151
|
Wei H, Brunecky R, Donohoe BS, Ding SY, Ciesielski PN, Yang S, Tucker MP, Himmel ME. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. FRONTIERS IN PLANT SCIENCE 2015; 6:315. [PMID: 26029221 PMCID: PMC4429552 DOI: 10.3389/fpls.2015.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/21/2015] [Indexed: 05/07/2023]
Abstract
Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Shihui Yang
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| |
Collapse
|
152
|
Martinez DE, Borniego ML, Battchikova N, Aro EM, Tyystjärvi E, Guiamét JJ. SASP, a Senescence-Associated Subtilisin Protease, is involved in reproductive development and determination of silique number in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:161-74. [PMID: 25371504 DOI: 10.1093/jxb/eru409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Senescence involves increased expression of proteases, which may participate in nitrogen recycling or cellular signalling. 2D zymograms detected two protein species with increased proteolytic activity in senescing leaves of Arabidopsis thaliana. A proteomic analysis revealed that both protein species correspond to a subtilisin protease encoded by At3g14067, termed Senescence-Associated Subtilisin Protease (SASP). SASP mRNA levels and enzyme activity increase during leaf senescence in leaves senescing during both the vegetative or the reproductive phase of the plant life cycle, but this increase is more pronounced in reproductive plants. SASP is expressed in all above-ground organs, but not in roots. Putative AtSASP orthologues were identified in dicot and monocot crop species. A phylogenetic analysis shows AtSASP and its putative orthologues clustering in one discrete group of subtilisin proteases in which no other Arabidospsis subtilisin protease is present. Phenotypic analysis of two knockout lines for SASP showed that mutant plants develop more inflorescence branches during reproductive development. Both AtSASP and its putative rice orthologue (OsSASP) were constitutively expressed in sasp-1 to complement the mutant phenotype. At maturity, sasp-1 plants produced 25% more inflorescence branches and siliques than either the wild-type or the rescued lines. These differences were mostly due to an increased number of second and third order branches. The increased number of siliques was compensated for by a small decrease (5.0%) in seed size. SASP downregulates branching and silique production during monocarpic senescence, and its function is at least partially conserved between Arabidopsis and rice.
Collapse
Affiliation(s)
- Dana E Martinez
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| | - Maria L Borniego
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| | - Natalia Battchikova
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal (INFIVE) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Argentina
| |
Collapse
|
153
|
Davies LJ, Zhang L, Elling AA. The Arabidopsis thaliana papain-like cysteine protease RD21 interacts with a root-knot nematode effector protein. NEMATOLOGY 2015. [DOI: 10.1163/15685411-00002897] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The root-knot nematode Meloidogyne chitwoodi secretes effector proteins into the cells of host plants to manipulate plant-derived processes in order to achieve successful parasitism. Mc1194 is a M. chitwoodi effector that is highly expressed in pre-parasitic second-stage juvenile nematodes. Yeast two-hybrid assays revealed Mc1194 specifically interacts with a papain-like cysteine protease (PLCP), RD21A in Arabidopsis thaliana. Mc1194 interacts with both the protease and granulin domains of RD21A. PLCPs are targeted by effectors secreted by bacterial, fungal and oomycete pathogens and the hypersusceptibility of rd21-1 mutants to M. chitwoodi indicates RD21A plays a role in plant-parasitic nematode infection.
Collapse
Affiliation(s)
- Laura J. Davies
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Axel A. Elling
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
154
|
van Doorn WG, Prisa D. Lipid globules on the plastid surface in Iris tepal epidermis cells during tepal maturation and senescence. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1714-1721. [PMID: 25213705 DOI: 10.1016/j.jplph.2014.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Epidermis cells in the outer tepals of Iris flowers (Iris×hollandica, cv. Blue Magic) start programmed cell death (PCD) prior to floral opening. The tepals show visible senescence symptoms three days after full opening. Visible senescence coincides with collapse (death) of the upper epidermis cells. In these cells, electron-dense particles (plastoglobuli), membranes, and oil bodies were observed in the plastid interior. Electron-dense globules similar to plastoglobuli, thus apparently mainly consisting of lipids, were found on the plastid surface, from before flower opening until cell death. Such electron-dense globules were also present in the cytosol. The size of some of the globules on the plastid surface increased with time. The globules are likely involved in transfer of lipidic/proteinaceous material from the plastid to the cytosol. As the plastids contained ample oil bodies, up to the time of cell death, cell death was likely not due to lack of reserves. Mitochondrial ultrastructure also remained the same until cell death. The role of mitochondria in PCD is discussed.
Collapse
Affiliation(s)
- Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Domenico Prisa
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura (CRA-VIV), Via dei Fiori 8, 51012 Pescia, Italy
| |
Collapse
|
155
|
Chen X, Bao H, Guo J, Jia W, Tai F, Nie L, Jiang P, Feng J, Lv S, Li Y. Na⁺/H⁺ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6107-22. [PMID: 25170102 PMCID: PMC4203143 DOI: 10.1093/jxb/eru351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Despite the importance of NHX1 (Na(+)/H(+) exchanger 1) in plant salt tolerance, little is known about its other functions. In this study, intriguingly, it was found that NHX1 participated in plant disease defence against Phytophthora parasitica var. nicotianae (Ppn) in Nicotiana benthamiana. NbNHX1 was originally isolated from N. benthamiana, and characterized. The subcellular localization of NbNHX1 with its C-terminus fused with green fluorescent protein indicated that NbNHX1 localized primarily to the tonoplast. Tobacco rattle virus-induced NbNHX1 silencing led to reduced H(+) efflux from the vacuole to cytoplasts, and decreased Ppn resistance in N. benthamiana. After attack by Ppn, NbNHX1-silenced plants exhibited impaired ability to scavenge reactive oxidative species (ROS) induced by the pathogen. Pea early browning virus-mediated ectopic expression of SeNHX1 (from Salicornia europaea) or AtNHX1 (from Arabidopsis thaliana) both conferred enhanced Ppn resistance to N. benthamiana, with a lower H2O2 concentration after Ppn inoculation. Further investigation of the role of NHX1 demonstrated that transient overexpression of NbNHX1 improved the vacuolar pH and cellular ROS level in N. benthamiana, which was coupled with an enlarged NAD(P) (H) pool and higher expression of ROS-responsive genes. In contrast, NbNHX1 silencing led to a lower pH in the vacuole and a lower cellular ROS level in N. benthamiana, which was coupled with a decreased NAD(P) (H) pool and decreased expression of ROS-responsive genes. These results suggest that NHX1 is involved in plant disease defence; and regulation of vacuolar pH by NHX1, affecting the cellular oxidation state, primes the antioxidative system which is associated with Ppn resistance in tobacco.
Collapse
Affiliation(s)
- Xianyang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Jie Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Fang Tai
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Lingling Nie
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Ping Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| |
Collapse
|
156
|
Zhang C, Hicks GR, Raikhel NV. Plant vacuole morphology and vacuolar trafficking. FRONTIERS IN PLANT SCIENCE 2014; 5:476. [PMID: 25309565 PMCID: PMC4173805 DOI: 10.3389/fpls.2014.00476] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 05/23/2023]
Abstract
Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking.
Collapse
Affiliation(s)
- Chunhua Zhang
- *Correspondence: Chunhua Zhang, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| | | | | |
Collapse
|
157
|
Neuhaus HE, Trentmann O. Regulation of transport processes across the tonoplast. FRONTIERS IN PLANT SCIENCE 2014; 5:460. [PMID: 25309559 PMCID: PMC4160088 DOI: 10.3389/fpls.2014.00460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/26/2014] [Indexed: 05/24/2023]
Abstract
In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g., due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.
Collapse
Affiliation(s)
| | - Oliver Trentmann
- *Correspondence: Oliver Trentmann, Plant Physiology, Department of Biology, Technische Universität Kaiserslautern, Postfach 3049, Kaiserslautern D-67653, Germany e-mail:
| |
Collapse
|
158
|
Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, Ehlting J, Herrfurth C, Feussner I, Bessoule JJ. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. PLANT PHYSIOLOGY 2014; 166:109-24. [PMID: 25056921 PMCID: PMC4149700 DOI: 10.1104/pp.114.245316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/22/2014] [Indexed: 05/20/2023]
Abstract
Contrasting with the wealth of information available on the multiple roles of jasmonates in plant development and defense, knowledge about the functions and the biosynthesis of hydroxylated oxylipins remains scarce. By expressing the caleosin RESPONSIVE TO DESSICATION20 (RD20) in Saccharomyces cerevisiae, we show that the recombinant protein possesses an unusual peroxygenase activity with restricted specificity toward hydroperoxides of unsaturated fatty acid. Accordingly, Arabidopsis (Arabidopsis thaliana) plants overexpressing RD20 accumulate the product 13-hydroxy-9,11,15-octadecatrienoic acid, a linolenate-derived hydroxide. These plants exhibit elevated levels of reactive oxygen species (ROS) associated with early gibberellin-dependent flowering and abscisic acid hypersensitivity at seed germination. These phenotypes are dependent on the presence of active RD20, since they are abolished in the rd20 null mutant and in lines overexpressing RD20, in which peroxygenase was inactivated by a point mutation of a catalytic histidine residue. RD20 also confers tolerance against stress induced by Paraquat, Rose Bengal, heavy metal, and the synthetic auxins 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid. Under oxidative stress, 13-hydroxy-9,11,15-octadecatrienoic acid still accumulates in RD20-overexpressing lines, but this lipid oxidation is associated with reduced ROS levels, minor cell death, and delayed floral transition. A model is discussed where the interplay between fatty acid hydroxides generated by RD20 and ROS is counteracted by ethylene during development in unstressed environments.
Collapse
Affiliation(s)
- Elizabeth Blée
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Michel Burcklen
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Marina Le Guédard
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Abdulsamie Hanano
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jürgen Ehlting
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Cornelia Herrfurth
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Ivo Feussner
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| | - Jean-Jacques Bessoule
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357-Université de Strasbourg, 67083 Strasbourg cedex, France (E.B., B.B., M.B., A.H., D.H., J.E.)Laboratoire de Biogénèse Membranaire, Bâtiment A3-Institut National de la Recherche Agronomique Bordeaux Aquitaine, 33140 Villenave d'Ornon, France (M.L.G., J.-J.B.); andGeorg-August-University, Albrecht-von-Haller Institute, Department of Plant Biochemistry, 37077 Goettingen, Germany (C.H., I.F.)
| |
Collapse
|
159
|
Singh UM, Chandra M, Shankhdhar SC, Kumar A. Transcriptome wide identification and validation of calcium sensor gene family in the developing spikes of finger millet genotypes for elucidating its role in grain calcium accumulation. PLoS One 2014; 9:e103963. [PMID: 25157851 PMCID: PMC4144799 DOI: 10.1371/journal.pone.0103963] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/08/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In finger millet, calcium is one of the important and abundant mineral elements. The molecular mechanisms involved in calcium accumulation in plants remains poorly understood. Transcriptome sequencing of genetically diverse genotypes of finger millet differing in grain calcium content will help in understanding the trait. PRINCIPAL FINDING In this study, the transcriptome sequencing of spike tissues of two genotypes of finger millet differing in their grain calcium content, were performed for the first time. Out of 109,218 contigs, 78 contigs in case of GP-1 (Low Ca genotype) and out of 120,130 contigs 76 contigs in case of GP-45 (High Ca genotype), were identified as calcium sensor genes. Through in silico analysis all 82 unique calcium sensor genes were classified into eight calcium sensor gene family viz., CaM & CaMLs, CBLs, CIPKs, CRKs, PEPRKs, CDPKs, CaMKs and CCaMK. Out of 82 genes, 12 were found diverse from the rice orthologs. The differential expression analysis on the basis of FPKM value resulted in 24 genes highly expressed in GP-45 and 11 genes highly expressed in GP-1. Ten of the 35 differentially expressed genes could be assigned to three documented pathways involved mainly in stress responses. Furthermore, validation of selected calcium sensor responder genes was also performed by qPCR, in developing spikes of both genotypes grown on different concentration of exogenous calcium. CONCLUSION Through de novo transcriptome data assembly and analysis, we reported the comprehensive identification and functional characterization of calcium sensor gene family. The calcium sensor gene family identified and characterized in this study will facilitate in understanding the molecular basis of calcium accumulation and development of calcium biofortified crops. Moreover, this study also supported that identification and characterization of gene family through Illumina paired-end sequencing is a potential tool for generating the genomic information of gene family in non-model species.
Collapse
Affiliation(s)
- Uma M. Singh
- Department of Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Muktesh Chandra
- Department of Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Shailesh C. Shankhdhar
- Department of Plant Physiology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
160
|
Mirza N, Taj G, Arora S, Kumar A. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.). Gene 2014; 550:171-9. [PMID: 25101868 DOI: 10.1016/j.gene.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/02/2014] [Indexed: 12/20/2022]
Abstract
Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet.
Collapse
Affiliation(s)
- Neelofar Mirza
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G B Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G B Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Sandeep Arora
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G B Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G B Pant University of Agriculture & Technology, Pantnagar 263145, Uttarakhand, India.
| |
Collapse
|
161
|
|
162
|
Hollmann J, Gregersen PL, Krupinska K. Identification of predominant genes involved in regulation and execution of senescence-associated nitrogen remobilization in flag leaves of field grown barley. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3963-73. [PMID: 24700620 PMCID: PMC4106439 DOI: 10.1093/jxb/eru094] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transcriptomes of senescing flag leaves collected from barley field plots with standard or high nitrogen supply were compared to identify genes specifically associated with nitrogen remobilization during leaf senescence under agronomically relevant conditions. In flag leaves collected in field plots with high nitrogen supply, the decline in chlorophyll content was delayed. By comparing changes in gene expression for the two nitrogen levels, it was possible to discriminate genes related to nitrogen remobilization during senescence and genes involved in other processes associated with the late development of leaves under field conditions. Predominant genes that were more strongly upregulated during senescence of flag leaves from plants with standard nitrogen supply included genes encoding the transcription factor HvNAC026, serine type protease SCPL51, and the autophagy factors APG7 and ATG18F. Elevated expression of these genes in senescing leaves from plants with standard nitrogen supply indicates important roles of the corresponding proteins in nitrogen remobilization. In comparison, the genes upregulated in both flag leaf samples might have roles in general senescence processes associated with late leaf development. Among these genes were the transcription factor genes HvNAC001, HvNAC005, HvNAC013, HvWRKY12 and MYB, genes encoding the papain-like cysteine peptidases HvPAP14 and HvPAP20, as well as a subtilase gene.
Collapse
Affiliation(s)
- Julien Hollmann
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Per L Gregersen
- Department of Molecular Biology and Genetics, Aarhus University, AU-Flakkebjerg, DK-4200 Slagelse, Denmark
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
163
|
Pereira EO, Kolotilin I, Conley AJ, Menassa R. Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags. BMC Biotechnol 2014; 14:59. [PMID: 24970673 PMCID: PMC4083859 DOI: 10.1186/1472-6750-14-59] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity. RESULTS Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves. CONCLUSION Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein accumulation and its activity, especially in the case of proteins that undergo post-translational modifications, and should be taken into consideration when protein production strategies are designed. Using plants to produce heterologous enzymes for the degradation of a key component of the plant cell wall could reduce the cost of biomass pretreatment for the production of cellulosic biofuels.
Collapse
Affiliation(s)
- Eridan Orlando Pereira
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
- Current address: Universidade Estadual do Ceará, Av. Dr. Silas Munguba, 1700 - Campus do Itaperi, Fortaleza 60714-903, Brazil
| | - Igor Kolotilin
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | | | - Rima Menassa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
164
|
Ren LL, Liu YJ, Liu HJ, Qian TT, Qi LW, Wang XR, Zeng QY. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family. THE PLANT CELL 2014; 26:2404-2419. [PMID: 24934172 PMCID: PMC4114941 DOI: 10.1105/tpc.114.124750] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 05/24/2014] [Indexed: 05/20/2023]
Abstract
Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families.
Collapse
Affiliation(s)
- Lin-Ling Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hai-Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Qian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li-Wang Qi
- Laboratory of Cell Biology, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, UPSC, Umeå University, SE-90187 Umeå, Sweden
| | - Qing-Yin Zeng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
165
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
166
|
Remy E, Cabrito TR, Batista RA, Hussein MAM, Teixeira MC, Athanasiadis A, Sá-Correia I, Duque P. Intron retention in the 5'UTR of the novel ZIF2 transporter enhances translation to promote zinc tolerance in arabidopsis. PLoS Genet 2014; 10:e1004375. [PMID: 24832541 PMCID: PMC4022490 DOI: 10.1371/journal.pgen.1004375] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 03/27/2014] [Indexed: 12/21/2022] Open
Abstract
Root vacuolar sequestration is one of the best-conserved plant strategies to cope with heavy metal toxicity. Here we report that zinc (Zn) tolerance in Arabidopsis requires the action of a novel Major Facilitator Superfamily (MFS) transporter. We show that ZIF2 (Zinc-Induced Facilitator 2) localises primarily at the tonoplast of root cortical cells and is a functional transporter able to mediate Zn efflux when heterologously expressed in yeast. By affecting plant tissue partitioning of the metal ion, loss of ZIF2 function exacerbates plant sensitivity to excess Zn, while its overexpression enhances Zn tolerance. The ZIF2 gene is Zn-induced and an intron retention event in its 5′UTR generates two splice variants (ZIF2.1 and ZIF2.2) encoding the same protein. Importantly, high Zn favours production of the longer ZIF2.2 transcript, which compared to ZIF2.1 confers greater Zn tolerance to transgenic plants by promoting higher root Zn immobilization. We show that the retained intron in the ZIF2 5′UTR enhances translation in a Zn-responsive manner, markedly promoting ZIF2 protein expression under excess Zn. Moreover, Zn regulation of translation driven by the ZIF2.2 5′UTR depends largely on a predicted stable stem loop immediately upstream of the start codon that is lost in the ZIF2.1 5′UTR. Collectively, our findings indicate that alternative splicing controls the levels of a Zn-responsive mRNA variant of the ZIF2 transporter to enhance plant tolerance to the metal ion. Alternative splicing, which generates multiple messenger RNAs (mRNAs) from the same gene, is a key posttranscriptional regulatory mechanism in higher eukaryotes whose functional relevance in plants remains poorly understood. The sequestration of metal ions inside the vacuole of root cells is an important strategy employed by plants to cope with heavy metal toxicity. Here, we describe a new vacuolar membrane transporter of the model plant Arabidopsis thaliana, ZIF2, that confers tolerance to zinc (Zn) by promoting root immobilisation of the metal ion and thus its exclusion from the aerial parts of the plant. The ZIF2 gene is induced by exposure to excess Zn and undergoes alternative splicing, generating two mRNAs that differ solely in their non-coding regions and hence code for the same transporter. Interestingly, toxic Zn levels favour expression of the longer mRNA, which in turn confers higher plant tolerance to the metal. We show that the longer ZIF2 non-coding region markedly promotes translation of the downstream coding sequence into protein in a Zn-responsive fashion. Thus, our results indicate that by regulating translation efficiency of the ZIF2 mRNA, alternative splicing controls the amounts of the encoded membrane transporter and therefore plant Zn tolerance.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tânia R. Cabrito
- Institute for Biotechnology and BioEngineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | | | - Mohamed A. M. Hussein
- Institute for Biotechnology and BioEngineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Miguel C. Teixeira
- Institute for Biotechnology and BioEngineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | | | - Isabel Sá-Correia
- Institute for Biotechnology and BioEngineering (IBB), Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
167
|
Iglesias-Fernández R, Wozny D, Iriondo-de Hond M, Oñate-Sánchez L, Carbonero P, Barrero-Sicilia C. The AtCathB3 gene, encoding a cathepsin B-like protease, is expressed during germination of Arabidopsis thaliana and transcriptionally repressed by the basic leucine zipper protein GBF1. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2009-21. [PMID: 24600022 PMCID: PMC3991739 DOI: 10.1093/jxb/eru055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein hydrolysis plays an important role during seed germination and post-germination seedling establishment. In Arabidopsis thaliana, cathepsin B-like proteases are encoded by a gene family of three members, but only the AtCathB3 gene is highly induced upon seed germination and at the early post-germination stage. Seeds of a homozygous T-DNA insertion mutant in the AtCathB3 gene have, besides a reduced cathepsin B activity, a slower germination than the wild type. To explore the transcriptional regulation of this gene, we used a combined phylogenetic shadowing approach together with a yeast one-hybrid screening of an arrayed library of approximately 1200 transcription factor open reading frames from Arabidopsis thaliana. We identified a conserved CathB3-element in the promoters of orthologous CathB3 genes within the Brassicaceae species analysed, and, as its DNA-interacting protein, the G-Box Binding Factor1 (GBF1). Transient overexpression of GBF1 together with a PAtCathB3::uidA (β-glucuronidase) construct in tobacco plants revealed a negative effect of GBF1 on expression driven by the AtCathB3 promoter. In stable P35S::GBF1 lines, not only was the expression of the AtCathB3 gene drastically reduced, but a significant slower germination was also observed. In the homozygous knockout mutant for the GBF1 gene, the opposite effect was found. These data indicate that GBF1 is a transcriptional repressor of the AtCathB3 gene and affects the germination kinetics of Arabidopsis thaliana seeds. As AtCathB3 is also expressed during post-germination in the cotyledons, a role for the AtCathB3-like protease in reserve mobilization is also inferred.
Collapse
Affiliation(s)
| | - Dorothee Wozny
- * Present address: Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Köln, Germany
| | | | | | | | - Cristina Barrero-Sicilia
- To whom correspondence should be addressed. Present address: Department of Biological Chemistry and Crop Protection, Rothamsted Research, West Common, Harpenden AL5 2JQ, UK. E-mail:
| |
Collapse
|
168
|
Yang H, Krebs M, Stierhof YD, Ludewig U. Characterization of the putative amino acid transporter genes AtCAT2, 3 &4: the tonoplast localized AtCAT2 regulates soluble leaf amino acids. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:594-601. [PMID: 24709150 DOI: 10.1016/j.jplph.2013.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 05/03/2023]
Abstract
The plant vacuole constitutes a large transient storage compartment for nutrients, proteins and metabolites, and is a major cellular sink for toxic waste compounds. Amino acids can cross the vacuolar membrane via specific transport proteins, which are molecularly not well characterized. Two members of a small subfamily of the cationic amino acid transporters, AtCAT2 and AtCAT4, were primarily localized at the tonoplast when tagged with GFP. The closely related AtCAT3, by contrast, was detected in the endoplasmic reticulum membrane. The exchange of a di-acidic motif at the carboxy-tail affected their sub-cellular localization, with larger effects visible in transiently transformed protoplasts compared to stably expressing plant lines. The genes have broad, partially overlapping tissue expression, with CAT2 dominating in most tissues. Loss-of-function mutants of individual CATs showed no visible phenotype under various conditions, but the overall tissue concentration of amino acids was increased in soil-grown cat2 mutants. The data suggest that CAT2 is a critical target of leaf amino acid concentrations and manipulation of this tonoplast transporter can significantly alter total tissue amino acid concentrations.
Collapse
Affiliation(s)
- Huaiyu Yang
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Melanie Krebs
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - York-Dieter Stierhof
- Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70593 Stuttgart, Germany; Center for Molecular Biology of Plants (ZMBP), Microscopy Unit, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.
| |
Collapse
|
169
|
Hierl G, Höwing T, Isono E, Lottspeich F, Gietl C. Ex vivo processing for maturation of Arabidopsis KDEL-tailed cysteine endopeptidase 2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. PLANT MOLECULAR BIOLOGY 2014; 84:605-20. [PMID: 24287716 PMCID: PMC3950626 DOI: 10.1007/s11103-013-0157-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/19/2013] [Indexed: 05/24/2023]
Abstract
Ricinosomes are specialized ER-derived organelles that store the inactive pro-forms of KDEL-tailed cysteine endopeptidases (KDEL-CysEP) associated with programmed cell death (PCD). The Arabidopsis genome encodes three KDEL-CysEP (AtCEP1, AtCEP2, and AtCEP3) that are differentially expressed in vegetative and generative tissues undergoing PCD. These Arabidopsis proteases have not been characterized at a biochemical level, nor have they been localized intracellularly. In this study, we characterized AtCEP2. A 3xHA-mCherry-AtCEP2 gene fusion including pro-peptide and KDEL targeting sequences expressed under control of the endogenous promoter enabled us to isolate AtCEP2 "ex vivo". The purified protein was shown to be activated in a pH-dependent manner. After activation, however, protease activity was pH-independent. Analysis of substrate specificity showed that AtCEP2 accepts proline near the cleavage site, which is a rare feature specific for KDEL-CysEPs. mCherry-AtCEP2 was detected in the epidermal layers of leaves, hypocotyls and roots; in the root, it was predominantly found in the elongation zone and root cap. Co-localization with an ER membrane marker showed that mCherry-AtCEP2 was stored in two different types of ER-derived organelles: 10 μm long spindle shaped organelles as well as round vesicles with a diameter of approximately 1 μm. The long organelles appear to be ER bodies, which are found specifically in Brassicacae. The round vesicles strongly resemble the ricinosomes first described in castor bean. This study provides a first evidence for the existence of ricinosomes in Arabidopsis, and may open up new avenues of research in the field of PCD and developmental tissue remodeling.
Collapse
Affiliation(s)
- Georg Hierl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Timo Höwing
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Erika Isono
- Center of Life and Food Sciences Weihenstephan, Department of Plant Systems Biology, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| | - Friedrich Lottspeich
- Max Planck Institute of Biochemistry, Protein Analysis, 82152 Martinsried, Germany
| | - Christine Gietl
- Center of Life and Food Sciences Weihenstephan, Lehrstuhl fuer Botanik, Technische Universitaet Muenchen, Emil-Ramann-Str. 4, 85350 Freising, Germany
| |
Collapse
|
170
|
Jancowski S, Catching A, Pighin J, Kudo T, Foissner I, Wasteneys GO. Trafficking of the myrosinase-associated protein GLL23 requires NUC/MVP1/GOLD36/ERMO3 and the p24 protein CYB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:497-510. [PMID: 24330158 DOI: 10.1111/tpj.12408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/28/2013] [Indexed: 05/08/2023]
Abstract
Proteins detrimental to endoplasmic reticulum (ER) morphology need to be efficiently exported. Here, we identify two mechanisms that control trafficking of Arabidopsis thalianaGLL23, a 43 kDa GDSL-like lipase implicated in glucosinolate metabolism through its association with the β-glucosidase myrosinase. Using immunofluorescence, we identified two mutants that showed aberrant accumulation of GLL23: large perinuclear ER aggregates in the nuclear cage (nuc) mutant; and small compartments contiguous with the peripheral ER in the cytoplasmic bodies (cyb) mutant. Live imaging of fluorescently tagged GLL23 confirmed its presence in the nuc and cyb compartments, but lack of fluorescent signals in the wild-type plants suggested that GLL23 is normally post-translationally modified for ER export. NUC encodes the MVP1/GOLD36/ERMO3 myrosinase-associated protein, previously shown to have vacuolar distribution. CYB is an ER and Golgi-localized p24 type I membrane protein component of coat protein complex (COP) vesicles, animal and yeast homologues of which are known to be involved in selective cargo sorting for ER-Golgi export. Without NUC, GLL23 accumulates in the ER this situation suggests that NUC is in fact active in the ER. Without CYB, both GLL23 and NUC were found to accumulate in cyb compartments, consistent with a role for NUC in GLL23 processing and indicated that GLL23 is the likely sorting target of the CYB p24 protein.
Collapse
Affiliation(s)
- Sylwia Jancowski
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | |
Collapse
|
171
|
Pan S, Carter CJ, Raikhel NV. Understanding protein trafficking in plant cells through proteomics. Expert Rev Proteomics 2014; 2:781-92. [PMID: 16209656 DOI: 10.1586/14789450.2.5.781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The functions of approximately one-third of the proteins encoded by the Arabidopsis thaliana genome are completely unknown. Moreover, many annotations of the remainder of the genome supply tentative functions, at best. Knowing the ultimate localization of these proteins, as well as the pathways used for getting there, may provide clues as to their functions. The putative localization of most proteins currently relies on in silico-based bioinformatics approaches, which, unfortunately, often result in erroneous predictions. Emerging proteomics techniques coupled with other systems biology approaches now provide researchers with a plethora of methods for elucidating the final location of these proteins on a large scale, as well as the ability to dissect protein-sorting pathways in plants.
Collapse
Affiliation(s)
- Songqin Pan
- WM Keck Proteomics Laboratory, Center for Plant Cell Biology, Botany & Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
172
|
Socha AL, Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:106. [PMID: 24744764 PMCID: PMC3978347 DOI: 10.3389/fpls.2014.00106] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis.
Collapse
Affiliation(s)
- Amanda L. Socha
- *Correspondence: Amanda L. Socha, Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03766, USA e-mail:
| | | |
Collapse
|
173
|
Abstract
Quantitative proteomics by LC-MS/MS is a widely used approach for quantifying a significant portion of any complex proteome. Among the different techniques used for this purpose, one is by use of Data Independent Acquisition (DIA). We present a descriptive protocol for label-free quantitation of proteins by one DIA method termed LC-MS(E), which facilitates large-scale quantification of proteins without the need for isotopic labelling and with no theoretical limit to the number of samples included in an experiment.
Collapse
Affiliation(s)
- Alon Savidor
- Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
174
|
Tanveer T, Shaheen K, Parveen S, Kazi AG, Ahmad P. Plant secretomics: identification, isolation, and biological significance under environmental stress. PLANT SIGNALING & BEHAVIOR 2014; 9:e29426. [PMID: 25763623 PMCID: PMC4203502 DOI: 10.4161/psb.29426] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 05/03/2023]
Abstract
Plant secretomes are the proteins secreted by the plant cells and are involved in the maintenance of cell wall structure, relationship between host and pathogen, communication between different cells in the plant, etc. Amalgamation of methodologies like bioinformatics, biochemical, and proteomics are used to separate, classify, and outline secretomes by means of harmonizing in planta systems and in vitro suspension cultured cell system (SSCs). We summed up and explained the meaning of secretome, methods used for the identification and isolation of secreted proteins from extracellular space and methods for the assessment of purity of secretome proteins in this review. Two D PAGE method and HPLC based methods for the analysis together with different bioinformatics tools used for the prediction of secretome proteins are also discussed. Biological significance of secretome proteins under different environmental stresses, i.e., salt stress, drought stress, oxidative stress, etc., defense responses and plant interactions with environment are also explained in detail.
Collapse
Affiliation(s)
- Tehreem Tanveer
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Kanwal Shaheen
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Sajida Parveen
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Alvina Gul Kazi
- Atta-ur-Rahman School of Applied Biosciences; National University of Sciences and Technology; Islamabad, Pakistan
| | - Parvaiz Ahmad
- Department of Botany; S.P. College; Jammu and Kashmir, India
| |
Collapse
|
175
|
Park E, Drakakaki G. Proteomics of endosomal compartments from plants case study: isolation of trans-Golgi network vesicles. Methods Mol Biol 2014; 1209:179-187. [PMID: 25117284 DOI: 10.1007/978-1-4939-1420-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A detailed understanding of endomembrane processes and their biological roles is vital for a complete picture of plant growth and development; however their highly dynamic nature has complicated comprehensive and rigorous studies so far. Recent pioneering efforts have demonstrated that isolation of vesicles in their native state, paired with a quantitative identification of their cargo, offers a viable and practicable approach for the dissection of endomembrane trafficking pathways. The protocol presented in this chapter describes in detail the isolation of the SYP61 trans-Golgi network vesicles from Arabidopsis. With minor alterations, in a few key parameters, it can be adopted to yield a universal procedure for the broad spectrum of plant vesicles.
Collapse
Affiliation(s)
- Eunsook Park
- Department of Plant sciences, University of California Davis, Asmundson Hall, One Shields Avenue, Davis, CA, 95616, USA
| | | |
Collapse
|
176
|
Feeney M, Frigerio L, Kohalmi SE, Cui Y, Menassa R. Reprogramming cells to study vacuolar development. FRONTIERS IN PLANT SCIENCE 2013; 4:493. [PMID: 24348496 PMCID: PMC3848493 DOI: 10.3389/fpls.2013.00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/15/2013] [Indexed: 05/29/2023]
Abstract
During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.
Collapse
Affiliation(s)
- Mistianne Feeney
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | | - Yuhai Cui
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| |
Collapse
|
177
|
Dadacz-Narloch B, Kimura S, Kurusu T, Farmer EE, Becker D, Kuchitsu K, Hedrich R. On the cellular site of two-pore channel TPC1 action in the Poaceae. THE NEW PHYTOLOGIST 2013; 200:663-674. [PMID: 23845012 DOI: 10.1111/nph.12402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/02/2013] [Indexed: 06/02/2023]
Abstract
The slow vacuolar (SV) channel has been characterized in different dicots by patch-clamp recordings. This channel represents the major cation conductance of the largest organelle in most plant cells. Studies with the tpc1-2 mutant of the model dicot plant Arabidopsis thaliana identified the SV channel as the product of the TPC1 gene. By contrast, research on rice and wheat TPC1 suggested that the monocot gene encodes a plasma membrane calcium-permeable channel. To explore the site of action of grass TPC1 channels, we expressed OsTPC1 from rice (Oryza sativa) and TaTPC1 from wheat (Triticum aestivum) in the background of the Arabidopsis tpc1-2 mutant. Cross-species tpc1 complementation and patch-clamping of vacuoles using Arabidopsis and rice tpc1 null mutants documented that both monocot TPC1 genes were capable of rescuing the SV channel deficit. Vacuoles from wild-type rice but not the tpc1 loss-of-function mutant harbor SV channels exhibiting the hallmark properties of dicot TPC1/SV channels. When expressed in human embryonic kidney (HEK293) cells OsTPC1 was targeted to Lysotracker-Red-positive organelles. The finding that the rice TPC1, just like those from the model plant Arabidopsis and even animal cells, is localized and active in lyso-vacuolar membranes associates this cation channel species with endomembrane function.
Collapse
Affiliation(s)
- Beata Dadacz-Narloch
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Sachie Kimura
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, 192-0982, Japan
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| | - Dirk Becker
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Wuerzburg, D-97082, Wuerzburg, Germany
| |
Collapse
|
178
|
Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, Martinoia E. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1446-58. [PMID: 24028845 PMCID: PMC3813663 DOI: 10.1104/pp.113.222547] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/09/2013] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key plant hormone involved in diverse physiological and developmental processes, including abiotic stress responses and the regulation of stomatal aperture and seed germination. Abscisic acid glucosyl ester (ABA-GE) is a hydrolyzable ABA conjugate that accumulates in the vacuole and presumably also in the endoplasmic reticulum. Deconjugation of ABA-GE by the endoplasmic reticulum and vacuolar β-glucosidases allows the rapid formation of free ABA in response to abiotic stress conditions such as dehydration and salt stress. ABA-GE further contributes to the maintenance of ABA homeostasis, as it is the major ABA catabolite exported from the cytosol. In this work, we identified that the import of ABA-GE into vacuoles isolated from Arabidopsis (Arabidopsis thaliana) mesophyll cells is mediated by two distinct membrane transport mechanisms: proton gradient-driven and ATP-binding cassette (ABC) transporters. Both systems have similar Km values of approximately 1 mm. According to our estimations, this low affinity appears nevertheless to be sufficient for the continuous vacuolar sequestration of ABA-GE produced in the cytosol. We further demonstrate that two tested multispecific vacuolar ABCC-type ABC transporters from Arabidopsis exhibit ABA-GE transport activity when expressed in yeast (Saccharomyces cerevisiae), which also supports the involvement of ABC transporters in ABA-GE uptake. Our findings suggest that the vacuolar ABA-GE uptake is not mediated by specific, but rather by several, possibly multispecific, transporters that are involved in the general vacuolar sequestration of conjugated metabolites.
Collapse
|
179
|
Yoshida K, Ohnishi M, Fukao Y, Okazaki Y, Fujiwara M, Song C, Nakanishi Y, Saito K, Shimmen T, Suzaki T, Hayashi F, Fukaki H, Maeshima M, Mimura T. Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. PLANT & CELL PHYSIOLOGY 2013; 54:1571-84. [PMID: 23903016 DOI: 10.1093/pcp/pct107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The local distribution of both the vacuolar-type proton ATPase (V-ATPase) and the vacuolar-type proton pyrophosphatase (V-PPase), the main vacuolar proton pumps, was investigated in intact vacuoles isolated from Arabidopsis suspension-cultured cells. Fluorescent immunostaining showed that V-PPase was distributed evenly on the vacuolar membrane (VM), but V-ATPase localized to specific regions of the VM. We hypothesize that there may be membrane microdomains on the VM. To confirm this hypothesis, we prepared detergent-resistant membranes (DRMs) from the VM in accordance with well established conventional methods. Analyses of fatty acid composition suggested that DRMs had more saturated fatty acids compared with the whole VM in phosphatidylcholine and phosphatidylethanolamine. In the proteomic analyses of both DRMs and detergent-soluble mebranes (DSMs), we confirmed the different local distributions of V-ATPase and V-PPase. The observations of DRMs with an electron microscope supported the existence of different areas on the VM. Moreover, it was observed using total internal reflection fluorescent microscopy (TIRFM) that proton pumps were frequently immobilized at specific sites on the VM. In the proteomic analyses, we also found that many other vacuolar membrane proteins are distributed differently in DRMs and DSMs. Based on the results of this study, we discuss the possibility that VM microdomains might contribute to vacuolar dynamics.
Collapse
Affiliation(s)
- Katsuhisa Yoshida
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Xuan J, Song Y, Zhang H, Liu J, Guo Z, Hua Y. Comparative proteomic analysis of the stolon cold stress response between the C4 perennial grass species Zoysia japonica and Zoysia metrella. PLoS One 2013; 8:e75705. [PMID: 24086619 PMCID: PMC3784457 DOI: 10.1371/journal.pone.0075705] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 08/20/2013] [Indexed: 12/30/2022] Open
Abstract
Zoysiagrass, the most cold-tolerant grass among the warm-season turfgrasses, is often used as a model species for isolating cellular components related to cold stress. To understand the proteomic responses to cold stress in zoysiagrass stolons, we extracted stolon proteins from Zoysiajaponica, cv. Meyer (cold-tolerant) and Z. metrella, cv. Diamond (cold-sensitive), which were grown with or without cold treatment. Approximately 700 proteins were resolved on 2-DE gels, and 70 protein spots were differentially accumulated. We further observed that 45 of the identified proteins participate in 10 metabolic pathways and cellular processes. A significantly greater number of proteins accumulated in the Meyer than in the Diamond and 15 increased proteins were detected only in the Meyer cultivar under cold stress. Furthermore, we propose a cold stress-responsive protein network composed of several different functional components that exhibits a balance between reactive oxygen species (ROS) production and scavenging, accelerated protein biosynthesis and proteolysis, reduced protein folding, enhanced photosynthesis, abundant energy supply and enhanced biosynthesis of carbohydrates and nucleotides. Generally, the cold-tolerant Meyer cultivar showed a greater ROS scavenging ability, more abundant energy supply and increased photosynthesis and protein synthesis than did the cold-sensitive Diamond cultivar, which may partly explain why Meyer is more cold tolerant.
Collapse
Affiliation(s)
- Jiping Xuan
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmenwai, Nanjing, Jiangsu Province, PR China
| | - Yufeng Song
- College of Life and Science, Nanjing Agricultural University, No.1 Weigang, Nanjing, PR China
| | - Hongxiao Zhang
- College of Agriculture, Henan University of Science and Technology, No.263 Kaiyuandadao, Luoyang, Henan Province, PR China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmenwai, Nanjing, Jiangsu Province, PR China
- * E-mail: (JL); (ZG)
| | - Zhongren Guo
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmenwai, Nanjing, Jiangsu Province, PR China
- * E-mail: (JL); (ZG)
| | - Yuelou Hua
- Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, No.1 Qianhu Houcun, Zhongshanmenwai, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
181
|
Wang X, Shi M, Wang D, Chen Y, Cai F, Zhang S, Wang L, Tong Z, Tian WM. Comparative proteomics of primary and secondary lutoids reveals that chitinase and glucanase play a crucial combined role in rubber particle aggregation in Hevea brasiliensis. J Proteome Res 2013; 12:5146-59. [PMID: 23991906 DOI: 10.1021/pr400378c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lutoids are specific vacuole-based organelles within the latex-producing laticifers in rubber tree Hevea brasiliensis. Primary and secondary lutoids are found in the primary and secondary laticifers, respectively. Although both lutoid types perform similar roles in rubber particle aggregation (RPA) and latex coagulation, they vary greatly at the morphological and proteomic levels. To compare the differential proteins and determine the shared proteins of the two lutoid types, a proteomic analysis of lutoid membranes and inclusions was performed, revealing 169 proteins that were functionally classified into 14 families. Biological function analysis revealed that most of the proteins are involved in pathogen defense, chitin catabolism, and proton transport. Comparison of the gene and protein changed patterns and determination of the specific roles of several main lutoid proteins, such as glucanase, hevamine, and hevein, demonstrated that Chitinase and glucanase appeared to play crucial synergistic roles in RPA. Integrative analysis revealed a protein-based metabolic network mediating pH and ion homeostasis, defense response, and RPA in lutoids. From these findings, we developed a modified regulation model for lutoid-mediated RPA that will deepen our understanding of potential mechanisms involved in lutoid-mediated RPA and consequent latex coagulation.
Collapse
Affiliation(s)
- Xuchu Wang
- Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences , Danzhou Hainan 571737, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Leitenmaier B, Küpper H. Compartmentation and complexation of metals in hyperaccumulator plants. FRONTIERS IN PLANT SCIENCE 2013; 4:374. [PMID: 24065978 PMCID: PMC3778397 DOI: 10.3389/fpls.2013.00374] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 09/03/2013] [Indexed: 05/18/2023]
Abstract
Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their "strange" behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs.
Collapse
Affiliation(s)
| | - Hendrik Küpper
- Fachbereich Biologie, Universität KonstanzKonstanz, Germany
| |
Collapse
|
183
|
NO₃⁻/H⁺ antiport in the tonoplast of cucumber root cells is stimulated by nitrate supply: evidence for a reversible nitrate-induced phosphorylation of vacuolar NO₃⁻/H⁺ antiport. PLoS One 2013; 8:e73972. [PMID: 24040130 PMCID: PMC3770621 DOI: 10.1371/journal.pone.0073972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/25/2013] [Indexed: 11/19/2022] Open
Abstract
Studies in the last few years have shed light on the process of nitrate accumulation within plant cells, achieving molecular identification and partial characterization of the genes and proteins involved in this process. However, contrary to the plasma membrane-localized nitrate transport activities, the kinetics of active nitrate influx into the vacuole and its adaptation to external nitrate availability remain poorly understood. In this work, we have investigated the activity and regulation of the tonoplast-localized H+/NO3− antiport in cucumber roots in response to N starvation and NO3− induction. The time course of nitrate availability strongly influenced H+/NO3− antiport activity at the tonoplast of root cells. However, under N starvation active nitrate accumulation within the vacuole still occurred. Hence, either a constitutive H+-coupled transport system specific for nitrate operates at the tonoplast, or nitrate uses another transport protein of broader specificity to different anions to enter the vacuole via a proton-dependent process. H+/NO3− antiport in cucumber was significantly stimulated in NO3−-induced plants that were supplied with nitrate for 24 hours following 6-day-long N starvation. The cytosolic fraction isolated from the roots of NO3−-induced plants significantly stimulated H+/NO3− antiport in tonoplast membranes isolated from cucumbers growing on nitrate. The stimulatory effect of the cytosolic fraction was completely abolished by EGTA and the protein kinase inhibitor staurosporine and slightly enhanced by the phosphatase inhibitors okadaic acid and cantharidin. Hence, we conclude that stimulation of H+/NO3− antiport at the tonoplast of cucumber roots in response to nitrate provision may occur through the phosphorylation of a membrane antiporter involving Ca-dependent, staurosporine-sensitive protein kinase.
Collapse
|
184
|
Oxley D, Ktistakis N, Farmaki T. Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography. J Proteomics 2013; 91:580-94. [PMID: 24007659 DOI: 10.1016/j.jprot.2013.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/25/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
UNLABELLED A phosphatidylinositol-phosphate affinity chromatographic approach combined with mass spectrometry was used in order to identify novel PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana suspension cell extracts. Most of the phosphatidylinositol-phosphate interacting candidates identified from this differential screening are characterized by lysine/arginine rich patches. Direct phosphoinositide binding was identified for important membrane trafficking regulators as well as protein quality control proteins such as the ATG18p orthologue involved in autophagosome formation and the lipid Sec14p like transfer protein. A pentatricopeptide repeat (PPR) containing protein was shown to directly bind to PI(3,5)P2 but not to PI(3)P. PIP chromatography performed using extracts obtained from high salt (0.4M and 1M NaCl) pretreated suspensions showed that the association of an S5-1 40S ribosomal protein with both PI(3)P and PI(3,5)P2 was abolished under salt stress whereas salinity stress induced an increase in the phosphoinositide association of the DUF538 domain containing protein SVB, associated with trichome size. Additional interacting candidates were co-purified with the phosphoinositide bound proteins. Binding of the COP9 signalosome, the heat shock proteins, and the identified 26S proteasomal subunits, is suggested as an indirect effect of their interaction with other proteins directly bound to the PI(3)P and the PI(3,5)P2 phosphoinositides. BIOLOGICAL SIGNIFICANCE PI(3,5)P2 is of special interest because of its low abundance. Furthermore, no endogenous levels have yet been detected in A. thaliana (although there is evidence for its existence in plants). Therefore the isolation of novel interacting candidates in vitro would be of a particular importance since the future study and localization of the respective endogenous proteins may indicate possible targeted compartments or tissues where PI(3,5)P2 could be enriched and thereafter identified. In addition, PI(3,5)P2 is a phosphoinositide extensively studied in mammalian and yeast systems. However, our knowledge of its role in plants as well as a list of its effectors from plants is very limited.
Collapse
Affiliation(s)
- David Oxley
- The Mass Spectrometry Group, Babraham Institute, Cambridge, CB2 4AT, UK
| | | | | |
Collapse
|
185
|
Shen J, Zeng Y, Zhuang X, Sun L, Yao X, Pimpl P, Jiang L. Organelle pH in the Arabidopsis endomembrane system. MOLECULAR PLANT 2013; 6:1419-37. [PMID: 23702593 DOI: 10.1093/mp/sst079] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pH of intracellular compartments is essential for the viability of cells. Despite its relevance, little is known about the pH of these compartments. To measure pH in vivo, we have first generated two pH sensors by combining the improved-solubility feature of solubility-modified green fluorescent protein (GFP) (smGFP) with the pH-sensing capability of the pHluorins and codon optimized for expression in Arabidopsis. PEpHluorin (plant-solubility-modified ecliptic pHluorin) gradually loses fluorescence as pH is lowered with fluorescence vanishing at pH 6.2 and PRpHluorin (plant-solubility-modified ratiomatric pHluorin), a dual-excitation sensor, allowing for precise measurements. Compartment-specific sensors were generated by further fusing specific sorting signals to PEpHluorin and PRpHluorin. Our results show that the pH of cytosol and nucleus is similar (pH 7.3 and 7.2), while peroxisomes, mitochondrial matrix, and plastidial stroma have alkaline pH. Compartments of the secretory pathway reveal a gradual acidification, spanning from pH 7.1 in the endoplasmic reticulum (ER) to pH 5.2 in the vacuole. Surprisingly, pH in the trans-Golgi network (TGN) and multivesicular body (MVB) is, with pH 6.3 and 6.2, quite similar. The inhibition of vacuolar-type H(+)-ATPase (V-ATPase) with concanamycin A (ConcA) caused drastic increase in pH in TGN and vacuole. Overall, the PEpHluorin and PRpHluorin are excellent pH sensors for visualization and quantification of pH in vivo, respectively.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
186
|
Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M, Schumacher K. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. THE PLANT CELL 2013; 25:3434-49. [PMID: 24014545 PMCID: PMC3809542 DOI: 10.1105/tpc.113.114827] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 05/18/2023]
Abstract
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.
Collapse
Affiliation(s)
- Corrado Viotti
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Falco Krüger
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Neubert
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Fink
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Upendo Lupanga
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Scheuring
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yohann Boutté
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Márcia Frescatada-Rosa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Susanne Wolfenstetter
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Hillmer
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
187
|
Hakenjos JP, Bejai S, Ranftl Q, Behringer C, Vlot AC, Absmanner B, Hammes U, Heinzlmeir S, Kuster B, Schwechheimer C. ML3 is a NEDD8- and ubiquitin-modified protein. PLANT PHYSIOLOGY 2013; 163:135-49. [PMID: 23903439 PMCID: PMC3762636 DOI: 10.1104/pp.113.221341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/30/2013] [Indexed: 05/23/2023]
Abstract
NEDD8 (NEURAL PRECURSOR CELL-EXPRESSED, DEVELOPMENTALLY DOWN-REGULATED PROTEIN8) is an evolutionarily conserved 8-kD protein that is closely related to ubiquitin and that can be conjugated like ubiquitin to specific lysine residues of target proteins in eukaryotes. In contrast to ubiquitin, for which a broad range of substrate proteins are known, only a very limited number of NEDD8 target proteins have been identified to date. Best understood, and also evolutionarily conserved, is the NEDD8 modification (neddylation) of cullins, core subunits of the cullin-RING-type E3 ubiquitin ligases that promote the polyubiquitylation of degradation targets in eukaryotes. Here, we show that Myeloid differentiation factor-2-related lipid-recognition domain protein ML3 is an NEDD8- as well as ubiquitin-modified protein in Arabidopsis (Arabidopsis thaliana) and examine the functional role of ML3 in the plant cell. Our analysis indicates that ML3 resides in the vacuole as well as in endoplasmic reticulum (ER) bodies. ER bodies are Brassicales-specific ER-derived organelles and, similar to other ER body proteins, ML3 orthologs can only be identified in this order of flowering plants. ML3 gene expression is promoted by wounding as well as by the phytohormone jasmonic acid and repressed by ethylene, signals that are known to induce and repress ER body formation, respectively. Furthermore, ML3 protein abundance is dependent on NAI1, a master regulator of ER body formation in Arabidopsis. The regulation of ML3 expression and the localization of ML3 in ER bodies and the vacuole is in agreement with a demonstrated importance of ML3 in the defense to herbivore attack. Here, we extend the spectrum of ML3 biological functions by demonstrating a role in the response to microbial pathogens.
Collapse
|
188
|
Shen J, Suen PK, Wang X, Lin Y, Lo SW, Rojo E, Jiang L. An in vivo expression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:1003-17. [PMID: 23738689 DOI: 10.1111/tpj.12257] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 05/18/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins that in plant cells are thought to recognize cargo proteins at the late Golgi or trans-Golgi network (TGN) for vacuolar transport via the pre-vacuolar compartment (PVC). However, little is known about VSR cargo proteins in plants. Here we developed and tested an in vivo expression system for the identification of VSR cargos which is based on the premise that the expressed N-terminus of VSRs will be secreted into the culture medium along with their corresponding cargo proteins. Indeed, transgenic Arabidopsis culture cell lines expressing VSR N-terminal binding domains (VSRNTs) were shown to secrete truncated VSRs (BP80NT, AtVSR1NT and AtVSR4NT) with attached cargo molecules into the culture medium. Putative cargo proteins were identified through mass spectrometry. Several identified cargo proteins were confirmed by localization studies and interaction analysis with VSRs. The screening strategy described here should be applicable to all VSRs and will help identify and study cargo proteins for individual VSR proteins. This method should be useful for both cargo identification and protein-protein interaction in vivo.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
189
|
Perry G, DiNatale C, Xie W, Navabi A, Reinprecht Y, Crosby W, Yu K, Shi C, Pauls KP. A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes. FRONTIERS IN PLANT SCIENCE 2013; 4:318. [PMID: 24009615 PMCID: PMC3756299 DOI: 10.3389/fpls.2013.00318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/29/2013] [Indexed: 05/28/2023]
Abstract
Resistance to common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli, in Phaseolus vulgaris is conditioned by several loci on different chromosomes. Previous studies with OAC-Rex, a CBB-resistant, white bean variety of Mesoamerican origin, identified two resistance loci associated with the molecular markers Pv-CTT001 and SU91, on chromosome 4 and 8, respectively. Resistance to CBB is assumed to be derived from an interspecific cross with Phaseolus acutifolius in the pedigree of OAC-Rex. Our current whole genome sequencing effort with OAC-Rex provided the opportunity to compare its genome in the regions associated with CBB resistance with the v1.0 release of the P. vulgaris line G19833, which is a large seeded bean of Andean origin, and (assumed to be) CBB susceptible. In addition, the genomic regions containing SAP6, a marker associated with P. vulgaris-derived CBB-resistance on chromosome 10, were compared. These analyses indicated that gene content was highly conserved between G19833 and OAC-Rex across the regions examined (>80%). However, fifty-nine genes unique to OAC Rex were identified, with resistance gene homologues making up the largest category (10 genes identified). Two unique genes in OAC-Rex located within the SU91 resistance QTL have homology to P. acutifolius ESTs and may be potential sources of CBB resistance. As the genomic sequence assembly of OAC-Rex is completed, we expect that further comparisons between it and the G19833 genome will lead to a greater understanding of CBB resistance in bean.
Collapse
Affiliation(s)
- Gregory Perry
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Claudia DiNatale
- Department of Biological Sciences, University of Windsor, WindsorON, Canada
| | - Weilong Xie
- Agriculture and Agri-Food Canada, c/o Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Alireza Navabi
- Agriculture and Agri-Food Canada, c/o Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | | | - William Crosby
- Department of Biological Sciences, University of Windsor, WindsorON, Canada
| | - Kangfu Yu
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, HarrowON, Canada
| | - Chun Shi
- Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, HarrowON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| |
Collapse
|
190
|
Xiang L, Van den Ende W. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. PLANT & CELL PHYSIOLOGY 2013; 54:1263-1277. [PMID: 23737500 DOI: 10.1093/pcp/pct075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.
Collapse
Affiliation(s)
- Li Xiang
- Biology Department, Laboratory for Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium
| | | |
Collapse
|
191
|
Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. PLANT, CELL & ENVIRONMENT 2013; 36:1242-55. [PMID: 23305614 DOI: 10.1111/pce.12061] [Citation(s) in RCA: 410] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 05/18/2023]
Abstract
Plants suffering from abiotic stress are commonly facing an enhanced accumulation of reactive oxygen species (ROS) with damaging as well as signalling effects at organellar and cellular levels. The outcome of an environmental challenge highly depends on the delicate balance between ROS production and scavenging by both enzymatic and metabolic antioxidants. However, this traditional classification is in need of renewal and reform, as it is becoming increasingly clear that soluble sugars such as disaccharides, raffinose family oligosaccharides and fructans--next to their associated metabolic enzymes--are strongly related to stress-induced ROS accumulation in plants. Therefore, this review aims at extending the current concept of antioxidants functioning during abiotic stress, with special focus on the emanate role of sugars as true ROS scavengers. Examples are given based on their cellular location, as different organelles seem to exploit distinct mechanisms. Moreover, the vacuole comes into the picture as important player in the ROS signalling network of plants. Elucidating the interplay between the mechanisms controlling ROS signalling during abiotic stress will facilitate the development of strategies to enhance crop tolerance to stressful environmental conditions.
Collapse
Affiliation(s)
- Els Keunen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Darin Peshev
- Laboratory of Molecular Plant Biology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KULeuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Wim Van Den Ende
- Laboratory of Molecular Plant Biology and Leuven Food Science and Nutrition Research Centre (LFoRCe), KULeuven, Kasteelpark Arenberg 31, B-3001, Leuven, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| |
Collapse
|
192
|
Lenz H, Dombinov V, Dreistein J, Reinhard MR, Gebert M, Knoop V. Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. PLANT & CELL PHYSIOLOGY 2013; 54:1118-31. [PMID: 23628997 DOI: 10.1093/pcp/pct062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plant MRS2 membrane protein family members have been shown to play important roles in magnesium uptake and homeostasis. Single and double knockouts for two Arabidopsis thaliana genes, AtMRS2-1 and AtMRS2-5, have previously not shown significant phenotypes even under limiting Mg(2+) supply although both are strongly expressed already in early seedlings. Together with AtMRS2-10, these genes form clade B of the AtMRS2 gene family. We now succeeded in obtaining homozygous AtMRS2-1/10 double and AtMRS2-1/5/10 triple knockout lines after selection under increased magnesium supply. Although wilting early, both new mutant lines develop fully and are also fertile under standard magnesium supply, but show severe developmental retardation under limiting Mg(2+) concentrations. To investigate nutrient dependency of germination and seedling development under various conditions, including variable supplies of Mg(2+), Ca(2+), Zn(2+), Mn(2+), Co(2+), Cd(2+) and Cu(2+), in a reproducible and economical way, we employed a small-scale liquid culturing system in 24-well plate set-ups. This allowed the growth and monitoring of individual plantlets of different mutant lines under several nutritional conditions in parallel, and the scoring and statistical evaluation of developmental stages and biomass accumulation. Detrimental effects of higher concentrations of these elements were similar in mutants and the wild type. However, growth retardation phenotypes seen upon hydroponic cultivation under low Mg(2+) could be ameliorated when Ca(2+) concentrations were concomitantly lowered, supporting indications for an important interplay of these two most abundant divalent cations in the nutrient homeostasis of plants.
Collapse
Affiliation(s)
- Henning Lenz
- Abteilung Molekulare Evolution, IZMB-Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
193
|
Carqueijeiro I, Noronha H, Duarte P, Gerós H, Sottomayor M. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport. PLANT PHYSIOLOGY 2013; 162:1486-96. [PMID: 23686419 PMCID: PMC3707533 DOI: 10.1104/pp.113.220558] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters.
Collapse
|
194
|
Ono Y, Wada S, Izumi M, Makino A, Ishida H. Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2013; 36:1147-59. [PMID: 23215962 DOI: 10.1111/pce.12049] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 11/27/2012] [Indexed: 05/03/2023]
Abstract
During leaf senescence, Rubisco is gradually degraded and its components are recycled within the plant. Although Rubisco can be mobilized to the vacuole by autophagy via specific autophagic bodies, the importance of this process in Rubisco degradation has not been shown directly. Here, we monitored Rubisco autophagy during leaf senescence by fusing synthetic green fluorescent protein (sGFP) or monomeric red fluorescent protein (mRFP) with Rubisco in Arabidopsis (Arabidopsis thaliana). When attached leaves were individually exposed to darkness to promote their senescence, the fluorescence of Rubisco-sGFP was observed in the vacuolar lumen as well as chloroplasts. In addition, release of free-sGFP due to the processing of Rubisco-sGFP was observed in the vacuole of individually darkened leaves. This vacuolar transfer and processing of Rubisco-sGFP was not observed in autophagy-deficient atg5 mutants. Unlike sGFP, mRFP was resistant to proteolysis in the leaf vacuole of light-grown plants. The vacuolar transfer and processing of Rubisco-mRFP was observed at an early stage of natural leaf senescence and was also obvious in leaves naturally covered by other leaves. These results indicate that autophagy contributes substantially to Rubisco degradation during natural leaf senescence as well as dark-promoted senescence.
Collapse
Affiliation(s)
- Yuki Ono
- Department of Applied Plant Science, Graduate School of Agricultural Sciences, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
195
|
Sauer M, Delgadillo MO, Zouhar J, Reynolds GD, Pennington JG, Jiang L, Liljegren SJ, Stierhof YD, De Jaeger G, Otegui MS, Bednarek SY, Rojo E. MTV1 and MTV4 encode plant-specific ENTH and ARF GAP proteins that mediate clathrin-dependent trafficking of vacuolar cargo from the trans-Golgi network. THE PLANT CELL 2013; 25:2217-35. [PMID: 23771894 PMCID: PMC3723622 DOI: 10.1105/tpc.113.111724] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/14/2013] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
Many soluble proteins transit through the trans-Golgi network (TGN) and the prevacuolar compartment (PVC) en route to the vacuole, but our mechanistic understanding of this vectorial trafficking step in plants is limited. In particular, it is unknown whether clathrin-coated vesicles (CCVs) participate in this transport step. Through a screen for modified transport to the vacuole (mtv) mutants that secrete the vacuolar protein VAC2, we identified MTV1, which encodes an epsin N-terminal homology protein, and MTV4, which encodes the ADP ribosylation factor GTPase-activating protein nevershed/AGD5. MTV1 and NEV/AGD5 have overlapping expression patterns and interact genetically to transport vacuolar cargo and promote plant growth, but they have no apparent roles in protein secretion or endocytosis. MTV1 and NEV/AGD5 colocalize with clathrin at the TGN and are incorporated into CCVs. Importantly, mtv1 nev/agd5 double mutants show altered subcellular distribution of CCV cargo exported from the TGN. Moreover, MTV1 binds clathrin in vitro, and NEV/AGD5 associates in vivo with clathrin, directly linking these proteins to CCV formation. These results indicate that MTV1 and NEV/AGD5 are key effectors for CCV-mediated trafficking of vacuolar proteins from the TGN to the PVC in plants.
Collapse
Affiliation(s)
- Michael Sauer
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - M. Otilia Delgadillo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
| | - Jan Zouhar
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica, 28223 Madrid, Spain
| | | | | | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Sarah J. Liljegren
- Department of Biology, University of Mississippi, Oxford, Mississippi 38677-1848
| | - York-Dieter Stierhof
- Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, 72076 Tuebingen, Germany
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Marisa S. Otegui
- Department of Botany, University of Madison, Madison, Wisconsin 53706
| | | | - Enrique Rojo
- Departamento Molecular de Plantas, Centro Nacional de Biotecnología (Consejo Superior de Investigaciones Cientificas), 28049 Madrid, Spain
- Address correspondence to
| |
Collapse
|
196
|
An efficient proteomic approach to analyze agriculture crop biomass. Protein J 2013; 32:365-72. [PMID: 23681363 DOI: 10.1007/s10930-013-9495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
While a plant cell wall is formed by a complex of various components, including polysaccharides and structural proteins, its composition and representation may vary during cell growth. Currently, plant research targets the proteins participating in wall loosening. Multiple classes of enzymes, including various hemicellulases and cellulases, are required for plant material degradation to achieve the maximum decomposition. Identifying the set of proteins involved in the breakdown of cell-wall polymers is important to understand plant material conversion into suitable products. The objective of this study was to describe a method which can be used to carry out proteomics analysis of complex plant samples and identify enzymes degrading biomass. For this purpose we used proteomic techniques including gel electrophoresis, high pressure liquid chromatography combinated with mass spectrometry followed by data evaluation using databases searching. Results show that more than 50 % of these activities correspond to enzymes with proteolytic function. This study was focused primarily on enzymes able to breakdown the lignocellulosic and hemicellulosic parts that are very important for the material conversion into required products of degradation.
Collapse
|
197
|
Pradedova EV, Trukhan IS, Nimaeva OD, Salyaev RK. Hydrogen peroxide generation in the vacuoles of red beet root cells. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 449:106-9. [PMID: 23652440 DOI: 10.1134/s0012496613020129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Indexed: 01/29/2023]
Affiliation(s)
- E V Pradedova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033 Russia
| | | | | | | |
Collapse
|
198
|
De Benedictis M, Bleve G, Faraco M, Stigliano E, Grieco F, Piro G, Dalessandro G, Di Sansebastiano GP. AtSYP51/52 functions diverge in the post-Golgi traffic and differently affect vacuolar sorting. MOLECULAR PLANT 2013; 6:916-30. [PMID: 23087325 DOI: 10.1093/mp/sss117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plant sensitive factor attachment protein receptors (SNAREs) encoded by genes of the same sub-family are generally considered as redundant in promoting vesicle-associated membrane fusion events. Nonetheless, the application of innovative experimental approaches highlighted that members of the same gene sub-family often have different functional specificities. In this work, two closely related Qc-SNAREs--the AtSYP51 and the AtSYP52--are compared in their ability to influence different secretory pathways. Their role in the vesicle sorting to the central vacuole has been revised and they were found to have a novel inhibitory function. When transiently overexpressed, the SYP51 and the SYP52 distributed between the TGN and the tonoplast. Our data demonstrate that these SYPs (syntaxin of plants) act as t-SNARE when present on the membrane of TGN/PVC, whereas they behave as inhibitory or interfering SNAREs (i-SNAREs) when they accumulate on the tonoplast. Moreover, the performed functional analysis indicated that the AtSYP51 and the AtSYP52 roles differ in the traffic to the vacuole. The findings are a novel contribution to the functional characterization of plant SNAREs that reveals additional non-fusogenic roles.
Collapse
Affiliation(s)
- Maria De Benedictis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Campus Ecotekne, 73100 Lecce, Italy
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Lampl N, Alkan N, Davydov O, Fluhr R. Set-point control of RD21 protease activity by AtSerpin1 controls cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:498-510. [PMID: 23398119 DOI: 10.1111/tpj.12141] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 02/01/2013] [Indexed: 05/23/2023]
Abstract
Programmed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure. Here we show that during cell death the Arabidopsis serpin protease inhibitor, AtSerpin1, exhibits a pro-survival function by inhibiting its target pro-death protease, RD21. AtSerpin1 accumulates in the cytoplasm and RD21 accumulates in the vacuole and in endoplasmic reticulum bodies. Elicitors of cell death, including the salicylic acid agonist benzothiadiazole and the fungal toxin oxalic acid, stimulated changes in vacuole permeability as measured by the changes in the distribution of marker dye. Concomitantly, a covalent AtSerpin1-RD21 complex was detected indicative of a change in protease compartmentalization. Furthermore, mutant plants lacking RD21 or plants with AtSerpin1 over-expression exhibited significantly less elicitor-stimulated PCD than plants lacking AtSerpin1. The necrotrophic fungi Botrytis cinerea and Sclerotina sclerotiorum secrete oxalic acid as a toxin that stimulates cell death. Consistent with a pro-death function for RD21 protease, the growth of these necrotrophs was compromised in plants lacking RD21 but accelerated in plants lacking AtSerpin1. The results indicate that AtSerpin1 controls the pro-death function of compartmentalized protease RD21 by determining a set-point for its activity and limiting the damage induced during cell death.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
200
|
Dai L, Kang G, Li Y, Nie Z, Duan C, Zeng R. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree). PLANT MOLECULAR BIOLOGY 2013; 82:155-168. [PMID: 23553221 DOI: 10.1007/s11103-013-0047-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 03/13/2013] [Indexed: 05/27/2023]
Abstract
The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.
Collapse
Affiliation(s)
- Longjun Dai
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Danzhou, Hainan, PR China.
| | | | | | | | | | | |
Collapse
|