151
|
Gruszka D. Crosstalk of the Brassinosteroid Signalosome with Phytohormonal and Stress Signaling Components Maintains a Balance between the Processes of Growth and Stress Tolerance. Int J Mol Sci 2018; 19:ijms19092675. [PMID: 30205610 PMCID: PMC6163518 DOI: 10.3390/ijms19092675] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/22/2018] [Accepted: 09/07/2018] [Indexed: 12/25/2022] Open
Abstract
Brassinosteroids (BRs) are a class of phytohormones, which regulate various processes during plant life cycle. Intensive studies conducted with genetic, physiological and molecular approaches allowed identification of various components participating in the BR signaling—from the ligand perception, through cytoplasmic signal transduction, up to the BR-dependent gene expression, which is regulated by transcription factors and chromatin modifying enzymes. The identification of new components of the BR signaling is an ongoing process, however an emerging view of the BR signalosome indicates that this process is interconnected at various stages with other metabolic pathways. The signaling crosstalk is mediated by the BR signaling proteins, which function as components of the transmembrane BR receptor, by a cytoplasmic kinase playing a role of the major negative regulator of the BR signaling, and by the transcription factors, which regulate the BR-dependent gene expression and form a complicated regulatory system. This molecular network of interdependencies allows a balance in homeostasis of various phytohormones to be maintained. Moreover, the components of the BR signalosome interact with factors regulating plant reactions to environmental cues and stress conditions. This intricate network of interactions enables a rapid adaptation of plant metabolism to constantly changing environmental conditions.
Collapse
Affiliation(s)
- Damian Gruszka
- Department of Genetics, Faculty of Biology and Environment Protection, University of Silesia, Jagiellonska 28, 40-032 Katowice, Poland.
| |
Collapse
|
152
|
Brassinosteroid reduces ABA accumulation leading to the inhibition of ABA-induced stomatal closure. Biochem Biophys Res Commun 2018; 504:143-148. [PMID: 30170727 DOI: 10.1016/j.bbrc.2018.08.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
Proper regulation of stomatal movement in response to various environmental stresses or developmental status is critical for the adaptation of many plant species to land. In plants, abscisic acid (ABA)-induced stomatal closure is a well-adapted method of regulating water status. In addition to ABA, we previously showed that plant-specific steroidal hormone, brassinosteroid (BR), also induces stomatal closure; however, BR modulates ABA-induced stomatal closure negatively at high concentrations. In this study, we further investigated the cross-talk between ABA and BR in relation to stomatal movement. In contrast to previous reports that ABA-induced stomatal closure was inhibited by brassinolide (BL), the most active BR, we showed that BL-induced stomatal closure was enhanced by ABA, indicating that the sequence of ABA or BL treatments led to different results. We found that this phenomenon occurred because the guard cells still had the capacity to be closed further by ABA, as the degree of stomatal closure by BL was always less than that by ABA. We also found that BL-induced stomatal closure required Open Stomata 1 (OST1) activity and the induced expression of OST1 was indifferent to the sequence of ABA and/or BL treatments. In addition, we examined the underlying mechanism by which inhibition of ABA-induced stomatal closure by BL occurred. We revealed that the downregulation of ABA-biosynthetic genes by BL resulted in a lower accumulation of ABA. These results suggested that the regulation of stomatal movement is finely controlled by the combined effects of plant hormones, ABA and BR.
Collapse
|
153
|
Pan J, Wang H, Hu Y, Yu D. Arabidopsis VQ18 and VQ26 proteins interact with ABI5 transcription factor to negatively modulate ABA response during seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:529-544. [PMID: 29771466 DOI: 10.1111/tpj.13969] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/04/2018] [Indexed: 05/23/2023]
Abstract
Seed germination and early seedling establishment, critical developmental stages in the life cycle of seed plants, are modulated by diverse endogenous hormones and the surrounding environment. Arabidopsis ABSCISIC ACID-INSENSITIVE5 (ABI5) is a central transcription factor of abscisic acid (ABA) signaling that represses those processes. ABI5 is precisely modulated at post-translational level; however, whether it interacts with other crucial transcriptional regulators remains to be investigated. In this study, VQ18 and VQ26, two members of the recently-identified VQ family, were found to interact with ABI5 in vitro and in vivo. Phenotypic analysis showed that VQ18 and VQ26 are responsive to ABA and negatively mediate ABA signaling redundantly during seed germination. Simultaneously decreasing VQ18 and VQ26 expression levels enhanced ABA signaling to suppress seed germination, whereas overexpressing these two VQ genes resulted in the germinated seeds being less ABA-sensitive. Consistently, the expression levels of several ABI5 targets were modulated by VQ18 and VQ26. The increased ABA signaling of plants in which VQ18 and VQ26 were simultaneously suppressed required ABI5. Additionally, VQ18 and VQ26 acted as negative interactors of the ABI5 transcription factor. Our study reveals a previously unidentified regulatory role of VQ proteins, which act antagonistically with ABI5 to maintain the appropriate ABA signaling level to fine-tune seed germination and early seedling establishment.
Collapse
Affiliation(s)
- Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
154
|
Dong Q, Zhao S, Duan D, Tian Y, Wang Y, Mao K, Zhou Z, Ma F. Structural and functional analyses of genes encoding VQ proteins in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:208-219. [PMID: 29807593 DOI: 10.1016/j.plantsci.2018.04.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/21/2018] [Accepted: 04/30/2018] [Indexed: 05/06/2023]
Abstract
Recent studies with Arabidopsis and soybean have shown that a class of valine-glutamine (VQ) motif-containing proteins interacts with some WRKY transcription factors. However, little is known about the evolution, structures, and functions of those proteins in apple. Here, we examined their features and identified 49 apple VQ genes. Our evolutional analysis revealed that the proteins could be clustered into nine groups together with their homologues in 33 species. Historically, the main characteristics of proteins in Groups I, V, VI, VII, IX, and X were thought to have been generated before the monocot-dicot split, whereas those in Groups II, III + IV, and VIII were generated after that split. In the structural analysis, apple MdVQ proteins appeared to bind only with Group I and IIc MdWRKY proteins. Meanwhile, MdVQ1, MdVQ10, MdVQ15, and MdVQ36 interacted with multiple MdVQ proteins to form heterodimers but MdVQ15 formed a homodimer. The functional analysis indicated that overexpression of some apple MdVQs in Arabidopsis and tobacco plants effected their vegetative and reproductive growth. These results provide important information about the characteristics of apple MdVQ genes and can serve as a solid foundation for further studies about the role of WRKY-VQ interactions in regulating apple developmental and defense mechanisms.
Collapse
Affiliation(s)
- Qinglong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China; Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China.
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China.
| | - Dingyue Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China.
| | - Yi Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China.
| | - Yanpeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China.
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China.
| | - Zongshan Zhou
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, PR China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A and F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
155
|
Jia Y, Li R, Yang W, Chen Z, Hu X. Carbon monoxide signal regulates light-initiated seed germination by suppressing SOM expression. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:88-98. [PMID: 29807609 DOI: 10.1016/j.plantsci.2018.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/28/2018] [Accepted: 04/11/2018] [Indexed: 05/09/2023]
Abstract
Light is a critical external signal for seed germination. The photoreceptor phytochrome B (PHYB) perceives light stimulation and promotes seed germination during the early phase after imbibition. SOM is a CCH-type zinc finger protein and negatively regulates PHYB-mediated seed germination by controlling downstream gibberellic acid (GA) and abscisic acid (ABA) metabolism. As a small molecular signal, carbon monoxide (CO) has been reported to regulate seed germination under environmental stress, but the underlying mechanism remains unclear. In this study, we first found that CO enhanced PHYB-dependent seed germination, and red light irradiation increased the transcriptional level of gene encoding Heme oxygenase 1(HY1) for CO production, this process required PHYB. Pharmacological and genetic analyses revealed that CO signals repressed the transcriptional level of SOM to alter downstream GA/ABA metabolism related genes expression, ultimately relieving the inhibitory effect of SOM on seed germination. Furthermore, CO signals possibly recruited histone deacetylase 6 (HDA6) to the promoter region of SOM to decrease its expression by diminishing histone H3 acetylation levels at this locus. Taken together, our results propose a novel mechanism for CO signals in promoting light-initiated seed germination via recruiting HDA6 to epigenetically regulate SOM expression.
Collapse
Affiliation(s)
- Yujie Jia
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ruijing Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wenjuan Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhen Chen
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiangyang Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
156
|
Guo YF, Zhang YL, Shan W, Cai YJ, Liang SM, Chen JY, Lu WJ, Kuang JF. Identification of Two Transcriptional Activators MabZIP4/5 in Controlling Aroma Biosynthetic Genes during Banana Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6142-6150. [PMID: 29809003 DOI: 10.1021/acs.jafc.8b01435] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The transcriptional regulation of aroma formation genes remains poorly understood in the banana. In this work, we found that the expressions of a subset of aroma biosynthetic genes including MaOMT1, MaMT1, MaGT1, MaBCAT1, MaACY1, MaAGT1, and BanAAT, as well as two bZIP genes, MabZIP4 and MabZIP5, were down-regulated when prestored at 7 °C compared to those prestored at 22 °C during the ripening process of banana. Furthermore, MabZIP4 and MabZIP5 were shown to be able to activate the transcription of these aroma biosynthetic genes. Importantly, MabZIP4 directly binds to BanAAT promoter, while MabZIP5 binds to the promoters of MaMT1, MaACY1, MaAGT1, and BanAAT via the G-box motif, implicating the diverse functional significances of MabZIPs in controlling aroma biosynthesis in banana. Overall, this work sheds new insights on the understanding of transcriptional regulatory mechanisms associated with aroma formation during banana ripening.
Collapse
Affiliation(s)
- Yu-Fan Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Yun-Liang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Yong-Jian Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Shu-Min Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science , South China Agricultural University , Guangzhou 510642 , PR China
| |
Collapse
|
157
|
Zhao X, Guo X, Tang X, Zhang H, Wang M, Kong Y, Zhang X, Zhao Z, Lv M, Li L. Misregulation of ER-Golgi Vesicle Transport Induces ER Stress and Affects Seed Vigor and Stress Response. FRONTIERS IN PLANT SCIENCE 2018; 9:658. [PMID: 29868102 PMCID: PMC5968616 DOI: 10.3389/fpls.2018.00658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 05/20/2023]
Abstract
Seeds of higher plants accumulate numerous storage proteins to use as nitrogen resources for early plant development. Seed storage proteins (SSPs) are synthesized as large precursors on the rough endoplasmic reticulum (rER), and are delivered to protein storage vacuoles (PSVs) via vesicle transport, where they are processed to mature forms. We previously identified an Arabidopsis ER-localized tethering complex, MAG2 complex, which might be involved in Golgi to ER retrograde transport. The MAG2 complex is composed of 4 subunits, MAG2, MIP1, MIP2, and MIP3. Mutants with defective alleles for these subunits accumulated SSP precursors inside the ER lumen. Here, we report that the mag2-1 mip3-1 and mip2-1 mip3-1 double mutant have more serious vesicle transport defects than the mag2-1, mip2-1, and mip3-1 single mutants, since they accumulate more SSP precursors than the corresponding single mutants, and ER stress is more severe than the single mutants. The mag2-1 mip3-1 and mip2-1 mip3-1 double mutants show growth and developmental defects rather than the single mutants. Both single and double mutant seeds are found to have lower protein content and decreased germinating vigor than wild type seeds. All the mutants are sensitive to abscisic acid (ABA) and salt stress, and exhibit alteration in ABA signaling pathway. Our study clarified that ER-Golgi vesicle transport affects seed vigor through controlling seed protein quality and content, as well as plant response to environmental stress via influencing ABA signaling pathway.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Xiufen Guo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Xiaofei Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Mingjing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Yun Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Xiaomeng Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Min Lv
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| |
Collapse
|
158
|
Han X, Hu Y, Zhang G, Jiang Y, Chen X, Yu D. Jasmonate Negatively Regulates Stomatal Development in Arabidopsis Cotyledons. PLANT PHYSIOLOGY 2018; 176:2871-2885. [PMID: 29496884 PMCID: PMC5884581 DOI: 10.1104/pp.17.00444] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/17/2018] [Indexed: 05/05/2023]
Abstract
Stomata are ports that facilitate gas and water vapor exchange between plants and their environment. Stomatal development is strictly regulated by endogenous signals and environmental cues. Jasmonate is an important signal that modulates multiple physiological processes in plants, yet the molecular mechanisms underlying its interactions with other developmental signaling pathways remain poorly understood. Here, we show that jasmonate negatively regulates stomatal development in Arabidopsis (Arabidopsis thaliana) cotyledons. Cotyledons of the wild type and stomata-overproliferating mutants (such as too many mouths-1 and stomatal density and distribution1-1) treated with methyl jasmonate exhibit a clear reduction in stomata number. By contrast, blocking endogenous jasmonate biosynthesis or perception enhanced stomatal development. Moreover, three MYC transcription factors involved in jasmonate signaling, MYC2, MYC3, and MYC4, were found to redundantly modulate jasmonate-inhibited stomatal development. A genetic analysis showed that these MYC proteins act upstream of the SPEECHLESS and FAMA transcription factors to mediate stomatal development. Furthermore, jasmonate repression of stomatal development is dependent on these three MYC transcription factors, as stomatal development of the myc2 myc3 myc4 triple mutant was insensitive to methyl jasmonate treatment. Collectively, our study demonstrates that jasmonate and MYC transcription factors negatively regulate stomatal development in Arabidopsis cotyledons.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Gensong Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiaolan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
159
|
Wang H, Tang J, Liu J, Hu J, Liu J, Chen Y, Cai Z, Wang X. Abscisic Acid Signaling Inhibits Brassinosteroid Signaling through Dampening the Dephosphorylation of BIN2 by ABI1 and ABI2. MOLECULAR PLANT 2018; 11:315-325. [PMID: 29275167 DOI: 10.1016/j.molp.2017.12.013] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) and brassinosteroid (BR) antagonistically regulate many aspects of plant growth and development. Previous physiological studies have revealed that the inhibition of BR signaling by ABA is largely dependent on ABI1 and ABI2. However, the genetic and molecular basis of how ABI1 and ABI2 are involved in inhibiting BR signaling remains unclear. Although it is known that in the BR signaling pathway the ABA-BR crosstalk occurs in the downstream of BR receptor complex but upstream of BIN2 kinase, a negative regulator of BR signaling, the component that acts as the hub to directly mediate their crosstalk remains a big mystery. Here, we found that ABI1 and ABI2 interact with and dephosphorylate BIN2 to regulate its activity toward the phosphorylation of BES1. By in vitro mimicking ABA signal transduction, we found that ABA can promote BIN2 phosphorylation by inhibiting ABI2 through ABA receptors. RNA-sequencing analysis further demonstrated that ABA inhibits BR signaling through the ABA primary signaling components, including its receptors and ABI2, and that ABA and GSK3s co-regulate a common set of stress-responsive genes. Because BIN2 can interact with and phosphorylate SnRK2s to activate its kinase activity, our study also reveals there is a module of PP2Cs-BIN2-SnRK2s in the ABA signaling pathway. Collectively, these findings provide significant insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and stress responses under abiotic stresses.
Collapse
Affiliation(s)
- Haijiao Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Tang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Liu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jin Hu
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Liu
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yuxiao Chen
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zhenying Cai
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xuelu Wang
- Center of Integrative Biology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
160
|
Regulation of Arabidopsis brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proc Natl Acad Sci U S A 2018; 115:E1906-E1915. [PMID: 29432171 DOI: 10.1073/pnas.1712251115] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants largely rely on plasma membrane (PM)-resident receptor-like kinases (RLKs) to sense extracellular and intracellular stimuli and coordinate cell differentiation, growth, and immunity. Several RLKs have been shown to undergo internalization through the endocytic pathway with a poorly understood mechanism. Here, we show that endocytosis and protein abundance of the Arabidopsis brassinosteroid (BR) receptor, BR INSENSITIVE1 (BRI1), are regulated by plant U-box (PUB) E3 ubiquitin ligase PUB12- and PUB13-mediated ubiquitination. BR perception promotes BRI1 ubiquitination and association with PUB12 and PUB13 through phosphorylation at serine 344 residue. Loss of PUB12 and PUB13 results in reduced BRI1 ubiquitination and internalization accompanied with a prolonged BRI1 PM-residence time, indicating that ubiquitination of BRI1 by PUB12 and PUB13 is a key step in BRI1 endocytosis. Our studies provide a molecular link between BRI1 ubiquitination and internalization and reveal a unique mechanism of E3 ligase-substrate association regulated by phosphorylation.
Collapse
|
161
|
Lv B, Tian H, Zhang F, Liu J, Lu S, Bai M, Li C, Ding Z. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet 2018; 14:e1007144. [PMID: 29324765 PMCID: PMC5783399 DOI: 10.1371/journal.pgen.1007144] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 01/24/2018] [Accepted: 12/04/2017] [Indexed: 02/07/2023] Open
Abstract
The brassinosteroids (BRs) represent a class of phytohormones, which regulate numerous aspects of growth and development. Here, a det2-9 mutant defective in BR synthesis was identified from an EMS mutant screening for defects in root length, and was used to investigate the role of BR in root development in Arabidopsis. The det2-9 mutant displays a short-root phenotype, which is result from the reduced cell number in root meristem and decreased cell size in root maturation zone. Ethylene synthesis is highly increased in the det2-9 mutant compared with the wild type, resulting in the hyper-accumulation of ethylene and the consequent inhibition of root growth. The short-root phenotype of det2-9 was partially recovered in the det2-9/acs9 double mutant and det2-9/ein3/eil1-1 triple mutant which have defects either in ethylene synthesis or ethylene signaling, respectively. Exogenous application of BR showed that BRs either positively or negatively regulate ethylene biosynthesis in a concentration-dependent manner. Different from the BR induced ethylene biosynthesis through stabilizing ACSs stability, we found that the BR signaling transcription factors BES1 and BZR1 directly interacted with the promoters of ACS7, ACS9 and ACS11 to repress their expression, indicating a native regulation mechanism under physiological levels of BR. In addition, the det2-9 mutant displayed over accumulated superoxide anions (O2-) compared with the wild-type control, and the increased O2- level was shown to contribute to the inhibition of root growth. The BR-modulated control over the accumulation of O2- acted via the peroxidase pathway rather than via the NADPH oxidase pathway. This study reveals an important mechanism by which the hormone cross-regulation between BRs and ethylene or/and ROS is involved in controlling root growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Bingsheng Lv
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Huiyu Tian
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Feng Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Jiajia Liu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Songchong Lu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Mingyi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zhaojun Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Science, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
162
|
Liu X, Hou X. Antagonistic Regulation of ABA and GA in Metabolism and Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2018; 9:251. [PMID: 29535756 PMCID: PMC5834473 DOI: 10.3389/fpls.2018.00251] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/12/2018] [Indexed: 05/18/2023]
Abstract
The phytohormones gibberellic acid (GA) and abscisic acid (ABA) are widely recognized as essential endogenous regulators that mostly play antagonistic roles in plant developmental processes and environmental responses. A variety of both internal and external cues oppositely regulate GA and ABA biosynthesis and catabolism, which directly and indirectly affect their signaling pathways and subsequent responses. Recent discoveries have revealed direct molecular links between GA- and ABA-signaling components, which provide novel insights into their antagonistic regulation. In this review, we mainly focus on these recent reports and the growing understanding of GA and ABA antagonism in metabolic regulation and signaling interactions, and attempt to clarify the problems and challenges involved in exploring the complicated regulatory events associated with these two phytohormones.
Collapse
|
163
|
Reciprocal Regulation of the TOR Kinase and ABA Receptor Balances Plant Growth and Stress Response. Mol Cell 2017; 69:100-112.e6. [PMID: 29290610 DOI: 10.1016/j.molcel.2017.12.002] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023]
Abstract
As sessile organisms, plants must adapt to variations in the environment. Environmental stress triggers various responses, including growth inhibition, mediated by the plant hormone abscisic acid (ABA). The mechanisms that integrate stress responses with growth are poorly understood. Here, we discovered that the Target of Rapamycin (TOR) kinase phosphorylates PYL ABA receptors at a conserved serine residue to prevent activation of the stress response in unstressed plants. This phosphorylation disrupts PYL association with ABA and with PP2C phosphatase effectors, leading to inactivation of SnRK2 kinases. Under stress, ABA-activated SnRK2s phosphorylate Raptor, a component of the TOR complex, triggering TOR complex dissociation and inhibition. Thus, TOR signaling represses ABA signaling and stress responses in unstressed conditions, whereas ABA signaling represses TOR signaling and growth during times of stress. Plants utilize this conserved phospho-regulatory feedback mechanism to optimize the balance of growth and stress responses.
Collapse
|
164
|
Huang Y, Sun MM, Ye Q, Wu XQ, Wu WH, Chen YF. Abscisic Acid Modulates Seed Germination via ABA INSENSITIVE5-Mediated PHOSPHATE1. PLANT PHYSIOLOGY 2017; 175:1661-1668. [PMID: 29089393 PMCID: PMC5717723 DOI: 10.1104/pp.17.00164] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/19/2017] [Indexed: 05/05/2023]
Abstract
The phytohormone abscisic acid (ABA) controls many developmental and physiological processes. Here, we report that PHOSPHATE1 (PHO1) participates in ABA-mediated seed germination and early seedling development. The transcription of PHO1 was obviously enhanced during seed germination and early seedling development and repressed by exogenous ABA. The pho1 mutants (pho1-2, pho1-4, and pho1-5) showed ABA-hypersensitive phenotypes, whereas the PHO1-overexpressing lines were ABA-insensitive during seed germination and early seedling development. The expression of PHO1 was repressed in the ABI5-overexpressing line and elevated in the abi5 mutant, and ABI5 can bind to the PHO1 promoter in vitro and in vivo, indicating that ABI5 directly down-regulated PHO1 expression. Disruption of PHO1 abolished the ABA-insensitive germination phenotypes of abi5 mutant, demonstrating that PHO1 was epistatic to ABI5 Together, these data demonstrate that PHO1 is involved in ABA-mediated seed germination and early seedling development and transcriptionally regulated by ABI5.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Fang Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
165
|
Liu XJ, Liu X, An XH, Han PL, You CX, Hao YJ. An Apple Protein Kinase MdSnRK1.1 Interacts with MdCAIP1 to Regulate ABA Sensitivity. PLANT & CELL PHYSIOLOGY 2017; 58:1631-1641. [PMID: 29016962 DOI: 10.1093/pcp/pcx096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/04/2017] [Indexed: 05/09/2023]
Abstract
ABA is a crucial phytohormone for development and stress responses in plants. Snf1-related protein kinase 1.1 (SnRK1.1) is involved in the ABA response. However, the molecular mechanism underlying the SnRK1.1 response to ABA is largely unknown. Here, it was found that overexpression of the apple MdSnRK1.1 gene enhanced ABA sensitivity in both transgenic apple calli and Arabidopsis seedlings. Subsequently, a yeast two-hybrid screen demonstrated that MdCAIP1 (C2-domain ABA Insensitive Protein1) interacted with MdSnRK1.1. Their interaction was further confirmed by pull-down and co-immunoprecipitation assays. Expression of the MdCAIP1 gene was positively induced by ABA. Its overexpression enhanced ABA sensitivity in transgenic apple calli. Furthermore, it was found that MdSnRK1.1 phosphorylated the MdCAIP1 protein in vivo and promoted its degradation in vitro and in vivo. As a result, MdSnRK1.1 inhibited MdCAIP1-mediated ABA sensitivity, and MdCAIP1 partially reduced MdSnRK1.1-mediated ABA sensitivity. Our findings indicate that MdSnRK1.1 plays an important role in the ABA response, partially by controlling the stability of the MdCAIP1 protein.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xin Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiu-Hong An
- China Research Institute of Pomology, CAAS, Xingcheng 125100, China
| | - Peng-Liang Han
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
166
|
Lei R, Li X, Ma Z, Lv Y, Hu Y, Yu D. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:962-976. [PMID: 28635025 DOI: 10.1111/tpj.13619] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/13/2017] [Accepted: 06/02/2017] [Indexed: 05/20/2023]
Abstract
Plant male gametogenesis is tightly regulated, and involves complex and precise regulations of transcriptional reprogramming. WRKY transcription factors have been demonstrated to play critical roles in plant development and stress responses. Several members of this family physically interact with VQ motif-containing proteins (VQ proteins) to mediate a plethora of programs in Arabidopsis; however, the involvement of WRKY-VQ complexes in plant male gametogenesis remains largely unknown. In this study, we found that WRKY2 and WKRY34 interact with VQ20 both in vitro and in vivo. Further experiments displayed that the conserved VQ motif of VQ20 is responsible for their physical interactions. The VQ20 protein localizes in the nucleus and specifically expresses in pollens. Phenotypic analysis showed that WRKY2, WRKY34 and VQ20 are crucial for pollen development and function. Mutations of WRKY2, WRKY34 and VQ20 simultaneously resulted in male sterility, with defects in pollen development, germination and tube growth. Further investigation revealed that VQ20 affects the transcriptional functions of its interacting WRKY partners. Complementation evidence supported that the VQ motif of VQ20 is essential for pollen development, as a mutant form of VQ20 in which LVQK residues in the VQ motif were replaced by EDLE did not rescue the phenotype of the w2-1 w34-1 vq20-1 triple-mutant plants. Further expression analysis indicated that WRKY2, WRKY34 and VQ20 co-modulate multiple genes involved in pollen development, germination and tube growth. Taken together, our study provides evidence that VQ20 acts as a key partner of WRKY2 and WKRY34 in plant male gametogenesis.
Collapse
Affiliation(s)
- Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoli Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Zhenbing Ma
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yan Lv
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| |
Collapse
|
167
|
|
168
|
Sun J, Wang P, Zhou T, Rong J, Jia H, Liu Z. Transcriptome Analysis of the Effects of Shell Removal and Exogenous Gibberellin on Germination of Zanthoxylum Seeds. Sci Rep 2017; 7:8521. [PMID: 28819199 PMCID: PMC5561108 DOI: 10.1038/s41598-017-07424-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
The zanthoxylum seeds are oil-rich and have a very thick, dense and oily shell. In the natural conditions the seeds have a very low germination rate. Prior to treatment with GAs to promote germination, the seeds were usually soaked in sulfuric acid to remove shells easily. A high-throughput sequencing of mRNAs was performed to investigate the effects of the above treatments on the germination of zanthoxylum seeds. Seven libraries were assembled into 100,982 unigenes and 59,509 unigenes were annotated. We focused on the expression profiles of the key genes related to the oil metabolisms and hormone regulations during seed germination. Our data indicated the endogenous ABA of seeds was rich. The effects that the exogenous GAs promoted germination were apparent in the secong day of germination. Especially, for the first time our results indicated the exogenous GAs lowered the aerobic metabolism including the oil metabolisms during imbibition. We inferred that the exogenous GAs had inhibitory effects on the oil metabolisms to avoide oxidative damages to the imbibed seeds, and the seed shell played the role similiar to the exogenous GAs in the initial stage of germination in the natural conditions.
Collapse
Affiliation(s)
- Jikang Sun
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Tao Zhou
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Jian Rong
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hao Jia
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM88130, USA
| |
Collapse
|
169
|
Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J 2017; 474:2641-2661. [PMID: 28751549 DOI: 10.1042/bcj20160633] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/14/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Abstract
Plants are faced with a barrage of stresses in their environment and must constantly balance their growth and survival. As such, plants have evolved complex control systems that perceive and respond to external and internal stimuli in order to optimize these responses, many of which are mediated by signaling molecules such as phytohormones. One such class of molecules called Brassinosteroids (BRs) are an important group of plant steroid hormones involved in numerous aspects of plant life including growth, development and response to various stresses. The molecular determinants of the BR signaling pathway have been extensively defined, starting with the membrane-localized receptor BRI1 and co-receptor BAK1 and ultimately culminating in the activation of BES1/BZR1 family transcription factors, which direct a transcriptional network controlling the expression of thousands of genes enabling BRs to influence growth and stress programs. Here, we highlight recent progress in understanding the relationship between the BR pathway and plant stress responses and provide an integrated view of the mechanisms mediating cross-talk between BR and stress signaling.
Collapse
|
170
|
Abstract
In this issue of Developmental Cell, Gui et al. (2016) show that an abscisic acid-inducible remorin protein in rice directly interacts with critical brassinosteroid signaling components to attenuate the brassinosteroid response, thus illuminating one aspect of the brassinosteroid/abscisic acid antagonism.
Collapse
Affiliation(s)
- Steven D Clouse
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
171
|
Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, Chu J, Chu C, Li Z, Yin Y. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. THE PLANT CELL 2017; 29:1425-1439. [PMID: 28576847 PMCID: PMC5502465 DOI: 10.1105/tpc.17.00364] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 05/18/2023]
Abstract
Plant steroid hormones, brassinosteroids (BRs), play important roles in growth and development. BR signaling controls the activities of BRASSINOSTERIOD INSENSITIVE1-EMS-SUPPRESSOR1/BRASSINAZOLE-RESISTANT1 (BES1/BZR1) family transcription factors. Besides the role in promoting growth, BRs are also implicated in plant responses to drought stress. However, the molecular mechanisms by which BRs regulate drought response have just begun to be revealed. The functions of WRKY transcription factors in BR-regulated plant growth have not been established, although their roles in stress responses are well documented. Here, we found that three Arabidopsis thaliana group III WRKY transcription factors, WRKY46, WRKY54, and WRKY70, are involved in both BR-regulated plant growth and drought response as the wrky46 wrky54 wrky70 triple mutant has defects in BR-regulated growth and is more tolerant to drought stress. RNA-sequencing analysis revealed global roles of WRKY46, WRKY54, and WRKY70 in promoting BR-mediated gene expression and inhibiting drought responsive genes. WRKY54 directly interacts with BES1 to cooperatively regulate the expression of target genes. In addition, WRKY54 is phosphorylated and destabilized by GSK3-like kinase BR-INSENSITIVE2, a negative regulator in the BR pathway. Our results therefore establish WRKY46/54/70 as important signaling components that are positively involved in BR-regulated growth and negatively involved in drought responses.
Collapse
Affiliation(s)
- Jiani Chen
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Huaxun Ye
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Mingcai Zhang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongning Tong
- State Key Laboratory of Plant Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
172
|
Le Signor C, Aimé D, Bordat A, Belghazi M, Labas V, Gouzy J, Young ND, Prosperi JM, Leprince O, Thompson RD, Buitink J, Burstin J, Gallardo K. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. THE NEW PHYTOLOGIST 2017; 214:1597-1613. [PMID: 28322451 DOI: 10.1111/nph.14500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/27/2017] [Indexed: 05/25/2023]
Abstract
Improving nutritional seed quality is an important challenge in grain legume breeding. However, the genes controlling the differential accumulation of globulins, which are major contributors to seed nutritional value in legumes, remain largely unknown. We combined a search for protein quantity loci with genome-wide association studies on the abundance of 7S and 11S globulins in seeds of the model legume species Medicago truncatula. Identified genomic regions and genes carrying polymorphisms linked to globulin variations were then cross-compared with pea (Pisum sativum), leading to the identification of candidate genes for the regulation of globulin abundance in this crop. Key candidates identified include genes involved in transcription, chromatin remodeling, post-translational modifications, transport and targeting of proteins to storage vacuoles. Inference of a gene coexpression network of 12 candidate transcription factors and globulin genes revealed the transcription factor ABA-insensitive 5 (ABI5) as a highly connected hub. Characterization of loss-of-function abi5 mutants in pea uncovered a role for ABI5 in controlling the relative abundance of vicilin, a sulfur-poor 7S globulin, in pea seeds. This demonstrates the feasibility of using genome-wide association studies in M. truncatula to reveal genes that can be modulated to improve seed nutritional value.
Collapse
Affiliation(s)
- Christine Le Signor
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Delphine Aimé
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Amandine Bordat
- Unité Mixte de Recherche (UMR) 1332 Biologie du Fruit et Pathologie, INRA, 33882, Villenave d'Ornon, France
| | - Maya Belghazi
- UMR 7286 - CRN2M, Centre d'Analyses Protéomiques de Marseille, CNRS, Aix-Marseille Université, Marseille, France
| | - Valérie Labas
- INRA, UMR85 Physiologie de la Reproduction et des Comportements-Centre National de la Recherche Scientifique (CNRS) UMR 7247-Université François Rabelais-Institut Français du Cheval et de l'Equitation, Laboratoire de Spectrométrie de Masse, Plate-forme d'Analyse Intégrative des Biomolécules, 37380, Nouzilly, France
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, INRA, Université de Toulouse, Castanet-Tolosan, France
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, St Paul, MN, 55108, USA
| | - Jean-Marie Prosperi
- Genetic Improvement and Adaptation of Mediterranean and Tropical Plants (AGAP), INRA, Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Montpellier Supagro, 34060, Montpellier, France
| | - Olivier Leprince
- Institut de recherche en horticulture et semences (IRHS), INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Richard D Thompson
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Julia Buitink
- Institut de recherche en horticulture et semences (IRHS), INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, Institut National de la Recherche Agronomique (INRA), Université Bourgogne Franche-Comté, 21000, Dijon, France
| |
Collapse
|
173
|
Ying J, Zhao J, Hou Y, Wang Y, Qiu J, Li Z, Tong X, Shi Z, Zhu J, Zhang J. Mapping the N-linked glycosites of rice (Oryza sativa L.) germinating embryos. PLoS One 2017; 12:e0173853. [PMID: 28328971 PMCID: PMC5362090 DOI: 10.1371/journal.pone.0173853] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/28/2017] [Indexed: 11/19/2022] Open
Abstract
Germination is a key event in the angiosperm life cycle. N-glycosylation of proteins is one of the most common post-translational modifications, and has been recognized to be an important regulator of the proteome of the germinating embryo. Here, we report the first N-linked glycosites mapping of rice embryos during germination by using a hydrophilic interaction chromatography (HILIC) glycopeptides enrichment strategy associated with high accuracy mass spectrometry identification. A total of 242 glycosites from 191 unique proteins was discovered. Inspection of the motifs and sequence structures involved suggested that all the glycosites were concentrated within [NxS/T] motif, while 82.3% of them were in a coil structure. N-glycosylation preferentially occurred on proteins with glycoside hydrolase activities, which were significantly enriched in the starch and sucrose metabolism pathway, suggesting that N-glycosylation is involved in embryo germination by regulating carbohydrate metabolism. Notably, protein-protein interaction analysis revealed a network with several Brassinosteroids signaling proteins, including XIAO and other BR-responsive proteins, implying that glycosylation-mediated Brassinosteroids signaling may be a key mechanism regulating rice embryo germination. In summary, this study expanded our knowledge of protein glycosylation in rice, and provided novel insight into the PTM regulation in rice seed germination.
Collapse
Affiliation(s)
- Jiezheng Ying
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Juan Zhao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Yuxuan Hou
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Jiehua Qiu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | - Xiaohong Tong
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
| | | | - Jun Zhu
- Jingjie PTM-Biolabs, Hangzhou, P.R. China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, P.R. China
- * E-mail:
| |
Collapse
|
174
|
BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1. Proc Natl Acad Sci U S A 2017; 114:3533-3538. [PMID: 28289192 DOI: 10.1073/pnas.1615005114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.
Collapse
|
175
|
Wang N, Xing Y, Lou Q, Feng P, Liu S, Zhu M, Yin W, Fang S, Lin Y, Zhang T, Sang X, He G. Dwarf and short grain 1, encoding a putative U-box protein regulates cell division and elongation in rice. JOURNAL OF PLANT PHYSIOLOGY 2017; 209:84-94. [PMID: 28013174 DOI: 10.1016/j.jplph.2016.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Plant hormones coordinate a plant's responses to environmental stimuli and the endogenous developmental programs for cell division and elongation. Brassinosteroids are among the most important of these hormones in plant development. Recently, the ubiquitin-26S-proteasome system was identified to play a key role in hormone biology. In this study, we analyzed the function of a rice (Oryza sativa) gene, DSG1, which encodes a U-box E3 ubiquitin ligase. In the dsg1 mutant (an allelic mutant of tud1), the lengths of the roots, internodes, panicles, and seeds were shorter than that in the wild-type, which was due to defects in cell division and elongation. In addition, the leaves of the dsg1 mutant were wider and curled. The DSG1 protein is nuclear- and cytoplasm-localized and does not show tissue specificity in terms of its expression, which occurs in roots, culms, leaves, sheaths, and spikelets. The dsg1 mutant is less sensitive to brassinosteroid treatment than the wild-type, and DSG1 expression is negatively regulated by brassinosteroids, ethylene, auxin, and salicylic acid. These results demonstrate that DSG1 positively regulates cell division and elongation and may be involved in multiple hormone pathways.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yadi Xing
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Qijin Lou
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Ping Feng
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Song Liu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Meidan Zhu
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Wuzhong Yin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Shunran Fang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Yan Lin
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Tianquan Zhang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Xianchun Sang
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China
| | - Guanghua He
- Key Laboratory of Application and Safety Control of Genetically Modified Crops, Rice Research Institute of Southwest University, Chongqing, 400716, PR China.
| |
Collapse
|
176
|
Kim Y, Song JH, Park SU, Jeong YS, Kim SH. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor. PLANT & CELL PHYSIOLOGY 2017; 58:227-239. [PMID: 28069895 DOI: 10.1093/pcp/pcw223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/12/2016] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway.
Collapse
Affiliation(s)
- Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Ji-Hye Song
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Seon-U Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - You-Seung Jeong
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| | - Soo-Hwan Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Korea
| |
Collapse
|
177
|
A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Int J Mol Sci 2017; 18:ijms18010060. [PMID: 28054942 PMCID: PMC5297695 DOI: 10.3390/ijms18010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
abscisic acid (ABA) is a key phytohormone regulating plant development and stress response. The signal transduction of ABA largely relies on protein phosphorylation. However; little is known about the phosphorylation events occurring during ABA signaling in rice thus far. By employing a label-free; MS (Mass Spectrometry)-based phosphoproteomic approach; we identified 2271 phosphosites of young rice seedlings and their intensity dynamics in response to ABA; during which 1060 proteins were found to be differentially phosphorylated. Western-blot analysis verified the differential phosphorylation pattern of D1, SMG1 and SAPK9 as indicated by the MS result; suggesting the high reliability of our phosphoproteomic data. The DP (differentially phosphorylated) proteins are extensively involved in ABA as well as other hormone signaling pathways. It is suggested that ABA antagonistically regulates brassinosteroid (BR) signaling via inhibiting BR receptor activity. The result of this study not only expanded our knowledge of rice phosphoproteome, but also shed more light on the pattern of protein phosphorylation in ABA signaling.
Collapse
|
178
|
Dissection of brassinosteroid-regulated proteins in rice embryos during germination by quantitative proteomics. Sci Rep 2016; 6:34583. [PMID: 27703189 PMCID: PMC5050409 DOI: 10.1038/srep34583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/15/2016] [Indexed: 12/11/2022] Open
Abstract
Brassinosteroids (BRs), essential plant-specific steroidal hormones, function in a wide spectrum of plant growth and development events, including seed germination. Rice is not only a monocotyledonous model plant but also one of the most important staple food crops of human beings. Rice seed germination is a decisive event for the next-generation of plant growth and successful seed germination is critical for rice yield. However, little is known about the molecular mechanisms on how BR modulates seed germination in rice. In the present study, we used isobaric tags for relative and absolute quantification (iTRAQ) based proteomic approach to study BR-regulated proteome during the early stage of seed germination. The results showed that more than 800 BR-responsive proteins were identified, including 88 reliable target proteins responsive to stimuli of both BR-deficiency and BR-insensitivity. Moreover, 90% of the 88 target proteins shared a similar expression change pattern. Gene ontology and string analysis indicated that ribosomal structural proteins, as well as proteins involved in protein biosynthesis and carbohydrate metabolisms were highly clustered. These findings not only enrich BR-regulated protein database in rice seeds, but also allow us to gain novel insights into the molecular mechanism of BR regulated seed germination.
Collapse
|
179
|
Yang X, Bai Y, Shang J, Xin R, Tang W. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by BRASSINAZOLE RESISTANT 1. PLANT, CELL & ENVIRONMENT 2016; 39:1994-2003. [PMID: 27149247 DOI: 10.1111/pce.12763] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) and abscisic acid (ABA) are plant hormones that antagonistically regulate many aspects of plant growth and development; however, the mechanisms that regulate the crosstalk of these two hormones are still not well understood. BRs regulate plant growth and development by activating BRASSINAZOLE RESISTANT 1 (BZR1) family transcription factors. Here we show that the crosstalk between BRs and ABA signalling is partially mediated by BZR1 regulated gene expression. bzr1-1D is a dominant mutant with enhanced BR signalling; our results showed that bzr1-1D mutant is less sensitive to ABA-inhibited primary root growth. By RNA sequencing, a subset of BZR1 regulated ABA-responsive root genes were identified. Of these genes, the expression of a major ABA signalling component ABA INSENSITIVE 5 (ABI5) was found to be suppressed by BR and by BZR1. Additional evidences showed that BZR1 could bind strongly with several G-box cis-elements in the promoter of ABI5, suppress the expression of ABI5 and make plants less sensitive to ABA. Our study demonstrated that ABI5 is a direct target gene of BZR1, and modulating the expression of ABI5 by BZR1 plays important roles in regulating the crosstalk between the BR and ABA signalling pathways.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Yang Bai
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianxiu Shang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Ruijiao Xin
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050016, China
| |
Collapse
|
180
|
Wang H, Pan J, Li Y, Lou D, Hu Y, Yu D. The DELLA-CONSTANS Transcription Factor Cascade Integrates Gibberellic Acid and Photoperiod Signaling to Regulate Flowering. PLANT PHYSIOLOGY 2016; 172:479-88. [PMID: 27406167 PMCID: PMC5074646 DOI: 10.1104/pp.16.00891] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/08/2016] [Indexed: 05/18/2023]
Abstract
Gibberellin (GA) and photoperiod pathways have recently been demonstrated to collaboratively modulate flowering under long days (LDs). However, the molecular mechanisms underlying this collaboration remain largely unclear. In this study, we found that GA-induced expression of FLOWERING LOCUS T (FT) under LDs was dependent on CONSTANS (CO), a critical transcription factor positively involved in photoperiod signaling. Mechanistic investigation revealed that DELLA proteins, a group of crucial repressors in GA signaling, physically interacted with CO. The DELLA-CO interactions repressed the transcriptional function of CO protein. Genetic analysis demonstrated that CO acts downstream of DELLA proteins to regulate flowering. Disruption of CO rescued the earlier flowering phenotype of the gai-t6 rga-t2 rgl1-1 rgl2-1 mutant (dellap), while a gain-of-function mutation in GA INSENSITIVE (GAI, a member of the DELLA gene) repressed the earlier flowering phenotype of CO-overexpressing plants. In addition, the accumulation of DELLA proteins and mRNAs was rhythmic, and REPRESSOR OF GA1-3 protein was noticeably decreased in the long-day afternoon, a time when CO protein is abundant. Collectively, these results demonstrate that the DELLA-CO cascade inhibits CO/FT-mediated flowering under LDs, which thus provide evidence to directly integrate GA and photoperiod signaling to synergistically modulate flowering under LDs.
Collapse
Affiliation(s)
- Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Yang Li
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Dengji Lou
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (H.W., J.P., Y.L., D.L., Y.H., D.Y.); andUniversity of Chinese Academy of Sciences, Beijing 100049, China (H.W., J.P., Y.L., D.L.)
| |
Collapse
|
181
|
Northey JGB, Liang S, Jamshed M, Deb S, Foo E, Reid JB, McCourt P, Samuel MA. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. NATURE PLANTS 2016; 2:16114. [PMID: 27455172 DOI: 10.1038/nplants.2016.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/24/2016] [Indexed: 05/03/2023]
Abstract
Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins(1-3). Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. Here, we show that CYP85A2, the cytochrome P450 enzyme that performs the last step in brassinosteroid biosynthesis (conversion of castasterone to brassinolide)(4), must be farnesylated to function in Arabidopsis. Loss of either CYP85A2 or CYP85A2 farnesylation results in reduced brassinolide accumulation and increased plant responsiveness to the hormone abscisic acid (ABA) and overall drought tolerance, explaining previous observations(5). This result not only directly links farnesylation to brassinosteroid biosynthesis but also suggests new strategies to maintain crop yield under challenging climatic conditions.
Collapse
Affiliation(s)
- Julian G B Northey
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Siyu Liang
- Department of Biological Sciences, University of Calgary, BI 392, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Muhammad Jamshed
- Department of Biological Sciences, University of Calgary, BI 392, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Srijani Deb
- Department of Biological Sciences, University of Calgary, BI 392, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Eloise Foo
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - James B Reid
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, BI 392, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
182
|
Suza WP, Chappell J. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana. PHYSIOLOGIA PLANTARUM 2016; 157:120-34. [PMID: 26671544 DOI: 10.1111/ppl.12413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/16/2015] [Indexed: 05/22/2023]
Abstract
Nicotiana benthamiana was used as a model to investigate the spatial and developmental relationship between sterol synthesis rates and sterol content in plants. Stigmasterol levels were approximately twice the level in roots as that found in aerial tissues, while its progenitor sterol sitosterol was the inverse. When incorporation of radiolabeled precursors into sterols was used as measure of in vivo synthesis rates, acetate incorporation was similar across all tissue types, but approximately twofold greater in roots than any other tissue. In contrast, mevalonate incorporation exhibited the greatest differential with the rate of incorporation in roots approximately one-tenth that in apical shoots. Similar to acetate, incorporation of farnesol was higher in roots but remained fairly constant in aerial tissues, suggesting less regulation of the downstream sterol biosynthetic steps. Consistent with the precursor incorporation data, analysis of gene transcript and measurements of putative rate-limiting enzyme activities for 3-hydroxy-3-methylglutaryl-coenzyme A synthase (EC 2.3.3.10) and reductase (EC 1.1.1.34) showed the greatest modulation of levels, while the activity levels for isopentenyl diphosphate isomerase (EC 5.3.3.2) and prenyltransferases (EC 2.5.1.10 and EC 2.5.1.1) also exhibited a strong but moderate correlation with the development age of the aerial tissues of the plants. Overall, the data suggest a multitude of means from transcriptional to posttranslational control affecting sterol biosynthesis and accumulation across an entire plant, and point to some particular control points that might be manipulated using molecular genetic approaches to better probe the role of sterols in plant growth and development.
Collapse
Affiliation(s)
- Walter P Suza
- Department of Agronomy, Iowa State University, Ames, IA, 50011-1010, USA
| | - Joe Chappell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA
| |
Collapse
|
183
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
184
|
Yu F, Wu Y, Xie Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. MOLECULAR PLANT 2016; 9:21-33. [PMID: 26455462 DOI: 10.1016/j.molp.2015.09.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 05/18/2023]
Abstract
Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohormone signaling by affecting protein activity, localization, assembly, and interaction ability. Abscisic acid (ABA) is a major phytohormone, and plays important roles in plants under normal or stressed growth conditions. The ABA signaling pathway is composed of phosphatases, kinases, transcription factors, and membrane ion channels. It has been reported that multiple ABA signaling transducers are subjected to the regulations by ubiquitination. In particular, recent studies have identified different types of E3 ligases that mediate ubiquitination of ABA receptors in different cell compartments. This review focuses on modulation of these components by monoubiquitination or polyubiquitination that occurs in the plasma membrane, endomembranes, and from the cytosol to the nucleus; this implies the existence of retrograde and trafficking processes that are regulated by ubiquitination in ABA signaling. A number of single-unit E3 ligases, components of multi-subunit E3 ligases, E2s, and specific subunits of the 26S proteasome involved in ABA signal regulation are discussed. Dissecting the precise functions of ubiquitination in the ABA pathway may help us understand key factors in the signaling of other phytohormones regulated by ubiquitination and other types of PTMs.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
185
|
Shu K, Liu XD, Xie Q, He ZH. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. MOLECULAR PLANT 2016; 9:34-45. [PMID: 26343970 DOI: 10.1016/j.molp.2015.08.010] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 05/02/2023]
Abstract
Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node.
Collapse
Affiliation(s)
- Kai Shu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Dong Liu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zu-Hua He
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
186
|
Divi UK, Rahman T, Krishna P. Gene expression and functional analyses in brassinosteroid-mediated stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:419-32. [PMID: 25973891 PMCID: PMC11389030 DOI: 10.1111/pbi.12396] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 05/07/2023]
Abstract
The plant hormone brassinosteroid (BR) plays essential roles in plant growth and development, while also controlling plant stress responses. This dual ability of BR is intriguing from a mechanistic point of view and as a viable solution for stabilizing crop yields under the changing climatic conditions. Here we report a time course analysis of BR responses under both stress and no-stress conditions, the results of which establish that BR incorporates many stress-related features even under no-stress conditions, which are then accompanied by a dynamic stress response under unfavourable conditions. Found within the BR transcriptome were distinct molecular signatures of two stress hormones, abscisic acid and jasmonic acid, which were correlated with enhanced endogenous levels of the two hormones in BR-treated seedlings. The marked presence of genes related to protein metabolism and modification, defence responses and calcium signalling highlights the significance of their associated mechanisms and roles in BR processes. Functional analysis of loss-of-function mutants of a subset of genes selected from the BR transcriptome identified abiotic stress-related roles for ACID PHOSPHATASE5 (ACP5), WRKY33, JACALIN-RELATED LECTIN1-3 (JAC-LEC1-3) and a BR-RESPONSIVE-RECEPTOR-LIKE KINASE (BRRLK). Overall, the results of this study provide a clear link between the molecular changes impacted by BR and its ability to confer broad-range stress tolerance, emphasize the importance of post-translational modification and protein turnover as BR regulatory mechanisms and demonstrate the BR transcriptome as a repertoire of new stress-related regulatory and structural genes.
Collapse
Affiliation(s)
- Uday K Divi
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tawhidur Rahman
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Priti Krishna
- Department of Biology, University of Western Ontario, London, ON, Canada
- The School of Environmental and Rural Sciences, The University of New England, Armidale, NSW, Australia
| |
Collapse
|
187
|
Skubacz A, Daszkowska-Golec A, Szarejko I. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk. FRONTIERS IN PLANT SCIENCE 2016; 7:1884. [PMID: 28018412 PMCID: PMC5159420 DOI: 10.3389/fpls.2016.01884] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 05/18/2023]
Abstract
ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants.
Collapse
|
188
|
Li J, Yang P, Kang J, Gan Y, Yu J, Calderón-Urrea A, Lyu J, Zhang G, Feng Z, Xie J. Transcriptome Analysis of Pepper (Capsicum annuum) Revealed a Role of 24-Epibrassinolide in Response to Chilling. FRONTIERS IN PLANT SCIENCE 2016; 7:1281. [PMID: 27621739 PMCID: PMC5002408 DOI: 10.3389/fpls.2016.01281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/11/2016] [Indexed: 05/21/2023]
Abstract
Brassinosteroids (BRs) have positive effects on many processes during plant growth, development, and various abiotic stress responses. However, little information is available regarding the global gene expression of BRs in response to chilling stress in pepper. In this study, we used RNA sequencing to determine the molecular roles of 24-epibrassinolide (EBR) during a chilling stress response. There were 39,829 transcripts, and, among them, 656 were differently-expressed genes (DEGs) following EBR treatment (Chill+EBR) compared with the control (Chill only), including 335 up-regulated and 321 down-regulated DEGs. We selected 20 genes out of the 656 DEGs for RT-qPCR analysis to confirm the RNA-Seq. Based on GO enrich and KEGG pathway analysis, we found that photosynthesis was significantly up-enriched in biological processes, accompanied by significant increases in the net photosynthetic rate (Pn), Fv/Fm, and chlorophyll content. Furthermore, the results indicate that EBR enhanced endogenous levels of salicylic acid (SA) and jasmonic acid (JA) while suppressing the ethylene (ETH) biosynthesis pathway, suggesting that BRs function via a synergistic cross-talk with SA, JA, and ETH signaling pathways in response to chilling stress. In addition, EBR induced cellulose synthase-like protein and UDP-glycosyltransferase, suggesting a contribution to the formation of cell wall and hormone metabolism. EBR also triggered the calcium signaling transduction in cytoplasm, and activated the expression of cellular redox homeostasis related genes, such as GSTX1, PER72, and CAT2. This work, therefor, identified the specific genes showed different expression patterns in EBR-treated pepper and associated with the processes of hormone metabolism, redox, signaling, transcription, and defense. Our study provides the first evidence of the potent roles of BRs, at the transcription level, to induce the tolerance to chilling stress in pepper as a function of the combination of the transcriptional activities, signaling transduction, and metabolic homeostasis.
Collapse
Affiliation(s)
- Jie Li
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Ping Yang
- Department of Crop Cultivation and Farming System, College of Agronomy, Gansu Agricultural UniversityLanzhou, China
| | - Jungen Kang
- Department of Vegetable Genetics and Breeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yantai Gan
- Semiarid Prairie Agricultural Research Centre, Agriculture and Agri-Food CanadaSwift Current, SK, Canada
- Gansu Provincial Key Lab of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
| | - Jihua Yu
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | | | - Jian Lyu
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Guobin Zhang
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Zhi Feng
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| | - Jianming Xie
- Department of Facility Horticulture Science, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
- *Correspondence: Jianming Xie
| |
Collapse
|
189
|
Arabidopsis VQ motif-containing proteins VQ12 and VQ29 negatively modulate basal defense against Botrytis cinerea. Sci Rep 2015; 5:14185. [PMID: 26394921 PMCID: PMC4585807 DOI: 10.1038/srep14185] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Arabidopsis VQ motif-containing proteins have recently been demonstrated to interact with several WRKY transcription factors; however, their specific biological functions and the molecular mechanisms underlying their involvement in defense responses remain largely unclear. Here, we showed that two VQ genes, VQ12 and VQ29, were highly responsive to the necrotrophic fungal pathogen Botrytis cinerea. To characterize their roles in plant defense, we generated amiR-vq12 transgenic plants by using an artificial miRNA approach to suppress the expression of VQ12, and isolated a loss-of-function mutant of VQ29. Phenotypic analysis showed that decreasing the expression of VQ12 and VQ29 simultaneously rendered the amiR-vq12 vq29 double mutant plants resistant against B. cinerea. Consistently, the B. cinerea-induced expression of defense-related PLANT DEFENSIN1.2 (PDF1.2) was increased in amiR-vq12 vq29. In contrast, constitutively-expressing VQ12 or VQ29 confered transgenic plants susceptible to B. cinerea. Further investigation revealed that VQ12 and VQ29 physically interacted with themselves and each other to form homodimers and heterodimer. Moreover, expression analysis of VQ12 and VQ29 in defense-signaling mutants suggested that they were partially involved in jasmonate (JA)-signaling pathway. Taken together, our study indicates that VQ12 and VQ29 negatively regulate plant basal resistance against B. cinerea.
Collapse
|
190
|
Yu F, Wu Y, Xie Q. Precise protein post-translational modifications modulate ABI5 activity. TRENDS IN PLANT SCIENCE 2015; 20:569-75. [PMID: 26044742 DOI: 10.1016/j.tplants.2015.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 05/22/2023]
Abstract
Abscisic acid-insensitive 5 (ABI5), a plant basic leucine zipper (bZIP) transcription factor, has been revealed to be the key regulator in the abscisic acid (ABA) signaling pathway controlling seed dormancy, germination, plant growth, and flowering time. Recently, new evidence has come to light that a combination of different post-translational modifications (PTMs) might together control the stability and activity of ABI5. In this review, we highlight three types of PTM (protein phosphorylation/dephosphorylation, ubiquitination, and sumoylation) and their interactions that precisely regulate ABI5 signaling. ABI5 is the best-studied key molecule in the ABA signaling pathway with respect to PTMs; therefore, this review could serve as a model to guide post-translational studies of important regulators in other plant hormone signaling pathways.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
191
|
Gururani MA, Mohanta TK, Bae H. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress. Int J Mol Sci 2015; 16:19055-85. [PMID: 26287167 PMCID: PMC4581286 DOI: 10.3390/ijms160819055] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022] Open
Abstract
Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research.
Collapse
Affiliation(s)
| | - Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbook 712-749, Korea.
| |
Collapse
|
192
|
Wei T, He Z, Tan X, Liu X, Yuan X, Luo Y, Hu S. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination. Biochem Biophys Res Commun 2015; 464:176-81. [PMID: 26116530 DOI: 10.1016/j.bbrc.2015.06.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023]
Abstract
Seed germination is a crucial stage for plant development and agricultural production. To investigate its complex regulation process, the RNA-Seq study of rice embryo was conducted at three time points of 0, 12 and 48 h post imbibition (HPI). Dynamic transcriptional alterations were observed, especially in the early stage (0-12 HPI). Seed related genes, especially those encoding desiccation inducible proteins and storage reserves in embryo, decreased drastically after imbibition. The expression profiles of phytohormone related genes indicated distinct roles of abscisic acid (ABA), gibberellin (GA) and brassinosteroid (BR) in germination. Moreover, network analysis revealed the importance of protein phosphorylation in phytohormone interactions. Network and gene ontology (GO) analyses suggested that transcription factors (TFs) played a regulatory role in functional transitions during germination, and the enriched TF families at 0 HPI implied a regulation of epigenetic modification in dry seeds. In addition, 35 germination-specific TF genes in embryo were identified and seven genes were verified by qRT-PCR. Besides, enriched TF binding sites (TFBSs) supported physiological changes in germination. Overall, this study expands our comprehensive knowledge of multiple regulation factors underlying rice seed germination.
Collapse
Affiliation(s)
- Ting Wei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zilong He
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - XinYu Tan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yuan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingfeng Luo
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
193
|
Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling. THE NEW PHYTOLOGIST 2015; 206:522-40. [PMID: 25615890 DOI: 10.1111/nph.13269] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/04/2014] [Indexed: 05/20/2023]
Abstract
Because they are tethered in space, plants have to make the most of their local growth environment. In order to grow in an ever-changing environment, plants constantly remodel their shapes. This adaptive attribute requires the orchestration of complex environmental signals at the cellular and organismal levels. A battery of small molecules, classically known as phytohormones, allows plants to change their body plan by using highly integrated signaling networks and transcriptional cascades. Amongst these hormones, brassinosteroids (BRs), the polyhydroxylated steroid of plants, influence plant responsiveness to the local environment and exquisitely promote, or interfere with, many aspects of plant development. The molecular circuits that wire steroid signals at the cell surface to the promoters of thousands of genes in the nucleus have been defined in the past decade. This review recapitulates how the transduction of BR signals impacts the temporally unfolding programs of plant growth. First, we summarize the paradigmatic BR signaling pathway acting primarily in cellular expansion. Secondly, we describe the current wiring diagram and the temporal dynamics of the BR signal transduction network. And finally we provide an overview of how key players in BR signaling act as molecular gates to transduce BR signals onto other signaling pathways.
Collapse
Affiliation(s)
- Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr Gasse 3, Vienna, 1030, Austria
| | | |
Collapse
|
194
|
Lu Y, Yamaguchi J, Sato T. Integration of C/N-nutrient and multiple environmental signals into the ABA signaling cascade. PLANT SIGNALING & BEHAVIOR 2015; 10:e1048940. [PMID: 26786013 PMCID: PMC4854351 DOI: 10.1080/15592324.2015.1048940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/04/2015] [Indexed: 06/05/2023]
Abstract
Due to their immobility, plants have developed sophisticated mechanisms to robustly monitor and appropriately respond to dynamic changes in nutrient availability. Carbon (C) and nitrogen (N) are especially important in regulating plant metabolism and development, thereby affecting crop productivity. In addition to their independent utilization, the ratio of C to N metabolites in the cell, referred to as the "C/N balance", is important for the regulation of plant growth, although molecular mechanisms mediating C/N signaling remain unclear. Recently ABI1, a protein phosphatase type 2C (PP2C), was shown to be a regulator of C/N response in Arabidopsis plants. ABI1 functions as a negative regulator of abscisic acid (ABA) signal transduction. ABA is versatile phytohormone that regulates multiple aspects of plant growth and adaptation to environmental stress. This review highlights the regulation of the C/N response mediated by a non-canonical ABA signaling pathway that is independent of ABA biosynthesis, as well as recent findings on the direct crosstalk between multiple cellular signals and the ABA signaling cascade.
Collapse
Affiliation(s)
- Yu Lu
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Science; Hokkaido University; Kita-ku Sapporo, Japan
| |
Collapse
|
195
|
Saini S, Sharma I, Pati PK. Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. FRONTIERS IN PLANT SCIENCE 2015; 6:950. [PMID: 26583025 PMCID: PMC4631823 DOI: 10.3389/fpls.2015.00950] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/18/2015] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a class of steroidal plant hormones that play diverse roles in plant growth and developmental processes. Recently, the easy availability of biological resources, and development of new molecular tools and approaches have provided the required impetus for deeper understanding of the processes involved in BRs biosynthesis, transport, signaling and degradation pathways. From recent studies it is also evident that BRs interact with other phytohormones such as auxin, cytokinin, ethylene, gibberellin, jasmonic acid, abscisic acid, salicylic acid and polyamine in regulating wide range of physiological and developmental processes in plants. The inputs from these studies are now being linked to the versatile roles of BRs. The present review highlights the conceptual development with regard to BR homeostasis, signaling and its crosstalk with other phytohormones. This information will assist in developing predictive models to modulate various useful traits in plants and address current challenges in agriculture.
Collapse
|