.); (T.L.); (S.Z.); (L.H.); (S.Z.); (J.C.); (X.L.)
| |
Collapse
|
166
|
Antiproliferative Effects of St. John's Wort, Its Derivatives, and Other Hypericum Species in Hematologic Malignancies. Int J Mol Sci 2020; 22:ijms22010146. [PMID: 33375664 PMCID: PMC7795730 DOI: 10.3390/ijms22010146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/03/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Hypericum is a widely present plant, and extracts of its leaves, flowers, and aerial elements have been employed for many years as therapeutic cures for depression, skin wounds, and respiratory and inflammatory disorders. Hypericum also displays an ample variety of other biological actions, such as hypotensive, analgesic, anti-infective, anti-oxidant, and spasmolytic abilities. However, recent investigations highlighted that this species could be advantageous for the cure of other pathological situations, such as trigeminal neuralgia, as well as in the treatment of cancer. This review focuses on the in vitro and in vivo antitumor effects of St. John’s Wort (Hypericum perforatum), its derivatives, and other Hypericum species in hematologic malignancies. Hypericum induces apoptosis in both myeloid and lymphoid cells. Other Hypericum targets include matrix metalloproteinase-2, vascular endothelial growth factor, and matrix metalloproteinase-9, which are mediators of cell migration and angiogenesis. Hypericum also downregulates the expression of proteins that are involved in the resistance of leukemia cells to chemotherapeutic agents. Finally, Hypericum and its derivatives appear to have photodynamic effects and are candidates for applications in tumor photodynamic therapy. Although the in vitro studies appear promising, controlled in vivo studies are necessary before we can hypothesize the introduction of Hypericum and its derivatives into clinical practice for the treatment of hematologic malignancies.
Collapse
|
167
|
Samidurai A, Ockaili R, Cain C, Roh SK, Filippone SM, Kraskauskas D, Kukreja RC, Das A. Differential Regulation of mTOR Complexes with miR-302a Attenuates Myocardial Reperfusion Injury in Diabetes. iScience 2020; 23:101863. [PMID: 33319180 PMCID: PMC7725936 DOI: 10.1016/j.isci.2020.101863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/07/2020] [Accepted: 11/20/2020] [Indexed: 01/11/2023] Open
Abstract
Persistent activation of mTOR (mammalian target of rapamycin) in diabetes increases the vulnerability of the heart to ischemia/reperfusion (I/R) injury. We show here that infusion of rapamycin (mTOR inhibitor) at reperfusion following ischemia reduced myocardial infarct size and apoptosis with restoration of cardiac function in type 1 diabetic rabbits. Likewise, treatment with rapamycin protected hyperglycemic human-pluripotent-stem-cells-derived cardiomyocytes (HG-hiPSC-CMs) following simulated ischemia (SI) and reoxygenation (RO). Phosphorylation of S6 (mTORC1 marker) was increased, whereas AKT phosphorylation (mTORC2 marker) and microRNA-302a were reduced with concomitant increase of its target, PTEN, following I/R injury in diabetic heart and HG-hiPSC-CMs. Rapamycin inhibited mTORC1 and PTEN, but augmented mTORC2 with restoration of miRNA-302a under diabetic conditions. Inhibition of miRNA-302a blocked mTORC2 and abolished rapamycin-induced protection against SI/RO injury in HG-hiPSC-CMs. We conclude that rapamycin attenuates reperfusion injury in diabetic heart through inhibition of PTEN and mTORC1 with restoration of miR-302a-mTORC2 signaling. miR-302a and AKT phosphorylation are suppressed in post-ischemic diabetic heart Negative regulator of insulin signaling, PTEN, is induced after ischemia reperfusion miRNA-302a-mimic abolishes ischemic injury in hyperglycemic human iPS cardiocytes Rapamycin treatment restores miR-302a-mTORC2 cardioprotective signaling in diabetes
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Chad Cain
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Scott M Filippone
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Box 980204, Virginia Commonwealth University Medical Center, 1101 East Marshall Street, Sanger Hall, Room 7020d & 7020b, Richmond, VA 23298-0204, USA
| |
Collapse
|
168
|
Alaimo A, Lorenzoni M, Ambrosino P, Bertossi A, Bisio A, Macchia A, Zoni E, Genovesi S, Cambuli F, Foletto V, De Felice D, Soldovieri MV, Mosca I, Gandolfi F, Brunelli M, Petris G, Cereseto A, Villarroel A, Thalmann G, Carbone FG, Kruithof-de Julio M, Barbareschi M, Romanel A, Taglialatela M, Lunardi A. Calcium cytotoxicity sensitizes prostate cancer cells to standard-of-care treatments for locally advanced tumors. Cell Death Dis 2020; 11:1039. [PMID: 33288740 PMCID: PMC7721710 DOI: 10.1038/s41419-020-03256-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
Therapy resistance is a major roadblock in oncology. Exacerbation of molecular dysfunctions typical of cancer cells have proven effective in twisting oncogenic mechanisms to lethal conditions, thus offering new therapeutic avenues for cancer treatment. Here, we demonstrate that selective agonists of Transient Receptor Potential cation channel subfamily M member 8 (TRPM8), a cation channel characteristic of the prostate epithelium frequently overexpressed in advanced stage III/IV prostate cancers (PCa), sensitize therapy refractory models of PCa to radio, chemo or hormonal treatment. Overall, our study demonstrates that pharmacological-induced Ca2+ cytotoxicity is an actionable strategy to sensitize cancer cells to standard therapies.
Collapse
Affiliation(s)
- Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Paolo Ambrosino
- Department of Science and Technology (DST), University of Sannio, Benevento, Italy
| | - Arianna Bertossi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandra Bisio
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alice Macchia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Eugenio Zoni
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Ilaria Mosca
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Francesco Gandolfi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matteo Brunelli
- Department of Pathology AOUI, University of Verona, Verona, Italy
| | - Gianluca Petris
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Anna Cereseto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, Leioa, Spain
| | - George Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | | | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
169
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
170
|
Afrose SS, Junaid M, Akter Y, Tania M, Zheng M, Khan MA. Targeting kinases with thymoquinone: a molecular approach to cancer therapeutics. Drug Discov Today 2020; 25:2294-2306. [PMID: 32721537 DOI: 10.1016/j.drudis.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 01/02/2023]
Abstract
Kinases are enzymes that are important for cellular functions, but their overexpression has strong connections with carcinogenesis, rendering them important targets for anticancer drugs. Thymoquinone (TQ) is a natural compound with proven anticancer activities, at least in preclinical studies. TQ can target several kinases, including phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducers and activators of transcription (JAK/STAT), polo-like kinase 1 (PLK1), and tyrosine kinase in different cancer cells and animal models. Inhibiting the activity of kinases or suppressing their expression might be among the mechanisms of TQ anticancer activity. In this review, we discuss the role of TQ in kinase regulation in different cancer models.
Collapse
Affiliation(s)
| | - Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
171
|
Takano APC, Senger N, Barreto-Chaves MLM. The endocrinological component and signaling pathways associated to cardiac hypertrophy. Mol Cell Endocrinol 2020; 518:110972. [PMID: 32777452 DOI: 10.1016/j.mce.2020.110972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023]
Abstract
Although myocardial growth corresponds to an adaptive response to maintain cardiac contractile function, the cardiac hypertrophy is a condition that occurs in many cardiovascular diseases and typically precedes the onset of heart failure. Different endocrine factors such as thyroid hormones, insulin, insulin-like growth factor 1 (IGF-1), angiotensin II (Ang II), endothelin (ET-1), catecholamines, estrogen, among others represent important stimuli to cardiomyocyte hypertrophy. Thus, numerous endocrine disorders manifested as changes in the local environment or multiple organ systems are especially important in the context of progression from cardiac hypertrophy to heart failure. Based on that information, this review summarizes experimental findings regarding the influence of such hormones upon signalling pathways associated with cardiac hypertrophy. Understanding mechanisms through which hormones differentially regulate cardiac hypertrophy could open ways to obtain therapeutic approaches that contribute to prevent or delay the onset of heart failure related to endocrine diseases.
Collapse
Affiliation(s)
| | - Nathalia Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | |
Collapse
|
172
|
Koganti R, Suryawanshi R, Shukla D. Heparanase, cell signaling, and viral infections. Cell Mol Life Sci 2020; 77:5059-5077. [PMID: 32462405 PMCID: PMC7252873 DOI: 10.1007/s00018-020-03559-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Heparanase (HPSE) is a multifunctional protein endowed with many non-enzymatic functions and a unique enzymatic activity as an endo-β-D-glucuronidase. The latter allows it to serve as a key modulator of extracellular matrix (ECM) via a well-regulated cleavage of heparan sulfate side chains of proteoglycans at cell surfaces. The cleavage and associated changes at the ECM cause release of multiple signaling molecules with important cellular and pathological functions. New and emerging data suggest that both enzymatic as well as non-enzymatic functions of HPSE are important for health and illnesses including viral infections and virally induced cancers. This review summarizes recent findings on the roles of HPSE in activation, inhibition, or bioavailability of key signaling molecules such as AKT, VEGF, MAPK-ERK, and EGFR, which are known regulators of common viral infections in immune and non-immune cell types. Altogether, our review provides a unique overview of HPSE in cell-survival signaling pathways and how they relate to viral infections.
Collapse
Affiliation(s)
- Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St, Chicago, IL, 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
173
|
Chen YH, Yang SF, Yang CK, Tsai HD, Chen TH, Chou MC, Hsiao YH. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep 2020; 23:88. [PMID: 33236135 PMCID: PMC7716426 DOI: 10.3892/mmr.2020.11725] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Human cervical cancer is the fourth most common malignancy among women worldwide, and it is expected to result in 460,000 deaths per year by 2040. Moreover, patients with cervical cancer often display drug resistance and severe side effects; therefore, the development of effective novel chemotherapeutic agents is important. In the present study, the effects of metformin, a first-line therapeutic drug for type 2 diabetes mellitus, were evaluated in cervical cancer. Compared with the control group, metformin significantly inhibited cell viability and migration, and induced apoptosis and cell cycle arrest in human cervical cancer cell lines (CaSki and HeLa). Following metformin treatment, the protein expression levels of p-AMP-activated protein kinase (p-AMPK), which promotes cell death, and the tumor suppressor protein p-p53 were remarkably upregulated in CaSki and C33A cells compared with the control group. Furthermore, compared with the control group, metformin significantly suppressed the PI3K/AKT signaling pathway in CaSki, C33A and HeLa cells. Compound C (an AMPK inhibitor) significantly reversed the effects of metformin on CaSki, C33A and HeLa cell viability, and AMPK and p53 phosphorylation. The results of the present study suggested that metformin induced AMPK-mediated apoptosis, thus metformin may serve as a chemotherapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Ya-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chueh-Ko Yang
- Women's Health Research Laboratory, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Horng-Der Tsai
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Tze-Ho Chen
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan, R.O.C
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Yi-Hsuan Hsiao
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
174
|
Deletion of Akt1 Promotes Kidney Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6143542. [PMID: 33299873 PMCID: PMC7707954 DOI: 10.1155/2020/6143542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
We investigated the role of Akt1, one of the three isoforms of Akt, in renal fibrosis using the murine model of unilateral ureteral obstruction (UUO). We subjected wild type and Akt1−/− mice to UUO. The Akt1 gene was silenced in vitro using short hairpin RNA delivered via a lentiviral vector in human proximal tubular cells (HK2 cells) and kidney fibroblasts (NRK-49F cells). The obstructive kidneys of Akt1−/− mice showed more severe tubulointerstitial fibrosis than those of wild type mice. The expression of fibronectin and type I collagen was significantly increased in obstructed kidneys of Akt1−/− mice compared to those of wild type mice. The important finding was that the expression of transforming growth factor β1 (TGFβ1) was significantly increased in the Akt1−/− mice compared to the wild type mice. The knockdown of Akt1 enhanced the expression of TGFβ1 in HK2 cells. Interestingly, the upregulation of TGFβ1 due to genetic knockdown of Akt1 was associated with activation of signal transducer and activator of transcript 3 (STAT3) independently of the Smad pathway in NRK-49F and HK2 cells. Immunohistochemical staining also showed that expression of phosphorylated STAT3 was more increased in Akt1−/− mice than in wild type mice after UUO. Additionally, the deletion of Akt1 led to apoptosis of the renal tubular cells in both in vivo and in vitro studies. Conclusively, these results suggest that the deletion of Akt1 may contribute to renal fibrosis via induction of the TGFβ1/STAT3 pathway in a murine model of UUO.
Collapse
|
175
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
176
|
Zhang H, Lin F, Zhao J, Wang Z. Expression Regulation and Physiological Role of Transcription Factor FOXO3a During Ovarian Follicular Development. Front Physiol 2020; 11:595086. [PMID: 33250784 PMCID: PMC7674958 DOI: 10.3389/fphys.2020.595086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, developing ovarian follicles transform from primordial follicles to primary follicles, secondary follicles, and mature follicles, accompanied by changes in follicular secretory functions. FoxO3a is a member of the forkhead transcription factor family (FoxO), which plays an important role in the cell cycle, DNA damage repair, apoptosis, oxidative stress, and energy metabolism. Recent studies have shown that FOXO3a is involved in the physiological regulation of follicular development and pathological progression of related ovarian diseases, which will provide useful concepts and strategies for retarding ovarian aging, prolonging the ovarian life span, and treating ovarian diseases. Therefore, the regulation of FOXO3a expression, as well as the physiological contribution during ovarian follicular development are detailed in this paper, presenting an important reference for the further study of ovarian biology.
Collapse
Affiliation(s)
- Hong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fengping Lin
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiuhua Zhao
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China.,West Anhui Health Vocational College, Lu'an, China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, Provincial University Key Laboratory of Sport and Health Science, Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
177
|
Kim GD, Park S. Effects of Cudrania tricuspidata on anti-senescence in high glucose-treated endothelial cells via the Akt/p53/p21 pathway. Food Sci Nutr 2020; 8:5999-6006. [PMID: 33282251 PMCID: PMC7684615 DOI: 10.1002/fsn3.1885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023] Open
Abstract
The roles of Cudrania tricuspidata (CT) in the prevention of senescence and the underlying mechanisms have not been elucidated. In a high glucose (HG)-induced senescent endothelial cell (EC) culture, CT (20 µg/ml) reduced the number of senescence-associated β-galactosidase-positive cells by 8.3% compared with the control group and increased the expression of p-Sirt1 by more than twofold compared with the control group. Moreover, 20 μg/ml CT treatment doubled the activity of p-Akt, which was inhibited by HG, compared with the control group. In addition, CT treatment decreased the expression of p53, p21, and Rb, which was increased by HG. Overall, CT delays HG-induced senescence via the Akt/p53/p21 pathway, suggesting its potential as a functional agent for the protection of ECs.
Collapse
Affiliation(s)
- Gi Dae Kim
- Department of Food and NutritionKyungnam UniversityChangwon‐siRepublic of Korea
| | - Seonghee Park
- Department of Biological ScienceSookmyung Women's UniversitySeoulRepublic of Korea
| |
Collapse
|
178
|
Kalimuthu S, Gangadaran P, Oh JM, Rajendran RL, Lee HW, Gopal A, Hong CM, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. A new tyrosine kinase inhibitor K905-0266 inhibits proliferation and sphere formation of glioblastoma cancer cells. J Drug Target 2020; 28:933-938. [PMID: 32191139 DOI: 10.1080/1061186x.2020.1745817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/09/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
Abstract
Glioblastoma (GBM) is the most prevalent malignant tumour of the central nervous system and carries a poor prognosis; average survival time after diagnosis is 14 months. Because of its unfavourable prognosis, novel therapies are needed. The aim of this study was to assess whether inhibition of GBM and GBM-derived cancer stem cells (CSCs) by a new tyrosine kinase inhibitor (TKI), K905-0266, is possible. To do this, we generated GBM (D54 and U87MG) cells expressing luciferase and characterised the inhibitory effects of the TKI with bioluminescent imaging (BLI) and western blot (WB). The effect of the TKI was then evaluated in CSCs. BLI showed significant inhibition of D54 and U87MG cells by TKI treatment. WB showed that the TKI decreased pERK and Bcl-2 level and increased cleaved caspase-3 level. Sphere formation was significantly reduced by the TKI in CSCs. Our results showed that a new TKI, K905-0266, effectively inhibited GBM and CSCs, making this a candidate for GBM therapy.
Collapse
Affiliation(s)
- Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Arunnehru Gopal
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
- Leading‑Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
179
|
Kuriyama H, Fukushima S, Kimura T, Okada E, Ishibashi T, Mizuhashi S, Kanemaru H, Kajihara I, Makino K, Miyashita A, Aoi J, Okada S, Ihn H, Kita K. Matrin-3 plays an important role in cell cycle and apoptosis for survival in malignant melanoma. J Dermatol Sci 2020; 100:110-119. [PMID: 32943284 DOI: 10.1016/j.jdermsci.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND A previous study revealed that matrin-3 is an essential component in maintaining fibroblast growth factor 2 (FGF2)-mediated undifferentiation of neural stem cells (NSCs) using a proteomics approach. Malignant melanoma (MM) arises from melanocytes that originate from neural crest stem cells during development. Additionally, it has been reported that the expression of FGF2 is positively correlated with the progression of MM. OBJECTIVE We expected that matrin-3, as a downstream component of FGF2, might be associated with the aggressiveness or differentiation of MM. METHODS Matrin-3 expression was measured in human melanoma patient tissues and human MM cell lines. We analyzed the effect of matrin-3 siRNA on the proliferation of human MM cell lines and focused on cell cycle progression and apoptosis. We carried out in vivo xenograft tumor experiments by implanting A375 cells transfected with matrin-3 shRNA. RESULTS Matrin-3 was highly expressed in MM, and matrin-3 knockdown inhibited the proliferation of melanoma cellsin vivo and in vitro. Furthermore, we found that matrin-3 knockdown led to an accumulation of cells in the G1 phase and an increase in apoptotic cell number. CONCLUSION Our results suggest that matrin-3 could be a new therapeutic target for the treatment of MM.
Collapse
Affiliation(s)
- Haruka Kuriyama
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Toshihiro Kimura
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Etsuko Okada
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Ishibashi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoru Mizuhashi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Kanemaru
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ikko Kajihara
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsunari Makino
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Azusa Miyashita
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Aoi
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Hironobu Ihn
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kanako Kita
- Department of Comprehensive Molecular Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
180
|
Whole exome sequencing and transcriptome-wide profiling identify potentially subtype-relevant genes of nasopharyngeal carcinoma. Pathol Res Pract 2020; 216:153244. [PMID: 33113455 DOI: 10.1016/j.prp.2020.153244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND To date, no targeted therapy has been approved for nasopharyngeal carcinoma (NPC), suggesting that comprehensive understanding of genomic changes turns out to be an urgent need to break through the calm of currently known therapies of NPC. METHODS Whole exome sequencing (WES) was performed for 14 NPC patients, including 6 NPC-IIA cases, 8 NPC-IIB cases. The cancer chip expression data named GSE12452 was downloaded from the Gene Expression Omnibus (GEO) database, and differentially expressed genes (DEGs) of each subtype were obtained using the Lima R package. Then gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Protein-protein interaction (PPI) network and Gene Set Enrichment Analysis (GSEA) were performed. Finally 7 potentially subtype relevant genes (PSRGs)1 were obtained. RESULTS In total, 37 clinically relevant mutations (CRMs)2 were obtained from WES. The 2 NPC subtypes exhibited different mutational landscapes, indicating that different NPC subtypes harbor different CRMs. Notably, we discovered that mutations of CCND1 and FGF family appeared simultaneously in 3 NPC-IIB cases, but 0 in NPC-IIA. In addition, 1395 DEGs were identified from GSE12452. PI3K-Akt signaling pathway showed significant enrichment in both the pathway distribution of CRMs and KEGG analysis of DEGs, suggesting that it is a key pathway in the development of NPC. Through PPI analysis of genes involved in the PI3K-Akt pathways and expression significance analysis of DEGs co-expressed by the 2 subtypes, 54 genes finally were screened for expression significance analysis. The GSEA analysis between patients with high and low expression of 11 candidate genes were performed. As a result, 7 PSRGs were selected, including COL4A1, ASB9, RDH10, TNFRSF21, BACE2, EVA1C and LHX2. CONCLUSIONS These results indicate that different NPC subtypes have different genetic changes, suggesting that they may be potential targets for the diagnosis and treatment of NPC, and ultimately point to new strategies for intelligence.
Collapse
|
181
|
Kulkarni P, Dasgupta P, Bhat NS, Hashimoto Y, Saini S, Shahryari V, Yamamura S, Shiina M, Tanaka Y, Dahiya R, Majid S. Role of the PI3K/Akt pathway in cadmium induced malignant transformation of normal prostate epithelial cells. Toxicol Appl Pharmacol 2020; 409:115308. [PMID: 33129824 DOI: 10.1016/j.taap.2020.115308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
This study investigated the role of the PI3K/Akt pathway in cadmium (Cd) induced malignant transformation of normal prostate epithelial (PWR1E and RWPE1) cells. Both PWR1E and RWPE1 cells were exposed to 10 μM Cd for one year and designated as Cd-PWR1E and Cd-RWPE1. Cd-RWPE1 cells robustly formed tumors in athymic nude mice. Functionally, Cd-exposure induced tumorigenic attributes indicated by increased wound healing, migration and invasion capabilities in both cell lines. RT2-array analysis revealed many oncogenes including P110α, Akt, mTOR, NFKB1 and RAF were induced whereas tumor suppressor (TS) genes were attenuated in Cd-RWPE1. This was validated by individual quantitative-real-time-PCR at transcriptional and by immunoblot at translational levels. These results were consistent in Cd-PWR1E vs parental PWR1E cells. Gene Set Enrichment Analysis revealed that five prostate cancer (PCa) related pathways were enriched in Cd-exposed cells compared to their normal controls. These pathways include the KEGG- Pathways in cancer, Prostate Cancer Pathway, ERBB, Apoptosis and MAPK pathways. We selected up- and down-regulated genes randomly from the PI3K/Akt pathway array and profiled these in the TCGA/GDC prostate-adenocarcinoma (PRAD) patient cohort. An upregulation of oncogenes and downregulation of TS genes was observed in PCa compared to their normal controls. Taken together, our study reveals that the PI3K/Akt signaling is one of the main molecular pathways involved in Cd-driven transformation of normal prostate epithelial cells to malignant form. Understanding the molecular mechanisms involved in the Cd-driven malignant transformation of normal prostate cells will provide a significant insight to develop better therapeutic strategies for Cd-induced prostate cancer.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Pritha Dasgupta
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Nadeem S Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Sharanjot Saini
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, USA
| | - Varahram Shahryari
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, CA, USA.
| |
Collapse
|
182
|
Yang Z, Zhang C, Che N, Feng Y, Li C, Xuan Y. Su(var)3-9, Enhancer of Zeste, and Trithorax Domain-Containing 5 Facilitates Tumor Growth and Pulmonary Metastasis through Up-Regulation of AKT1 Signaling in Breast Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:180-193. [PMID: 33129761 DOI: 10.1016/j.ajpath.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022]
Abstract
Several studies have confirmed the function of Su(var)3-9, Enhancer of zeste, and Trithorax (SET) domain-containing 5 (SETD5) in post-translational modifications of nonhistone proteins. Mutation of the SETD5 gene has been implicated in the progression of many human cancers, such as breast cancer (BC), but its functional role in BC progression is still unknown. The current article investigates the clinical significance and the functional role of SETD5 in BC. Our studies show that SETD5 expression in BC was related to poor clinical outcomes, including lymph node metastasis and advanced clinical stage. SETD5 expression positively correlated with tumor-associated macrophages. SETD5 was an independent predictor of poor overall survival in BC. Furthermore, these studies show that down-regulation of SETD5 significantly decreased BC cell proliferation, metastasis, and angiogenesis, and increased apoptosis of BC cells. The mechanistic analysis showed that SETD5 contributes BC progression by interacting with AKT1 pathway. Also, in vivo experiments show that blocking of SETD5 expression significantly inhibited tumor growth and pulmonary metastasis of BC cells. These findings indicate that SETD5 is a potential prognosis marker and facilitates tumor progression of BC.
Collapse
Affiliation(s)
- Zhaoting Yang
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China; Air Force Medical Center of the Chinese People's Liberation Army, Beijing, China
| | - Nan Che
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Ying Feng
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Chao Li
- Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China
| | - Yanhua Xuan
- Department of Pathology, Yanbian University Medicine College, Yanji, China; Institute for Regenerative Medicine, Yanbian University Medicine College, Yanji, China.
| |
Collapse
|
183
|
Maruei‐Milan R, Saravani M, Heidari Z, Asadi‐Tarani M, Salimi S. Effects of the
MTOR
and
AKT1
genes polymorphisms on papillary thyroid cancer development. IUBMB Life 2020; 72:2601-2610. [DOI: 10.1002/iub.2388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rostam Maruei‐Milan
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mohsen Saravani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| | - Zahra Heidari
- Department of Internal Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Mina Asadi‐Tarani
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine Zahedan University of Medical Sciences Zahedan Iran
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
184
|
Martin J, Petrillo A, Smyth EC, Shaida N, Khwaja S, Cheow HK, Duckworth A, Heister P, Praseedom R, Jah A, Balakrishnan A, Harper S, Liau S, Kosmoliaptsis V, Huguet E. Colorectal liver metastases: Current management and future perspectives. World J Clin Oncol 2020; 11:761-808. [PMID: 33200074 PMCID: PMC7643190 DOI: 10.5306/wjco.v11.i10.761] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is the commonest site of metastatic disease for patients with colorectal cancer, with at least 25% developing colorectal liver metastases (CRLM) during the course of their illness. The management of CRLM has evolved into a complex field requiring input from experienced members of a multi-disciplinary team involving radiology (cross sectional, nuclear medicine and interventional), Oncology, Liver surgery, Colorectal surgery, and Histopathology. Patient management is based on assessment of sophisticated clinical, radiological and biomarker information. Despite incomplete evidence in this very heterogeneous patient group, maximising resection of CRLM using all available techniques remains a key objective and provides the best chance of long-term survival and cure. To this end, liver resection is maximised by the use of downsizing chemotherapy, optimisation of liver remnant by portal vein embolization, associating liver partition and portal vein ligation for staged hepatectomy, and combining resection with ablation, in the context of improvements in the functional assessment of the future remnant liver. Liver resection may safely be carried out laparoscopically or open, and synchronously with, or before, colorectal surgery in selected patients. For unresectable patients, treatment options including systemic chemotherapy, targeted biological agents, intra-arterial infusion or bead delivered chemotherapy, tumour ablation, stereotactic radiotherapy, and selective internal radiotherapy contribute to improve survival and may convert initially unresectable patients to operability. Currently evolving areas include biomarker characterisation of tumours, the development of novel systemic agents targeting specific oncogenic pathways, and the potential re-emergence of radical surgical options such as liver transplantation.
Collapse
Affiliation(s)
- Jack Martin
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Angelica Petrillo
- Department of Precision Medicine, Division of Medical Oncology, University of Campania "L. Vanvitelli", Napoli 80131, Italy, & Medical Oncology Unit, Ospedale del Mare, 80147 Napoli Italy
| | - Elizabeth C Smyth
- Department of Oncology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Nadeem Shaida
- Department of Radiology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB22 0QQ, United Kingdom
| | - Samir Khwaja
- Department of Radiology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB22 0QQ, United Kingdom
| | - HK Cheow
- Department of Nuclear Medicine, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Adam Duckworth
- Department of Pathology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Paula Heister
- Department of Pathology, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Raaj Praseedom
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Asif Jah
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Anita Balakrishnan
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Siong Liau
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Vasilis Kosmoliaptsis
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
185
|
Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H. Effect of AKT1 (p. E17K) Hotspot Mutation on Malignant Tumorigenesis and Prognosis. Front Cell Dev Biol 2020; 8:573599. [PMID: 33123537 PMCID: PMC7573235 DOI: 10.3389/fcell.2020.573599] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
The substitution of the seventeenth amino acid glutamate by lysine in the homologous structural domain of the Akt1 gene pleckstrin is a somatic cellular mutation found in breast, colorectal, and ovarian cancers, named p. Glu17Lys or E17K. In recent years, a growing number of studies have suggested that this mutation may play a unique role in the development of tumors. In this review article, we describe how AKT1(E17K) mutations stimulate downstream signals that cause cells to emerge transformed; we explore the differential regulation and function of E17K in different physiological and pathological settings; and we also describe the phenomenon that E17K impedes tumor growth by interfering with growth-promoting and chemotherapy-resistant AKT1lowQCC generation, an intriguing finding that mutants may prolong tumor patient survival by activating feedback mechanisms and disrupting transcription. This review is intended to provide a better understanding of the role of AKT1(E17K) in cancer and to inform the development of AKT1(E17K)-based antitumor strategies.
Collapse
Affiliation(s)
- Ying Chen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lan Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongjian Dong
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
186
|
Kim HA, Lee D, Lee H, Lee J. Lysimachia christinae Hance as an anticancer agent against breast cancer cells. Food Sci Nutr 2020; 8:5717-5728. [PMID: 33133573 PMCID: PMC7590289 DOI: 10.1002/fsn3.1875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women, and metastasis is the leading cause of death in breast cancer patients. Although chemoprevention is widely employed to treat breast cancer, anticancer drugs can cause significant adverse effects. Lysimachia christinae Hance (LH) is a traditional Chinese medicinal plant with diverse therapeutic effects. However, its potential anticancer activity has not been fully investigated in breast cancers to date. Using high-performance liquid chromatography-mass spectrometry, we found that the main constituent of LH extract (LHE) was rutin. Our results indicated that LHE or rutin markedly decreased the proliferation and viability of estrogen receptor (ER)-positive MCF-7 and ER-negative HCC38 human breast cancer cells. LHE treatment induced morphological changes in apoptotic nuclei using 4',6-diamidino-2-phenylindole (DAPI) staining. Annexin V-fluorescein isothiocyanate (FITC) propidium iodide (PI) staining assay revealed that apoptosis significantly increased in both breast cancer cell types after LHE treatment. Additionally, the expression of poly (ADP-ribose) polymerase (PARP), Bcl-2, and phospho-Akt decreased, while that of cleaved PARP and p53 increased, in both cell types. Furthermore, LHE treatment inhibited epithelial-mesenchymal transition (EMT). LHE treatment significantly upregulated E-cadherin level in MCF-7 and HCC38 cells, while vimentin level was downregulated in HCC38 cells. In addition, transwell and wound-healing assays revealed that LHE or rutin inhibited breast cancer cell migration. Overall, these findings demonstrate that LHE is a promising therapeutic agent that acts by promoting apoptosis and reducing cell proliferation, EMT, and cell migration in ER-positive and ER-negative breast cancer cells.
Collapse
Affiliation(s)
- Hyun A. Kim
- Department of Food and NutritionChosun UniversityGwangjuKorea
| | | | - Hwan Lee
- College of PharmacyChosun UniversityGwangjuKorea
| | - Joomin Lee
- Department of Food and NutritionChosun UniversityGwangjuKorea
| |
Collapse
|
187
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
188
|
Smit DJ, Cayrefourcq L, Haider MT, Hinz N, Pantel K, Alix-Panabières C, Jücker M. High Sensitivity of Circulating Tumor Cells Derived from a Colorectal Cancer Patient for Dual Inhibition with AKT and mTOR Inhibitors. Cells 2020; 9:cells9092129. [PMID: 32962206 PMCID: PMC7566012 DOI: 10.3390/cells9092129] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells shed from the primary tumor into the bloodstream. While many studies on solid tumor cells exist, data on CTCs are scarce. The mortality of cancer is mostly associated with metastasis and recent research identified CTCs as initiators of metastasis. The PI3K/AKT/mTOR signaling pathway is an intracellular pathway that regulates essential functions including protein biosynthesis, cell growth, cell cycle control, survival and migration. Importantly, activating oncogenic mutations and amplifications in this pathway are frequently observed in a wide variety of cancer entities, underlining the significance of this signaling pathway. In this study, we analyzed the functional role of the PI3K/AKT/mTOR signaling pathway in the CTC-MCC-41 line, derived from a patient with metastatic colorectal cancer. One striking finding in our study was the strong sensitivity of this CTC line against AKT inhibition using MK2206 and mTOR inhibition using RAD001 within the nanomolar range. This suggests that therapies targeting AKT and mTOR could have been beneficial for the patient from which the CTC line was isolated. Additionally, a dual targeting approach of AKT/mTOR inside the PI3K/AKT/mTOR signaling pathway in the colorectal CTCs showed synergistic effects in vitro. Depending on the phenotypical behavior of CTC-MCC-41 in cell culture (adherent vs. suspension), we identified altered phosphorylation levels inside the PI3K/AKT/mTOR pathway. We observed a downregulation of the PI3K/AKT/mTOR signaling pathway, but not of the RAS/RAF/MAPK pathway, in CTCs growing in suspension in comparison to adherent CTCs. Our results highlight distinct functions of AKT isoforms in CTC-MCC-41 cells with respect to cell proliferation. Knockdown of AKT1 and AKT2 leads to significantly impaired proliferation of CTC-MCC-41 cells in vitro. Therefore, our data demonstrate that the PI3K/AKT/mTOR signaling pathway plays a key role in the proliferation of CTC-MCC-41.
Collapse
Affiliation(s)
- Daniel J. Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (D.J.S.); (N.H.)
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 Montpellier, France; (L.C.); (C.A.-P.)
| | - Marie-Therese Haider
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Nico Hinz
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (D.J.S.); (N.H.)
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Center of Montpellier, 34093 Montpellier, France; (L.C.); (C.A.-P.)
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (D.J.S.); (N.H.)
- Correspondence: ; Tel.: +49-(0)-40-7410-56339
| |
Collapse
|
189
|
Madonna R, Doria V, Minnucci I, Pucci A, Pierdomenico DS, De Caterina R. Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes. J Cell Mol Med 2020; 24:12331-12340. [PMID: 32940423 PMCID: PMC7687009 DOI: 10.1111/jcmm.15699] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The sodium‐glucose cotransporter 2 (SGLT2) inhibitor empagliflozin reduces heart failure in diabetes, but underlying mechanisms remain elusive. We hypothesized that empagliflozin could counteract the senescence of cardiac stromal cells (CSC), the action of which limits cardiac damage and cardiac fibrosis in diabetic‐like conditions in vitro and in vivo. CSC were isolated from murine heart biopsies (n = 5) through cardiosphere (CSp) formation and incubated for 3 or 48 hours with 5.5 mmol/L normal glucose (NG), high glucose (12‐5 and 30.5 mmol/L, HG) or a hyperosmolar control of mannitol (HM) in the presence or absence of empagliflozin 100 nmol/L. The senescent CSC status was verified by β‐gal staining and expression of the pro‐survival marker Akt (pAkt) and the pro‐inflammatory marker p38 (p‐P38). The cardiac effects of empagliflozin were also studied in vivo by echocardiography and by histology in a murine model of streptozotocin (STZ)‐induced diabetes. Compared to NG, incubations with HG and HM significantly reduced the number of CSps, increased the β‐gal‐positive CSC and P‐p38, while decreasing pAkt, all reversed by empagliflozin (P < .01). Empagliflozin also reversed cardiac dysfunction, cardiac fibrosis and cell senescence in mice with (STZ)‐induced diabetes (P < .01). Empagliflozin counteracts the pro‐senescence effect of HG and of hyperosmolar stress on CSC, and improves cardiac function via decreasing cardiac fibrosis and senescence in diabetic mice, possibly through SGLT2 off‐target effects. These effects may explain empagliflozin unexpected benefits on cardiac function in diabetic patients.
Collapse
Affiliation(s)
| | - Vanessa Doria
- Center of Aging Sciences and Translational Medicine - CESI-Met "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Ilaria Minnucci
- Center of Aging Sciences and Translational Medicine - CESI-Met "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Angela Pucci
- Histopathology Department, Pisa University Hospital, Pisa, Italy
| | - Donato Sante Pierdomenico
- Center of Aging Sciences and Translational Medicine - CESI-Met "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | | |
Collapse
|
190
|
Prospects of tangeretin as a modulator of cancer targets/pathways. Pharmacol Res 2020; 161:105202. [PMID: 32942013 DOI: 10.1016/j.phrs.2020.105202] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
To date, cancer is the second leading cause of death worldwide after cardiac arrest. A large number of synthetic drugs are available for the treatment of different types of cancer; however, a major problem associated with these drugs is its toxicity towards the normal cells. To overcome these problems, researchers explore plants derived phytochemicals because of their pleiotropic action and least toxicity towards the normal cells. Tangeretin is a polymethoxylated flavone found extensively in citrus fruits and has shown potent anti-cancer activity in different types of cancer cells. Hence, this review examines the anti-cancer activity of tangeretin via different molecular targets/pathways. Tangeretin induces apoptosis via intrinsic as well as extrinsic pathways and arrest the cell cycle. It also suppresses cell proliferation by modulating PI3K/AKT/mTOR, Notch, and MAPK signalling pathways. Besides, it induces autophagic cell death, suppresses migration, invasion, and angiogenesis. Further, the role of tangeretin in multi-drug resistance and combination therapy, different biological sources of tangeretin, its derivatives, and pharmacokinetics profile and toxicity studies are also discussed. Towards the end, the challenges associated with tangeretin usage as potential anti-cancer phytochemicals have also been discussed. Tangeretin, like a pandora's box, needs to be explored further, and more research is warranted to improve its usefulness for better human health.
Collapse
|
191
|
Long Q, Sun J, Lv J, Liang Y, Li H, Li X. PTPN13 acts as a tumor suppressor in clear cell renal cell carcinoma by inactivating Akt signaling. Exp Cell Res 2020; 396:112286. [PMID: 32919955 DOI: 10.1016/j.yexcr.2020.112286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/24/2023]
Abstract
Protein tyrosine phosphatase, nonreceptor type 13 (PTPN13), has emerged as a critical cancer-related gene that is implicated in a wide range of cancer types. However, the role of PTPN13 in clear cell renal cell carcinoma (ccRCC) is poorly understood. In the present study, we aimed to evaluate whether PTPN13 participates in the progression of ccRCC. Decreased expression of PTPN13 was found in ccRCC tissues, which predicted a shorter survival rate in ccRCC patients. PTPN13 expression was also lower in ccRCC cell lines, and the upregulation of PTPN13 repressed the proliferation, colony formation and invasion, but enhanced the apoptosis of ccRCC cells. In contrast, the silencing of PTPN13 produced the opposite effects. Further data showed that PTPN13 overexpression decreased the phosphorylation of Akt, while PTPN13 silencing increased the phosphorylation of Akt. Treatment with Akt inhibitor markedly abrogated the PTPN13 silencing-evoked oncogenic effect in ccRCC cells. Xenograft tumor experiments revealed that overexpression of PTPN13 remarkably restricted the tumor formation and growth of ccRCC cells in vivo associated with inactivation of Akt. In conclusion, our data demonstrated that overexpression of PTPN13 restricts the proliferation and invasion of ccRCC cells through inactivation of Akt. Our study suggests a tumor suppressive function of PTPN13 in ccRCC and highlights the potential role of PTPN13 in the progression of ccRCC.
Collapse
Affiliation(s)
- Qingzhi Long
- Department of Urology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiping Sun
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Lv
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Liang
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huixian Li
- Department of Nephrology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xudong Li
- Department of Urology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
192
|
Verma P, Mittal P, Singh A, Singh IK. New Entrants into Clinical Trials for Targeted Therapy of Breast Cancer: An Insight. Anticancer Agents Med Chem 2020; 19:2156-2176. [PMID: 31656157 DOI: 10.2174/1871520619666191018172926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer is too complex with various different molecular alterations involved in its pathogenesis and progression. Over the decade, we have seen a surge in the development of drugs for bimolecular targets and for the signal transduction pathways involved in the treatment line of breast cancer. These drugs, either alone or in combination with conventional treatments like chemotherapy, hormone therapy and radiotherapy, will help oncologists to get a better insight and do the needful treatment. These novel therapies bring various challenges along with them, which include the dosage selection, patient selection, schedule of treatment and weighing of clinical benefits over side effects. In this review, we highlight the recently studied target molecules that have received indications in breast carcinoma, both in the localized and in an advanced state and about their inhibitors which are in clinical development which can give the immense potential to clinical care in the near future.
Collapse
Affiliation(s)
- Priyanka Verma
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Pooja Mittal
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, 110007, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.,Department of Molecular Ecology, Max-Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
193
|
Ge W, Duan H, Xiao L, Lv J, Jiang Y, Ding Z, Hu J, Zhang Y, Zhao X. 17β-estradiol protects sheep oviduct epithelial cells against lipopolysaccharide-induced inflammation in vitro. Mol Immunol 2020; 127:21-30. [PMID: 32905905 DOI: 10.1016/j.molimm.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/02/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
Estrogen has known anti-inflammatory effects, but the mechanism whereby 17β-estradiol (E2) protects oviduct sheep epithelial cells from inflammation remains unknown. In this study, we detected the E2 synthetase and E2 nuclear and membrane receptors in sheep oviducts, primarily in epithelial cells. Using lipopolysaccharide (LPS)-stimulated sheep oviduct epithelial cells as an in vitro inflammation model, we demonstrated that E2 attenuates the expression of inflammatory factors in a concentration-response manner. E2 also inhibited the LPS-stimulated phosphorylation of p38 MAPK and NF-κB p65 but did not reduce the phosphorylation of JNK and ERK 1/2. This attenuation was partially antagonized by an intracellular estrogen antagonist that was involved in genomic regulation and enhanced by a G protein-coupled estrogen receptor agonist that was involved in nongenomic cellular modulation. These results suggest that E2 has an inhibitory effect on LPS-induced oviduct epithelial cell inflammation in sheep, which is mediated by the downstream regulatory effects of estrogen receptors.
Collapse
Affiliation(s)
- Wenbo Ge
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102200, PR China
| | - Jianshu Lv
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yuting Jiang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Ziqiang Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
194
|
Ganesan S, Keating AF. Ovarian mitochondrial and oxidative stress proteins are altered by glyphosate exposure in mice. Toxicol Appl Pharmacol 2020; 402:115116. [PMID: 32634520 PMCID: PMC8500330 DOI: 10.1016/j.taap.2020.115116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Glyphosate (GLY) usage for weed control is extensive. To investigate ovarian impacts of chronic GLY exposure, female C57BL6 mice were orally administered saline as vehicle control (CT) or GLY at 0.25 (G0.25), 0.5 (G0.5), 1.0 (G1.0), 1.5 (G1.5), or 2 (G2.0) mg/kg for five days per wk. for 20 wks. Feed intake increased (P < .05) in G1.5 and G2.0 mice and body weight increased (P < .05) in G1.0 mice. There was no impact of GLY on estrous cyclicity, nor did GLY affect circulating levels of 17β-estradiol or progesterone. Exposure to GLY did not impact heart, liver, spleen, kidney or uterus weight. Both ovarian weight and follicle number were increased (P < .05) by G2.0 but not affected at lower GLY concentrations. There were no detectable effects of GLY on ovarian protein abundance of pAKT, AKT, pAKT:AKT, γH2AX, STAR, CYP11A1, HSD3B, CYP19A, ERA or ERB. Increased (P < .05) abundance of ATM protein was observed at G0.25 but not higher GLY doses. A dose-dependent effect (P < .10) of GLY exposure on ovarian protein abundance as quantified by LC-MS/MS was observed (G0.25-4 increased, 19 decreased; G0.5-5 increased, 25 decreased; G1.0-65 increased, 7 decreased; G1.5-145 increased, 2 decreased; G2.0-159 increased, 4 decreased). Pathway analysis was performed using DAVID and identified glutathione metabolism, metabolic and proteasome pathways as GLY exposure targets. These data indicate that chronic low-level exposure to GLY alters the ovarian proteome and may ultimately impact ovarian function.
Collapse
Affiliation(s)
- Shanthi Ganesan
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
195
|
Santoro M, De Amicis F, Aquila S, Bonofiglio D. Peroxisome proliferator-activated receptor gamma expression along the male genital system and its role in male fertility. Hum Reprod 2020; 35:2072-2085. [PMID: 32766764 DOI: 10.1093/humrep/deaa153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) acts as a ligand activated transcription factor and regulates processes, such as energy homeostasis, cell proliferation and differentiation. PPARγ binds to DNA as a heterodimer with retinoid X receptor and it is activated by polyunsaturated fatty acids and fatty acid derivatives, such as prostaglandins. In addition, the insulin-sensitizing thiazolidinediones, such as rosiglitazone, are potent and specific activators of PPARγ. PPARγ is present along the hypothalamic-pituitary-testis axis and in the testis, where low levels in Leydig cells and higher levels in Sertoli cells as well as in germ cells have been found. High amounts of PPARγ were reported in the normal epididymis and in the prostate, but the receptor was almost undetectable in the seminal vesicles. Interestingly, in the human and in pig, PPARγ protein is highly expressed in ejaculated spermatozoa, suggesting a possible role of PPARγ signaling in the regulation of sperm biology. This implies that both natural and synthetic PPARγ ligands may act directly on sperm improving its performance. Given the close link between energy balance and reproduction, activation of PPARγ may have promising metabolic implications in male reproductive functions. In this review, we first describe PPARγ expression in different compartments of the male reproductive axis. Subsequently, we discuss the role of PPARγ in both physiological and several pathological conditions related to the male fertility.
Collapse
Affiliation(s)
- Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| |
Collapse
|
196
|
Dey P, Kundu A, Han SH, Kim KS, Park JH, Yoon S, Kim IS, Kim HS. Biological Evaluation of Oxindole Derivative as a Novel Anticancer Agent against Human Kidney Carcinoma Cells. Biomolecules 2020; 10:1260. [PMID: 32878322 PMCID: PMC7565513 DOI: 10.3390/biom10091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Renal cell carcinoma has emerged as one of the leading causes of cancer-related deaths in the USA. Here, we examined the anticancer profile of oxindole derivatives (SH-859) in human renal cancer cells. Targeting 786-O cells by SH-859 inhibited cell growth and affected the protein kinase B/mechanistic target of rapamycin 1 pathway, which in turn downregulated the expression of glycolytic enzymes, including lactate dehydrogenase A and glucose transporter-1, as well as other signaling proteins. Treatment with SH-859 altered glycolysis, mitochondrial function, and levels of adenosine triphosphate and cellular metabolites. Flow cytometry revealed the induction of apoptosis and G0/G1 cell cycle arrest in renal cancer cells following SH-859 treatment. Induction of autophagy was also confirmed after SH-859 treatment by acridine orange and monodansylcadaverine staining, immunocytochemistry, and Western blot analyses. Finally, SH-859 also inhibited the tumor development in a xenograft model. Thus, SH-859 can serve as a potential molecule for the treatment of human renal carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea; (P.D.); (A.K.); (S.H.H.); (K.-S.K.); (J.H.P.); (S.Y.)
| |
Collapse
|
197
|
Molecular characterization and expression analysis of foxo3l in response to exogenous hormones in black rockfish (Sebastes schlegelii). Gene 2020; 753:144777. [PMID: 32428695 DOI: 10.1016/j.gene.2020.144777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
As a crucial member of the Forkhead Box family, class O (FoxO) plays an essential role in growth, cell differentiation, metabolism, immunization, and apoptosis. Meanwhile, FoxO3 is the primary regulator and effective inhibitor of primordial follicle activation. In this study, seven foxo genes were identified in black rockfish (Sebastes schlegelii), including two foxo1 genes (foxo1a, foxo1b), two foxo3 genes (foxo3, foxo3l), one foxo4 gene, and two foxo6 genes (foxo6a, foxo6b). foxo3l was derived from teleost-specific whole-genome duplication events. Evaluation of tissue expression pattern revealed that foxo3l displayed sexually dimorphic expression with a high level in the ovary and spatial expression only in the cytoplasm of follicle cells and oocytes. When the ovaries were stimulated by estrogen and gonadotropin, foxo3l expression was remarkably reduced, and the effect of androgen was completely different. We considered that foxo3l lost its ability to inhibit follicular precocity because of mass ovulation by hormone stimulation, resulting in its decreased expression. Such evidence indicated that foxo3l is an important regulator of reproduction-related functions in black rockfish. This study provides new insights into foxo3l genes for further functional research in teleost.
Collapse
|
198
|
Zhang J, Zhang Y, Zheng S, Liu Y, Chang L, Pan G, Hu L, Zhang S, Liu J, Kim S, Dong J, Ding Z. PAK Membrane Translocation and Phosphorylation Regulate Platelet Aggregation Downstream of Gi and G12/13 Pathways. Thromb Haemost 2020; 120:1536-1547. [PMID: 32854120 DOI: 10.1055/s-0040-1714745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Platelet activation plays a pivotal role in physiological hemostasis and pathological thrombosis causing heart attack and stroke. Previous studies conclude that simultaneous activation of Gi and G12/13 signaling pathways is sufficient to cause platelet aggregation. However, using Gq knockout mice and Gq-specific inhibitors, we here demonstrated that platelet aggregation downstream of coactivation of Gi and G12/13 depends on agonist concentrations; coactivation of Gi and G12/13 pathways only induces platelet aggregation under higher agonist concentrations. We confirmed Gi and G12/13 pathway activation by showing cAMP (cyclic adenosine monophosphate) decrease and RhoA activation in platelets stimulated at both low and high agonist concentrations. Interestingly, we found that though Akt and PAK (p21-activated kinase) translocate to the platelet membrane upon both low and high agonist stimulation, membrane-translocated Akt and PAK only phosphorylate at high agonist concentrations, correlating well with platelet aggregation downstream of concomitant Gi and G12/13 pathway activation. PAK inhibitor abolishes Akt phosphorylation, inhibits platelet aggregation in vitro and arterial thrombus formation in vivo. We propose that the PAK-PI3K/Akt pathway mediates platelet aggregation downstream of Gi and G12/13, and PAK may represent a potential antiplatelet and antithrombotic target.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shuang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yangyang Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanxing Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liang Hu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Soochong Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jianzeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongren Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
199
|
Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, Deng N. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol 2020; 10:1451. [PMID: 32983976 PMCID: PMC7477343 DOI: 10.3389/fonc.2020.01451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor angiogenesis plays an important role in the progression and metastasis of ovarian cancer. EGFL6 protein is highly expressed in ovarian cancer and has been proposed to play an important role in promoting tumor angiogenesis. Here, a CRISPR/Cas9 system was used to knockout the EGFL6 gene in the ovarian cancer cell line SKOV3, using specific guide RNA targeting the exons of EGFL6. The knockout of EGFL6 markedly inhibited the proliferation, migration, and invasion of SKOV3 cells, as well as promoted apoptosis of tumor cells. In the nude mouse model of ovarian cancer, knockout of EGFL6 remarkably inhibited tumor growth and angiogenesis. The transcript profile assays detected 4,220 differentially expressed genes in the knockout cells, including 87 genes that were correlated to proliferation, migration, invasion, and angiogenesis. Moreover, Western blotting confirmed that EGFL6 knockout downregulated the FGF-2/PDGFB signaling pathway. Thus, the results of this study indicated that EGFL6 could regulate cell proliferation, migration, and angiogenesis in ovarian cancer cells by regulating the FGF-2/PDGFB signaling pathway.
Collapse
Affiliation(s)
- Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Tongyi Lu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Yinmei Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Simin Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, China
| |
Collapse
|
200
|
Endo H, Inoue I, Masunaka K, Tanaka M, Yano M. Curcumin induces apoptosis in lung cancer cells by 14-3-3 protein-mediated activation of Bad. Biosci Biotechnol Biochem 2020; 84:2440-2447. [PMID: 32841581 DOI: 10.1080/09168451.2020.1808443] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The anticancer effects of curcumin are based on the induction of apoptosis, but the specific mechanisms have not yet been fully elucidated. To address this issue, we investigated the effects of curcumin on the intrinsic apoptosis pathway using mitochondria from A549 cells. Curcumin decreased the levels of 14-3-3 proteins, key molecules that inhibit the activation of proapoptotic factors known as BH3-only proteins (e.g. Bad). Curcumin-induced suppression of 14-3-3 protein levels was associated with reduced cytosolic Bad and elevation of mitochondrial Bad, leading to a drop in the mitochondrial membrane potential. 14-3-3 proteins generally interact with Bad phosphorylated by AKT, thus preventing its translocation to the mitochondria where it can promote cell death. Curcumin not only decreased the expression of 14-3-3 proteins but also promoted Bad dephosphorylation in an AKT-dependent fashion. Our results provide novel evidence for the induction of apoptosis by curcumin at multiple stages of the mitochondrial cascade.
Collapse
Affiliation(s)
- Hiroshi Endo
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Izumi Inoue
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Kimiko Masunaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Masaya Tanaka
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| | - Mihiro Yano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture , Hikone, Shiga 522-8533,Japan
| |
Collapse
|