151
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
152
|
Teng T, Sun G, Song X, Shi B. The early faecal microbiota transfer alters bile acid circulation and amino acid transport of the small intestine in piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:564-573. [PMID: 35668615 DOI: 10.1111/jpn.13739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/03/2022] [Accepted: 05/13/2022] [Indexed: 01/01/2023]
Abstract
The purpose of this study was to investigate the effects of faecal microbiota transfer (FMT) with lactation Min sows as faecal donor on blood immunity, small intestine amino acid transport capacity, bile acid circulation, and colon microbiota of recipient piglets. From Days 1 to 10, the recipient group (R group) was orally inoculated with a faecal suspension. The control group (Con group) was orally inoculated with sterile physiological saline. On Day 21, the results showed that the immunoglobulin A (IgA) concentration in plasma of the R group was increased (p < 0.05). The expression of 4F2hc in the jejunal mucosa and ileum mucosa of the R group was ameliorated (p < 0.05). The relative abundance of Synergistetes in the colon of the R group was increased, Proteobacteria was diminished by FMT (p < 0.05). On Day 40, the concentrations of IgA, IgG, and interleukin-2 detected in the plasma of the R group were increased (p < 0.05). FXR and fibroblast growth factor 19 gene expression was upregulated in ileum mucosa, CYP7A1 and Na+ taurocholate cotransporter polypeptide gene expression were downregulated in the liver and organic solute transporters α/β was downregulated in colonic mucosa (p < 0.05). The relative abundance of Proteobacteria and Spirochaetes in the colon of the R group was decreased (p < 0.05). In conclusion, an early FMT with lactation Min sows as faecal donors can alter the small intestine amino acid transport capacity, bile acid circulation, and colonic microbiota of recipient piglets during lactation and after weaning.
Collapse
Affiliation(s)
- Teng Teng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Guodong Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Song
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
153
|
Wu G, Gu W, Chen G, Cheng H, Li D, Xie Z. Interactions of tea polysaccharides with gut microbiota and their health-promoting effects to host: Advances and perspectives. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
154
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
155
|
Marcos-Fernández R, Riestra S, Alonso-Arias R, Ruiz L, Sánchez B, Margolles A. Immunomagnetic Capture of Faecalibacterium prausnitzii Selectively Modifies the Fecal Microbiota and Its Immunomodulatory Profile. Microbiol Spectr 2023; 11:e0181722. [PMID: 36598219 PMCID: PMC9927134 DOI: 10.1128/spectrum.01817-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Faecalibacterium represents one of the most abundant bacterial groups in the human intestinal microbiota of healthy adults and can represent more than 10% of the total bacterial population, Faecalibacterium prausnitzii being the only recognized species up to the past year. Reduction in the abundance of F. prausnitzii in the human gut has been linked to several human disorders, such as Crohn's disease. In this study, we developed a strategy to modify the relative abundance of F. prausnitzii in fecal microbiotas as a means of evaluating its contribution to the immunomodulatory effect of intestinal microbiotas with different F. prausnitzii contents using a peripheral blood mononuclear cell (PBMC) model. We used a polyclonal antibody against the surface of F. prausnitzii M21 to capture the bacterium from synthetic and human fecal microbiotas using immunoseparation techniques. As a proof-of-principle study, the levels of immunomodulation exerted by microbiotas of healthy donors (HDs) with different relative abundances of F. prausnitzii, achieved with the above-mentioned immunoseparation technique, were evaluated in a PBMC model. For this purpose, PBMCs were cocultivated with the modified microbiotas or a pure culture of F. prausnitzii and, subsequently, the microbiota of Crohn's donors was added to the coculture. The cytokine concentration was determined, showing that our experimental model supports the anti-inflammatory effects of this bacterium. IMPORTANCE There is increasing interest in deciphering the contribution of gut microbiota species to health and disease amelioration. The approach proposed herein provides a novel and affordable strategy to probe deeply into microbiota-host interactions by strategically modifying the relative abundance of specific gut microbes, hence facilitating the study of their contribution to a given trait of the microbiota.
Collapse
Affiliation(s)
- Raquel Marcos-Fernández
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Sabino Riestra
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
- Departamento de Gastroenterología, Unidad de Enfermedad Inflamatoria Intestinal, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
| | - Rebeca Alonso-Arias
- Departamento de Inmunología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Asturias, Spain
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Borja Sánchez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
156
|
Regulatory effect of moderate Jiang-flavour baijiu (Chinese liquor) dosage on organ function and gut microbiota in mice. J Biosci Bioeng 2023; 135:298-305. [PMID: 36781353 DOI: 10.1016/j.jbiosc.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 02/13/2023]
Abstract
Chinese baijiu, an ancient fermented alcoholic beverage, contains ethanol and a variety of compounds. One of the most popular types of Chinese baijiu is Jiang-flavor baijiu. To investigate the effects of Jiang-flavor baijiu on organ function and gut microbiota, we developed a moderate drinking mouse model and studied its effects on the liver, kidney biomarkers, memory function, and gut microbiota. The results showed that ethanol caused more hepatic steatosis, liver and kidney damage, and memory impairment than Jiang-flavour baijiu consumption. Furthermore, Jiang-flavor baijiu altered the gut microbiota by increasing the abundance of beneficial taxa such as Lactobacillus and Akkermansia, whereas ethanol increased the abundance of harmful bacteria such as Prevotella and Mucispirillum. Our findings provide preliminary evidence that moderate dose Jiang-flavor baijiu regulates gut microbiota and organ function and provide a theoretical foundation for future research on the positive health effects of particular varieties of Chinese baijiu.
Collapse
|
157
|
Sharma S, Hegde P, Panda S, Orimoloye MO, Aldrich CC. Drugging the microbiome: targeting small microbiome molecules. Curr Opin Microbiol 2023; 71:102234. [PMID: 36399893 DOI: 10.1016/j.mib.2022.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
The human microbiome represents a large and diverse collection of microbes that plays an integral role in human physiology and pathophysiology through interactions with the host and within the microbial community. While early work exploring links between microbiome signatures and diseases states has been associative, emerging evidence demonstrates the metabolic products of the human microbiome have more proximal causal effects on disease phenotypes. The therapeutic implications of this shift are profound as manipulation of the microbiome by the administration of live biotherapeutics, ongoing, can now be pursued alongside research efforts toward describing inhibitors of key microbiome enzymes involved in the biosynthesis of metabolites implicated in various disease states and processing of host-derived metabolites. With growing interest in 'drugging the microbiome', we review few notable microbial metabolites for which traditional drug-development campaigns have yielded compounds with therapeutic promise.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Pooja Hegde
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
158
|
Mabwi HA, Lee HJ, Hitayezu E, Mauliasari IR, Pan C, Mwaikono KS, Komba EVG, Lee C, Cha KH. Emodin modulates gut microbial community and triggers intestinal immunity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1273-1282. [PMID: 36088620 PMCID: PMC10087506 DOI: 10.1002/jsfa.12221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The gut microbiota (GM) plays an important role in human health and is being investigated as a possible target for new therapies. Although there are many studies showing that emodin can improve host health, emodin-GM studies are scarce. Here, the effects of emodin on the GM were investigated in vitro and in vivo. RESULTS In vitro single bacteria cultivation showed that emodin stimulated the growth of beneficial bacteria Akkermansia, Clostridium, Roseburia, and Ruminococcus but inhibited major gut enterotypes (Bacteroides and Prevotella). Microbial community analysis from a synthetic gut microbiome model through co-culture indicated the consistent GM change by emodin. Interestingly, emodin stimulated Clostridium and Ruminococcus (which are related to Roseburia and Faecalibacterium) in a mice experiment and induced anti-inflammatory immune cells, which may correlate with its impact on specific gut bacteria. CONCLUSION Emodin (i) showed similar GM changes in monoculture, co-culture, and in an in vivo mice experiment and (ii) simulated regulatory T-cell immune responses in vivo. This suggest that emodin may be used to modulate the GM and improve health. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Humphrey A. Mabwi
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
- Department of Microbiology, Parasitology, and Biotechnology, College of Veterinary Medicine and Biomedical SciencesSokoine University of AgricultureMorogoroTanzania
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical SciencesSokoine University of AgricultureMorogoroTanzania
- Division of Bio‐Medical Science and TechnologyKIST School, University of Science and TechnologySeoulSouth Korea
| | - Hee Ju Lee
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
| | - Emmanuel Hitayezu
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
| | - Intan Rizki Mauliasari
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
| | - Cheol‐Ho Pan
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
- Division of Bio‐Medical Science and TechnologyKIST School, University of Science and TechnologySeoulSouth Korea
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory TechnologyDar es Salaam Institute of TechnologyDar es SalaamTanzania
| | - Erick V. G. Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical SciencesSokoine University of AgricultureMorogoroTanzania
| | - Choong‐Gu Lee
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
- Division of Bio‐Medical Science and TechnologyKIST School, University of Science and TechnologySeoulSouth Korea
| | - Kwang Hyun Cha
- Natural Product Informatics Research CenterKorea Institute of Science and TechnologyGangneungSouth Korea
| |
Collapse
|
159
|
Relationship between gut microbiota and nutritional status in patients on peritoneal dialysis. Sci Rep 2023; 13:1572. [PMID: 36709367 PMCID: PMC9884196 DOI: 10.1038/s41598-023-27919-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/10/2023] [Indexed: 01/30/2023] Open
Abstract
Malnutrition is a common complication in the dialysis population, both hemodialysis and peritoneal dialysis (PD). We report our exploratory study on the characteristics of intestinal microbiota and nutritional status in PD patients. The nutritional status of our PD patients were evaluated, and their feces were collected for 16S rRNA gene V3-V4 regions amplification and high-throughput sequencing. The characteristics and differences of microbiota between the well-nourished (W) and malnourished (M) groups were compared. We studied the genera and the operational taxonomic units (OTUs) within the genus of our patients, initially comparing the malnourished and the well- nourished groups and later on reanalyzing the whole group using these OTUs. At the OTU level, 6 bacteria were significantly correlated with the serum albumin level. The abundances of 2 OTUs (OTU208 Lachnospiraceae_incertae_sedi and OTU4 Bacteroides) were more in W group. Meanwhile, 4 OTUs (OTU225 Akkermansia, OTU87 Megasphaera, OTU31 Peptostreptococcaceae_incertae_sedi and OTU168 Clostridium_sensu_strictu) displayed higher abundance among individuals in M group. Notably, the OTU168 Clostridium_sensu_stricto was the only bacteria that significantly correlated with serum albumin (r = - 0.356, P = 0.05), pre-albumin (r = - 0.399, P = 0.02), and SGA (r = 0.458, P = 0.01). The higher the OTU168 Clostridium_sensu_strictu, the lower serum albumin and pre-albumin and a higher score of SGA signifying a worse nutritional status. Our preliminary findings suggested a relationship between the nutrition status and microbiota in PD patients. Our results provide a basis for further exploration of the interactions between malnutrition and intestinal flora in PD patients with potential interventions using probiotics and prebiotics.
Collapse
|
160
|
Tokuno H, Itoga T, Kasuga J, Okuma K, Hasuko K, Masuyama H, Benno Y. Method for estimating disease risk from microbiome data using structural equation modeling. Front Microbiol 2023; 14:1035002. [PMID: 36778866 PMCID: PMC9909428 DOI: 10.3389/fmicb.2023.1035002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
The relationship between the human gut microbiota and disease is of increasing scientific interest. Previous investigations have focused on the differences in intestinal bacterial abundance between control and affected groups to identify disease biomarkers. However, different types of intestinal bacteria may have interacting effects and thus be considered biomarker complexes for disease. To investigate this, we aimed to identify a new kind of biomarker for atopic dermatitis using structural equation modeling (SEM). The biomarkers identified were latent variables, which are complex and derived from the abundance data for bacterial marker candidates. Groups of females and males classified as healthy participants [normal control (NC) (female: 321 participants, male: 99 participants)], and patients afflicted with atopic dermatitis only [AS (female: 45 participants, male: 13 participants)], with atopic dermatitis and other diseases [AM (female: 75 participants, male: 34 participants)], and with other diseases but without atopic dermatitis [OD (female: 1,669 participants, male: 866 participants)] were used in this investigation. The candidate bacterial markers were identified by comparing the intestinal microbial community compositions between the NC and AS groups. In females, two latent variables (lv) were identified; for lv1, the associated components (bacterial genera) were Alistipes, Butyricimonas, and Coprobacter, while for lv2, the associated components were Agathobacter, Fusicatenibacter, and Streptococcus. There was a significant difference in the lv2 scores between the groups with atopic dermatitis (AS, AM) and those without (NC, OD), and the genera identified for lv2 are associated with the suppression of inflammatory responses in the body. A logistic regression model to estimate the probability of atopic dermatitis morbidity with lv2 as an explanatory variable had an area under the curve (AUC) score of 0.66 when assessed using receiver operating characteristic (ROC) analysis, and this was higher than that using other logistic regression models. The results indicate that the latent variables, especially lv2, could represent the effects of atopic dermatitis on the intestinal microbiome in females. The latent variables in the SEM could thus be utilized as a new type of biomarker. The advantages identified for the SEM are as follows: (1) it enables the extraction of more sophisticated information when compared with models focused on individual bacteria and (2) it can improve the accuracy of the latent variables used as biomarkers, as the SEM can be expanded.
Collapse
Affiliation(s)
- Hidetaka Tokuno
- Symbiosis Solutions Inc., Tokyo, Japan,*Correspondence: Hidetaka Tokuno,
| | | | | | | | | | | | | |
Collapse
|
161
|
Isenring J, Bircher L, Geirnaert A, Lacroix C. In vitro human gut microbiota fermentation models: opportunities, challenges, and pitfalls. MICROBIOME RESEARCH REPORTS 2023; 2:2. [PMID: 38045607 PMCID: PMC10688811 DOI: 10.20517/mrr.2022.15] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 12/05/2023]
Abstract
The human gut microbiota (HGM) plays a pivotal role in health and disease. Consequently, nutritional and medical research focusing on HGM modulation strategies as a means of improving host health is steadily increasing. In vitro HGM fermentation models offer a valid complement to human and animal studies when it comes to the mechanistic exploration of novel modulation approaches and their direct effects on HGM composition and activity, while excluding interfering host effects. However, in vitro cultivation of HGM can be challenging due to its high oxygen sensitivity and the difficulties of accurately modeling the physio-chemical complexity of the gut environment. Despite the increased use of in vitro HGM models, there is no consensus about appropriate model selection and operation, sometimes leading to major deficiencies in study design and result interpretation. In this review paper, we aim to analyze crucial aspects of the application, setup and operation, data validation and result interpretation of in vitro HGM models. When carefully designed and implemented, in vitro HGM modeling is a powerful strategy for isolating and investigating biotic and abiotic factors in the HGM, as well as evaluating their effects in a controlled environment akin to the gut. Furthermore, complementary approaches combining different in vitro and in vivo models can strengthen the design and interpretation of human studies.
Collapse
Affiliation(s)
| | | | | | - Christophe Lacroix
- Department of Health Sciences and Technology, ETH Zurich, Zürich 8092, Switzerland
| |
Collapse
|
162
|
Qu SS, Zhang Y, Ren JN, Yang SZ, Li X, Fan G, Pan SY. Effect of different ways of ingesting orange essential oil on blood immune index and intestinal microflora in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:380-388. [PMID: 35894931 DOI: 10.1002/jsfa.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 05/04/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Studies have found that the addition of plant essential oils to feed had a positive effect on intestinal microflora and immunity in mice. However, the effect of different ways of ingestion of orange essential oil on mice has seldom been reported. In the present study, we investigated the effects of ingestion of orange essential oil by gavage, sniffing and feeding on intestinal microflora and immunity in mice. RESULTS The results obtained showed that a low concentration of essential oil feeding significantly increased the spleen index of mice (P < 0.05). The effect of different ways of ingestion on the thymus index, immunoglobulin G and immunoglobulin M of mice was not significant (P > 0.05). High and medium concentrations of essential oil feeding increased the level of interleukin-2 in mice (P < 0.05). H+ K+ -ATPase activity was significantly increased in mice fed with gavage and different concentrations of essential oil feed compared to the control group (P < 0.05). The analysis of the results of the microflora in the cecum and colon of mice indicated that the medium concentration of essential oil feeding group and the sniffing group significantly changed the structure of the flora and increased the diversity of the intestinal microflora. All three essential oil ingestion methods increased the abundance of Bacteroidetes and Lactobacillus in the intestine of mice. CONCLUSION Compared with gavage and feeding, sniffing had a significant effect on immunoglobulins in mice. All the three ingestion methods could affect the intestinal microflora of mice and increase the abundance of Lactobacillus. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha-Sha Qu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shu-Zhen Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
163
|
Li Z, Fan Y, Bai H, Zhang J, Mao S, Jin W. Live yeast supplementation altered the bacterial community's composition and function in rumen and hindgut and alleviated the detrimental effects of heat stress on dairy cows. J Anim Sci 2023; 101:skac410. [PMID: 36534956 PMCID: PMC9841158 DOI: 10.1093/jas/skac410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate the effects of live yeast (LY, Saccharomyces cerevisiae) on the lactation performance, bacterial community, and functions in the rumen and hindgut of dairy cows under heat stress. Thirty-three multiparous (parity 3.9 ± 0.8) Holstein dairy cows (189.1 ± 6.6 d in milk at the beginning of the experiment) were randomly assigned to three groups (11 cows per treatment). Cows in the three groups were fed a diet without yeast (CON), with 10 g yeast/d/head (LY-10), and with 20 g yeast/d/head (LY-20). The yeast product contained 2.0 × 1010 CFU/g. Supplementing LY decreased the rectal temperature and respiratory rate of cows, and increased dry matter intake, milk yield, milk fat yield, milk protein yield, and milk lactose yield (P < 0.001), yet decreased milk urea nitrogen concentration (P = 0.035). Interaction effects of treatment × week were observed for rectal temperature (P < 0.05), respiratory rate (P < 0.05), milk yield (P = 0.015), milk urea nitrogen (P = 0.001), milk protein yield (P = 0.008), and milk lactose yield (P = 0.030). In rumen, LY increased the concentrations of acetate, isobutyrate, isovaterate, valerate, total volatile fatty acids (VFAs), and NH3-N (P < 0.05). Miseq sequencing of the 16S rRNA genes showed that LY increased the relative abundance of Prevotella and Prevotellaceae UCG-003 at the genus level with a series of enriched pathways in the metabolism of carbohydrates and protein. In fecal samples, LY did not affect the profile of VFAs (P > 0.05). Clostridium sensu stricto 1 (P = 0.013) and Actinobacillus (P = 0.011) increased in the relative abundance by LY, whereas Bacteroides (P = 0.016) and Oscillospirales UCG-010 (P = 0.005) decreased with a series of enriched pathways in carbohydrate metabolism, secondary bile acid biosynthesis. In summary, LY supplementation altered the bacterial community's composition and function in rumen and hindgut, and simultaneously alleviated the detrimental effects of heat stress on dairy cows. These findings provide extended insight into the effects of LY in the rumen and hindgut of dairy cows exposed to heat stress.
Collapse
Affiliation(s)
- Zihao Li
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Fan
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Bai
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiyou Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Jin
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
164
|
Hominibacterium faecale gen. nov., sp. nov., an anaerobic l-arginine-degrading bacterium isolated from human feces. Arch Microbiol 2023; 205:33. [DOI: 10.1007/s00203-022-03365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
|
165
|
Wu C, Yi H, Hu Y, Luo D, Tang Z, Wen X, Zhang Y, Tang M, Zhang L, Wu S, Chen M. Effects of second-line anti-tuberculosis drugs on the intestinal microbiota of patients with rifampicin-resistant tuberculosis. Front Cell Infect Microbiol 2023; 13:1127916. [PMID: 37187470 PMCID: PMC10178494 DOI: 10.3389/fcimb.2023.1127916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Objective To determine the effects of second-line anti-tuberculosis (TB) drugs on the composition and functions of intestinal microbiota in patients with rifampicin-resistant TB (RR-TB). Methods In this cross-sectional study, stool samples and relevant clinical information were collected from patients with RR-TB admitted to the Drug-resistant Specialty Department at Hunan Chest Hospital (Hunan Institute For Tuberculosis Control). The composition and functions of intestinal microbiota were analyzed using metagenomic sequencing and bioinformatics methods. Results Altered structural composition of the intestinal microbiota was found when patients from the control, intensive phase treatment, and continuation phase treatment groups were compared (P<0.05). Second-line anti-TB treatment resulted in a decrease in the relative abundance of species, such as Prevotella copri, compared with control treatment. However, the relative abundance of Escherichia coli, Salmonella enterica, and 11 other conditionally pathogenic species increased significantly in the intensive phase treatment group. Based on differential functional analysis, some metabolism-related functions, such as the biosynthesises of phenylalanine, tyrosine, and tryptophan, were significantly inhibited during second-line anti-TB drug treatment, while other functions, such as phenylalanine metabolism, were significantly promoted during the intensive phase of treatment. Conclusion Second-line anti-TB drug treatment caused changes in the structural composition of the intestinal microbiota in patients with RR-TB. In particular, this treatment induced a significant increase in the relative abundance of 11 conditionally pathogenic species, including Escherichia coli. Functional analysis revealed significantly decreased biosynthesises of phenylalanine, tyrosine, and tryptophan and significantly increased phenylalanine metabolism.
Collapse
Affiliation(s)
- Chunli Wu
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Hengzhong Yi
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
- *Correspondence: Hengzhong Yi,
| | - Yanmei Hu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Danlin Luo
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Zhigang Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Xinmin Wen
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Yong Zhang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mi Tang
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Lizhi Zhang
- Orthopedics and integration Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Shu Wu
- 6th Medical Department, Hunan Province Chest Hospital, Changsha, Hunan, China
| | - Mengshi Chen
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| |
Collapse
|
166
|
Reineke W, Schlömann M. Microbial Communities: Structural and Functional Analyses with Molecular Biological Approach. Environ Microbiol 2023. [DOI: 10.1007/978-3-662-66547-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
167
|
Huynh U, Zastrow ML. Metallobiology of Lactobacillaceae in the gut microbiome. J Inorg Biochem 2023; 238:112023. [PMID: 36270041 PMCID: PMC9888405 DOI: 10.1016/j.jinorgbio.2022.112023] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022]
Abstract
Lactobacillaceae are a diverse family of lactic acid bacteria found in the gut microbiota of humans and many animals. These bacteria exhibit beneficial effects on intestinal health, including modulating the immune system and providing protection against pathogens, and many species are frequently used as probiotics. Gut bacteria acquire essential metal ions, like iron, zinc, and manganese, through the host diet and changes to the levels of these metals are often linked to alterations in microbial community composition, susceptibility to infection, and gastrointestinal diseases. Lactobacillaceae are frequently among the organisms increased or decreased in abundance due to changes in metal availability, yet many of the molecular mechanisms underlying these changes have yet to be defined. Metal requirements and metallotransporters have been studied in some species of Lactobacillaceae, but few of the mechanisms used by these bacteria to respond to metal limitation or excess have been investigated. This review provides a current overview of these mechanisms and covers how iron, zinc, and manganese impact Lactobacillaceae in the gut microbiota with an emphasis on their biochemical roles, requirements, and homeostatic mechanisms in several species.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, Houston, TX, USA
| | | |
Collapse
|
168
|
Martins LB, Silveira AL, Teixeira AL. The Involvement of Kynurenine Pathway in Neurodegenerative Diseases. Curr Neuropharmacol 2023; 21:260-272. [PMID: 36154606 PMCID: PMC10190152 DOI: 10.2174/1570159x20666220922153221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND A growing body of evidence has shown the involvement of the kynurenine pathway (KP), the primary route of tryptophan (TRP) catabolism, in the pathophysiology of neuropsychiatric disorders. OBJECTIVE The study aims to provide a comprehensive and critical overview of the clinical evidence on the KP involvement in the pathophysiology of Alzheimer's disease (AD) and Parkinson's disease (PD), discussing therapeutic opportunities. METHODS We searched for studies investigating KP metabolites in human subjects with AD and/or PD. RESULTS Postmortem studies showed altered levels of KP metabolites in the brain of AD and PD patients compared with controls. Cross-sectional studies have reported associations between peripheral levels (serum or plasma) of KP metabolites and cognitive function in these patients, but the results are not always concordant. CONCLUSION Given the emerging evidence of the involvement of KP in the pathophysiology of neuropsychiatric/ neurodegenerative diseases and promising results from preclinical pharmacological studies, a better understanding of the KP involvement in AD and PD is warranted. Future longitudinal studies are needed to define the direction of the observed associations and specific therapeutic targets within the KP.
Collapse
Affiliation(s)
- Lais B. Martins
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ana L.M. Silveira
- Department of Nutrition, School of Nursing, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Physiology and Pharmacology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antonio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
- Faculdade Santa Casa BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
169
|
Nabeh OA. Gut microbiota and cardiac arrhythmia: a pharmacokinetic scope. Egypt Heart J 2022; 74:87. [PMID: 36583819 PMCID: PMC9803803 DOI: 10.1186/s43044-022-00325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Dealing with cardiac arrhythmia is a difficult challenge. Choosing between different anti-arrhythmic drugs (AADs) while being cautious about the pro-arrhythmic characteristics of some of these drugs and their diverse interaction with other drugs is a real obstacle. MAIN BODY Gut microbiota (GM), in our bodies, are now being considered as a hidden organ which can regulate our immune system, digest complex food, and secrete bioactive compounds. Yet, GM are encountered in the pathophysiology of arrhythmia and can affect the pharmacokinetics of AADs, as well as some anti-thrombotics, resulting in altering their bioavailability, therapeutic function and may predispose to some of their unpleasant adverse effects. CONCLUSIONS Knowledge of the exact role of GM in the pharmacokinetics of these drugs is now essential for better understanding of the art of arrhythmia management. Also, it will help deciding when to consider probiotics as an adjunctive therapy while treating arrhythmia. This should be discovered in the near future.
Collapse
Affiliation(s)
- Omnia Azmy Nabeh
- grid.7776.10000 0004 0639 9286Department of Medical Pharmacology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
170
|
Mochochoko BM, Pohl CH, O’Neill HG. Candida albicans-enteric viral interactions-The prostaglandin E 2 connection and host immune responses. iScience 2022; 26:105870. [PMID: 36647379 PMCID: PMC9839968 DOI: 10.1016/j.isci.2022.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human microbiome comprises trillions of microorganisms residing within different mucosal cavities and across the body surface. The gut microbiota modulates host susceptibility to viral infections in several ways, and microbial interkingdom interactions increase viral infectivity within the gut. Candida albicans, a frequently encountered fungal species in the gut, produces highly structured biofilms and eicosanoids such as prostaglandin E2 (PGE2), which aid in viral protection and replication. These biofilms encompass viruses and provide a shield from antiviral drugs or the immune system. PGE2 is a key modulator of active inflammation with the potential to regulate interferon signaling upon microbial invasion or viral infections. In this review, we raise the perspective of gut interkingdom interactions involving C. albicans and enteric viruses, with a special focus on biofilms, PGE2, and viral replication. Ultimately, we discuss the possible implications of C. albicans-enteric virus associations on host immune responses, particularly the interferon signaling pathway.
Collapse
Affiliation(s)
- Bonang M. Mochochoko
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa
| | - Carolina H. Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| | - Hester G. O’Neill
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, 9301, South Africa,Corresponding author
| |
Collapse
|
171
|
Betancur-Murillo CL, Aguilar-Marín SB, Jovel J. Prevotella: A Key Player in Ruminal Metabolism. Microorganisms 2022; 11:microorganisms11010001. [PMID: 36677293 PMCID: PMC9866204 DOI: 10.3390/microorganisms11010001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ruminants are foregut fermenters that have the remarkable ability of converting plant polymers that are indigestible to humans into assimilable comestibles like meat and milk, which are cornerstones of human nutrition. Ruminants establish a symbiotic relationship with their microbiome, and the latter is the workhorse of carbohydrate fermentation. On the other hand, during carbohydrate fermentation, synthesis of propionate sequesters H, thus reducing its availability for the ultimate production of methane (CH4) by methanogenic archaea. Biochemically, methane is the simplest alkane and represents a downturn in energetic efficiency in ruminants; environmentally, it constitutes a potent greenhouse gas that negatively affects climate change. Prevotella is a very versatile microbe capable of processing a wide range of proteins and polysaccharides, and one of its fermentation products is propionate, a trait that appears conspicuous in P. ruminicola strain 23. Since propionate, but not acetate or butyrate, constitutes an H sink, propionate-producing microbes have the potential to reduce methane production. Accordingly, numerous studies suggest that members of the genus Prevotella have the ability to divert the hydrogen flow in glycolysis away from methanogenesis and in favor of propionic acid production. Intended for a broad audience in microbiology, our review summarizes the biochemistry of carbohydrate fermentation and subsequently discusses the evidence supporting the essential role of Prevotella in lignocellulose processing and its association with reduced methane emissions. We hope this article will serve as an introduction to novice Prevotella researchers and as an update to others more conversant with the topic.
Collapse
Affiliation(s)
- Claudia Lorena Betancur-Murillo
- Escuela de Ciencias Básicas, Tecnología e Ingeniería, Universidad Nacional Abierta y a Distancia, UNAD, Bogotá 111511, Colombia
| | | | - Juan Jovel
- Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
- Correspondence:
| |
Collapse
|
172
|
Effects of Dietary Protein Restriction on Colonic Microbiota of Finishing Pigs. Animals (Basel) 2022; 13:ani13010009. [PMID: 36611619 PMCID: PMC9817829 DOI: 10.3390/ani13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
This study is aimed at the effects of low-protein diets with four amino acids balanced on serum biochemical parameters and colonic microflora of finishing pigs. Fifty-four healthy (Duroc × Landrace × Yorkshire) hybrid barrows with an average body weight of 70.12 ± 4.03 kg were randomly assigned to one of three dietary treatments with three barrows per pen and six pens per treatment. The barrows were fed a normal protein diet (NP), a low-protein diet (LP), and a very low-protein diet (VLP). Compared with the NP diet, reduced dietary protein did not influence serum biochemical parameters (p > 0.05). The valeric acid was significantly increased with the VLP diet (p < 0.05). Compared with the NP diets, the abundance of Terrisporobacter (13.37%) Clostridium_sensu_stricto_1 (23.37%) and Turicibacter (2.57%) increased to 21.04, 33.42 and 13.68% in LP diets and 16.72, 43.71 and 14.61% in VLP diets, while the abundance of Lactobacillus (9.30%) and Streptococcus (25.26%) decreased to 3.57 and 14.50% in LP diets and 1.86 and 4.07% in VLP diets. Turicibacter and Clostridium_sensu_stricto_6 had a powerful negative correlation with the content of valeric acid (p < 0.01), while Peptococcus and Clostridia_UCG-014 had a very solid positive correlation (p < 0.01). In conclusion, reducing dietary protein level can improve colon microbiota composition, especially reducing the abundance of bacteria related to nitrogen metabolism, but has no significant effect on SCFA except valeric acid. In addition, reduction in the dietary protein level by 5.48% had more different flora than that of 2.74% reduction in dietary CP level.
Collapse
|
173
|
Polyphenols as Drivers of a Homeostatic Gut Microecology and Immuno-Metabolic Traits of Akkermansia muciniphila: From Mouse to Man. Int J Mol Sci 2022; 24:ijms24010045. [PMID: 36613488 PMCID: PMC9820369 DOI: 10.3390/ijms24010045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Akkermansia muciniphila is a mucosal symbiont considered a gut microbial marker in healthy individuals, as its relative abundance is significantly reduced in subjects with gut inflammation and metabolic disturbances. Dietary polyphenols can distinctly stimulate the relative abundance of A. muciniphila, contributing to the attenuation of several diseases, including obesity, type 2 diabetes, inflammatory bowel diseases, and liver damage. However, mechanistic insight into how polyphenols stimulate A. muciniphila or its activity is limited. This review focuses on dietary interventions in rodents and humans and in vitro studies using different phenolic classes. We provide critical insights with respect to potential mechanisms explaining the effects of polyphenols affecting A. muciniphila. Anthocyanins, flavan-3-ols, flavonols, flavanones, stilbenes, and phenolic acids are shown to increase relative A. muciniphila levels in vivo, whereas lignans exert the opposite effect. Clinical trials show consistent findings, and high intervariability relying on the gut microbiota composition at the baseline and the presence of multiple polyphenol degraders appear to be cardinal determinants in inducing A. muciniphila and associated benefits by polyphenol intake. Polyphenols signal to the AhR receptor and impact the relative abundance of A. muciniphila in a direct and indirect fashion, resulting in the restoration of intestinal epithelial integrity and homeostatic crosstalk with the gut microbiota by affecting IL-22 production. Moreover, recent evidence suggests that A. muciniphila participates in the initial hydrolysis of some polyphenols but does not participate in their complete metabolism. In conclusion, the consumption of polyphenol-rich foods targeting A. muciniphila as a pivotal intermediary represents a promising precision nutritional therapy to prevent and attenuate metabolic and inflammatory diseases.
Collapse
|
174
|
Dong Y, Chen J, Zhang Y, Wang Z, Shang J, Zhao Z. Development and validation of diagnostic models for immunoglobulin A nephropathy based on gut microbes. Front Cell Infect Microbiol 2022; 12:1059692. [PMID: 36569195 PMCID: PMC9774022 DOI: 10.3389/fcimb.2022.1059692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN) is a highly prevalent glomerular disease. The diagnosis potential of the gut microbiome in IgAN has not been fully evaluated. Gut microbiota, serum metabolites, and clinical phenotype help to further deepen the understanding of IgAN. Patients and methods Cohort studies were conducted in healthy controls (HC), patients of IgA nephropathy (IgAN) and non-IgA nephropathy (n_IgAN). We used 16S rRNA to measure bacterial flora and non-targeted analysis methods to measure metabolomics; we then compared the differences in the gut microbiota between each group. The random forest method was used to explore the non-invasive diagnostic value of the gut microbiome in IgAN. We also compared serum metabolites and analyzed their correlation with the gut microbiome. Results The richness and diversity of gut microbiota were significantly different among IgAN, n_IgAN and HC patients. Using a random approach, we constructed the diagnosis model and analysed the differentiation between IgAN and n_IgAN based on gut microbiota. The area under the receiver operating characteristic curve for the diagnosis was 0.9899. The metabolic analysis showed that IgAN patients had significant metabolic differences compared with HCs. In IgAN, catechol, l-tryptophan, (1H-Indol-3-yl)-N-methylmethanamine, and pimelic acid were found to be enriched. In the correlation analysis, l-tryptophan, blood urea nitrogen and Eubacterium coprostanoligenes were positively correlated with each other. Conclusion Our study demonstrated changes in the gut microbiota and established models for the non-invasive diagnosis of IgAN from HC and n_IgAN. We further demonstrated a close correlation between the gut flora, metabolites, and clinical phenotypes of IgAN. These findings provide further directions and clues in the study of the mechanism of IgAN.
Collapse
Affiliation(s)
- Yijun Dong
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaojiao Chen
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yiding Zhang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Shang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Nephrology Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Nephrology Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,Laboratory Animal Platform of Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Zhanzheng Zhao, ; Jin Shang,
| |
Collapse
|
175
|
Corriero A, Gadaleta RM, Puntillo F, Inchingolo F, Moschetta A, Brienza N. The central role of the gut in intensive care. Crit Care 2022; 26:379. [PMID: 36476497 PMCID: PMC9730662 DOI: 10.1186/s13054-022-04259-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Critically ill patients undergo early impairment of their gut microbiota (GM) due to routine antibiotic therapies and other environmental factors leading to intestinal dysbiosis. The GM establishes connections with the rest of the human body along several axes representing critical inter-organ crosstalks that, once disrupted, play a major role in the pathophysiology of numerous diseases and their complications. Key players in this communication are GM metabolites such as short-chain fatty acids and bile acids, neurotransmitters, hormones, interleukins, and toxins. Intensivists juggle at the crossroad of multiple connections between the intestine and the rest of the body. Harnessing the GM in ICU could improve the management of several challenges, such as infections, traumatic brain injury, heart failure, kidney injury, and liver dysfunction. The study of molecular pathways affected by the GM in different clinical conditions is still at an early stage, and evidence in critically ill patients is lacking. This review aims to describe dysbiosis in critical illness and provide intensivists with a perspective on the potential as adjuvant strategies (e.g., nutrition, probiotics, prebiotics and synbiotics supplementation, adsorbent charcoal, beta-lactamase, and fecal microbiota transplantation) to modulate the GM in ICU patients and attempt to restore eubiosis.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Francesco Inchingolo
- Dental Medicine Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Nicola Brienza
- Department of Interdisciplinary Medicine - ICU Section, University of Bari “Aldo Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
176
|
Chen HM, Chung YCE, Chen HC, Liu YW, Chen IM, Lu ML, Hsiao FSH, Chen CH, Huang MC, Shih WL, Kuo PH. Exploration of the relationship between gut microbiota and fecal microRNAs in patients with major depressive disorder. Sci Rep 2022; 12:20977. [PMID: 36470908 PMCID: PMC9722658 DOI: 10.1038/s41598-022-24773-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiota-gut-brain axis signaling plays a pivotal role in mood disorders. The communication between the host and the gut microbiota may involve complex regulatory networks. Previous evidence showed that host-fecal microRNAs (miRNAs) interactions partly shaped gut microbiota composition. We hypothesized that some miRNAs are correlated with specific bacteria in the fecal samples in patients with major depressive disorder (MDD), and these miRNAs would show enrichment in pathways associated with MDD. MDD patients and healthy controls were recruited to collect fecal samples. We performed 16S ribosome RNA sequence using the Illumina MiSeq sequencers and analysis of 798 fecal miRNAs using the nCounter Human-v2 miRNA Panel in 20 subjects. We calculated the Spearman correlation coefficient for bacteria abundance and miRNA expressions, and analyzed the predicted miRNA pathways by enrichment analysis with false-discovery correction (FDR). A total of 270 genera and 798 miRNAs were detected in the fecal samples. Seven genera (Anaerostipes, Bacteroides, Bifidobacterium, Clostridium, Collinsella, Dialister, and Roseburia) had fold changes greater than one and were present in over 90% of all fecal samples. In particular, Bacteroides and Dialister significantly differed between the MDD and control groups (p-value < 0.05). The correlation coefficients between the seven genera and miRNAs in patients with MDD showed 48 pairs of positive correlations and 36 negative correlations (p-value < 0.01). For miRNA predicted functions, there were 57 predicted pathways with a p-value < 0.001, including MDD-associated pathways, axon guidance, circadian rhythm, dopaminergic synapse, focal adhesion, long-term potentiation, and neurotrophin signaling pathway. In the current pilot study, our findings suggest specific genera highly correlated with the predicted miRNA functions, which might provide clues for the interaction between host factors and gut microbiota via the microbiota-gut-brain axis. Follow-up studies with larger sample sizes and refined experimental design are essential to dissect the roles between gut microbiota and miRNAs for depression.
Collapse
Affiliation(s)
- Hui-Mei Chen
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan
| | - Yu-Chu Ella Chung
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.59784.370000000406229172Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, 350 Taiwan
| | - Hsi-Chung Chen
- grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Center of Sleep Disorders, National Taiwan University Hospital, Taipei, 100 Taiwan
| | - Yen-Wenn Liu
- grid.260539.b0000 0001 2059 7017Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112 Taiwan
| | - I-Ming Chen
- grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.19188.390000 0004 0546 0241Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, 100 Taiwan
| | - Mong-Liang Lu
- grid.416930.90000 0004 0639 4389Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan ,grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Felix Shih-Hsiang Hsiao
- grid.412063.20000 0004 0639 3626Department of Biotechnology and Animal Science, National Ilan University, No. 1, Sec. 1, Shennong Rd., Yilan City, Yilan County, 260007 Taiwan
| | - Chun-Hsin Chen
- grid.416930.90000 0004 0639 4389Department of Psychiatry, Wan Fang Hospital, Taipei Medical University, Taipei, 116 Taiwan ,grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Ming-Chyi Huang
- grid.412896.00000 0000 9337 0481Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110 Taiwan ,Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, 110 Taiwan
| | - Wei-Liang Shih
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.454740.6Infectious Diseases Research and Education Center, Ministry of Health and Welfare and National Taiwan University, Taipei, 100 Taiwan
| | - Po-Hsiu Kuo
- grid.19188.390000 0004 0546 0241Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, 100 Taiwan ,grid.412094.a0000 0004 0572 7815Department of Psychiatry, National Taiwan University Hospital, Taipei, 100 Taiwan ,grid.416930.90000 0004 0639 4389Psychiatric Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
177
|
Abstract
This narrative review seeks to examine the relationships between bacterial microbiomes and infectious disease. This is achieved by detailing how different human host microbiomes develop and function, from the earliest infant acquisitions of maternal and environmental species through to the full development of microbiomes by adulthood. Communication between bacterial species or communities of species within and outside of the microbiome is a factor in both maintenance of homeostasis and management of threats from the external environment. Dysbiosis of this homeostasis is key to understanding the development of disease states. Several microbiomes and the microbiota within are used as prime examples of how changes in species composition, particularly at the phylum level, leads to such diverse conditions as inflammatory bowel disease (IBD), type 2 diabetes, psoriasis, Parkinson's disease, reflux oesophagitis and others. The review examines spatial relationships between microbiomes to understand how dysbiosis in the gut microbiome in particular can influence diseases in distant host sites via routes such as the gut-lung, gut-skin and gut-brain axes. Microbiome interaction with host processes such as adaptive immunity is increasingly identified as critical to developing the capacity of the immune system to react to pathogens. Dysbiosis of essential bacteria involved in modification of host substrates such as bile acid components can result in development of Crohn's disease, small intestine bacterial overgrowth, hepatic cancer and obesity. Interactions between microbiomes in distantly located sites are being increasingly being identified, resulting in a 'whole of body' effect by the combined host microbiome.
Collapse
Affiliation(s)
- Jim Manos
- Infection, Immunity and InflammationSchool of Medical SciencesFaculty of Medicine and HealthThe Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| |
Collapse
|
178
|
Wu D, Liu L, Jiao N, Zhang Y, Yang L, Tian C, Lan P, Zhu L, Loomba R, Zhu R. Targeting keystone species helps restore the dysbiosis of butyrate-producing bacteria in nonalcoholic fatty liver disease. IMETA 2022; 1:e61. [PMID: 38867895 PMCID: PMC10989787 DOI: 10.1002/imt2.61] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 06/14/2024]
Abstract
The dysbiosis of the gut microbiome is one of the pathogenic factors of nonalcoholic fatty liver disease (NAFLD) and also affects the treatment and intervention of NAFLD. Among gut microbiomes, keystone species that regulate the integrity and stability of an ecological community have become the potential intervention targets for NAFLD. Here, we collected stool samples from 22 patients with nonalcoholic steatohepatitis (NASH), 25 obese patients, and 16 healthy individuals from New York for 16S rRNA gene sequencing. An algorithm was implemented to identify keystone species based on causal inference theories and dynamic intervention simulation. External validation was performed in an independent cohort from California. Eight keystone species in the gut of NAFLD, represented by Porphyromonas loveana, Alistipes indistinctus, and Dialister pneumosintes, were identified, which could efficiently restore the microbial composition of the NAFLD toward a normal gut microbiome with 92.3% recovery. These keystone species regulate intestinal amino acid metabolism and acid-base environment to promote the growth of the butyrate-producing Lachnospiraceae and Ruminococcaceae species that are significantly reduced in NAFLD patients. Our findings demonstrate the importance of keystone species in restoring the microbial composition toward a normal gut microbiome, suggesting a novel potential microbial treatment for NAFLD.
Collapse
Affiliation(s)
- Dingfeng Wu
- National Clinical Research Center for Child Health, The Children's HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- The Shanghai Tenth People's Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiPeople's Republic of China
| | - Lei Liu
- The Shanghai Tenth People's Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiPeople's Republic of China
| | - Na Jiao
- National Clinical Research Center for Child Health, The Children's HospitalZhejiang University School of MedicineHangzhouZhejiangPeople's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Guangdong Institute of GastroenterologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yida Zhang
- Department of Biomedical InformaticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Li Yang
- State Key Laboratory of Biotherapy, West China HospitalSichuan University and Collaborative Innovation CenterChengduSichuanPeople's Republic of China
| | - Chuan Tian
- The Shanghai Tenth People's Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiPeople's Republic of China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Guangdong Institute of GastroenterologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of Colorectal SurgeryThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Lixin Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Guangdong Institute of GastroenterologySun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of Colorectal SurgeryThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of Pediatrics, Digestive Diseases and Nutrition CenterThe State University of New York at BuffaloBuffaloNew YorkUSA
| | - Rohit Loomba
- Department of Medicine, Division of Gastroenterology and Epidemiology, NAFLD Research CenterUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ruixin Zhu
- The Shanghai Tenth People's Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiPeople's Republic of China
- Research InstituteGloriousMed Clinical Laboratory Co., Ltd.ShanghaiPeople's Republic of China
| |
Collapse
|
179
|
Huang L, Sililas P, Thonusin C, Tongsong T, Luewan S, Chattipakorn N, Chattipakorn SC. Association Between Gut Microbiota and Insulin Therapy in Women With Gestational Diabetes Mellitus. Can J Diabetes 2022; 46:804-812.e2. [PMID: 35840501 DOI: 10.1016/j.jcjd.2022.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVES At the time of diagnosis, the blood glucose of women with gestational diabetes mellitus (GDM) who require subsequent insulin treatment does not differ from that of women with adequate diet control. Hence, in this study, we aimed to determine the role of maternal gut microbiota as a marker of insulin necessity in GDM and to identify the effect of insulin therapy on gut microbiota composition in mothers with GDM and their newborns. METHODS Seventy-one pregnant women were enrolled into the study, including 38 GDM and 33 non-GDM participants. During the follow-up period, 8 of the 38 GDM subjects required insulin therapy (GDM-I group), whereas 30 of the 38 GDM cases with sufficient glycemic control by diet alone (GDM-D group). Maternal blood and feces were obtained at the time of GDM diagnosis (pretreatment; 24 to 28 weeks of gestation) and before delivery (posttreatment; ≥37 weeks of gestation). Meconium and first feces of the newborns were also collected. RESULTS Pretreatment, the glycemic profile did not differ between the GDM-D and GDM-I groups. However, the proportions of Clostridiales, Lactobacillus and Bacteroidetes were higher in the GDM-I group than in the non-GDM and GDM-D groups. After treatment, gut microbiota composition showed no difference between non-GDM and GDM-I groups. Interestingly, a higher Firmicutes/Bacteroidetes (F/B) ratio was displayed in GDM-D mothers at posttreatment, and this was also observed in both meconium and first feces of GDM-D newborns. CONCLUSION Insulin therapy changed maternal gut microbiota composition, which could be transferable to the mothers' newborns.
Collapse
Affiliation(s)
- Lingling Huang
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Palin Sililas
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Theera Tongsong
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suchaya Luewan
- Maternal Fetal Medicine Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
180
|
Sousa JMG, Louvado A, Coelho FJRC, Oliveira V, Oliveira H, Cleary DFR, Gomes NCM. In vitro study of the modulatory effects of heat-killed bacterial biomass on aquaculture bacterioplankton communities. Sci Rep 2022; 12:19699. [PMID: 36385260 PMCID: PMC9669034 DOI: 10.1038/s41598-022-23439-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shown that the addition of non-viable microbial biomass or their components (postbiotics) to fish feed can modulate the gut microbiome and positively influence fish health in aquaculture systems. However, no information was hitherto available on the use of non-viable microbial biomass to manipulate aquaculture bacterioplankton communities. To fill this gap, here we used an in vitro model to assess the effects of heat-killed biomasses of an antagonistic strain Pseudoalteromonas rubra SubTr2 and a non-antagonist strain Escherichia coli DH5α on bacterioplankton communities of a recirculating aquaculture system (RAS). Our results showed that these biomasses can have generalist and species-specific effects on aquaculture bacterioplankton structure and function. In addition, they enriched the abundance of bacterial predators, reduced bacterial load and potentially influenced nutrient cycling and pathogen development in aquaculture water. Despite its preliminary nature, for the first time, this study showed that heat-killed microbial biomass has potential application as an in situ modulator of bacterioplankton in aquaculture systems.
Collapse
Affiliation(s)
- J. M. G. Sousa
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A. Louvado
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - F. J. R. C. Coelho
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - V. Oliveira
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - H. Oliveira
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - D. F. R. Cleary
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - N. C. M. Gomes
- grid.7311.40000000123236065CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
181
|
Liu R, Wang Q, Zhang K, Wu H, Wang G, Cai W, Yu K, Sun Q, Fan S, Wang Z. Analysis of Postmortem Intestinal Microbiota Successional Patterns with Application in Postmortem Interval Estimation. MICROBIAL ECOLOGY 2022; 84:1087-1102. [PMID: 34775524 DOI: 10.1007/s00248-021-01923-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms play a vital role in the decomposition of vertebrate remains in natural nutrient cycling, and the postmortem microbial succession patterns during decomposition remain unclear. The present study used hierarchical clustering based on Manhattan distances to analyze the similarities and differences among postmortem intestinal microbial succession patterns based on microbial 16S rDNA sequences in a mouse decomposition model. Based on the similarity, seven different classes of succession patterns were obtained. Generally, the normal intestinal flora in the cecum was gradually decreased with changes in the living conditions after death, while some facultative anaerobes and obligate anaerobes grew and multiplied upon oxygen consumption. Furthermore, a random forest regression model was developed to predict the postmortem interval based on the microbial succession trend dataset. The model demonstrated a mean absolute error of 20.01 h and a squared correlation coefficient of 0.95 during 15-day decomposition. Lactobacillus, Dubosiella, Enterococcus, and the Lachnospiraceae NK4A136 group were considered significant biomarkers for this model according to the ranked list. The present study explored microbial succession patterns in terms of relative abundances and variety, aiding in the prediction of postmortem intervals and offering some information on microbial behaviors in decomposition ecology.
Collapse
Affiliation(s)
- Ruina Liu
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Wang
- College of Basic Medicine, Department of Forensic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Kai Zhang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Gongji Wang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wumin Cai
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kai Yu
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qinru Sun
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Shuanliang Fan
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Zhenyuan Wang
- College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
182
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
183
|
Chriswell ME, Lefferts AR, Clay MR, Hsu AR, Seifert J, Feser ML, Rims C, Bloom MS, Bemis EA, Liu S, Maerz MD, Frank DN, Demoruelle MK, Deane KD, James EA, Buckner JH, Robinson WH, Holers VM, Kuhn KA. Clonal IgA and IgG autoantibodies from individuals at risk for rheumatoid arthritis identify an arthritogenic strain of Subdoligranulum. Sci Transl Med 2022; 14:eabn5166. [PMID: 36288282 PMCID: PMC9804515 DOI: 10.1126/scitranslmed.abn5166] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mucosal origins hypothesis of rheumatoid arthritis (RA) proposes a central role for mucosal immune responses in the initiation or perpetuation of the systemic autoimmunity that occurs with disease. However, the connection between the mucosa and systemic autoimmunity in RA remains unclear. Using dual immunoglobulin A (IgA) and IgG family plasmablast-derived monoclonal autoantibodies obtained from peripheral blood of individuals at risk for RA, we identified cross-reactivity between RA-relevant autoantigens and bacterial taxa in the closely related families Lachnospiraceae and Ruminococcaceae. After generating bacterial isolates within the Lachnospiraceae/Ruminococcaceae genus Subdoligranulum from the feces of an individual, we confirmed monoclonal antibody binding and CD4+ T cell activation in individuals with RA compared to control individuals. In addition, when Subdoligranulum isolate 7 but not isolate 1 colonized germ-free mice, it stimulated TH17 cell expansion, serum RA-relevant IgG autoantibodies, and joint swelling reminiscent of early RA, with histopathology characterized by antibody deposition and complement activation. Systemic immune responses were likely due to mucosal invasion along with the generation of colon-isolated lymphoid follicles driving increased fecal and serum IgA by isolate 7, because B and CD4+ T cell depletion not only halted intestinal immune responses but also eliminated detectable clinical disease. In aggregate, these findings demonstrate a mechanism of RA pathogenesis through which a specific intestinal strain of bacteria can drive systemic autoantibody generation and joint-centered antibody deposition and immune activation.
Collapse
Affiliation(s)
- Meagan E. Chriswell
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Adam R. Lefferts
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael R. Clay
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alex Ren Hsu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Jennifer Seifert
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marie L. Feser
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA 98101
| | - Michelle S. Bloom
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Elizabeth A. Bemis
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Sucai Liu
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | - Daniel N. Frank
- Division of Infectious Disease, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - M. Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin D. Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | | | | | - William H. Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - V. Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristine A. Kuhn
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,Corresponding Author:
| |
Collapse
|
184
|
Piancone E, Fosso B, Marzano M, De Robertis M, Notario E, Oranger A, Manzari C, Bruno S, Visci G, Defazio G, D’Erchia AM, Filomena E, Maio D, Minelli M, Vergallo I, Minelli M, Pesole G. Natural and after colon washing fecal samples: the two sides of the coin for investigating the human gut microbiome. Sci Rep 2022; 12:17909. [PMID: 36284112 PMCID: PMC9596478 DOI: 10.1038/s41598-022-20888-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/20/2022] [Indexed: 01/20/2023] Open
Abstract
To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome. A cohort of 30 volunteers was recruited and paired F and CWF samples were collected from each subject. Alpha diversity analysis confirmed a slightly higher biodiversity of CWF compared to F matched samples. Likewise, beta diversity analysis proved that paired F and CWF microbiomes were quite similar in the same individual, but remarkable inter-individual variability occurred among the microbiomes of all participants. Taxonomic analysis in matched samples was carried out to investigate the intra and inter individual/s variability. Firmicutes, Bacteroidota, Proteobacteria and Actinobacteriota were the main phyla in both F and CWF samples. At genus level, Bacteirodetes was the most abundant in F and CWF samples, followed by Faecalibacterium, Blautia and Escherichia-Shigella. Our study highlights an inter-individual variability greater than intra-individual variability for paired F and CWF samples. Indeed, an overall higher similarity was observed across matched F and CWF samples, suggesting, as expected, a remarkable overlap between the microbiomes inferred using the matched F and CWF samples. Notably, absolute quantification of total 16S rDNA by droplet digital PCR (ddPCR) revealed comparable overall microbial load between paired F and CWF samples. We report here the first comparative study on fecal and colon washing fecal samples for investigating the human gut microbiome and show that both types of samples may be used equally for the study of the gut microbiome. The presented results suggest that the combined use of both types of sampling matrices could represent a suitable choice to obtain a more complete overview of the human gut microbiota for addressing different biological and clinical questions.
Collapse
Affiliation(s)
- Elisabetta Piancone
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Bruno Fosso
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Marinella Marzano
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Mariangela De Robertis
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Elisabetta Notario
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Annarita Oranger
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Caterina Manzari
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Silvia Bruno
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Grazia Visci
- grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Giuseppe Defazio
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Anna Maria D’Erchia
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| | - Ermes Filomena
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy
| | - Dominga Maio
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Martina Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Ilaria Vergallo
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy
| | - Mauro Minelli
- Specialistic Allergic Unit & Immunological Pathologies, PoliSmail Network, 73100 Lecce, Italy ,Centro Direzionale Isola F2, Pegaso Online University, 80132 Naples, Italy
| | - Graziano Pesole
- grid.7644.10000 0001 0120 3326Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari ‘Aldo Moro’, 70126 Bari, Italy ,grid.5326.20000 0001 1940 4177Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy ,grid.441025.60000 0004 1759 487XConsorzio Interuniversitario Biotecnologie, 34100 Trieste, Italy
| |
Collapse
|
185
|
Gao Q, Sun G, Duan J, Luo C, Yangji C, Zhong R, Chen L, Zhu Y, Wangdui B, Zhang H. Alterations in gut microbiota improve SCFA production and fiber utilization in Tibetan pigs fed alfalfa diet. Front Microbiol 2022; 13:969524. [PMID: 36338094 PMCID: PMC9634421 DOI: 10.3389/fmicb.2022.969524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 07/30/2023] Open
Abstract
Tibetan pigs were thought to have good performances of rough feeding tolerance, which may be related to the gut microbiota. This study was conducted to investigate the changes of colonic microbiota contribute to fiber utilization in Tibetan pigs fed alfalfa supplementation diet compared with basal diet, and verified whether the microbial community in Tibetan pigs fed alfalfa diet was beneficial to utilize fiber using in vitro fermentation. A total of 40 Tibetan pigs were allocated into two groups and fed with a corn-soybean meal basal diet (CD) or a 50% alfalfa supplementation diet (AD) for 42d. Our results showed pigs fed CD diet improved carcass weight compared to pigs fed AD diet (p < 0.05), yet reduced the bacterial diversity (p < 0.05). Tibetan pigs fed CD diet increased certain pathogenic bacteria (Streptococcus) abundance (FDR < 0.05). Alfalfa consumption increased fiber-degrading bacteria abundance (UCG-005, Rikenellaceae_RC9_gut_group, Prevotellaceae_UCG-003, Alloprevotella, Marvinbryantia, and Anaerovibrio) in the colonic digesta (FDR < 0.05) and improved concentrations of acetate, propionate, butyrate, and total SCFA in colonic content (p < 0.05). Higher fermentation capacity of fecal microbiota from pig fed AD diet was verified by in vitro fermentation. Collectively, our results indicated that alfalfa supplementation in diets improved the abundance of fiber-degrading bacteria and SCFA production in the hindgut of Tibetan pig, as well as enhanced the fermentation capacity of fecal microbiota.
Collapse
Affiliation(s)
- Qingtao Gao
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangming Sun
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Jiujun Duan
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzeng Luo
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Cidan Yangji
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Ruqing Zhong
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Basang Wangdui
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Science, Lhasa, China
| | - Hongfu Zhang
- The State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
186
|
Liang X, Dai N, Sheng K, Lu H, Wang J, Chen L, Wang Y. Gut bacterial extracellular vesicles: important players in regulating intestinal microenvironment. Gut Microbes 2022; 14:2134689. [PMID: 36242585 PMCID: PMC9578468 DOI: 10.1080/19490976.2022.2134689] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Intestinal microenvironment dysbiosis is one of the major causes of diseases, such as obesity, diabetes, inflammatory bowel disease, and colon cancer. Microbiota-based strategies have excellent clinical potential in the treatment of repetitive and refractory diseases; however, the underlying regulatory mechanisms remain elusive. Identification of the internal regulatory mechanism of the gut microbiome and the interaction mechanisms involving bacteria-host is essential to achieve precise control of the gut microbiome and obtain effective clinical data. Gut bacteria-derived extracellular vesicles (GBEVs) are lipid bilayer nanoparticles secreted by the gut microbiota and are considered key players in bacteria-bacteria and bacteria-host communication. This review focusses on the role of GBEVs in gut microbiota interactions and bacteria-host communication, and the potential clinical applications of GBEVs.
Collapse
Affiliation(s)
- Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Nini Dai
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Hengqian Lu
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Liping Chen
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China,Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, China,Institute of Physical Science and Information Technology, Anhui University, Hefei, China,CONTACT Yongzhong Wang School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
187
|
Profile of gut microbiota and serum metabolites associated with metabolic syndrome in a remote island most afflicted by obesity in Japan. Sci Rep 2022; 12:17292. [PMID: 36241691 PMCID: PMC9568508 DOI: 10.1038/s41598-022-21708-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous studies have revealed distinct differences in the profiles of gut microbiota between non-obese and obese individuals. To date, however, little is known if any disparities in the community of gut microbiota exist between metabolically healthy obese (MHO) and metabolically unhealthy obese (MUO) subjects. We therefore aimed to comprehensively characterize the gut microbiota and circulating metabolites in serum from both MHO and MUO residing in the remote island, Kumejima, where the prevalence of obesity is one of the highest in Japan, and explored possible correlations between the gut microbiota profile and markers of metabolic syndrome. Results revealed that MUO showed significantly higher levels of genera such as g_Succinivibrio, g_Granulicatella, g_Brachyspira, g_Oribacterium and g_Atopobium in comparison to MHO. Moreover, abundance of g_Succinivibrio, g_Brachyspira and g_Atopobium were positively correlated with value of fasting insulin, HOMA-R, circulating triglycerides, diastolic blood pressure, BMI, body weight, waist circumference and HbA1c. In addition, MUO compared to MHO showed an imbalance of serum metabolites, with a significant elevation in 2-oxoisovaleric acid, pyruvic acid, 2-hydroxybutyric acid, and creatine. Our data highlight unmet needs in precision approaches for the treatment of obesity, targeting the gut microbiota profile and serum metabolites in a distinct population affected by obesity.
Collapse
|
188
|
Lu J, Zhang S, Huang Y, Qian J, Tan B, Qian X, Zhuang J, Zou X, Li Y, Yan F. Periodontitis-related salivary microbiota aggravates Alzheimer's disease via gut-brain axis crosstalk. Gut Microbes 2022; 14:2126272. [PMID: 36175166 PMCID: PMC9542625 DOI: 10.1080/19490976.2022.2126272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The oral cavity is the initial chamber of digestive tract; the saliva swallowed daily contains an estimated 1.5 × 1012 oral bacteria. Increasing evidence indicates that periodontal pathogens and subsequent inflammatory responses to them contribute to the pathogenesis of Alzheimer's disease (AD). The intestine and central nervous system jointly engage in crosstalk; microbiota-mediated immunity significantly impacts AD via the gut-brain axis. However, the exact mechanism linking periodontitis to AD remains unclear. In this study, we explored the influence of periodontitis-related salivary microbiota on AD based on the gut-brain crosstalk in APPswe/PS1ΔE9 (PAP) transgenic mice. Saliva samples were collected from patients with periodontitis and healthy individuals. The salivary microbiota was gavaged into PAP mice for two months. Continuous gavage of periodontitis-related salivary microbiota in PAP mice impaired cognitive function and increased β-amyloid accumulation and neuroinflammation. Moreover, these AD-related pathologies were consistent with gut microbial dysbiosis, intestinal pro-inflammatory responses, intestinal barrier impairment, and subsequent exacerbation of systemic inflammation, suggesting that the periodontitis-related salivary microbiota may aggravate AD pathogenesis through crosstalk of the gut-brain axis. In this study, we demonstrated that periodontitis might participate in the pathogenesis of AD by swallowing salivary microbiota, verifying the role of periodontitis in AD progression and providing a novel perspective on the etiology and intervention strategies of AD.
Collapse
Affiliation(s)
- Jiangyue Lu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuang Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuezhen Huang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baochun Tan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xueshen Qian
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jia Zhuang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihong Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,CONTACT Fuhua Yan
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China,Yanfen Li Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
189
|
Weizmannia faecalis sp. nov., isolated from a human stool sample. Arch Microbiol 2022; 204:612. [DOI: 10.1007/s00203-022-03229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
|
190
|
Geary EL, Oba PM, Applegate CC, Clark LV, Fields CJ, Swanson KS. Effects of a mildly cooked human-grade dog diet on gene expression, skin and coat health measures, and fecal microbiota of healthy adult dogs. J Anim Sci 2022; 100:skac265. [PMID: 35965387 PMCID: PMC9527297 DOI: 10.1093/jas/skac265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Purported benefits of human-grade pet foods include reduced inflammation, enhanced coat quality, and improved gut health, but research is scarce. Therefore, we compared gene expression, skin and coat health measures, and the fecal microbiome of dogs consuming a mildly cooked human-grade or extruded kibble diet. Twenty beagles (BW = 10.25 ± 0.82 kg; age = 3.85 ± 1.84 yr) were used in a completely randomized design. Test diets included: 1) chicken and brown rice recipe [feed-grade; extruded; blue buffalo (BB)]; and 2) chicken and white rice [human-grade; mildly cooked; Just Food for Dogs (JFFD)]. The study consisted of a 4-week baseline when all dogs ate BB, and a 12-week treatment phase when dogs were randomized to either diet (n = 10/group). After the baseline and treatment phases, fresh fecal samples were scored and collected for pH, dry matter (DM), and microbiome analysis; blood samples were collected for gene expression analysis; hair samples were microscopically imaged; and skin was analyzed for delayed-type hypersensitivity (DTH), sebum concentration, hydration status, and transepidermal water loss (TEWL). Data were analyzed as a change from baseline (CFB) using the Mixed Models procedure of SAS (version 9.4). At baseline, fecal pH was higher (P < 0.05) and hair surface score, superoxide dismutase (SOD) expression, and tumor necrosis factor-α (TNF-α) expression was lower (P < 0.05) in dogs allotted to JFFD. The decrease in CFB fecal pH and DM was greater (P < 0.05) in dogs fed JFFD, but fecal scores were not different. The increase in CFB hair surface score was higher (P < 0.05) in dogs fed JFFD. The decrease in CFB TEWL (back region) was greater (P < 0.05) in dogs fed JFFD, but TEWL (inguinal and ear regions), hydration status, and sebum concentrations in all regions were not different. Hair cortex scores and DTH responses were not affected by diet. The increase in CFB gene expression of SOD, COX-2, and TNF-α was greater (P < 0.05) in dogs fed JFFD. PCoA plots based on Bray-Curtis distances of bacterial genera and species showed small shifts over time in dogs fed BB, but dramatic shifts in those fed JFFD. JFFD increased (adj. P < 0.05) relative abundances of 4 bacterial genera, 11 bacterial species, 68 KEGG pathways, and 167 MetaCyc pathways, and decreased (adj. P < 0.05) 16 genera, 25 species, 98 KEGG pathways, and 87 MetaCyc pathways. In conclusion, the JFFD diet dramatically shifted the fecal microbiome but had minor effects on skin and coat measures and gene expression.
Collapse
Affiliation(s)
- Elizabeth L Geary
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Catherine C Applegate
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- The Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lindsay V Clark
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher J Fields
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
191
|
Frost F. [Introduction to the microbiome]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:1015-1021. [PMID: 36053301 DOI: 10.1007/s00108-022-01395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 05/24/2023]
Abstract
The human body is colonized by a multitude of different microbes that are collectively referred to as the human microbiome. Gut microbes account for the largest proportion of these. They constitute a barrier against foreign pathogens, carry out important metabolic functions and regulate the immune system, thereby making them essential for the maintenance of health. The most important determinants of the gut microbiome structure in the general population include exocrine pancreatic function, genetics, nutrition, age, sex, and obesity. Changes in the gut microbiome have also been linked to a variety of diseases not limited to gastrointestinal disorders. Typical microbiome changes in disease include a loss of diversity and beneficial bacteria or an increase in opportunistic pathogens. This may result in a proinflammatory and unstable microbiome. Knowledge about the microbiome is rapidly increasing and microbiome modulation therapies have already been implemented in clinical practice. Therefore, basic knowledge about the microbiome is essential for all medical professionals in order for them to advise and treat their patients properly.
Collapse
Affiliation(s)
- Fabian Frost
- Klinik und Poliklinik für Innere Medizin A, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Deutschland.
| |
Collapse
|
192
|
Sanabria J, Egan S, Masuda R, Lee AJ, Gibson GR, Nicholson JK, Wist J, Holmes E. Overview of the Nomenclature and Network of Contributors to the Development of Bioreactors for Human Gut Simulation Using Bibliometric Tools: A Fragmented Landscape. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11458-11467. [PMID: 36095091 PMCID: PMC9501909 DOI: 10.1021/acs.jafc.2c03597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The evolution of complex in vitro models of the human gastrointestinal system to interrogate the biochemical functionality of the gut microbiome has augmented our understanding of its role in human physiology and pathology. With 5718 authors from 52 countries, gut bioreactor research reflects the growing awareness of our need to understand the contribution of the gut microbiome to human health. Although a large body of knowledge has been generated from in vitro models, it is scattered and defined by application-specific terminologies. To better grasp the capacity of bioreactors and further our knowledge of the human gastrointestinal system, we have conducted a cross-field bibliometric search and mapped the evolution of human gastrointestinal in vitro research. We present reference material with the aim of identifying key authors and bioreactor types to enable researchers to make decisions regarding the choice of method for simulating the human gut in the context of microbiome functionality.
Collapse
Affiliation(s)
- Janeth Sanabria
- Environmental Microbiology and Biotechnology Laboratory, Engineering School of Environmental & Natural Resources, Engineering Faculty, Universidad del Valle-Sede Meléndez, Cali 76001, Colombia
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
| | - Siobhon Egan
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
| | - Reika Masuda
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
| | - Alex J Lee
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AH, United Kingdom
| | - Jeremy K Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, United Kingdom
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia WA6150, Australia
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
193
|
Kono K, Murakami Y, Ebara A, Okuma K, Tokuno H, Odachi A, Ogasawara K, Hidaka E, Mori T, Satoh K, Kimoto S, Masuyama H, Takeda M, Managi S. Fluctuations in Intestinal Microbiota Following Ingestion of Natto Powder Containing Bacillus subtilis var. natto SONOMONO Spores: Considerations Using a Large-Scale Intestinal Microflora Database. Nutrients 2022; 14:nu14183839. [PMID: 36145213 PMCID: PMC9505718 DOI: 10.3390/nu14183839] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Improving the intestinal microbiota using probiotics, prebiotics, and synbiotics has attracted attention as a method of disease prevention and treatment. This is the first study to discuss the effects of food intake on the intestinal microbiota using a large Japanese intestinal microbiota database. Here, as a case study, we determined changes in the intestinal microbiota caused by ingestion of a processed natto food containing B. subtilisvar. natto SONOMONO spores, SONOMONO NATTO POWDER CAPSULESTM, by analyzing 16S rRNA sequence data generated using next-generation sequencing techniques. The results showed that the relative abundance of Bifidobacterium and Blautia as well as the relative abundance of Bifidobacterium were increased in males and females in the ingesting group, respectively. Additionally, the effects of SONOMONO NATTO POWDER CAPSULESTM intake on Bifidobacterium and Blautia abundance depended on the relative abundance of Bifidobacterium at baseline. Finally, analysis of a large Japanese intestinal microbiota database suggested that the bacterial genera that fluctuated with the ingestion of SONOMONO NATTO POWDER CAPSULESTM may be associated with lifestyle-related diseases such as diabetes.
Collapse
Affiliation(s)
- Kanako Kono
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Aya Ebara
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | - Kana Okuma
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | | | | | - Kazuya Ogasawara
- Sonomono Inc., Fukuoka 810-0023, Japan
- Department of Agricultural and Resource Economics, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | | | - Teruaki Mori
- National Hospital Organization Nishi-Beppu National Hospital, Oita 874-0840, Japan
| | - Kazuko Satoh
- Department of Nursing, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | | | - Hiroaki Masuyama
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
- Correspondence: ; Tel.: +81-3-6275-0878
| | - Midori Takeda
- Urban Institute & Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Shunsuke Managi
- Urban Institute & Department of Civil Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
194
|
Zhou X, Baumann R, Gao X, Mendoza M, Singh S, Sand IK, Xia Z, Cox LM, Chitnis T, Yoon H, Moles L, Caillier SJ, Santaniello A, Ackermann G, Harroud A, Lincoln R, Gomez R, Peña AG, Digga E, Hakim DJ, Vazquez-Baeza Y, Soman K, Warto S, Humphrey G, Farez M, Gerdes LA, Oksenberg JR, Zamvil SS, Chandran S, Connick P, Otaegui D, Castillo-Triviño T, Hauser SL, Gelfand JM, Weiner HL, Hohlfeld R, Wekerle H, Graves J, Bar-Or A, Cree BA, Correale J, Knight R, Baranzini SE. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell 2022; 185:3467-3486.e16. [PMID: 36113426 PMCID: PMC10143502 DOI: 10.1016/j.cell.2022.08.021] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/21/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Changes in gut microbiota have been associated with several diseases. Here, the International Multiple Sclerosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients (36% untreated) and genetically unrelated household healthy controls (1,152 total subjects). We observed a significantly increased proportion of Akkermansia muciniphila, Ruthenibacterium lactatiformans, Hungatella hathewayi, and Eisenbergiella tayi and decreased Faecalibacterium prausnitzii and Blautia species. The phytate degradation pathway was over-represented in untreated MS, while pyruvate-producing carbohydrate metabolism pathways were significantly reduced. Microbiome composition, function, and derived metabolites also differed in response to disease-modifying treatments. The therapeutic activity of interferon-β may in part be associated with upregulation of short-chain fatty acid transporters. Distinct microbial networks were observed in untreated MS and healthy controls. These results strongly support specific gut microbiome associations with MS risk, course and progression, and functional changes in response to treatment.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Ryan Baumann
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Xiaohui Gao
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Myra Mendoza
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Sneha Singh
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lau M. Cox
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanuja Chitnis
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongsup Yoon
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, and Munich Cluster of Systems Neurology (SyNergy), München, Germany
- Department Neuroimmunology, Max Planck Institute (MPI) of Neurobiology, Munich, Germany
| | - Laura Moles
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Stacy J. Caillier
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Adam Santaniello
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Adil Harroud
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Robin Lincoln
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Elise Digga
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Joseph Hakim
- Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - Yoshiki Vazquez-Baeza
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Karthik Soman
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Shannon Warto
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Greg Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Mauricio Farez
- Department of Neurology, Institute for Neurological Research Dr. Raul Carrea (FLENI), Buenos Aires, Argentina
| | - Lisa Ann Gerdes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Scott S. Zamvil
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Peter Connick
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - David Otaegui
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Tamara Castillo-Triviño
- Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
- Department of Neurology, Hospital Universitario Donostia and Neurosciences Area, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Stephen L. Hauser
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Jeffrey M. Gelfand
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Howard L. Weiner
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, and Munich Cluster of Systems Neurology (SyNergy), München, Germany
| | - Hartmut Wekerle
- Department Neuroimmunology, Max Planck Institute (MPI) of Neurobiology, Munich, Germany
| | - Jennifer Graves
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Amit Bar-Or
- Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | - Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raul Carrea (FLENI), Buenos Aires, Argentina
| | - Rob Knight
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, USA
| | - Sergio E. Baranzini
- Weill Institute for Neurosciences. Department of Neurology, University of California, San Francisco, CA, USA
| | | |
Collapse
|
195
|
Wang X, Pang K, Wang J, Zhang B, Liu Z, Lu S, Xu X, Zhu L, Zhou Z, Niu M, Gao J, Li J, Zhao F, Wu J. Microbiota dysbiosis in primary Sjögren's syndrome and the ameliorative effect of hydroxychloroquine. Cell Rep 2022; 40:111352. [PMID: 36103827 DOI: 10.1016/j.celrep.2022.111352] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
The human microbiome plays an important role in autoimmune diseases. However, there is limited knowledge regarding the microbiota in individuals with primary Sjögren's syndrome (pSS). Here, we perform 16S ribosomal RNA gene sequencing of fecal, oral, and vaginal samples from a cohort of 133 individuals with pSS, 56 with non-pSS, and 40 healthy control (HC) individuals. Dysbiosis in the gut, oral, and vaginal microbiome is evident in patients with pSS, and oral samples demonstrate the greatest extent of microbial variation. Multiple key indicator bacteria and clinical characteristics are identified across different body sites, implying that microbial dysbiosis has important roles in the pathogenesis of pSS. Furthermore, we observe pSS-like dysbiosis in individuals with pre-clinical pSS or non-pSS-related disease, revealing that microbial shifts could appear prior to pSS. After hydroxychloroquine (HCQ) treatment, microbial dysbiosis in individuals with pSS is partially resolved, although the microbiota composition remain disordered. These results contribute to the overall understanding of the relationship between the microbiome and pSS.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kun Pang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100091, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lingxiao Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Miaomiao Niu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianxia Gao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Li
- Pathology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
196
|
Characteristics of gastric cancer gut microbiome according to tumor stage and age segmentation. Appl Microbiol Biotechnol 2022; 106:6671-6687. [PMID: 36083304 DOI: 10.1007/s00253-022-12156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
With the development of 16S rRNA technology, gut microbiome evaluation has been performed in many diseases, including gastrointestinal tumors. Among these cancers, gastric cancer (GC) exhibits high morbidity and mortality and has been extensively studied in its pathogenesis and diagnosis techniques. The current researches have proved that the gut microbiome may have the potential to distinguish GC patients from healthy patients. However, the change of the gut microbiome according to tumor node metastasis classification (TNM) has not been clarified. Besides, the characteristics of gut microbiome in GC patients and their ages of onset are also ambiguous. To address the above shortcomings, we investigated 226 fecal samples and divided them according to their tumor stage and onset age. The findings revealed that surgery and tumor stage can change the characteristic of GC patients' gut microbiota. In specific, the effect of surgery on early gastric cancer (EGC) was greater than that on advanced gastric cancer (AGC), and the comparison of postoperative microflora with healthy people indicated that EGC has more differential bacteria than AGC. Besides, we found that Collinsella, Blautia, Anaerostipes, Dorea, and Lachnospiraceae_ND3007_group expressed differently between EGC and AGC. More importantly, it is the first time revealed that the composition of gut microbiota in GC is different between different onset ages. KEY POINTS: •Gut microbiota of gastric cancer (GC) patients are either highly associated with TNM stage and surgery or not. It shows surgery has more significant changes in early gastric cancer (EGC) than advanced gastric cancer (AGC). •There existed specific gut microbiota between EGC and AGC which may have potential to distinguish the early or advanced GC. •Onset age of GC may influence the gut microbiota: the composition of gut microbiota of early-onset gastric cancer (EOGC) and late-onset gastric cancer (LOGC) is significantly different.
Collapse
|
197
|
Saifon W, Sensorn I, Trachu N, Oranratnachai S, Charoenyingwattana A, Runcharoen C, Monnamo N, Sukkasem W, Inchareon P, Suwatanapongched T, Chansriwong P, Ativitavas T, Panvichian R, Chantratita W, Reungwetwattana T. Gastrointestinal microbiota profile and clinical correlations in advanced EGFR-WT and EGFR-mutant non-small cell lung cancer. BMC Cancer 2022; 22:963. [PMID: 36076157 PMCID: PMC9454126 DOI: 10.1186/s12885-022-10050-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Difference in clinical responses to cancer therapy in each patient is from several factors. Gastrointestinal microbiota is one of the reasons. However, this correlation remains unknown. This study aims to explore correlation between gastrointestinal microbiota profile and clinical outcomes in Thai advanced non-small cell lung cancer (NSCLC) according to epidermal growth factor receptor (EGFR) status. Methods We enrolled 13 patients with advanced EGFR–wild-type (WT) NSCLC who received chemotherapy and 15 patients with EGFR-mutant NSCLC who received EGFR tyrosine kinase inhibitors. We collected fecal samples at baseline and first disease evaluation and performed 16S rRNA gene sequencing by NGS to assess microbiota profile. The correlations between gastrointestinal microbiota and clinical variables were studied. Results The clinical characteristics were balanced between the cohorts, excluding significantly higher albumin levels in the EGFR-mutant group. Albumin was the only significant clinical factor affecting the treatment response in multivariate analysis (ORR 15.6%, P = 0.03). Proteobacteria counts were higher in the EGFR-WT group, whereas Bacteroidetes and Firmicutes counts were higher in the EGFR-mutant group. The alpha diversity of the gastrointestinal microbiome was significantly higher in the EGFR-mutant group (Shannon index: 3.82 vs. 3.25, P = 0.022). Following treatment, Proteobacteria counts were lower and Bacteroidetes and Firmicutes counts were higher in both cohorts; the changes were more prominent in the EGFR-WT cohort. No significant correlation between microbiota profile and treatment response were demonstrated in our study. However, beta diversity was significantly different according to severity of adverse events. Enrichment of Clostridia and Bacteroidia was associated with higher adverse event risk in the EGFR-WT cohort. Conclusions Proteobacteria was dominant in Thai lung cancer patients both EGFR-WT and EGFR-mutant, and this phylum maybe associate with lung cancer carcinogenesis. Chemotherapy altered the gastrointestinal microbiota, whereas EGFR-TKIs had less effects. Our findings highlight the potential predictive utility of the gastrointestinal microbiota for lung cancer carcinogenesis. Studies with larger cohorts and comparison with the healthy Thai population are ongoing to validate this pilot study. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10050-3.
Collapse
Affiliation(s)
- Woraseth Saifon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Department of Medicine, Golden Jubilee Medical Center, Nakorn Pathom, Thailand
| | - Insee Sensorn
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Songporn Oranratnachai
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Sriphat Medical Center, Faculty of Medicine, Oncology Clinic, Chiang Mai University, Chiang Mai, Thailand
| | - Angkana Charoenyingwattana
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chakkaphan Runcharoen
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nanamon Monnamo
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Warawut Sukkasem
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimpin Inchareon
- Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thitiporn Suwatanapongched
- Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Phichai Chansriwong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Touch Ativitavas
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ravat Panvichian
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. .,Ramathibodi Lung Cancer Consortium, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
198
|
Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022; 12:metabo12090834. [PMID: 36144238 PMCID: PMC9505266 DOI: 10.3390/metabo12090834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
The trillions of commensal microorganisms comprising the gut microbiota have received growing attention owing to their impact on host physiology. Recent advances in our understandings of the host–microbiota crosstalk support a pivotal role of microbiota-derived metabolites in various physiological processes, as they serve as messengers in the complex dialogue between commensals and host immune and endocrine cells. In this review, we highlight the importance of tryptophan-derived metabolites in host physiology, and summarize the recent findings on the role of tryptophan catabolites in preserving intestinal homeostasis and fine-tuning immune and metabolic responses. Furthermore, we discuss the latest evidence on the effects of microbial tryptophan catabolites, describe their mechanisms of action, and discuss how perturbations of microbial tryptophan metabolism may affect the course of intestinal and extraintestinal disorders, including inflammatory bowel diseases, metabolic disorders, chronic kidney diseases, and cardiovascular diseases.
Collapse
|
199
|
Alterations of the Composition and Neurometabolic Profile of Human Gut Microbiota in Major Depressive Disorder. Biomedicines 2022; 10:biomedicines10092162. [PMID: 36140263 PMCID: PMC9496097 DOI: 10.3390/biomedicines10092162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is among the most prevalent mental disorders worldwide. Factors causing the pathogenesis of MDD include gut microbiota (GM), which interacts with the host through the gut–brain axis. In previous studies of GM in MDD patients, 16S rRNA sequencing was used, which provided information about composition but not about function. In our study, we analyzed whole metagenome sequencing data to assess changes in both the composition and functional profile of GM. We looked at the GM of 36 MDD patients, compared with that of 38 healthy volunteers. Comparative taxonomic analysis showed decreased abundances of Faecalibacterium prausnitzii, Roseburia hominis, and Roseburia intestinalis, and elevated abundances of Escherichia coli and Ruthenibacterium lactatiformans in the GM of MDD patients. We observed decreased levels of bacterial genes encoding key enzymes involved in the production of arginine, asparagine, glutamate, glutamine, melatonin, acetic, butyric and conjugated linoleic acids, and spermidine in MDD patients. These genes produced signature pairs with Faecalibacterium prausntizii and correlated with decreased levels of this species in the GM of MDD patients. These results show the potential impact of the identified biomarker bacteria and their metabolites on the pathogenesis of MDD, and should be confirmed in future metabolomic studies.
Collapse
|
200
|
Alekseeva MG, Zakharevich NV, Ratkin AV, Danilenko VN. Human Intestinal Microbiome—A Reservoir of Aminoglycoside-N-Acetyltransferases—Drug Resistance Genes. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422090022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|