151
|
Pingault L, Varsani S, Palmer N, Ray S, Williams WP, Luthe DS, Ali JG, Sarath G, Louis J. Transcriptomic and volatile signatures associated with maize defense against corn leaf aphid. BMC PLANT BIOLOGY 2021; 21:138. [PMID: 33726668 PMCID: PMC7968207 DOI: 10.1186/s12870-021-02910-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Maize (Zea mays L.) is a major cereal crop, with the United States accounting for over 40% of the worldwide production. Corn leaf aphid [CLA; Rhopalosiphum maidis (Fitch)] is an economically important pest of maize and several other monocot crops. In addition to feeding damage, CLA acts as a vector for viruses that cause devastating diseases in maize. We have shown previously that the maize inbred line Mp708, which was developed by classical plant breeding, provides heightened resistance to CLA. However, the transcriptomic variation conferring CLA resistance to Mp708 has not been investigated. RESULTS In this study, we contrasted the defense responses of the resistant Mp708 genotype to those of the susceptible Tx601 genotype at the transcriptomic (mRNA-seq) and volatile blend levels. Our results suggest that there was a greater transcriptomic remodeling in Mp708 plants in response to CLA infestation compared to the Tx601 plants. These transcriptomic signatures indicated an activation of hormonal pathways, and regulation of sesquiterpenes and terpenoid synthases in a constitutive and inducible manner. Transcriptomic analysis also revealed that the resistant Mp708 genotype possessed distinct regulation of ethylene and jasmonic acid pathways before and after aphid infestation. Finally, our results also highlight the significance of constitutive production of volatile organic compounds (VOCs) in Mp708 and Tx601 plants that may contribute to maize direct and/or indirect defense responses. CONCLUSIONS This study provided further insights to understand the role of defense signaling networks in Mp708's resistance to CLA.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Suresh Varsani
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Nathan Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Swayamjit Ray
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - W Paul Williams
- Corn Host Plant Resistance Research Unit, USDA-ARS, Mississippi State, MS, 39762, USA
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
152
|
G protein and PLDδ are involved in JA to regulate osmotic stress responses in Arabidopsis thaliana. Biochem Biophys Rep 2021; 26:100952. [PMID: 33659715 PMCID: PMC7890375 DOI: 10.1016/j.bbrep.2021.100952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/05/2023] Open
Abstract
Jasmonic acid (JA) is regarded as an endogenous regulator which plays an important role in regulating plant growth, development and stress response. Using the seedlings of A. thaliana ecotype Col-0 (wild-type, WT), phospholipase Dδ (PLDδ) deficient mutant (pldδ), the G protein α subunit (GPA1) deficient mutant (gpa1-4), 9-Lipoxygenase (9-LOX) deficient mutants (lox1 and lox5) as materials, the effects of JA responding to osmotic stress and the functions of G protein and PLDδ in this response were investigated. The results showed that GPA1 involved in the regulation of JA to PLDδ under osmotic stress. Both GPA1 and PLDδ participated in the regulation of JA on the seed germination and osmotic tolerance. Exogenous MeJA reduced the EL and MDA in WT, but increased the EL and MDA in gpa1-4 and pldδ, indicating that GPA1 and PLDδ were involved in the protection of JA on the membrane. The genes expression levels, and the activities of PLDδ and LOX1 were significantly induced by osmotic stress. The LOX activity and JA content in pldδ seedings were lower obviously than those in WT, but were markedly increased and were higher than WT after applying phosphatidic acid (PA). These results demonstrated that JA responded to osmotic stress by regulating G protein and PLDδ in A. thaliana. PLDδ was located upstream of 9-LOX and involved in the JA biosynthesis. The endogenous JA content, G protein activity, PLD activity and LOX activity were increased under osmotic stress. Both GPA1 and PLDδ participated in the seed germination and drought tolerance regulated by JA. JA regulated G protein and PLDδ to respond to osmotic stress. PLDδ/PA is located upstream of 9-LOX and involved in the JA biosynthesis.
Collapse
|
153
|
Zhao Y, Jiang T, Li L, Zhang X, Yang T, Liu C, Chu J, Zheng B. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. J Genet Genomics 2021; 48:123-133. [PMID: 33903069 DOI: 10.1016/j.jgg.2021.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Plant reproduction requires the coordinated development of both male and female reproductive organs. Jasmonic acid (JA) plays an essential role in stamen filament elongation. However, the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear. Here, we show that the chromatin remodeling complex Imitation of Switch (ISWI) promotes stamen filament elongation by regulating JA biosynthesis. We show that AT-Rich Interacting Domain 5 (ARID5) interacts with CHR11, CHR17, and RLT1, several known subunits of ISWI. Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments. RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants. Consistently, the JA levels are drastically decreased in both arid5 and rlt mutants. Chromatin immunoprecipitation-quantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes. Importantly, exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants, leading to the partial recovery of fertility. Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI, thereby promoting stamen filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Youshang Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianyu Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
154
|
Jasmonates: biosynthesis, perception and signal transduction. Essays Biochem 2021; 64:501-512. [PMID: 32602544 DOI: 10.1042/ebc20190085] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
Jasmonates (JAs) are physiologically important molecules involved in a wide range of plant responses from growth, flowering, senescence to defence against abiotic and biotic stress. They are rapidly synthesised from α-linolenic acid (ALA; C18:3 ∆9,12,15) by a process of oxidation, cyclisation and acyl chain shortening involving co-operation between the chloroplast and peroxisome. The active form of JA is the isoleucine conjugate, JA-isoleucine (JA-Ile), which is synthesised in the cytoplasm. Other active metabolites of JA include the airborne signalling molecules, methyl JA (Me-JA) and cis-jasmone (CJ), which act as inter-plant signalling molecules activating defensive genes encoding proteins and secondary compounds such as anthocyanins and alkaloids. One of the key defensive metabolites in many plants is a protease inhibitor that inactivates the protein digestive capabilities of insects, thereby, reducing their growth. The receptor for JA-Ile is a ubiquitin ligase termed as SCFCoi1 that targets the repressor protein JA Zim domain (JAZ) for degradation in the 26S proteasome. Removal of JAZ allows other transcription factors (TFs) to activate the JA response. The levels of JA-Ile are controlled through catabolism by hydroxylating enzymes of the cytochrome P450 (CYP) family. The JAZ proteins act as metabolic hubs and play key roles in cross-talk with other phytohormone signalling pathways in co-ordinating genome-wide responses. Specific subsets of JAZ proteins are involved in regulating different response outcomes such as growth inhibition versus biotic stress responses. Understanding the molecular circuits that control plant responses to pests and pathogens is a necessary pre-requisite to engineering plants with enhanced resilience to biotic challenges for improved agricultural yields.
Collapse
|
155
|
Yang Y, Li N, Hui W, Yuan B, Fan P, Liu J, Wang H, Feng D. Seed-specific expression of TaYUC10 significantly increases auxin and protein content in wheat seeds. PLANT CELL REPORTS 2021; 40:301-314. [PMID: 33179162 DOI: 10.1007/s00299-020-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Present study revealed that specific expression of TaYUC10.3 in wheat young seeds could increase the content of auxin, and protein. Auxin is a vital endogenous hormone in plants, which is involved in the regulation of various physiological and biochemical processes in plants. The flavin-containing monooxygenase encoded by the YUCCA gene is a rate-limiting enzyme in the tryptophan-dependent pathway of auxin synthesis. TaYUC10.3 was identified, cloned and found that it was abundantly expressed in wheat young seeds. In this study, a seed-specific expression vector of TaYUC10.3 was constructed with the promoter of 1Bx17 glutenin subunit gene and transformed wheat using the particle bombardment method. The quantitative RT-PCR showed that TaYUC10.3 was expressed in a large amount in young seeds of the transgenic lines. Plant hormone-targeted metabolomics showed that the auxin content of the transgenic lines was significantly increased compared with controls. The GC / MS non-targeted metabolite multiple statistical analyses showed that the variable importance in projection (VIP) of tryptophan reduced in the transgenic lines. Simultaneously, the VIP of indole acetic acid increased. The precursor amino acids for synthesizing some proteins and carbohydrates were upregulated in the transgenic lines. Subsequently, it was found that the protein content of the seeds of the transgenic TaYUC10.3 wheat was significantly higher than that of the control. The wet gluten content and sedimentation value of the transgenic TaYUC10.3 wheat were also high. This result indicated that TaYUC10.3 might participate in auxin synthesis and affects the protein content of wheat seeds.
Collapse
Affiliation(s)
- Yanlin Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Na Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenrong Hui
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Binjie Yuan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Pan Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingxia Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Honggang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China
| | - Deshun Feng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
156
|
Wei X, Vrieling K, Kim HK, Mulder PPJ, Klinkhamer PGL. Application of methyl jasmonate and salicylic acid lead to contrasting effects on the plant's metabolome and herbivory. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110784. [PMID: 33487359 DOI: 10.1016/j.plantsci.2020.110784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 05/13/2023]
Abstract
Phytohormone applications are used to mimic herbivory and can induce plant defences. This study investigated (i) metabolomic changes in leaf tissues of Jacobaea vulgaris and J. aquatica after methyl jasmonate (MeJA) and salicylic acid (SA) applications and (ii) the effects on a leaf-chewing, a leaf-mining and a piercing-sucking herbivore. MeJA treated leaves showed clearly different metabolomic profiles than control leaves, while the differences in metabolomic profiles between SA treated leaves and control leaves were less clear. More NMR peaks increased than decreased after MeJA treatment while this pattern was reversed after SA treatment. The leaf-chewing (Mamestra brassicae) and the leaf-mining herbivores (Liriomyza trifolii) fed less on MeJA-treated leaves compared to control and SA-treated leaves while they fed equally on the latter two. In J. aquatica but not in J. vulgaris, SA treatment reduced feeding damage by the piercing-sucking herbivore (Frankliniella occidentalis). Based on the herbivory and metabolomic data after phytohormone application, we made speculations as follows: For all three herbivore species, plants with high levels of threonine and citric acid showed less herbivory while plants with high levels of glucose showed more herbivory. Herbivory by thrips was lower on plants with high levels of alanine while it was higher on plants with high levels of 3,5-dicaffeoylquinic acid. The plant compounds that related to feeding of piercing-sucking herbivore were further verified with previous independent experiments.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Klaas Vrieling
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Hye Kyong Kim
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- RIKILT-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Peter G L Klinkhamer
- Plant Science and Natural Products, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
157
|
Jeong J, Park S, Im JH, Yi H. Genome-wide identification of GH3 genes in Brassica oleracea and identification of a promoter region for anther-specific expression of a GH3 gene. BMC Genomics 2021; 22:22. [PMID: 33407107 PMCID: PMC7789250 DOI: 10.1186/s12864-020-07345-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Background The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13–1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13–1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions Sixty-two base pairs (bp) region (− 340 ~ − 279 bp upstream from start codon) and about 450 bp region (− 1489 to − 1017 bp) in BoGH3.13–1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07345-9.
Collapse
Affiliation(s)
- Jiseong Jeong
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunhee Park
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jeong Hui Im
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hankuil Yi
- Department of Biological Sciences, College of Biological Science and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
158
|
Pattyn J, Vaughan‐Hirsch J, Van de Poel B. The regulation of ethylene biosynthesis: a complex multilevel control circuitry. THE NEW PHYTOLOGIST 2021; 229:770-782. [PMID: 32790878 PMCID: PMC7820975 DOI: 10.1111/nph.16873] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 05/06/2023]
Abstract
The gaseous plant hormone ethylene is produced by a fairly simple two-step biosynthesis route. Despite this pathway's simplicity, recent molecular and genetic studies have revealed that the regulation of ethylene biosynthesis is far more complex and occurs at different layers. Ethylene production is intimately linked with the homeostasis of its general precursor S-adenosyl-l-methionine (SAM), which experiences transcriptional and posttranslational control of its synthesising enzymes (SAM synthetase), as well as the metabolic flux through the adjacent Yang cycle. Ethylene biosynthesis continues from SAM by two dedicated enzymes: 1-aminocyclopropane-1-carboxylic (ACC) synthase (ACS) and ACC oxidase (ACO). Although the transcriptional dynamics of ACS and ACO have been well documented, the first transcription factors that control ACS and ACO expression have only recently been discovered. Both ACS and ACO display a type-specific posttranslational regulation that controls protein stability and activity. The nonproteinogenic amino acid ACC also shows a tight level of control through conjugation and translocation. Different players in ACC conjugation and transport have been identified over the years, however their molecular regulation and biological significance is unclear, yet relevant, as ACC can also signal independently of ethylene. In this review, we bring together historical reports and the latest findings on the complex regulation of the ethylene biosynthesis pathway in plants.
Collapse
Affiliation(s)
- Jolien Pattyn
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - John Vaughan‐Hirsch
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| | - Bram Van de Poel
- Molecular Plant Hormone Physiology LaboratoryDivision of Crop BiotechnicsDepartment of BiosystemsUniversity of LeuvenWillem de Croylaan 42Leuven3001Belgium
| |
Collapse
|
159
|
Inagaki H, Miyamoto K, Ando N, Murakami K, Sugisawa K, Morita S, Yumoto E, Teruya M, Uchida K, Kato N, Kaji T, Takaoka Y, Hojo Y, Shinya T, Galis I, Nozawa A, Sawasaki T, Nojiri H, Ueda M, Okada K. Deciphering OPDA Signaling Components in the Momilactone-Producing Moss Calohypnum plumiforme. FRONTIERS IN PLANT SCIENCE 2021; 12:688565. [PMID: 34135933 PMCID: PMC8201998 DOI: 10.3389/fpls.2021.688565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 05/17/2023]
Abstract
Jasmonic acid (JA) and its biologically active form jasmonoyl-L-isoleucine (JA-Ile) regulate defense responses to various environmental stresses and developmental processes in plants. JA and JA-Ile are synthesized from α-linolenic acids derived from membrane lipids via 12-oxo-phytodienoic acid (OPDA). In the presence of JA-Ile, the COI1 receptor physically interacts with JAZ repressors, leading to their degradation, resulting in the transcription of JA-responsive genes by MYC transcription factors. Although the biosynthesis of JA-Ile is conserved in vascular plants, it is not recognized by COI1 in bryophytes and is not biologically active. In the liverwort Marchantia polymorpha, dinor-OPDA (dn-OPDA), a homolog of OPDA with two fewer carbons, and its isomer dn-iso-OPDA accumulate after wounding and are recognized by COI1 to activate downstream signaling. The moss Calohypnum plumiforme produces the antimicrobial-specialized metabolites, momilactones. It has been reported that JA and JA-Ile are not detected in C. plumiforme and that OPDA, but not JA, can induce momilactone accumulation and the expression of these biosynthetic genes, suggesting that OPDA or its derivative is a biologically active molecule in C. plumiforme that induces chemical defense. In the present study, we investigated the biological functions of OPDA and its derivatives in C. plumiforme. Searching for the components potentially involving oxylipin signaling from transcriptomic and genomic data revealed that two COI1, three JAZ, and two MYC genes were present. Quantification analyses revealed that OPDA and its isomer iso-OPDA accumulated in larger amounts than dn-OPDA and dn-iso-OPDA after wounding. Moreover, exogenously applied OPDA, dn-OPDA, or dn-iso-OPDA induced the transcription of JAZ genes. These results imply that OPDA, dn-OPDA, and/or their isomers potentially act as biologically active molecules to induce the signaling downstream of COI1-JAZ. Furthermore, co-immunoprecipitation analysis showed the physical interaction between JAZs and MYCs, indicating the functional conservation of JAZs in C. plumiforme with other plants. These results suggest that COI1-JAZ-MYC mediated signaling is conserved and functional in C. plumiforme.
Collapse
Affiliation(s)
- Hideo Inagaki
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Koji Miyamoto
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- *Correspondence: Koji Miyamoto,
| | - Noriko Ando
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Kohei Murakami
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Koki Sugisawa
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Shion Morita
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| | - Miyu Teruya
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenichi Uchida
- Graduate School of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Japan
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Japan
| | - Nobuki Kato
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Takuya Kaji
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yousuke Takaoka
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tomonori Shinya
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Akira Nozawa
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Hideaki Nojiri
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Minoru Ueda
- Graduate School of Science, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kazunori Okada
- Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
160
|
Strawberry FaWRKY25 Transcription Factor Negatively Regulated the Resistance of Strawberry Fruits to Botrytis cinerea. Genes (Basel) 2020; 12:genes12010056. [PMID: 33396436 PMCID: PMC7824073 DOI: 10.3390/genes12010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023] Open
Abstract
WRKY genes and jasmonic acid (JA) play a crucial role in plants’ responses against biotic and abiotic stress. However, the regulating mechanism of WRKY genes on strawberry fruits’ resistance against Botrytis cinerea is largely unknown, and few studies have been performed on their effect on the JA-mediated defense mechanism against B. cinerea. This study explored the effect of FaWRKY25 on the JA-mediated strawberry resistance against B. cinerea. Results showed that the JA content decreased significantly as the fruits matured, whereas the FaWRKY25 expression rose substantially, which led to heightened susceptibility to B. cinerea and in strawberries. External JA treatment significantly increased the JA content in strawberries and reduced the FaWRKY25 expression, thereby enhancing the fruits’ resistance against B. cinerea. FaWRKY25 overexpression significantly lowered the fruits’ resistance against B. cinerea, whereas FaWRKY25 silencing significantly increased resistance. Moreover, FaWRKY25 overexpression significantly lowered the JA content, whereas FaWRKY25 silencing significantly increased it. FaWRKY25 expression level substantially affects the expression levels of genes related to JA biosynthesis and metabolism, other members of the WRKY family, and defense genes. Accordingly, FaWRKY25 plays a crucial role in regulating strawberries’ resistance against B. cinerea and may negatively regulate their JA-mediated resistance mechanism against B. cinerea.
Collapse
|
161
|
A comparative UHPLC-Q/TOF-MS-based eco-metabolomics approach reveals temperature adaptation of four Nepenthes species. Sci Rep 2020; 10:21861. [PMID: 33318532 PMCID: PMC7736350 DOI: 10.1038/s41598-020-78873-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifically in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the different Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco-metabolomics approach to identify temperature stressed individual metabolic fingerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafflesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards different geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fingerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecific responses and adaptation of N. rafflesiana and N. northiana likely reflected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafflesiana, to produce metabolites needed to deal with increased temperatures, offering hope for the plant genus and future adaption in times of changing climate.
Collapse
|
162
|
Valsamakis G, Bittner N, Fatouros NE, Kunze R, Hilker M, Lortzing V. Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. FRONTIERS IN PLANT SCIENCE 2020; 11:619589. [PMID: 33362842 PMCID: PMC7755604 DOI: 10.3389/fpls.2020.619589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 05/20/2023]
Abstract
Plants can respond to eggs laid by herbivorous insects on their leaves by preparing (priming) their defense against the hatching larvae. Egg-mediated priming of defense is known for several plant species, including Brassicaceae. However, it is unknown yet for how long the eggs need to remain on a plant until a primed defense state is reached, which is ecologically manifested by reduced performance of the hatching larvae. To address this question, we used Arabidopsis thaliana, which carried eggs of the butterfly Pieris brassicae for 1-6 days prior to exposure to larval feeding. Our results show that larvae gained less biomass the longer the eggs had previously been on the plant. The strongest priming effect was obtained when eggs had been on the plant for 5 or 6 days, i.e., for (almost) the entire development time of the Pieris embryo inside the egg until larval hatching. Transcript levels of priming-responsive genes, levels of jasmonic acid-isoleucine (JA-Ile), and of the egg-inducible phytoalexin camalexin increased with the egg exposure time. Larval performance studies on mutant plants revealed that camalexin is dispensable for anti-herbivore defense against P. brassicae larvae, whereas JA-Ile - in concert with egg-induced salicylic acid (SA) - seems to be important for signaling egg-mediated primed defense. Thus, A. thaliana adjusts the kinetics of its egg-primed response to the time point of larval hatching. Hence, the plant is optimally prepared just in time prior to larval hatching.
Collapse
Affiliation(s)
- Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E. Fatouros
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
163
|
Bassal M, Abukhalaf M, Majovsky P, Thieme D, Herr T, Ayash M, Tabassum N, Al Shweiki MR, Proksch C, Hmedat A, Ziegler J, Lee J, Neumann S, Hoehenwarter W. Reshaping of the Arabidopsis thaliana Proteome Landscape and Co-regulation of Proteins in Development and Immunity. MOLECULAR PLANT 2020; 13:1709-1732. [PMID: 33007468 DOI: 10.1016/j.molp.2020.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 05/21/2023]
Abstract
Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis.Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.
Collapse
Affiliation(s)
- Mona Bassal
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohammad Abukhalaf
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Petra Majovsky
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Domenika Thieme
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Tobias Herr
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mohamed Ayash
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Naheed Tabassum
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Mhd Rami Al Shweiki
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Carsten Proksch
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Ali Hmedat
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Jörg Ziegler
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Steffen Neumann
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany
| | - Wolfgang Hoehenwarter
- Leibniz Institute of Plant Biochemistry, Biochemistry of Plant Interactions Department, Proteome Biology of Plant Interactions Research Group, Weinberg 3, Halle/Saale D-06120, Germany.
| |
Collapse
|
164
|
Chen YJ, Yang XX, Li WC, Zhao SQ. Knockdown of the DUF647 family member RUS4 impairs stamen development and pollen maturation in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110645. [PMID: 33218621 DOI: 10.1016/j.plantsci.2020.110645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ROOT UV-B SENSITIVE4 (RUS4) encodes a Domain of Unknown Function647 (DUF647) protein, whose function is poorly understood. We have previously shown the artificial microRNA knockdown Arabidopsis RUS4 plants, referred to as amiR-RUS4, have severely reduced male fertility with a defect in anther dehiscence. Here, we show that amiR-RUS4 plants are also defective in pollen maturation and germination. Promoter-reporter analysis shows that RUS4 is highly expressed in tapetal layer, developing microspores, mature and germinating pollen, strongly suggesting its role in the process of pollen maturation. As the translational RUS4-GFP fusion protein has been localized to the chloroplasts where the first step of jasmonic acid (JA) biosynthesis takes place, leading to the hypothesis that RUS4 may be involved in JA-mediated stamen development. We show that expression of several JA metabolic genes increased markedly in flower buds of the amiR-RUS4 plants compared to that of the wild-type. We further show that transcript abundance of a clade of the JA-responsive MYB transcript factor genes, especially MYB108, reduced significantly in stamens of amiR-RUS4 plants relative to the wild-type; these MYB transcript factors have been shown to be required for JA-mediated stamen and pollen maturation. Our data suggest that RUS4 may play a role in coordinating anther dehiscence and pollen maturation by affecting the expression of JA-related genes.
Collapse
Affiliation(s)
- Ya-Jie Chen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Xiao-Xue Yang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wen-Chao Li
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Shu-Qing Zhao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
165
|
Gupta A, Bhardwaj M, Tran LSP. Jasmonic Acid at the Crossroads of Plant Immunity and Pseudomonas syringae Virulence. Int J Mol Sci 2020; 21:E7482. [PMID: 33050569 PMCID: PMC7589129 DOI: 10.3390/ijms21207482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
Sensing of pathogen infection by plants elicits early signals that are transduced to affect defense mechanisms, such as effective blockage of pathogen entry by regulation of stomatal closure, cuticle, or callose deposition, change in water potential, and resource acquisition among many others. Pathogens, on the other hand, interfere with plant physiology and protein functioning to counteract plant defense responses. In plants, hormonal homeostasis and signaling are tightly regulated; thus, the phytohormones are qualified as a major group of signaling molecules controlling the most widely tinkered regulatory networks of defense and counter-defense strategies. Notably, the phytohormone jasmonic acid mediates plant defense responses to a wide array of pathogens. In this review, we present the synopsis on the jasmonic acid metabolism and signaling, and the regulatory roles of this hormone in plant defense against the hemibiotrophic bacterial pathogen Pseudomonas syringae. We also elaborate on how this pathogen releases virulence factors and effectors to gain control over plant jasmonic acid signaling to effectively cause disease. The findings discussed in this review may lead to ideas for the development of crop cultivars with enhanced disease resistance by genetic manipulation.
Collapse
Affiliation(s)
- Aarti Gupta
- Department of Life Sciences, POSTECH Biotech Center, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Mamta Bhardwaj
- Department of Botany, Hindu Girls College, Maharshi Dayanand University, Sonipat 131001, India;
| | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-19 22, Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
166
|
Panthapulakkal Narayanan S, Lung SC, Liao P, Lo C, Chye ML. The overexpression of OsACBP5 protects transgenic rice against necrotrophic, hemibiotrophic and biotrophic pathogens. Sci Rep 2020; 10:14918. [PMID: 32913218 PMCID: PMC7483469 DOI: 10.1038/s41598-020-71851-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
The most devastating diseases in rice (Oryza sativa) are sheath blight caused by the fungal necrotroph Rhizoctonia solani, rice blast by hemibiotrophic fungus Magnaporthe oryzae, and leaf blight by bacterial biotroph Xanthomonas oryzae (Xoo). It has been reported that the Class III acyl-CoA-binding proteins (ACBPs) such as those from dicots (Arabidopsis and grapevine) play a role in defence against biotrophic pathogens. Of the six Arabidopsis (Arabidopsis thaliana) ACBPs, AtACBP3 conferred protection in transgenic Arabidopsis against Pseudomonas syringae, but not the necrotrophic fungus, Botrytis cinerea. Similar to Arabidopsis, rice possesses six ACBPs, designated OsACBPs. The aims of this study were to test whether OsACBP5, the homologue of AtACBP3, can confer resistance against representative necrotrophic, hemibiotrophic and biotrophic phytopathogens and to understand the mechanisms in protection. Herein, when OsACBP5 was overexpressed in rice, the OsACBP5-overexpressing (OsACBP5-OE) lines exhibited enhanced disease resistance against representative necrotrophic (R. solani & Cercospora oryzae), hemibiotrophic (M. oryzae & Fusarium graminearum) and biotrophic (Xoo) phytopathogens. Progeny from a cross between OsACBP5-OE9 and the jasmonate (JA)-signalling deficient mutant were more susceptible than the wild type to infection by the necrotroph R. solani. In contrast, progeny from a cross between OsACBP5-OE9 and the salicylic acid (SA)-signalling deficient mutant was more susceptible to infection by the hemibiotroph M. oryzae and biotroph Xoo. Hence, enhanced resistance of OsACBP5-OEs against representative necrotrophs appears to be JA-dependent whilst that to (hemi)biotrophs is SA-mediated.
Collapse
Affiliation(s)
| | - Shiu-Cheung Lung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Pan Liao
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
167
|
Vincent C, Mesa T, Munné-Bosch S. Hormonal interplay in the regulation of fruit ripening and cold acclimation in avocados. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153225. [PMID: 32653729 DOI: 10.1016/j.jplph.2020.153225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/16/2020] [Accepted: 06/26/2020] [Indexed: 05/11/2023]
Abstract
Avocados (Persea americana Mill.) are climacteric fruits, the ripening of which during postharvest at room temperature is strongly ethylene dependent. However, the role of other phytohormones in the modulation of postharvest ripening of avocados is still poorly understood. The optimal ripening state of avocados is attained a few days after harvest depending on the genotype, growing region and initial maturity stage of the fruit, and cold temperature storage is commonly used to delay this process. Here, we hypothesized that the ripening of avocados at room temperature may be governed not only by ethylene, but also by other phytohormones. With this aim, we analyzed the hormonal profiling of avocados subjected to either 4 °C and 25 °C during 10 days of postharvest. A biphasic response was observed during postharvest ripening of avocados at room temperature. While ethylene alone appeared to govern fruit ripening during the first transfer from cold to room temperature, a complex hormonal interplay occurred during ripening of avocados leading to a progressive fruit softening at room temperatures. Aside from ethylene, auxin, gibberellins, jasmonates and ABA appeared to be involved in avocado fruit ripening during postharvest at room temperature. Cold storage for a period of 10 days inhibited this hormonal response related to ripening. Furthermore, avocados stored at cold temperatures underwent a quick response in order to tolerate cold stress leading to changes in endogenous ABA and jasmonates. We conclude that a complex hormonal interplay, rather than ethylene alone, modulates postharvest ripening of avocados and that cold storage can effectively be employed as a technique to prevent avocados from a rapid ripening thanks to the cold stress tolerance mechanisms deployed by fruits through multiple hormonal regulation.
Collapse
Affiliation(s)
- Celia Vincent
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Tania Mesa
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
168
|
Kuo HY, Kang FC, Wang YY. Glucosinolate Transporter1 involves in salt-induced jasmonate signaling and alleviates the repression of lateral root growth by salt in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110487. [PMID: 32563451 DOI: 10.1016/j.plantsci.2020.110487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 05/15/2023]
Abstract
Salt stress has negative impact on plant development and growth. Jasmonic acid (JA), a phytohormone, has been shown to involve in salt-induced inhibition of primary root growth. The Arabidopsis Glucosinolate transporter1 (GTR1/NPF2.10) is characterized as a JA-Ile, a bioactive form of JA, transporter. However, whether GTR1 participates in salt responses is not clear. In this study, we confirmed that GTR1 is induced by both JA and salinity. Salt-induced JA signaling is affected in gtr1 mutant. The JA responsive genes, JAZ1, JAZ5, MYC2, LOX3, are down-regulated in gtr1 mutant. Phenotypic analyses showed that the salinity-induced lateral root growth inhibition is enhanced in gtr1 mutant, suggesting that GTR1 plays a positive role in lateral root development under salt stress. Interestingly, the expression of a Na+ transporter, HKT1, is upregulated in gtr1. Since HKT1 is a negative regulator for lateral root development under salt stress, we proposed that GTR1 alleviates the repression of lateral root development by salt stress by mediating JA signaling and repressing HKT1 expression. This study demonstrates that GTR1 is the molecular link between salt stress, JA signaling, and lateral root development.
Collapse
Affiliation(s)
- Hsin-Yi Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Feng-Chih Kang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ya-Yun Wang
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan; Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
169
|
Scalabrin E, Radaelli M, Capodaglio G. Effects of Water Deficit and Heat Stress on Nicotiana langsdorffii Metabolomic Pattern Modified by Insertion of rolD Gene from Agrobacterium rhizogenes. Metabolites 2020; 10:E310. [PMID: 32751065 PMCID: PMC7463493 DOI: 10.3390/metabo10080310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022] Open
Abstract
Abiotic stresses are major factors that negatively affect plant growth and productivity. Plants have developed complex strategies to ensure their survival and reproduction under adverse conditions, activating mechanisms that involve changes at different metabolic levels. In order to select stress-resistant species, research has focused on molecular studies and genetic engineering, showing promising results. In this work, the insertion of the rolD gene from Agrobacterium rhizogenes into Nicotiana langsdorffii plants is investigated, in order to assess the potential of this genetic modification towards mitigating water and heat stresses. Different approaches were combined: a high-throughput metabolomics and ionomics study was performed, together with the determination of important plant phytohormones. The aim was to identify the influence of abiotic stresses on plants and to highlight the effects of the rolD genetic modification on plant stress response. The most relevant compounds for each kind of stress were identified, belonging mainly to the classes of lipids, acyl sugars, glycosides, and amino acid derivatives. Water stress (WS) determined a decrease of elements and secondary metabolites, while amino acids and their derivatives increased, proving to be key molecules in this type of stress. RolD plants exposed to high temperature stress (HS) presented higher dry weight levels than controls, as well as increased amounts of K and adenosine and lower levels of damage-associated metabolites, suggesting the increased resistance of rolD-modified plants toward HS.
Collapse
Affiliation(s)
- Elisa Scalabrin
- Department of Environmental Sciences, Informatics and Statistics, Ca’Foscari University of Venice, Via Torino 155, Mestre, 30173 Venezia, Italy; (M.R.); (G.C.)
| | | | | |
Collapse
|
170
|
Guzman AR, Kim JG, Taylor KW, Lanver D, Mudgett MB. Tomato Atypical Receptor Kinase1 Is Involved in the Regulation of Preinvasion Defense. PLANT PHYSIOLOGY 2020; 183:1306-1318. [PMID: 32385090 PMCID: PMC7333691 DOI: 10.1104/pp.19.01400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/29/2020] [Indexed: 05/19/2023]
Abstract
Tomato Atypical Receptor Kinase 1 (TARK1) is a pseudokinase required for postinvasion immunity. TARK1 was originally identified as a target of the Xanthomonas euvesicatoria effector protein Xanthomonas outer protein N (XopN), a suppressor of early defense signaling. How TARK1 participates in immune signal transduction is not well understood. To gain insight into TARK1's role in tomato (Solanum lycopersicum) immunity, we used a proteomics approach to isolate and identify TARK1-associated immune complexes formed during infection. We found that TARK1 interacts with proteins predicted to be associated with stomatal movement. TARK1 CRISPR mutants and overexpression (OE) lines did not display differences in light-induced stomatal opening or abscisic acid-induced stomatal closure; however, they did show altered stomatal movement responses to bacteria and biotic elicitors. Notably, we found that TARK1 CRISPR plants were resistant to Pseudomonas syringae pathovar tomato strain DC3000-induced stomatal reopening, and TARK1 OE plants were insensitive to P syringae pathovar tomato strain DC3118 (coronatine deficit)-induced stomatal closure. We also found that TARK1 OE in leaves resulted in increased susceptibility to bacterial invasion. Collectively, our results indicate that TARK1 functions in stomatal movement only in response to biotic elicitors and support a model in which TARK1 regulates stomatal opening postelicitation.
Collapse
Affiliation(s)
- Andrew R Guzman
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Kyle W Taylor
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Daniel Lanver
- Department of Biology, Stanford University, Stanford, California 94305-5020
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, California 94305-5020
| |
Collapse
|
171
|
Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of HvTIP Genes and Nitrogen Homeostasis in Barley. Int J Mol Sci 2020; 21:ijms21124335. [PMID: 32570736 PMCID: PMC7352393 DOI: 10.3390/ijms21124335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022] Open
Abstract
Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments. We identified the cis-regulatory motifs for the methyl jasmonate (MeJA)-induced genes in the promoter regions of all the HvTIP genes, which are active in barley seedlings, and thus we hypothesised that the HvTIP expression could be a response to jasmonate signalling. In the presented study, we determined the effect of methyl jasmonate on the growth parameters and photosynthesis efficiency of barley seedlings that had been exposed to different doses of MeJA (15–1000 µM × 120 h) in a hydroponic solution. All of the applied MeJA concentrations caused a significant reduction of barley seedling growth, which was most evident in the length of the first leaf sheath and dry leaf weight. The observed decrease of the PSII parameters after the exposure to high doses of MeJA (500 µM or higher) was associated with the downregulation of HvPsbR gene encoding one of the extrinsic proteins of the Oxygen Evolving Complex. The reduced expression of HvPsbR might lead to the impairment of the OEC action, manifested by the occurrence of the K-band in an analysis of fluorescence kinetics after MeJA treatment as well as reduced photosynthesis efficiency. Furthermore, methyl jasmonate treatment caused a decrease in the nitrogen content in barley leaves, which was associated with an increased expression the four tonoplast aquaporin genes (HvTIP1;2, HvTIP2;2, HvTIP4;1 and HvTIP4;2) predicted to transport the nitrogen compounds from the vacuole to the cytosol. The upregulation of the nitrogen-transporting HvTIPs might suggest their involvement in the vacuolar unloading of ammonia and urea, which both could be remobilised when the nitrogen content in the leaves decreases. Our research provides tips on physiological role of the individual TIP subfamily members of aquaporins under methyl jasmonate action.
Collapse
|
172
|
Marquis V, Smirnova E, Poirier L, Zumsteg J, Schweizer F, Reymond P, Heitz T. Stress- and pathway-specific impacts of impaired jasmonoyl-isoleucine (JA-Ile) catabolism on defense signalling and biotic stress resistance. PLANT, CELL & ENVIRONMENT 2020; 43:1558-1570. [PMID: 32162701 DOI: 10.1111/pce.13753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Jasmonate synthesis and signalling are essential for plant defense upregulation upon herbivore or microbial attacks. Stress-induced accumulation of jasmonoyl-isoleucine (JA-Ile), the bioactive hormonal form triggering transcriptional changes, is dynamic and transient because of the existence of potent removal mechanisms. Two JA-Ile turnover pathways operate in Arabidopsis, consisting in cytochrome P450 (CYP94)-mediated oxidation and deconjugation by the amidohydrolases IAR3/ILL6. Understanding their impacts was previously blurred by gene redundancy and compensation mechanisms. Here we address the consequences of blocking these pathways on jasmonate homeostasis and defenses in double-2ah, triple-3cyp mutants, and a quintuple-5ko line deficient in all known JA-Ile-degrading activities. These lines reacted differently to either mechanical wounding/insect attack or fungal infection. Both pathways contributed additively to JA-Ile removal upon wounding, but their impairement had opposite impacts on insect larvae feeding. By contrast, only the ah pathway was essential for JA-Ile turnover upon infection by Botrytis, yet only 3cyp was more fungus-resistant. Despite building-up extreme JA-Ile levels, 5ko displayed near-wild-type resistance in both bioassays. Molecular analysis indicated that restrained JA-Ile catabolism resulted in enhanced defense/resistance only when genes encoding negative regulators were not simultaneously overstimulated. This occurred in discrete stress- and pathway-specific combinations, providing a framework for future defense-enhancing strategies.
Collapse
Affiliation(s)
- Valentin Marquis
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laure Poirier
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| | - Fabian Schweizer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes (IBMP) du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
173
|
The Role of Stress-Responsive Transcription Factors in Modulating Abiotic Stress Tolerance in Plants. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060788] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abiotic stresses, such as drought, high temperature, and salinity, affect plant growth and productivity. Furthermore, global climate change may increase the frequency and severity of abiotic stresses, suggesting that development of varieties with improved stress tolerance is critical for future sustainable crop production. Improving stress tolerance requires a detailed understanding of the hormone signaling and transcriptional pathways involved in stress responses. Abscisic acid (ABA) and jasmonic acid (JA) are key stress-response hormones in plants, and some stress-responsive transcription factors such as ABFs and MYCs function as direct components of ABA and JA signaling, playing a pivotal role in plant tolerance to abiotic stress. In addition, extensive studies have identified other stress-responsive transcription factors belonging to the NAC, AP2/ERF, MYB, and WRKY families that mediate plant response and tolerance to abiotic stress. These suggest that transcriptional regulation of stress-responsive genes is an essential step to determine the mechanisms underlying plant stress responses and tolerance to abiotic stress, and that these transcription factors may be important targets for development of crops with enhanced abiotic stress tolerance. In this review, we briefly describe the mechanisms underlying plant abiotic stress responses, focusing on ABA and JA metabolism and signaling pathways. We then summarize the diverse array of transcription factors involved in plant responses to abiotic stress, while noting their potential applications for improvement of stress tolerance.
Collapse
|
174
|
Dallery JF, Zimmer M, Halder V, Suliman M, Pigné S, Le Goff G, Gianniou DD, Trougakos IP, Ouazzani J, Gasperini D, O’Connell RJ. Inhibition of jasmonate-mediated plant defences by the fungal metabolite higginsianin B. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2910-2921. [PMID: 32006004 PMCID: PMC7260715 DOI: 10.1093/jxb/eraa061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/29/2020] [Indexed: 05/22/2023]
Abstract
Infection of Arabidopsis thaliana by the ascomycete fungus Colletotrichum higginsianum is characterized by an early symptomless biotrophic phase followed by a destructive necrotrophic phase. The fungal genome contains 77 secondary metabolism-related biosynthetic gene clusters, whose expression during the infection process is tightly regulated. Deleting CclA, a chromatin regulator involved in the repression of some biosynthetic gene clusters through H3K4 trimethylation, allowed overproduction of three families of terpenoids and isolation of 12 different molecules. These natural products were tested in combination with methyl jasmonate, an elicitor of jasmonate responses, for their capacity to alter defence gene induction in Arabidopsis. Higginsianin B inhibited methyl jasmonate-triggered expression of the defence reporter VSP1p:GUS, suggesting it may block bioactive jasmonoyl isoleucine (JA-Ile) synthesis or signalling in planta. Using the JA-Ile sensor Jas9-VENUS, we found that higginsianin B, but not three other structurally related molecules, suppressed JA-Ile signalling by preventing the degradation of JAZ proteins, the repressors of jasmonate responses. Higginsianin B likely blocks the 26S proteasome-dependent degradation of JAZ proteins because it inhibited chymotrypsin- and caspase-like protease activities. The inhibition of target degradation by higginsianin B also extended to auxin signalling, as higginsianin B treatment reduced auxin-dependent expression of DR5p:GUS. Overall, our data indicate that specific fungal secondary metabolites can act similarly to protein effectors to subvert plant immune and developmental responses.
Collapse
Affiliation(s)
- Jean-Félix Dallery
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Marlene Zimmer
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Vivek Halder
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Rijk Zwaan, De Lier, 2678 ZG, Netherlands
| | - Mohamed Suliman
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Current address: Desert Research Center, Cairo, Egypt
| | - Sandrine Pigné
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Géraldine Le Goff
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Despoina D Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | - Jamal Ouazzani
- Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles ICSN, Gif-sur-Yvette, France
| | - Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Correspondence: or
| | - Richard J O’Connell
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
- Correspondence: or
| |
Collapse
|
175
|
León J, Costa-Broseta Á, Castillo MC. RAP2.3 negatively regulates nitric oxide biosynthesis and related responses through a rheostat-like mechanism in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3157-3171. [PMID: 32052059 PMCID: PMC7260729 DOI: 10.1093/jxb/eraa069] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/11/2020] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is sensed through a mechanism involving the degradation of group-VII ERF transcription factors (ERFVIIs) that is mediated by the N-degron pathway. However, the mechanisms regulating NO homeostasis and downstream responses remain mostly unknown. To explore the role of ERFVIIs in regulating NO production and signaling, genome-wide transcriptome analyses were performed on single and multiple erfvii mutants of Arabidopsis following exposure to NO. Transgenic plants overexpressing degradable or non-degradable versions of RAP2.3, one of the five ERFVIIs, were also examined. Enhanced RAP2.3 expression attenuated the changes in the transcriptome upon exposure to NO, and thereby acted as a brake for NO-triggered responses that included the activation of jasmonate and ABA signaling. The expression of non-degradable RAP2.3 attenuated NO biosynthesis in shoots but not in roots, and released the NO-triggered inhibition of hypocotyl and root elongation. In the guard cells of stomata, the control of NO accumulation depended on PRT6-triggered degradation of RAP2.3 more than on RAP2.3 levels. RAP2.3 therefore seemed to work as a molecular rheostat controlling NO homeostasis and signaling. Its function as a brake for NO signaling was released upon NO-triggered PRT6-mediated degradation, thus allowing the inhibition of growth, and the potentiation of jasmonate- and ABA-related signaling.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
- Correspondence:
| | - Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| | - Mari Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia), Valencia, Spain
| |
Collapse
|
176
|
Identification and expression analysis of auxin-responsive GH3 family genes in Chinese hickory (Carya cathayensis) during grafting. Mol Biol Rep 2020; 47:4495-4506. [PMID: 32444977 DOI: 10.1007/s11033-020-05529-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The GH3 genes play vital roles in auxin homeostasis by conjugating excess auxin to amino acids. However, how GH3 genes function during grafting in Chinese hickory (Carya cathayensis) is largely unknown. Here, based on the transcriptome database, a comprehensive identification and expression profiling analysis of 12 GH3 genes in Chinese hickory were performed. Phylogenetic analysis indicated that CcGH3-x exists in a specific subfamily. To understand the roles of CcGH3 genes, tissue-specific expression and the response to different phytohormones were determined. Expression profiles of GH3 genes of Chinese hickory during grafting were analysed. The data suggested that 10 CcGH3 genes were down-regulated at an early stage of grafting, indicating that auxin homeostasis regulated by the CcGH3 family might be inhibited at initial stages. At the completion of grafting, expression levels of members of the CcGH3 family were restored to normal levels. Endogenous auxin levels were also measured, and the data showed that free auxin decreased to the lowest level at an early stage of grafting, and then increased during grafting. Auxin amino acid conjugation increased at an early stage of grafting in rootstock, and then decreased with progression of the graft union. Our results demonstrate that the reduced expression of CcGH3 family genes during grafting might contribute to the release of free auxin, making an important contribution to the recovery of auxin levels after grafting.
Collapse
|
177
|
Zhang Y, Fu Y, Wang Q, Liu X, Li Q, Chen J. Transcriptome analysis reveals rapid defence responses in wheat induced by phytotoxic aphid Schizaphis graminum feeding. BMC Genomics 2020; 21:339. [PMID: 32366323 PMCID: PMC7199342 DOI: 10.1186/s12864-020-6743-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Schizaphis graminum is one of the most important and devastating cereal aphids worldwide, and its feeding can cause chlorosis and necrosis in wheat. However, little information is available on the wheat defence responses triggered by S. graminum feeding at the molecular level. RESULTS Here, we collected and analysed transcriptome sequencing data from leaf tissues of wheat infested with S. graminum at 2, 6, 12, 24 and 48 hpi (hours post infestation). A total of 44,835 genes were either up- or downregulated and differed significantly in response to aphid feeding. The expression levels of a number of genes (9761 genes) were significantly altered within 2 hpi and continued to change during the entire 48 h experiment. Gene Ontology analysis showed that the downregulated DEGs were mainly enriched in photosynthesis and light harvesting, and the total chlorophyll content in wheat leaves was also significantly reduced after S. graminum infestation at 24 and 48 hpi. However, a number of related genes of the salicylic acid (SA)-mediated defence signalling pathway and MAPK-WRKY pathway were significantly upregulated at early feeding time points (2 and 6 hpi). In addition, the gene expression and activity of antioxidant enzymes, such as peroxidase and superoxide dismutase, were rapidly increased at 2, 6 and 12 hpi. DAB staining results showed that S. graminum feeding induced hydrogen peroxide (H2O2) accumulation at the feeding sites at 2 hpi, and increased H2O2 production was detected with the increases in aphid feeding time. Pretreatment with diphenylene iodonium, an NADPH oxidase inhibitor, repressed the H2O2 accumulation and expression levels of SA-associated defence genes in wheat. CONCLUSIONS Our transcriptomic analysis revealed that defence-related pathways and oxidative stress in wheat were rapidly induced within hours after the initiation of aphid feeding. Additionally, NADPH oxidase plays an important role in aphid-induced defence responses and H2O2 accumulation in wheat. These results provide valuable insight into the dynamic transcriptomic responses of wheat leaves to phytotoxic aphid feeding and the molecular mechanisms of aphid-plant interactions.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Yu Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Xiaobei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| | - Julian Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193 People’s Republic of China
| |
Collapse
|
178
|
Al-Zahrani W, Bafeel SO, El-Zohri M. Jasmonates mediate plant defense responses to Spodoptera exigua herbivory in tomato and maize foliage. PLANT SIGNALING & BEHAVIOR 2020; 15:1746898. [PMID: 32290765 PMCID: PMC7238883 DOI: 10.1080/15592324.2020.1746898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants evolve diverse strategies to cope with herbivorous insects, in which the lipid-derived phytohormone jasmonic acid (JA) plays a crucial role. This study was conducted to investigate the differential responses of tomato and maize plants to Spodoptera exiguaherbivory and to clarify the role played by JA, methyl-jasmonate (MeJA) and jasmonoyl-L-isoleucine (JA-L-Ile) in their defense responses. JA, MeJA and JA-L-Ile were quantified using HPLC-MS/MS. The results showed that maize plant was more tolerant toS. exiguaherbivory than tomato. Spodopteraexigua attack induced JA, MeJA, and JA-L-Ile to high levels after 2 h of infestation in both test plants. Then, all studied JAsconcentration decreased gradually by increasing infestation time up to 1 week. JA concentration in infested maize was much higher than that in infested tomato leaves. However, MeJA concentration in infested tomato leaves was higher than that in maize. In control plants, JA was not recorded, while MeJA was recorded in comparable values both in tomato and maize. Our results showed that JA plays the main role in increasing defense responses to S. exigua infestation in the studied plants as a direct signaling molecule; however, MeJA could play an indirect role by inducing JA accumulation. JA-L-Ile indicated a less efficient role in defense responses to S. exigua attack in both test plants where its level is much lower than JA and MeJA.
Collapse
Affiliation(s)
- Wafaa Al-Zahrani
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sameera O. Bafeel
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal El-Zohri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
- CONTACT Manal El-Zohri Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
179
|
Jiang W, Yin J, Zhang H, He Y, Shuai S, Chen S, Cao S, Li W, Ma D, Chen H. Genome-wide identification, characterization analysis and expression profiling of auxin-responsive GH3 family genes in wheat (Triticum aestivum L.). Mol Biol Rep 2020; 47:3885-3907. [DOI: 10.1007/s11033-020-05477-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
180
|
Przydacz M, Jones R, Pennington HG, Belmans G, Bruderer M, Greenhill R, Salter T, Wellham PAD, Cota E, Spanu PD. Mode of Action of the Catalytic Site in the N-Terminal Ribosome-Inactivating Domain of JIP60. PLANT PHYSIOLOGY 2020; 183:385-398. [PMID: 32123042 PMCID: PMC7210648 DOI: 10.1104/pp.19.01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Jasmonate-induced protein 60 (JIP60) is a ribosome-inactivating protein (RIP) from barley (Hordeum vulgare) and is involved in the plant immune response dependent on jasmonate hormones. Here, we demonstrate in Nicotiana benthamiana that transient expression of the N-terminal domain of JIP60, from which the inhibitor domain (amino acids 163-185) is removed, initiates cell death, leading to extensive necrosis of leaf tissues. We used structure prediction of JIP60 to identify potential catalytic amino acids in the active site and tested these by mutagenesis and in planta assays of necrosis induction by expression in N. benthamiana, as well as through an in vitro translation-inactivation assay. We found that Tyr 96, Glu 201, Arg 204, and Trp 234 in the presumptive active site of JIP60 are conserved in 815 plant RIPs in the Pfam database that were identified by HUMMR as containing a RIP domain. When these amino acid residues are individually mutated, the necrosis-inducing activity is completely abolished. We therefore propose that the role of these amino acids in JIP60 activity is to depurinate adenosine in ribosomes. This study provides insight into the catalytic mechanism of JIP60.
Collapse
Affiliation(s)
- Michal Przydacz
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rhian Jones
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Helen G Pennington
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Gerard Belmans
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Maya Bruderer
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Rachel Greenhill
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tia Salter
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A D Wellham
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
181
|
Gorman Z, Christensen SA, Yan Y, He Y, Borrego E, Kolomiets MV. Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. MOLECULAR PLANT PATHOLOGY 2020; 21:702-715. [PMID: 32105380 PMCID: PMC7170777 DOI: 10.1111/mpp.12924] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 05/20/2023]
Abstract
Colletotrichum graminicola is a hemibiotrophic fungus that causes anthracnose leaf blight (ALB) and anthracnose stalk rot (ASR) in maize. Despite substantial economic losses caused by these diseases, the defence mechanisms against this pathogen remain poorly understood. Several hormones are suggested to aid in defence against C. graminicola, such as jasmonic acid (JA) and salicylic acid (SA), but supporting genetic evidence was not reported. Green leaf volatiles (GLVs) are a group of well-characterized volatiles that induce JA biosynthesis in maize and are known to function in defence against necrotrophic pathogens. Information regarding the role of GLVs and JA in interactions with (hemi)biotrophic pathogens remains limited. To functionally elucidate GLVs and JA in defence against a hemibiotrophic pathogen, we tested GLV- and JA-deficient mutants, lox10 and opr7 opr8, respectively, for resistance to ASR and ALB and profiled jasmonates and SA in their stalks and leaves throughout infection. Both mutants were resistant and generally displayed elevated levels of SA and low amounts of jasmonates, especially at early stages of infection. Pretreatment with GLVs restored susceptibility of lox10 mutants, but not opr7 opr8 mutants, which coincided with complete rescue of JA levels. Exogenous methyl jasmonate restored susceptibility in both mutants when applied before inoculation, whereas methyl salicylate did not induce further resistance in either of the mutants, but did induce mutant-like resistance in the wild type. Collectively, this study reveals that GLVs and JA contribute to maize susceptibility to C. graminicola due to suppression of SA-related defences.
Collapse
Affiliation(s)
- Zachary Gorman
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
| | - Shawn A. Christensen
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
- Department of Agriculture–Agricultural Research Service (USDA–ARS), Chemistry Research UnitCenter for Medical, Agricultural, and Veterinary EntomologyGainesvilleFLUSA
| | - Yuanxin Yan
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
- State Key Laboratory of Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingChina
| | - Yongming He
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
- Jiangxi Key Laboratory of Crop Physiology, Ecology, and Genetic BreedingJiangxi Agricultural UniversityNanchangChina
| | - Eli Borrego
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
- Thomas H. Gosnell School of Life SciencesRochester Institute of TechnologyRochesterNYUSA
| | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
182
|
Wingler A, Tijero V, Müller M, Yuan B, Munné-Bosch S. Interactions between sucrose and jasmonate signalling in the response to cold stress. BMC PLANT BIOLOGY 2020; 20:176. [PMID: 32321430 PMCID: PMC7178619 DOI: 10.1186/s12870-020-02376-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Jasmonates play an important role in plant stress and defence responses and are also involved in the regulation of anthocyanin synthesis in response to sucrose availability. Here we explore the signalling interactions between sucrose and jasmonates in response to cold stress in Arabidopsis. RESULTS Sucrose and cold treatments increased anthocyanin content additively. Comprehensive profiling of phytohormone contents demonstrated that jasmonates, salicylic acid and abscisic acid contents increased in response to sucrose treatment in plants grown on agar, but remained considerably lower than in plants grown in compost. The gibberellin GA3 accumulated in response to sucrose treatment but only at warm temperature. The role of jasmonate signalling was explored using the jasmonate response mutants jar1-1 and coi1-16. While the jar1-1 mutant lacked jasmonate-isoleucine and jasmonate-leucine, it accumulated 12-oxo-phytodienoic acid at low temperature on agar medium. Altered patterns of abscisic acid accumulation and higher sugar contents were found in the coi1-16 mutant when grown in compost. Both mutants were able to accumulate anthocyanin and to cold acclimate, but the jar-1-1 mutant showed a larger initial drop in whole-rosette photosystem II efficiency upon transfer to low temperature. CONCLUSIONS Hormone contents are determined by interactions between temperature and sucrose supply. Some of these effects may be caused indirectly through senescence initiation in response to sucrose availability. During cold stress, the adjustments of hormone contents may compensate for impaired jasmonate signalling, enabling cold acclimation and anthocyanin accumulation in Arabidopsis jasmonate response mutants, e.g. through antagonistic interactions between gibberellin and jasmonate signalling.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Benqi Yuan
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Present address: Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
183
|
Saiz-Fernández I, Lacuesta M, Pérez-López U, Sampedro MC, Barrio RJ, De Diego N. Interplay between 1-aminocyclopropane-1-carboxylic acid, γ-aminobutyrate and D-glucose in the regulation of high nitrate-induced root growth inhibition in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110418. [PMID: 32081267 DOI: 10.1016/j.plantsci.2020.110418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/30/2019] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced. High nitrate altered nitrogen and carbon metabolism, reducing the content of sugars and inducing the accumulation of Ca2+ and amino acids, such as glutamate, alanine and γ-aminobutyrate (GABA), that could act to replenish the succinate pool in the tricarboxylic acid cycle and maintain its activity. Other metabolic alterations found were the accumulation of the polyamines spermidine and spermine, and the reduction of jasmonic acid (JA) and the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC). These results indicate that the growth root inhibition by high NO3- is a complex metabolic response that involves GABA as a key link between C and N metabolism which, together with plant growth regulators such as auxins, cytokinins, abscisic acid, JA, and the ethylene precursor ACC, is able to regulate the metabolic response of root grown under high nitrate concentrations.
Collapse
Affiliation(s)
- Iñigo Saiz-Fernández
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, E-01006, Vitoria-Gasteiz, Spain; Phytophthora Research Centre, Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic.
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, E-01006, Vitoria-Gasteiz, Spain.
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, E-48080, Bilbao, Spain.
| | - M Carmen Sampedro
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Basque Country UPV/EHU, E-01006, Vitoria-Gasteiz, Spain.
| | - Ramon J Barrio
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Basque Country UPV/EHU, E-01006, Vitoria-Gasteiz, Spain.
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
184
|
Tang J, Yang D, Wu J, Chen S, Wang L. Silencing JA hydroxylases in Nicotiana attenuata enhances jasmonic acid-isoleucine-mediated defenses against Spodoptera litura. PLANT DIVERSITY 2020; 42:111-119. [PMID: 32373769 PMCID: PMC7195586 DOI: 10.1016/j.pld.2019.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 05/23/2023]
Abstract
Jasmonic acid (JA) plays important roles in plant resistance to insect herbivores. One important derivative of JA is 12-OH-JA, which is produced by two independent pathways: direct hydroxylation of JA by jasmonate-induced oxygenases (JOXs) or hydrolyzation of 12-OH-JA-Ile.Yet the function of 12-OH-JA in plant-herbivore interactions remains largely unknown. In this study, we silenced four JOX homologs independently in the wild tobacco Nicotiana attenuata by virus-induced gene silencing (VIGS), and found that all four JOX homologs are involved in JA hydroxylation. Simultaneously silencing the four JA hydroxylases in VIGS-NaJOXs plants decreased herbivory-induced 12-OH-JA by 33%, but JA and JA-Ile levels increased by 45% and 30%, respectively, compared to those in control plants. Compared to direct hydroxylation from JA, hydrolyzation from 12-OH-JA-Ile is equally important for herbivory-induced 12-OH-JA accumulation: in the 12-OH-JA-Ile deficient irJAR4/6 plants, 12-OH-JA decreased 34%. Moreover, VIGS-NaJOXs plants exhibited enhanced resistance to the generalist herbivore Spodoptera litura. The poor larval performance was strongly correlated with high levels of several JA-Ile-dependent direct defense metabolites in the VIGS-NaJOXs plants. When we simultaneously silenced all four JA hydroxylases in the JA-Ile-deficient irJAR4/6 background, the enhanced herbivore resistance diminished, demonstrating that enhanced herbivore resistance resulted from elevated JA-Ile levels. Given that silencing these NaJOX-like genes did not detectably alter plant growth but highly increased plant defense levels, we propose that JOX genes are potential targets for genetic improvement of herbivore-resistant crops.
Collapse
Affiliation(s)
- Jinxiang Tang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Dahai Yang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, 650021, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Suiyun Chen
- School of Life Science, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
185
|
Li N, Cao L, Miu W, Cao R, Peng M, Wan W, Huang LJ. Molecular Rewiring of the Jasmonate Signaling Pathway to Control Auxin-Responsive Gene Expression. Cells 2020; 9:cells9030641. [PMID: 32155843 PMCID: PMC7140437 DOI: 10.3390/cells9030641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 02/02/2023] Open
Abstract
The plant hormone jasmonic acid (JA) has an important role in many aspects of plant defense response and developmental process. JA triggers interaction between the F-box protein COI1 and the transcriptional repressors of the JAZ family that leads the later to proteasomal degradation. The Jas-motif of JAZs is critical for mediating the COI1 and JAZs interaction in the presence of JA. Here, by using the protoplast transient gene expression system we reported that the Jas-motif of JAZ1 was necessary and sufficient to target a foreign reporter protein for COI1-facilitated degradation. We fused the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway to create a chimeric protein JaSHY. Interestingly, JaSHY retained the transcriptional repressor function while become degradable by the JA coreceptor COI1 in a JA-dependent fashion. Moreover, the JA-induced and COI1-facilitated degradation of JaSHY led to activation of a synthetic auxin-responsive promoter activity. These results showed that the modular components of JA signal transduction pathway can be artificially redirected to regulate auxin signaling pathway and control auxin-responsive gene expression. Our work provides a general strategy for using synthetic biology approaches to explore and design cell signaling networks to generate new cellular functions in plant systems.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Linggai Cao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China;
| | - Wenzhuo Miu
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Ruibin Cao
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Mingbo Peng
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Wenkai Wan
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
| | - Li-Jun Huang
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China; (N.L.); (W.M.)
- Correspondence:
| |
Collapse
|
186
|
Monte I, Kneeshaw S, Franco-Zorrilla JM, Chini A, Zamarreño AM, García-Mina JM, Solano R. An Ancient COI1-Independent Function for Reactive Electrophilic Oxylipins in Thermotolerance. Curr Biol 2020; 30:962-971.e3. [PMID: 32142692 DOI: 10.1016/j.cub.2020.01.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 01/05/2023]
Abstract
The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.
Collapse
Affiliation(s)
- Isabel Monte
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Sophie Kneeshaw
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Jose M Franco-Zorrilla
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Andrea Chini
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain
| | - Angel M Zamarreño
- Department of Environmental Biology, University of Navarra, Navarra 31008, Spain
| | - Jose M García-Mina
- Department of Environmental Biology, University of Navarra, Navarra 31008, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid 28049, Spain.
| |
Collapse
|
187
|
Zhang Q, Dai W, Wang X, Li J. Elevated CO 2 concentration affects the defense of tobacco and melon against lepidopteran larvae through the jasmonic acid signaling pathway. Sci Rep 2020; 10:4060. [PMID: 32132576 PMCID: PMC7055285 DOI: 10.1038/s41598-020-60749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
The massive use of fossil fuels since the industrial revolution has led to a rapid increase in the concentration of carbon dioxide (CO2) in the atmosphere. What effects elevated CO2 concentrations (ECO2) have on the defense mechanisms plants employ against insects remains poorly understood. This study showed that ECO2 of 750 ± 20 mmol/mol, increased the photosynthetic rate and biomass gain of tobacco and melon plants. However, while mass gain of Spodoptera litura, a nocturnal moth in the Noctuidae family, was higher when feeding on tobacco plants under ECO2, mass gain of Diaphania indica was reduced when feeding on melon plant at ECO2 compared to ambient CO2. Plants have many mechanisms to defend themselves against insects. Jasmonic acid (JA) is a crucial element of plant defense against lepidopteran insects. Our study showed that JA levels increased in tobacco plants under ECO2 but decreased in melon plants. It is speculated that ECO2 changes plant resistance to insects mainly by affecting the JA signaling pathway. Nutrient analysis suggested defensive metabolites rather than changes in the total nitrogen or protein content of the plants led to the changes in plant defense levels under ECO2. In summary, ECO2 affects the interaction between plants and insects. The results may provide a theoretical basis for studying the changes in crop resistance to pests under ECO2 and predicting the impact of ECO2 on future agro-ecosystems.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Wenting Dai
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Xuhui Wang
- College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinxin Li
- Institute of Agro-products Processing Science and Technolog, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China.
| |
Collapse
|
188
|
Recent Advances in Plant Chemical Biology of Jasmonates. Int J Mol Sci 2020; 21:ijms21031124. [PMID: 32046227 PMCID: PMC7036767 DOI: 10.3390/ijms21031124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/29/2022] Open
Abstract
Lipid-derived plant hormone jasmonates are implicated in plant growth, reproductive performance, senescence, secondary metabolite productions, and defense against both necrotrophic pathogens and feeding insects. A major jasmonate is (+)-7-iso-jasmonoyl-l-isoleucine (JA-Ile), which is perceived by the unique COI1-JAZ coreceptor system. Recent advances in plant chemical biology have greatly informed the bioscience of jasmonate, including the development of chemical tools such as the antagonist COR-MO; the agonist NOPh; and newly developed jasmonates, including JA-Ile-macrolactone and 12-OH-JA-Ile. This review article summarizes the current status of plant chemical biology as it pertains to jasmonates, and offers some perspectives for the future.
Collapse
|
189
|
Kato N, Miyagawa S, Nomoto H, Nakayama M, Iwashita M, Ueda M. A scalable synthesis of (+)-coronafacic acid. Chirality 2020; 32:423-430. [PMID: 31999008 DOI: 10.1002/chir.23172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023]
Abstract
A facile, efficient, and scalable synthesis of optically pure coronafacic acid by resolution of racemic coronafacic acid obtained using an improved version of Watson's method has been developed. By optimizing the boron-mediated aldol reaction of Watson, we were able to prepare 2.1 g of racemic coronafacic acid. This was coupled with (S)-4-isopropyl-2-oxazolidinone to give a mixture of diastereomeric coronafacyl oxazolidinones, which were readily separable by silica-gel column chromatography to give 630 mg of optically pure (+)-coronafacic acid.
Collapse
Affiliation(s)
- Nobuki Kato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Saki Miyagawa
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Haruna Nomoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Misuzu Nakayama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Makoto Iwashita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
190
|
Ho TT, Murthy HN, Park SY. Methyl Jasmonate Induced Oxidative Stress and Accumulation of Secondary Metabolites in Plant Cell and Organ Cultures. Int J Mol Sci 2020; 21:ijms21030716. [PMID: 31979071 PMCID: PMC7037436 DOI: 10.3390/ijms21030716] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 01/02/2023] Open
Abstract
Recently, plant secondary metabolites are considered as important sources of pharmaceuticals, food additives, flavours, cosmetics, and other industrial products. The accumulation of secondary metabolites in plant cell and organ cultures often occurs when cultures are subjected to varied kinds of stresses including elicitors or signal molecules. Application of exogenous jasmonic acid (JA) and methyl jasmonate (MJ) is responsible for the induction of reactive oxygen species (ROS) and subsequent defence mechanisms in cultured cells and organs. It is also responsible for the induction of signal transduction, the expression of many defence genes followed by the accumulation of secondary metabolites. In this review, the application of exogenous MJ elicitation strategies on the induction of defence mechanism and secondary metabolite accumulation in cell and organ cultures is introduced and discussed. The information presented here is useful for efficient large-scale production of plant secondary metabolites by the plant cell and organ cultures.
Collapse
Affiliation(s)
- Thanh-Tam Ho
- Institute for Global Health Innovations, Duy Tan University, Danang 550000, Vietnam;
| | | | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: ; Tel.: +82-432-612-531
| |
Collapse
|
191
|
Pavlovič A, Libiaková M, Bokor B, Jakšová J, Petřík I, Novák O, Baluška F. Anaesthesia with diethyl ether impairs jasmonate signalling in the carnivorous plant Venus flytrap (Dionaea muscipula). ANNALS OF BOTANY 2020; 125:173-183. [PMID: 31677265 PMCID: PMC6948209 DOI: 10.1093/aob/mcz177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS General anaesthetics are compounds that induce loss of responsiveness to environmental stimuli in animals and humans. The primary site of action of general anaesthetics is the nervous system, where anaesthetics inhibit neuronal transmission. Although plants do not have neurons, they generate electrical signals in response to biotic and abiotic stresses. Here, we investigated the effect of the general volatile anaesthetic diethyl ether on the ability to sense potential prey or herbivore attacks in the carnivorous plant Venus flytrap (Dionaea muscipula). METHODS We monitored trap movement, electrical signalling, phytohormone accumulation and gene expression in response to the mechanical stimulation of trigger hairs and wounding under diethyl ether treatment. KEY RESULTS Diethyl ether completely inhibited the generation of action potentials and trap closing reactions, which were easily and rapidly restored when the anaesthetic was removed. Diethyl ether also inhibited the later response: jasmonic acid (JA) accumulation and expression of JA-responsive genes (cysteine protease dionain and type I chitinase). However, external application of JA bypassed the inhibited action potentials and restored gene expression under diethyl ether anaesthesia, indicating that downstream reactions from JA are not inhibited. CONCLUSIONS The Venus flytrap cannot sense prey or a herbivore attack under diethyl ether treatment caused by inhibited action potentials, and the JA signalling pathway as a consequence.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova, Bratislava, Slovakia
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů, Olomouc, Czech Republic
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů, Olomouc, Czech Republic
| | | |
Collapse
|
192
|
Progress of ethylene action mechanism and its application on plant type formation in crops. Saudi J Biol Sci 2020; 27:1667-1673. [PMID: 32489309 PMCID: PMC7253889 DOI: 10.1016/j.sjbs.2019.12.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022] Open
Abstract
The plant hormone ethylene exerts a huge influence in the whole life cycle of plants, especially stress-resistance responses. With the development of functional genomics, that the action mechanism of ethylene takes part in mediated plant architecture has been clarified gradually, such as plant roots, stems, leaves, fiber elongation and so on. Accordingly, the application of ethylene on crops chemical control and genetic improvement is greatly expanded. From the view of ethylene mediated plant architecture in crops, here reviewed advances in ethylene biosynthesis and signal transduction pathway, stress-resistance responses and the yield potential enhance of crops in recently 20 years. On these grounds, the objectives of this paper were to provide scientific reference and a useful clue for the crop creation of ideal plant type.
Collapse
|
193
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:330-343. [PMID: 31557301 PMCID: PMC6913709 DOI: 10.1093/jxb/erz422] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/05/2019] [Indexed: 05/09/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Correspondence:
| |
Collapse
|
194
|
Oblessuc PR, Obulareddy N, DeMott L, Matiolli CC, Thompson BK, Melotto M. JAZ4 is involved in plant defense, growth, and development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:371-383. [PMID: 31557372 DOI: 10.1111/tpj.14548] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 05/25/2023]
Abstract
Jasmonate zim-domain (JAZ) proteins comprise a family of transcriptional repressors that modulate jasmonate (JA) responses. JAZ proteins form a co-receptor complex with the F-box protein coronatine insensitive1 (COI1) that recognizes both jasmonoyl-l-isoleucine (JA-Ile) and the bacterial-produced phytotoxin coronatine (COR). Although several JAZ family members have been placed in this pathway, the role of JAZ4 in this model remains elusive. In this study, we observed that the jaz4-1 mutant of Arabidopsis is hyper-susceptible to Pseudomonas syringae pv. tomato (Pst) DC3000, while Arabidopsis lines overexpressing a JAZ4 protein lacking the Jas domain (JAZ4∆Jas) have enhanced resistance to this bacterium. Our results show that the Jas domain of JAZ4 is required for its physical interaction with COI1, MYC2 or MYC3, but not with the repressor complex adaptor protein NINJA. Furthermore, JAZ4 degradation is induced by COR in a proteasome- and Jas domain-dependent manner. Phenotypic evaluations revealed that expression of JAZ4∆Jas results in early flowering and increased length of root, hypocotyl, and petiole when compared with Col-0 and jaz4-1 plants, although JAZ4∆Jas lines remain sensitive to MeJA- and COR-induced root and hypocotyl growth inhibition. Additionally, jaz4-1 mutant plants have increased anthocyanin accumulation and late flowering compared with Col-0, while JAZ4∆Jas lines showed no alteration in anthocyanin production. These findings suggest that JAZ4 participates in the canonical JA signaling pathway leading to plant defense response in addition to COI1/MYC-independent functions in plant growth and development, supporting the notion that JAZ4-mediated signaling may have distinct branches.
Collapse
Affiliation(s)
- Paula R Oblessuc
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Nisita Obulareddy
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Logan DeMott
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Blaine K Thompson
- Department of Biology, University of Texas, Arlington, TX, 76019, USA
| | - Maeli Melotto
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
195
|
Zhang Y, Bouwmeester HJ, Kappers IF. Combined transcriptome and metabolome analysis identifies defence responses in spider mite-infested pepper (Capsicum annuum). JOURNAL OF EXPERIMENTAL BOTANY 2020. [PMID: 31557301 DOI: 10.5061/dryad.n34h180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied. Mites induced both JA and salicylic acid (SA) signalling. However, mite infestation and exogenous JA resulted in distinct transcriptome profiles. Compared with JA, mites induced fewer differentially expressed genes involved in metabolic processes (except for genes involved in the phenylpropanoid pathway) and lipid metabolic processes. Furthermore, pathogen-related defence responses including WRKY transcription factors were more strongly induced upon mite infestation, probably as a result of induced SA signalling. Untargeted analysis of secondary metabolites confirmed that JA treatment induced larger changes in metabolism than spider mite infestation, resulting in higher terpenoid and flavonoid production. The more resistant genotype exhibited a larger increase in endogenous JA and volatile and non-volatile secondary metabolites upon infestation, which could explain its stronger defence. Reasoning that in JA-SA antagonizing crosstalk, SA defences are prioritized over JA defences, we hypothesize that lack of SA-mediated repression of JA-induced defences could result in gain of resistance towards spider mites in pepper.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park, Amsterdam, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
196
|
Jakšová J, Libiaková M, Bokor B, Petřík I, Novák O, Pavlovič A. Taste for protein: Chemical signal from prey stimulates enzyme secretion through jasmonate signalling in the carnivorous plant Venus flytrap. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:90-97. [PMID: 31734521 DOI: 10.1016/j.plaphy.2019.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Hunting cycle of the carnivorous plant Venus flytrap (Dionaea muscipula Ellis) is comprised of mechanism for rapid trap closure followed by slow hermetical sealing and activation of gene expression responsible for digestion of prey and nutrient uptake. In the present study, we focus on the late phase of Venus's flytrap hunting cycle when mechanical stimulation of the prey ceases and is replaced by chemical cues. We used two nitrogen-rich compounds (chitin and protein) in addition to mechanostimulation to investigate the electrical and jasmonate signalling responsible for induction of enzyme activities. Chemical stimulation by BSA protein and chitin did not induce any additional spontaneous action potentials (APs). However, chemical stimulation by protein induced the highest levels of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile) as well as the expression of studied gene encoding a cysteine protease (dionain). Although chitin is probably the first chemical agent which is in direct contact with digestive glands, presence of protein in the secured trap mimics the presence of insect prey best.
Collapse
Affiliation(s)
- Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Michaela Libiaková
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia
| | - Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B2, SK-842 15, Bratislava, Slovakia; Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, SK-841 04, Bratislava, Slovakia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic.
| |
Collapse
|
197
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
198
|
Ye W, Jiang J, Lin Y, Yeh KW, Lai Z, Xu X, Oelmüller R. Colonisation of Oncidium orchid roots by the endophyte Piriformospora indica restricts Erwinia chrysanthemi infection, stimulates accumulation of NBS-LRR resistance gene transcripts and represses their targeting micro-RNAs in leaves. BMC PLANT BIOLOGY 2019; 19:601. [PMID: 31888486 PMCID: PMC6937650 DOI: 10.1186/s12870-019-2105-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/28/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Erwinia chrysanthemi (Ec) is a destructive pathogen which causes soft-rot diseases in diverse plant species including orchids. We investigated whether colonization of Oncidium roots by the endophytic fungus Piriformospora indica (Pi) restricts Ec-induced disease development in leaves, and whether this might be related to the regulation of nucleotide binding site-leucine rich repeat (NBS-LRR) Resistance (R) genes. RESULTS Root colonization of Oncidium stackings by Pi restricts progression of Ec-induced disease development in the leaves. Since Pi does not inhibit Ec growth on agar plates, we tested whether NBS-LRR R gene transcripts and the levels of their potential target miRNAs in Oncidium leaves might be regulated by Pi. Using bioinformatic tools, we first identified NBS-LRR R gene sequences from Oncidium, which are predicted to be targets of miRNAs. Among them, the expression of two R genes was repressed and the accumulation of several regulatory miRNA stimulated by Ec in the leaves of Oncidium plants. This correlated with the progression of disease development, jasmonic and salicylic acid accumulation, ethylene synthesis and H2O2 production after Ec infection of Oncidium leaves. Interestingly, root colonization by Pi restricted disease development in the leaves, and this was accompanied by higher expression levels of several defense-related R genes and lower expression level of their target miRNA. CONCLUSION Based on these data we propose that Pi controls the levels of NBS-LRR R mRNAs and their target miRNAs in leaves. This regulatory circuit correlates with the protection of Oncidium plants against Ec infection, and molecular and biochemical investigations will demonstrate in the future whether, and if so, to what extent these two observations are related to each other.
Collapse
Affiliation(s)
- Wei Ye
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Kai-Wun Yeh
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xuming Xu
- Sanming Academy of Agricultural Sciences, Sanming, Fujian China
| | - Ralf Oelmüller
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
199
|
Singh S, Sharma MP, Alqarawi AA, Hashem A, Abd_Allah EF, Ahmad A. Real-Time Optical Detection of Isoleucine in Living Cells through a Genetically-Encoded Nanosensor. SENSORS 2019; 20:s20010146. [PMID: 31881651 PMCID: PMC6983066 DOI: 10.3390/s20010146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 01/19/2023]
Abstract
Isoleucine is one of the branched chain amino acids that plays a major role in the energy metabolism of human beings and animals. However, detailed investigation of specific receptors for isoleucine has not been carried out because of the non-availability of a tool that can monitor the metabolic flux of this amino acid in live cells. This study presents a novel genetically-encoded nanosensor for real-time monitoring of isoleucine in living cells. This nanosensor was developed by sandwiching a periplasmic binding protein (LivJ) of E. coli between a fluorescent protein pair, ECFP (Enhanced Cyan Fluorescent Protein), and Venus. The sensor, named GEII (Genetically Encoded Isoleucine Indicator), was pH stable, isoleucine-specific, and had a binding affinity (Kd) of 63 ± 6 μM. The GEII successfully performed real-time monitoring of isoleucine in bacterial and yeast cells, thereby, establishing its bio-compatibility in monitoring isoleucine in living cells. As a further enhancement, in silico random mutagenesis was carried out to identify a set of viable mutations, which were subsequently experimentally verified to create a library of affinity mutants with a significantly expanded operating range (96 nM–1493 μM). In addition to its applicability in understanding the underlying functions of receptors of isoleucine in metabolic regulation, the GEII can also be used for metabolic engineering of bacteria for enhanced production of isoleucine in animal feed industries.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; (S.S.); (M.P.S.)
| | - Maheshwar Prasad Sharma
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India; (S.S.); (M.P.S.)
| | - Abdulaziz A. Alqarawi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
- Mycology and Plant Disease Survey Department, plant pathology Research Institute, ARC, Gaza 12511, Egypt
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.A.)
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
- Correspondence:
| |
Collapse
|
200
|
Costarelli A, Bianchet C, Ederli L, Salerno G, Piersanti S, Rebora M, Pasqualini S. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack. PLANT SIGNALING & BEHAVIOR 2019; 15:1704517. [PMID: 31852340 PMCID: PMC7012100 DOI: 10.1080/15592324.2019.1704517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
We recently reported the transcriptomic signature of salicylic acid (SA) and jasmonic acid (JA) biosynthetic and responsive genes in Arabidopsis thaliana plants infested with the herbivore Eurydema oleracea. We demonstrated that insect feeding causes induction of both SA- and JA-mediated signaling pathways. Using transgenic SA-deficient NahG plants, we also showed antagonistic cross-talk between these two phytohormones. To gain more insight into the roles of the SA and JA pathways in plant defenses against E. oleracea, we report here on the dynamics of SA and JA levels in the wild-type genotype Col-0 and the transgenic Arabidopsis NahG mutant that does not accumulate SA. We show that SA strongly accumulates in the wild-type plants after 24 h of herbivore infestation, while JA levels do not change significantly. On the contrary, in the infested NahG plants, SA levels were not affected by E. oleracea feeding, whereas JA levels which were constitutively higher than the wild-type did not significantly change after 6 hours of herbivore feeding. Accordingly, when the wild-type and the jar1-1 mutant (which fails to accumulate JA-Ile) Arabidopsis plants were challenged with E. oleracea in a two-choice arena, the insect fed preferentially on the jar1-1 plants over the wild-type. These data support the conclusion that E. oleracea infestation strongly induces the SA pathway in the wild-type, thus antagonizing JA-mediated plant defenses against herbivory, as a strategy to suppress plant immunity.
Collapse
Affiliation(s)
- Alma Costarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Chantal Bianchet
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Luisa Ederli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianandrea Salerno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Silvana Piersanti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Manuela Rebora
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|