151
|
Bashir S, Ghosh P, Lal P. Dancing with danger-how honeybees are getting affected in the web of microplastics-a review. NANOIMPACT 2024; 35:100522. [PMID: 39019436 DOI: 10.1016/j.impact.2024.100522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Anthropogenic activities have negatively impacted the ecosystem dramatically over the last few decades. The environment is becoming more contaminated with heavy metals, pesticides, and microplastics (MPs) as a result of the swift rise in industrialization and urbanisation. These contaminants are present everywhere in the ecosystem, affecting every living creature, from aquatic to terrestrial to aerial. Recently, the widespread of microplastics in the environment has raised serious concerns about the contamination of honey bees by these tiny particles of plastic. Honeybees are the major pollinators which contributes in the pollination of about 70% food that we consume. This review summarizes current research findings on the presence, uptake, and possible effects of microplastics on honey bees. Findings revealed the presence of microplastics in various honey bee matrices, such as honey, pollen, beeswax, and bee bodies, highlighting the potential routes of exposure for these vital pollinators. Additionally, evidence suggests that microplastics can accumulate in honey bee tissues (brain, midgut, Malpighian tubules, trachea, and haemolymph) potentially leading to adverse effects on honey bee health, behaviour, and colony dynamics. Additionally, MPs has a synergistic impact on immune system as well. Change in cuticle profile, reduction in body weight, and changes in eating frequency can regulate overall success rate of their survival. However, significant knowledge gaps remain regarding the long-term consequences for honey bee populations and ecosystem health, which cannot unveil the ultimate degree of future threats. Future research efforts should focus on investigating the interactions between microplastics and other stressors, such as pesticides and pathogens, and assessing the broader ecological implications of honey bee contamination with microplastics. Addressing these knowledge gaps is essential for developing effective mitigation strategies to minimize the impact of microplastics on honey bee populations and safeguarding their vital role in ecosystem functioning and food security.
Collapse
Affiliation(s)
- Sadaf Bashir
- Department of Zoology, Lovely Professional University, Phagwara, Punjab, India, 144411
| | - Pritha Ghosh
- Department of Entomology, Lovely Professional University, Phagwara, Punjab, India, 144411.
| | - Priyanka Lal
- Department of Agricultural Economics, Lovely Professional University, Phagwara, Punjab, India, 144411
| |
Collapse
|
152
|
Kurniawan TA, Mohyuddin A, Othman MHD, Goh HH, Zhang D, Anouzla A, Aziz F, Casila JC, Ali I, Pasaribu B. Beyond surface: Unveiling ecological and economic ramifications of microplastic pollution in the oceans. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11070. [PMID: 39005104 DOI: 10.1002/wer.11070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Every year, the global production of plastic waste reaches a staggering 400 million metric tons (Mt), precipitating adverse consequences for the environment, food safety, and biodiversity as it degrades into microplastics (MPs). The multifaceted nature of MP pollution, coupled with its intricate physiological impacts, underscores the pressing need for comprehensive policies and legislative frameworks. Such measures, alongside advancements in technology, hold promise in averting ecological catastrophe in the oceans. Mandated legislation represents a pivotal step towards restoring oceanic health and securing the well-being of the planet. This work offers an overview of the policy hurdles, legislative initiatives, and prospective strategies for addressing global pollution due to MP. Additionally, this work explores innovative approaches that yield fresh insights into combating plastic pollution across various sectors. Emphasizing the importance of a global plastics treaty, the article underscores its potential to galvanize collaborative efforts in mitigating MP pollution's deleterious effects on marine ecosystems. Successful implementation of such a treaty could revolutionize the plastics economy, steering it towards a circular, less polluting model operating within planetary boundaries. Failure to act decisively risks exacerbating the scourge of MP pollution and its attendant repercussions on both humanity and the environment. Central to this endeavor are the formulation, content, and execution of the treaty itself, which demand careful consideration. While recognizing that a global plastics treaty is not a panacea, it serves as a mechanism for enhancing plastics governance and elevating global ambitions towards achieving zero plastic pollution by 2040. Adopting a life cycle approach to plastic management allows for a nuanced understanding of possible trade-offs between environmental impact and economic growth, guiding the selection of optimal solutions with socio-economic implications in mind. By embracing a comprehensive strategy that integrates legislative measures and technological innovations, we can substantially reduce the influx of marine plastic litter at its sources, safeguarding the oceans for future generations.
Collapse
Affiliation(s)
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia
| | - Hui Hwang Goh
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Dongdong Zhang
- School of Electrical Engineering, Guangxi University, Nanning, Guangxi, China
| | - Abdelkader Anouzla
- Department of Process Engineering and Environment, Faculty of Science and Technology, University Hassan II of Casablanca, Mohammedia, Morocco
| | - Faissal Aziz
- Laboratory of Water, Biodiversity and Climate Changes, Semlalia Faculty of Sciences, B.P. 2390, Cadi Ayyad University, Marrakech, Morocco
| | - Joan C Casila
- Land and Water Resources Engineering Division, Institute of Agricultural and Biosystems Engineering, College of Engineering and Agro-industrial Technology, University of the Philippines-Los Baños, Los Baños, Philippines
| | - Imran Ali
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
153
|
Al Naggar Y, Ali H, Mohamed H, Kholy SE, El-Seedi HR, Mohamed A, Sevin S, Ghramh HA, Wang K. Exploring the risk of microplastics to pollinators: focusing on honey bees. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46898-46909. [PMID: 38981968 DOI: 10.1007/s11356-024-34184-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The rapid increase in global plastic production and usage has led to global environmental contamination, with microplastics (MPs) emerging as a significant concern. Pollinators provide a crucial ecological service, while bee populations have been declining in recent years, and MPs have been recognized as a new risk factor contributing to their losses. Despite the pervasive distribution and persistence of MPs, understanding their risks to honey bees remains a critical knowledge gap. This review summarizes recent studies that investigate the toxicity of MPs on honey bee health from different perspectives. The findings revealed diverse and material-/size-/dosage-dependent outcomes, emphasizing the need for comprehensive assessments in the follow-up studies. MPs have been detected in honey and in bees' organs (e.g., gut and brain), posing potential threats to bee fitness, including altered behavior, cognitive abilities, compromised immunity, and dysfunction of the gut microbiota. It should be noticed that despite several laboratory studies suggesting the aforementioned adverse effects of MPs, field/semi-field experiments are still warranted. The synergistic toxicity of MPs with other environmental contaminants (pesticides, antibiotics, fungicides, heavy metals, etc.) still requires further investigation. Our review highlights the critical need to understand the relationships between MPs, pollinators, and the ecosystem to mitigate potential risks and ensure the sustainability of vital services provided by honey bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Applied College, Center of Bee Research and Its Products, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
| | - Howida Ali
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Huda Mohamed
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Samar El Kholy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hesham R El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, Madinah, 42351, Saudi Arabia
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Research Fellow, King Saud University Museum of Arthropods, Plant Protection Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sedat Sevin
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ankara University, Ankara, Türkiye
| | - Hamed A Ghramh
- Applied College, Center of Bee Research and Its Products, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
154
|
Ren F, Huang J, Yang Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116490. [PMID: 38795417 DOI: 10.1016/j.ecoenv.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.
Collapse
Affiliation(s)
- Fugang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Jing Huang
- Department of Vocal Performance, Sichuan Conservatory of Music, Chengdu 610021, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
155
|
Feng Z, Zhu N, Wu H, Li M, Chen J, Yuan X, Li J, Wang Y. Microplastic coupled with soil dissolved organic matter mediated changes in the soil chemical and microbial characteristics. CHEMOSPHERE 2024; 359:142361. [PMID: 38761827 DOI: 10.1016/j.chemosphere.2024.142361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The abundance of microplastics (MPs) in soil environments has attracted significant attentions, due to their impact on soil physico-chemical properties. However, limited information is available on the influences of MPs on soil carbon composition and microbial utilization characteristics. Therefore, a two-month incubation experiment was conducted to add polyethylene microplastics (PE-MPs) with different levels (1%, 10%) and sizes (150-300 μm and 75-150 μm) into different soils. After that, soil chemical properties including the dissolved organic carbon (DOC), spectral characteristics of dissolved organic matter (DOM) and soil microbial characteristics were analyzed. Results revealed that PE-MPs addition caused significant differences in soil chemical properties between farmland and woodland soils, particularly in soil pH, DOM composition, and soil phosphatase activity. Woodland soil always exhibited higher levels of DOC content, microbial diversity, and soil carbon source utilization compared to farmland soil, leading to increased humification in the DOM of woodland soil. PE-MPs with a larger particle size significantly increased both the soil DOC content and enzyme activity. Addition of PE-MPs altered the soil DOM composition, and the fluorescence parameters like the biological index (BIX) and humification degree. Moreover, the carbon source utilization intensity of microorganisms on PE MPs-contaminated soils is higher in woodland soils. Various analyses confirmed that compared to other soil properties, characteristics of soil DOM had a more significant impact on soil microbial community composition. Thus, PE-MPs in conjunction with soil DOM spectral characteristics regulated soil microbial diversity, which is crucial for understanding soil carbon sequestration.
Collapse
Affiliation(s)
- Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Hanzhou Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Jian Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
156
|
Ferrante F, Pasquini E, Cappa F, Bellocchio L, Baracchi D. Unravelling the microplastic menace: Different polymers additively increase bee vulnerability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124087. [PMID: 38703977 DOI: 10.1016/j.envpol.2024.124087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Microplastics (MPs) are growing and ubiquitous environmental pollutants and represent one of the greatest contemporary challenges caused by human activities. Current research has predominantly examined the singular toxicological effects of individual polymers, neglecting the prevailing reality of organisms confronted with complex contaminant mixtures and potential synergistic effects. To fill this research gap, we investigated the lethal and sublethal effects of two common MPs, polystyrene (PS - 4.8-5.8 μm) and poly(methyl methacrylate) (PMMA - 1-40 μm), and their combination (MIX), on the pollinating insect Apis mellifera. For each treatment, we evaluated the oral toxicity of two ecologically relevant and one higher concentration (0.5, 5 and 50 mg/L) and analysed their effects on the immune system and worker survival. As immune activation can alter the cuticular hydrocarbon profile of honey bees, we used gas chromatography-mass spectrometry (GC-MS) to investigate whether MPs lead to changes in the chemical profile of foragers and behavioural assay to test whether such changes affect behavioural patterns of social recognition, undermining overall colony integrity. The results indicate an additive negative effect of PS and PMMA on bee survival and immune response, even at ecologically relevant concentrations. Furthermore, alterations in cuticle profiles were observed with both MPs at the highest and intermediate concentrations, with PMMA being mainly responsible. Both MPs exposure resulted in a reduction in the abundance of several cuticular compounds. Hive entry guards did not show increased inspection or aggressive behaviour towards exposed foragers, allowing them to enter the colony without being treated differently from uncontaminated foragers. These findings raise concerns not only for the health of individual bees, but also for the entire colony, which could be at risk if contaminated nestmates enter the colony undetected, allowing MPs to spread throughout the hive.
Collapse
Affiliation(s)
- Federico Ferrante
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy; Department of Ecological and Biological Sciences, University of Viterbo, Largo dell'Università, 01100, Viterbo, Italy
| | - Elisa Pasquini
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy; Center for Mind/Brain Science (CIMeC), University of Trento, Rovereto, Italy
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - Lorenzo Bellocchio
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
157
|
Li Y, Hou F, Sun L, Lan J, Han Z, Li T, Wang Y, Zhao Z. Ecological effect of microplastics on soil microbe-driven carbon circulation and greenhouse gas emission: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121429. [PMID: 38870791 DOI: 10.1016/j.jenvman.2024.121429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Soil organic carbon (SOC) pool, the largest part of terrestrial ecosystem, controls global terrestrial carbon balance and consequently presented carbon cycle-climate feedback in climate projections. Microplastics, (MPs, <5 mm) as common pollutants in soil ecosystems, have an obvious impact on soil-borne carbon circulation by affecting soil microbial processes, which play a central role in regulating SOC conversion. In this review, we initially presented the sources, properties and ecological risks of MPs in soil ecosystem, and then the differentiated effects of MPs on the component of SOC, including dissolved organic carbon, soil microbial biomass carbon and easily oxidized organic carbon varying with the types and concentrations of MPs, the soil types, etc. As research turns into a broader perspective, greenhouse gas emissions dominated by the mineralization of SOC coming into view since it can be significantly affected by MPs and is closely associated with soil microbial respiration. The pathways of MPs impacting soil microbes-driven carbon conversion include changing microbial community structure and composition, the functional enzyme's activity and the abundance and expression of functional genes. However, numerous uncertainties still exist regarding the microbial mechanisms in the deeper biochemical process. More comprehensive studies are necessary to explore the affected footprint and provide guidance for finding the evaluation criterion of MPs affecting climate change.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Fangwei Hou
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhanghua Han
- Shandong Provincial Key Laboratory of Optics and Photonic Devices, Center of Light Manipulation and Applications, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, China
| | - Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yiming Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
158
|
Roy R, Hossain A, Sultana S, Deb B, Ahmod MM, Sarker T. Microplastics increase cadmium absorption and impair nutrient uptake and growth in red amaranth (Amaranthus tricolor L.) in the presence of cadmium and biochar. BMC PLANT BIOLOGY 2024; 24:608. [PMID: 38926861 PMCID: PMC11202365 DOI: 10.1186/s12870-024-05312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.
Collapse
Affiliation(s)
- Rana Roy
- Institute of Plant Nutrition and Soil Science, Christian-Albrechts-Universität zu Kiel, 24118, Kiel, Germany.
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| | - Akram Hossain
- Department of Agroforestry and Environmental Science, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shirin Sultana
- Open School, Bangladesh Open University, Gazipur, 1705, Bangladesh
| | - Biplob Deb
- Department of Agricultural Extension Education, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Md Moudud Ahmod
- Department of Crop Botany & Tea Production Technology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Tanwne Sarker
- Department of Sociology and Rural Development, Khulna Agricultural University, Khulna, 9100, Bangladesh
| |
Collapse
|
159
|
Wang M, Jiang X, Wei Z, Wang L, Song J, Cen P. Enhanced Cadmium Adsorption Dynamics in Water and Soil by Polystyrene Microplastics and Biochar. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1067. [PMID: 38998672 PMCID: PMC11243743 DOI: 10.3390/nano14131067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Microplastics (MPs) are prevalent emerging pollutants in soil environments, acting as carriers for other contaminants and facilitating combined pollution along with toxic metals like cadmium (Cd). This interaction increases toxic effects and poses substantial threats to ecosystems and human health. The objective of this study was to investigate the hydrodynamic adsorption of Cd by conducting experiments where polystyrene microplastics (PS) and biochar (BC) coexisted across various particle sizes (10 µm, 20 µm, and 30 µm). Then, soil incubation experiments were set up under conditions of combined pollution, involving various concentrations (0.5 g·kg-1, 5 g·kg-1, 50 g·kg-1) and particle sizes of PS and BC to assess their synergistic effects on the soil environment. The results suggest that the pseudo-second-order kinetic model (R2 = 0.8642) provides a better description of the adsorption dynamics of Cd by PS and BC compared to the pseudo-first-order kinetic model (R2 = 0.7711), with an adsorption saturation time of 400 min. The Cd adsorption process in the presence of PS and BC is more accurately modeled using the Freundlich isotherm (R2 > 0.98), indicating the predominance of multilayer physical adsorption. The coexistence of 10 µm and 20 µm PS particles with BC enhanced Cd absorption, while 30 µm PS particles had an inhibitory effect. In soil incubation experiments, variations in PS particle size increased the exchangeable Cd speciation by 99.52% and decreased the residual speciation by 18.59%. The addition of microplastics notably impacted the exchangeable Cd speciation (p < 0.05), with smaller PS particles leading to more significant increases in the exchangeable content-showing respective increments of 45.90%, 106.96%, and 145.69%. This study contributes to a deeper understanding of the mitigation mechanisms of biochar in the face of combined pollution from microplastics and heavy metals, offering theoretical support and valuable insights for managing such contamination scenarios.
Collapse
Affiliation(s)
- Mengmeng Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Xuyou Jiang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Lin Wang
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
- College of Geography and Environmental Science, Henan University, Kaifeng 475004, China
| | - Jiashu Song
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| | - Peitong Cen
- Miami College, Henan University, Kaifeng 475004, China; (M.W.); (X.J.); (J.S.); (P.C.)
| |
Collapse
|
160
|
Wang S, Hadji-Thomas A, Adekunle A, Raghavan V. The exploitation of bio-electrochemical system and microplastics removal: Possibilities and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172737. [PMID: 38663611 DOI: 10.1016/j.scitotenv.2024.172737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Microplastic (MP) pollution has caused severe concern due to its harmful effect on human beings and ecosystems. Existing MP removal methods face many obstacles, such as high cost, high energy consumption, low efficiency, release of toxic chemicals, etc. Thus, it is crucial to find appropriate and sustainable methods to replace common MP removal approaches. Bio-electrochemical system (BES) is a sustainable clean energy technology that has been successfully applied to wastewater treatment, seawater desalination, metal removal, energy production, biosensors, etc. However, research reports on BES technology to eliminate MP pollution are limited. This paper reviews the mechanism, hazards, and common treatment methods of MP removal and discusses the application of BES systems to improve MP removal efficiency and sustainability. Firstly, the characteristics and limitations of common MP removal techniques are systematically summarized. Then, the potential application of BES technology in MP removal is explored. Furthermore, the feasibility and stability of the potential BES MP removal application are critically evalauted while recommendations for further research are proposed.
Collapse
Affiliation(s)
- Shuyao Wang
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Andre Hadji-Thomas
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Ademola Adekunle
- National Research Council of Canada, 6100 Avenue Royalmount, Montréal, QC H4P 2R2, Canada.
| | - Vijaya Raghavan
- Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
161
|
Qin X, Cao M, Peng T, Shan H, Lian W, Yu Y, Shui G, Li R. Features, Potential Invasion Pathways, and Reproductive Health Risks of Microplastics Detected in Human Uterus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10482-10493. [PMID: 38829656 DOI: 10.1021/acs.est.4c01541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Microplastics (MPs) are ubiquitous in global ecosystems and may pose a potential risk to human health. However, critical information on MP exposure and risk to female reproductive health is still lacking. In this study, we characterized MPs in human endometrium and investigated their size-dependent entry mode as well as potential reproductive toxicity. Endometrial tissues of 22 female patients were examined, revealing that human endometrium was contaminated with MPs, mainly polyamide (PA), polyurethane (PU), polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and polyethylene (PE), ranging from 2-200 μm in size. Experiments conducted in mice demonstrated that the invasion of the uterus by MPs was modulated either through diet-blood circulation (micrometer-sized particles) or via the vagina-uterine lacuna mode (larger particles reaching a size of 100 μm. Intravenous exposure to MPs resulted in reduced fertility and abnormal sex ratio in mouse offspring (P < 0.05). After 3.5 months of intragastric exposure, there was a significant inflammatory response in the endometrium (P < 0.05), confirmed by embryo transfer as a uterine factor leading to decreased fertility. Furthermore, human endometrial organoids cultured with MPs in vitro exhibited significantly apoptotic responses and disrupted growth patterns (P < 0.01). These findings raise significant concerns regarding MP contamination in the human uterus and its potential effects on reproductive health.
Collapse
Affiliation(s)
- Xunsi Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Mingjun Cao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianliu Peng
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Hongying Shan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Weisi Lian
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
- National Clinical Key Specialty Construction Program, P. R. China (2023), Beijing 100191, China
| |
Collapse
|
162
|
Li Y, Tang Y, Qiang W, Xiao W, Lian X, Yuan S, Yuan Y, Wang Q, Liu Z, Chen Y. Effect of tire wear particle accumulation on nitrogen removal and greenhouse gases abatement in bioretention systems: Soil characteristics, microbial community, and functional genes. ENVIRONMENTAL RESEARCH 2024; 251:118574. [PMID: 38452911 DOI: 10.1016/j.envres.2024.118574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Tire wear particles (TWPs), as predominant microplastics (MPs) in road runoff, can be captured and retained by bioretention systems (BRS). This study aimed to investigate the effect of TWPs accumulation on nitrogen processes, focusing on soil characteristics, microbial community, and functional genes. Two groups of lab-scale bioretention columns containing TWPs (0 and 100 mg g-1) were established. The removal efficiencies of NH4+-N and TN in BRS significantly decreased by 7.60%-24.79% and 1.98%-11.09%, respectively, during the 101 days of TWPs exposure. Interestingly, the emission fluxes of N2O and CO2 were significantly decreased, while the emission flux of CH4 was substantially increased. Furthermore, prolonged TWPs exposure significantly influenced the contents of soil organic matter (increased by 27.07%) and NH4+-N (decreased by 42.15%) in the planting layer. TWPs exposure also significantly increased dehydrogenase activity and substrate-induced respiration rate, thereby promoting microbial metabolism. Microbial sequencing results revealed that TWPs decreased the relative abundance of nitrifying bacteria (Nitrospira and Nitrosomonas) and denitrifying bacteria (Dechloromonas and Thauera), reducing the nitrification rate by 42.24%. PICRUSt2 analysis further indicated that TWPs changed the relative abundance of functional genes related to nitrogen and enzyme-coding genes.
Collapse
Affiliation(s)
- Yunqing Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yinghui Tang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Weibo Qiang
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan, 430010, China
| | - Wenyu Xiao
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Xiaoke Lian
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Shaochun Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Ying Yuan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Qinyi Wang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Zhen Liu
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Engineering Laboratory of Environmental Hydraulic Engineering of Chongqing Municipal Development and Reform Commission, Chongqing Jiaotong University, Chongqing, 400074, China.
| |
Collapse
|
163
|
Pan I, Umapathy S. Probiotics an emerging therapeutic approach towards gut-brain-axis oriented chronic health issues induced by microplastics: A comprehensive review. Heliyon 2024; 10:e32004. [PMID: 38882279 PMCID: PMC11176854 DOI: 10.1016/j.heliyon.2024.e32004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Applications for plastic polymers can be found all around the world, often discarded without any prior care, exacerbating the environmental issue. When large waste materials are released into the environment, they undergo physical, biological, and photo-degradation processes that break them down into smaller polymer fragments known as microplastics (MPs). The time it takes for residual plastic to degrade depends on the type of polymer and environmental factors, with some taking as long as 600 years or more. Due to their small size, microplastics can contaminate food and enter the human body through food chains and webs, causing gastrointestinal (GI) tract pain that can range from local to systemic. Microplastics can also acquire hydrophobic organic pollutants and heavy metals on their surface, due to their large surface area and surface hydrophobicity. The levels of contamination on the microplastic surface are significantly higher than in the natural environment. The gut-brain axis (GB axis), through which organisms interact with their environment, regulate nutritional digestion and absorption, intestinal motility and secretion, complex polysaccharide breakdown, and maintain intestinal integrity, can be altered by microplastics acting alone or in combination with pollutants. Probiotics have shown significant therapeutic potential in managing various illnesses mediated by the gut-brain axis. They connect hormonal and biochemical pathways to promote gut and brain health, making them a promising therapy option for a variety of GB axis-mediated illnesses. Additionally, taking probiotics with or without food can reduce the production of pro-inflammatory cytokines, reactive oxygen species (ROS), neuro-inflammation, neurodegeneration, protein folding, and both motor and non-motor symptoms in individuals with Parkinson's disease. This study provides new insight into microplastic-induced gut dysbiosis, its associated health risks, and the benefits of using both traditional and next-generation probiotics to maintain gut homeostasis.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
164
|
Zhang J, Hao A, Zhao B, Ma F, Zhang X, Zhang Y, Duan K, Li Y. Effects of microplastics and cadmium co-contamination on soil properties, maize (Zea mays L.) growth characteristics, and cadmium accumulation in maize in loessial soil-maize systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124363. [PMID: 38880325 DOI: 10.1016/j.envpol.2024.124363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Microplastics (MPs) are pervasive pollutants found in agricultural soils, yet research on the combined impacts of MPs and heavy metals on soil-plant systems remains limited. This study investigates the combined impact of low-density polyethylene (LDPE) microplastics (L: 1 mm, S: 100 μm, 0.1%, 1%) and Cd on soil properties, available Cd content, maize growth, and Cd accumulation by mazie through pot experiments. The findings unveiled notable impacts of the treatment groups, namely MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1%, on soil organic carbon (SOC), maize height, and catalase (CAT) activity (P < 0.05). The dosage of MPs significantly influenced maize height, MP-S0.1% treatment resulted in a 5.6% reduction, while the other groups had insignificant effects. Particle size and dosage significantly affected SOC and CAT (P < 0.01). The MP-L1% and MP-S1% groups resulted in increases of SOC by 121.5% and 281.0%, respectively. CAT reductions were 32.6%, 62.8%, 41.9%, and 34.9% in MP-L0.1%, MP-S0.1%, MP-L1%, and MP-S1% groups, individually. The Cd treatment induced a significant decrease in soil cation exchange capacity (CEC), maize stem diameter, and root length, accompanied by significant increases in maize plant height, malondialdehyde (MDA), CAT, and superoxide dismutase (SOD) activities. Combined LDPE and Cd contamination had significant effects on maize height and Cd content in leaves. Specifically, MP-L0.1%+Cd, MP-S0.1%+Cd, MP-L1%+Cd, and MP-S1%+Cd reduced maize height by 4.1%, 4.5%, 8.7%, and 13.8%, respectively. The co-presence of LDPE and Cd increased available Cd content in soil while elevating Cd concentration in maize shoots and roots, with a notable 25.5% increase in Cd concentration in maize leaves in the MP-L1%+Cd group compared to the Cd group. Furthermore, LDPE effects on soil-plant systems varied depending on particle size and dosage. This research provides important perspectives on evaluating the concurrent contamination and potential dangers of MPs and toxic metals in soil-plant environments.
Collapse
Affiliation(s)
- Jian Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Aihong Hao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Baowei Zhao
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China.
| | - Fengfeng Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Xin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Yin Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Kaixiang Duan
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| | - Yingquan Li
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu Province, 730070, PR China
| |
Collapse
|
165
|
Yarahmadi A, Heidari S, Sepahvand P, Afkhami H, Kheradjoo H. Microplastics and environmental effects: investigating the effects of microplastics on aquatic habitats and their impact on human health. Front Public Health 2024; 12:1411389. [PMID: 38912266 PMCID: PMC11191580 DOI: 10.3389/fpubh.2024.1411389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/25/2024] Open
Abstract
Microplastics (MPs) are particles with a diameter of <5 mm. The disposal of plastic waste into the environment poses a significant and pressing issue concern globally. Growing worry has been expressed in recent years over the impact of MPs on both human health and the entire natural ecosystem. MPs impact the feeding and digestive capabilities of marine organisms, as well as hinder the development of plant roots and leaves. Numerous studies have shown that the majority of individuals consume substantial quantities of MPs either through their dietary intake or by inhaling them. MPs have been identified in various human biological samples, such as lungs, stool, placenta, sputum, breast milk, liver, and blood. MPs can cause various illnesses in humans, depending on how they enter the body. Healthy and sustainable ecosystems depend on the proper functioning of microbiota, however, MPs disrupt the balance of microbiota. Also, due to their high surface area compared to their volume and chemical characteristics, MPs act as pollutant absorbers in different environments. Multiple policies and initiatives exist at both the domestic and global levels to mitigate pollution caused by MPs. Various techniques are currently employed to remove MPs, such as biodegradation, filtration systems, incineration, landfill disposal, and recycling, among others. In this review, we will discuss the sources and types of MPs, the presence of MPs in different environments and food, the impact of MPs on human health and microbiota, mechanisms of pollutant adsorption on MPs, and the methods of removing MPs with algae and microbes.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | | | - Parisa Sepahvand
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | | |
Collapse
|
166
|
Feng S, Lu H, Xue Y, Li Y, Yan P, Lu J, Li H, Sun T. A multivariate analysis of microplastics in soils along the headwaters of Yangtze river on the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134347. [PMID: 38677115 DOI: 10.1016/j.jhazmat.2024.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Microplastics (MPs) are among the most widespread anthropogenic pollutants of natural environments, while limited research has focused on the fate of MPs in soils along the Plateau rivers. In this study, we investigated MPs in soils along the source areas of the Yangtze River on the Qinghai-Tibet Plateau. The results showed mean MP abundance values of (89.4 ± 51.0) and (64.4 ± 24.5) items/kg of dry soils around the tributary and mainstream areas, respectively. Film, transparent colors, and polyethylene were common shape, color, and compositions, respectively. The correlation analysis and PCA revealed that MP abundance was related to soil heavy metals (Cr and Ni) and nutrients (TOC and TP) (p < 0.05). Structural equation modeling also revealed that population density was the dominant driving factor contributing to MPs, with a total effect coefficient of 0.45. In addition, the conditional fragmentation model further distinguished the differences in MP sources from upstream to downstream along the Jinsha River. The significant sources of MPs in the bare land and grasslands from the upper reaches of the Jinsha River included traffic, tourism, and atmospheric transport. In contrast, MP transport during farming activities mainly contributed to MPs in the agricultural soil in the lower reaches.
Collapse
Affiliation(s)
- Sansan Feng
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China.
| | - Yuxuan Xue
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Yibo Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Pengdong Yan
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| | - Jingzhao Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
| | - Hengchen Li
- Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing 100101, China
| | - Tong Sun
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
| |
Collapse
|
167
|
Li N, Wang X, Li X, Yi S, Guo Y, Wu N, Lin H, Zhong B, Wu WM, He Y. Anthropogenic and biological activities elevate microplastics pollution in headwater ecosystem of Yangtze tributaries in Hindu Kush-Himalayan region. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134395. [PMID: 38663293 DOI: 10.1016/j.jhazmat.2024.134395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Microplastic (MP) pollution is widely spread in oceans, freshwater, and terrestrial environments but MPs in mountainous headwater ecosystem are rarely reported. This study focuses on the headwater of Yangtze tributaries of the Hindu Kush-Himalayan (HKH) region. Five streams at elevations of 900 to 3300 m were selected to investigate the distribution of MPs in water and sediments across altitudes. MPs were found in all water and sediment samples from top stream zone nearly in absence of anthropogenic activity, low anthropogenic zone, and high anthropogenic zone, increased from 12-54, 81-185 to 334-847 items/L, and 2-35, 26-84 to 124-428 items/kg, respectively. This elevation-dependent MP distribution indicated that as elevation decreased, anthropogenic activities intensified and increased MPs input and their abundance, size, and diversity. Notably, hydraulic projects, such as damming, were identified as potential barriers to the migration of MPs downstream. Microbiome analyses revealed the presence of bacterial genes associated with plastic biodegradation in all sediment samples. The study indicates that Shangri-la mountainous streams have been polluted with MPs for years with potential risk of generation of nano-sized particles via natural fragmentation and biodegradation, and thus raises concern on MPs pollution in headwaters streams in mountainous regions.
Collapse
Affiliation(s)
- Naying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaofeng Wang
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xianxiang Li
- School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Shaoliang Yi
- International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ning Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; International Centre for Integrated Mountain Development, GPO Box, Kathmandu 3226, Nepal
| | - Honghui Lin
- School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Research Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, California 94305-4020, United States.
| | - Yixin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bio-resources Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
168
|
Wang Y, Zhao C, Lu A, Dong D, Gong W. Unveiling the hidden impact: How biodegradable microplastics influence CO 2 and CH 4 emissions and Volatile Organic Compounds (VOCs) profiles in soil ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134294. [PMID: 38669928 DOI: 10.1016/j.jhazmat.2024.134294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Biodegradable plastics promise eco-friendliness, yet their transformation into microplastics (bio-MPs) raises environmental alarms. However, how those bio-MPs affect the greenhouse gases (GHGs) and volatile organic compounds (VOCs) in soil ecosystems remains largely unexplored. Here, we investigated the effects of diverse bio-MPs (PBAT, PBS, and PLA) on GHGs and VOCs emission in typical paddy or upland soils. We monitored the carbon dioxide (CO2) and methane (CH4) fluxes in-situ using the self-developed portable optical gas sensor and analyzed VOC profiles using a proton-transfer reaction mass spectrometer (PTR-MS). Our study has revealed that, despite their biodegradable nature, bio-MPs do not always promote soil GHG emissions as previously thought. Specifically, PBAT and PLA significantly increased CO2 and CH4 emissions up to 1.9-7.5 and 115.9-178.5 fold, respectively, compared to the control group. While PBS exhibited the opposite trend, causing a decrease of up to 39.9% for CO2 and up to 39.9% for CH4. In addition, different types of bio-MPs triggered distinct soil VOC emission patterns. According to the Mann-Whitney U-test and Partial Least Squares Discriminant Analysis (PLS-DA), a recognizable VOC pattern associated with different bio-MPs was revealed. This study claims the necessity of considering polymer-specific responses when assessing the environmental impact of Bio-MPs, and providing insights into their implications for climate change.
Collapse
Affiliation(s)
- Yihao Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chunjiang Zhao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anxiang Lu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Daming Dong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenwen Gong
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
169
|
Kumar A, Shabnam AA, Khan SA. Accounting on silk for reducing microplastic pollution from textile sector: a viewpoint. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38751-38755. [PMID: 36215004 DOI: 10.1007/s11356-022-23170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastic pollution is the emerging issue in the recent past and has been identified in the remotely located ecosystems. The textile sector is one of the key contributors in the microplastic pollution. Keeping this in view, the present viewpoint has been planned to address the systematic possible reduction of microplastic pollution. It has been observed through the literature that silk is having a promising material to reduce the microplastic problems and its associated environmental risk due to its non-persistent nature.
Collapse
Affiliation(s)
- Amit Kumar
- Central Muga Eri Research and Training Institute-Central Silk Board, Lahdoigarh, Jorhat, Assam, 785700, India.
- Central Sericultural Research and Training Institute, Central Silk Board, Mysore, Karnataka, 570008, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute-Central Silk Board, Lahdoigarh, Jorhat, Assam, 785700, India
| | - Shakeel A Khan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110011, India
| |
Collapse
|
170
|
Renault D, Wiegand C, Balzani P, Richard CMC, Haubrock PJ, Colinet H, Davranche M, Pierson-Wickmann AC, Derocles SAP. The Plasticene era: Current uncertainties in estimates of the hazards posed by tiny plastic particles on soils and terrestrial invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172252. [PMID: 38599414 DOI: 10.1016/j.scitotenv.2024.172252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Plastics are ubiquitous in our daily life. Large quantities of plastics leak in the environment where they weather and fragment into micro- and nanoparticles. This potentially releases additives, but rarely leads to a complete mineralization, thus constitutes an environmental hazard. Plastic pollution in agricultural soils currently represents a major challenge: quantitative data of nanoplastics in soils as well as their effects on biodiversity and ecosystem functions need more attention. Plastic accumulation interferes with soil functions, including water dynamics, aeration, microbial activities, and nutrient cycling processes, thus impairing agricultural crop yield. Plastic debris directly affects living organisms but also acts as contaminant vectors in the soils, increasing the effects and the threats on biodiversity. Finally, the effects of plastics on terrestrial invertebrates, representing major taxa in abundance and diversity in the soil compartment, need urgently more investigation from the infra-individual to the ecosystem scales.
Collapse
Affiliation(s)
- David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France.
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Paride Balzani
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Chloé M C Richard
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Phillip J Haubrock
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571 Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Hervé Colinet
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| | - Mélanie Davranche
- UMR CNRS 6118 GEOSCIENCES Rennes, Université Rennes, Avenue Général Leclerc, 35042 Rennes cedex, France
| | | | - Stéphane A P Derocles
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042 Rennes cedex, France
| |
Collapse
|
171
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
172
|
Wang H, Li Y, Liu L, Liu H, Su J, Xu S, Zhou Y, Zhang S, Xu C. A Study on the Growth and Physiological Toxicity Effects of the Combined Exposure of Microplastics and Cadmium on the Vicia faba L. Seedlings. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:83. [PMID: 38822863 DOI: 10.1007/s00128-024-03899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/20/2024] [Indexed: 06/03/2024]
Abstract
To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.
Collapse
Affiliation(s)
- Hui Wang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
- Key Laboratory of Bioresoure and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan, 232038, Anhui, China
| | - Yaliang Li
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
- Key Laboratory of Bioresoure and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan, 232038, Anhui, China
| | - Ling Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China.
| | - Haitao Liu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Junhong Su
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Sheng Xu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Yifan Zhou
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Siyu Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| | - Chijing Xu
- School of Biological Engineering, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
173
|
Saha ND, Kumari P, Das B, Sahoo RN, Kumar R, Golui D, Singh B, Jain N, Bhatia A, Chaudhary A, Chakrabarti B, Bhowmik A, Saha P, Islam S. Vis-NIR spectroscopy based rapid and non-destructive method to quantitate microplastics: An emerging contaminant in farm soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172088. [PMID: 38554975 DOI: 10.1016/j.scitotenv.2024.172088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Microplastics (MPs) is the second most important environmental issue and can potentially enter into food chain through farmland contamination and other means. There are no standardized extraction methods for quantification of MPs in soil. The embedded errors and biases generated serious problems regarding the comparability of different studies and leading to erroneous estimation. To address this gap, present study was formulated to develop an efficient method for MPs analysis suitable for a wide range of soil and organic matrices. A method based on Vis-NIR (Visible-Near Infra Red) spectroscopy is developed for four different soil belonging to Alfisol, Inceptisol, Mollisol and Vertisol and two organic matter matrices (FYM and Sludge). The developed method was found as rapid, reproducible, non-destructive and accurate method for estimation of all three-density groups of MPs (Low, Medium and High) with a prediction accuracy ranging from 1.9 g MPs/kg soil (Vertisol) to 3.7 g MPs/kg soil (Alfisol). Two different regression models [Partial Least Square Regression (PLSR) and Principal Component Regression (PCR)] were assessed and PLSR was found to provide better information in terms of prediction accuracy and minimum quantification limit (MQL). However, PCR performed better for organic matter matrices than PLSR. The method avoids any complicated sample preparation steps except drying and sieving thus saving time and acquisition of reflectance spectrum for single sample is possible within 18 s. Owing to have the minimum quantification limit ranging from 1.9-3.7 g/kg soil, the vis-NIR based method is perfectly suitable for estimation of MPs in soil samples collected from plastic pollution hotspots like landfill sites, regular based sludge amended farm soils. Additionally, the method can be adapted by small scale compost industries for assessing MPs load in product like city compost which are applied at agricultural fields and will be helpful in quantifying possible MPs at the sources itself.
Collapse
Affiliation(s)
- Namita Das Saha
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India; ICAR-CTRI, RS-Dinhata, Cooch Behar, West Bengal, India.
| | - Priyanka Kumari
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India.
| | - Bappa Das
- ICAR-Central Coastal Agricultural Research Institute, Goa, India
| | - R N Sahoo
- Division of Agricultural Physics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India.
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Debasis Golui
- Division of Soil Science and Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India.
| | - Niveta Jain
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Arti Bhatia
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Anita Chaudhary
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Bidisha Chakrabarti
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Arpan Bhowmik
- ICAR-Indian Agricultural Statistics Research Institute (IASRI), Pusa, New Delhi, India
| | - Partha Saha
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India; ICAR-CTRI, RS-Dinhata, Cooch Behar, West Bengal, India
| | - Sadikul Islam
- ICAR-Indian Institute for Soil and Water Conservation, Dehradun, India
| |
Collapse
|
174
|
Fu B, Zhou W, Chen Y, Wu Y, Gan W, She N, Ma Y. A bibliometric perspective on the occurrence and migration of microplastics in soils amended with sewage sludge. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11054. [PMID: 38828755 DOI: 10.1002/wer.11054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024]
Abstract
The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.
Collapse
Affiliation(s)
- Bomin Fu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Weimin Zhou
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Yucai Chen
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Yang Wu
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| | - Wenhui Gan
- School of Civil Engineering, Sun Yat-sen University, Guangzhou, China
| | - Nian She
- Smart Water Utility Research Institute, Tsinghua University Innovation Center in Zhuhai, Zhuhai, China
| | - Yibing Ma
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Faculty of Innovation Engineering, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
175
|
Teampanpong J, Duengkae P. Terrestrial wildlife as indicators of microplastic pollution in western Thailand. PeerJ 2024; 12:e17384. [PMID: 38784402 PMCID: PMC11114113 DOI: 10.7717/peerj.17384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Plastic pollution in terrestrial wildlife represents a new conservation challenge, with research in this area, especially within protected areas (PAs), being scant. This study documents the accumulation of microplastics (MPs) in terrestrial wildlife both inside and outside PAs in western Thailand. Carcasses of road-killed vertebrates in good condition, as well as live tadpoles, were collected to examine their exposure to plastic pollution. The digestive tracts of the vertebrate carcasses and the entire bodies of tadpoles were analyzed for MPs, which were identified if they measured over 50 µm. A total of 136 individuals from 48 vertebrate species were examined. The sample comprised snakes (44.12%), birds (11.03%), lizards (5.15%), tadpoles (32.25%), amphibians (5.88%), and mammals (1.47%). In total, 387 MPs were found in 44 species (91.67%), with an average occurrence of 3.25 ± 3.63 MPs per individual or 0.05 ± 0.08 MPs per gram of body weight. The quantities of MPs significantly varied among the animal groups, both in terms of number per individual (p < 0.05) and number per gram of body weight (p < 0.01). Furthermore, a significant difference in MP quantities was observed between specimens collected inside and outside PAs on an individual basis (p < 0.05), but not on a body weight basis (p = 0.07). Most MPs were fibers (77%), followed by fragments (22.22%), with only a minimal presence of film (0.52%) and foam (0.26%). Of all the MPs identified, 36.84% were confirmed as plastics or fibers made from natural materials, and 31.58% were plastics, including Polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), Polyvinylidene chloride (PVDC), and polyester (PES). Additionally, fibers made of cotton, and those containing polyurethane (PU), rayon, PES, and combinations of rayon and PU, were identified. The quantities of MPs were significantly influenced by animal body weight, factors associated with human settlement/activity, and land use types. Our findings highlight the prevalence of plastic pollution in terrestrial vertebrates within Thai PAs. Further toxicological studies are required to establish plastic pollution standards. It is proposed that snakes, obtained from road kills, could serve as a non-invasive method for monitoring plastic pollution, thus acting as an indicator of the pollution threat to species within terrestrial ecosystems. There is an urgent need for the standardization of solid waste management at garbage dump sites in remote areas, especially within PAs. Conservation education focusing on MP occurrence, potential sources, and impacts could enhance awareness, thereby influencing changes in behaviors and attitudes toward plastic waste management at the household level.
Collapse
Affiliation(s)
- Jiraporn Teampanpong
- Department of Conservation, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Prateep Duengkae
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
176
|
Martín-González D, de la Fuente Tagarro C, De Lucas A, Bordel S, Santos-Beneit F. Genetic Modifications in Bacteria for the Degradation of Synthetic Polymers: A Review. Int J Mol Sci 2024; 25:5536. [PMID: 38791573 PMCID: PMC11121894 DOI: 10.3390/ijms25105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Synthetic polymers, commonly known as plastics, are currently present in all aspects of our lives. Although they are useful, they present the problem of what to do with them after their lifespan. There are currently mechanical and chemical methods to treat plastics, but these are methods that, among other disadvantages, can be expensive in terms of energy or produce polluting gases. A more environmentally friendly alternative is recycling, although this practice is not widespread. Based on the practice of the so-called circular economy, many studies are focused on the biodegradation of these polymers by enzymes. Using enzymes is a harmless method that can also generate substances with high added value. Novel and enhanced plastic-degrading enzymes have been obtained by modifying the amino acid sequence of existing ones, especially on their active site, using a wide variety of genetic approaches. Currently, many studies focus on the common aim of achieving strains with greater hydrolytic activity toward a different range of plastic polymers. Although in most cases the depolymerization rate is improved, more research is required to develop effective biodegradation strategies for plastic recycling or upcycling. This review focuses on a compilation and discussion of the most important research outcomes carried out on microbial biotechnology to degrade and recycle plastics.
Collapse
Affiliation(s)
- Diego Martín-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Carlos de la Fuente Tagarro
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Andrea De Lucas
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
| | - Sergio Bordel
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; (D.M.-G.); (A.D.L.); (S.B.)
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
177
|
Ahsan WA, Lin C, Hussain A, Sheraz M. Sustainable struggling: decoding microplastic released from bioplastics-a critical review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:554. [PMID: 38760486 DOI: 10.1007/s10661-024-12721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review delves into the complex issue of plastic pollution, focusing on the emergence of biodegradable plastics (BDPs) as a potential alternative to traditional plastics. While BDPs seem promising, recent findings reveal that a large number of BDPs do not fully degrade in certain natural conditions, and they often break down into microplastics (MPs) even faster than conventional plastics. Surprisingly, research suggests that biodegradable microplastics (BDMPs) could have more significant and long-lasting effects than petroleum-based MPs in certain environments. Thus, it is crucial to carefully assess the ecological consequences of BDPs before widely adopting them commercially. This review thoroughly examines the formation of MPs from prominent BDPs, their impacts on the environment, and adsorption capacities. Additionally, it explores how BDMPs affect different species, such as plants and animals within a particular ecosystem. Overall, these discussions highlight potential ecological threats posed by BDMPs and emphasize the need for further scientific investigation before considering BDPs as a perfect solution to plastic pollution.
Collapse
Affiliation(s)
- Wazir Aitizaz Ahsan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Chitsan Lin
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan.
| | - Adnan Hussain
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, 811213, Taiwan
| | - Mahshab Sheraz
- Advanced Textile R&D, Department Korea Institute of Industrial Technology, Ansan, 15588, Republic of Korea
| |
Collapse
|
178
|
Nuamzanei, Changmai U, Sk S, Kumar N, Borah B, Chikkaputtaiah C, Saikia R, Phukan T. Impact of polyvinyl chloride (PVC) microplastic on growth, photosynthesis and nutrient uptake of Solanum lycopersicum L. (Tomato). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123994. [PMID: 38636835 DOI: 10.1016/j.envpol.2024.123994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Microplastics (MPs) pollution and their impact on plants have become a global threat, but their effect at the molecular level remains scarce. This study aims to gain insight into the effects of polyvinylchloride microplastic (PVC-MP) on tomato plants at the genetic and protein levels. In this study, we found that increasing concentrations of PVC-MP (2.5, 5,7.5, and 10% w/w) in the soil did not cause any phytotoxic (chlorosis or necrosis) symptoms but it did result in a dose-dependent reduction in plant growth-related parameters, such as height, leaf area, stem diameter, and plant fresh and dry weight. Additionally, the number of secondary roots was reduced while the primary roots were elongated. Furthermore, PVC-MP also caused a significant decrease in light-harvesting pigments chlorophylls, and carotenoids while increasing the level of reactive oxygen species (ROS) and lipid peroxidation in plants. Microscopic analysis of the roots revealed the uptake of PVC-MP of size less than 10 μm. Micro- and macro-element analysis showed changes in concentrations of Ca, Cu, Fe, Mg, Mn, Ni, and Zn, upon PVC-MP exposure. Results from western blotting and q-PCR showed that higher doses of PVC-MP significantly reduced the CO2-fixing enzyme RuBisCO and D1 proteins of PSII at both protein and transcript levels. These findings suggest that lower levels of light-harvesting pigments, D1 protein, RuBisCO, and modulation of nutrient absorption are among the factors responsible for growth suppression in tomato plants upon exposure to PVC-MP. As tomato plants are economically significant crops, an increase in PVC-MP in agricultural fields may have a detrimental influence on crop production, resulting in economic loss.
Collapse
Affiliation(s)
- Nuamzanei
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Udeshna Changmai
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sahana Sk
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Niraj Kumar
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Babli Borah
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ratul Saikia
- Biological Sciences and Technology Division (BSTD), CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tridip Phukan
- Agro-technology and Rural Development Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
179
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171563. [PMID: 38460706 DOI: 10.1016/j.scitotenv.2024.171563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The transport of nanoplastics (NPs) in porous media has received a lot of attention, but the studies on the long-term release of NPs retained in porous media and the particle fracture during this process are seriously lacking. For filling this deficiency, we examined the individual or synergistic effects of surfactants, natural organic matters (NOMs), antibiotics, and bacteria on the desorption, long-term release, and particle fracture behaviors of polystyrene NPs (PS-NPs) retained in porous media. It was found that the change in hydrophilicity of PS-NPs dominated the long-term release of PS-NPs retained in porous media when surfactants were present. In the single system of surfactants and the dual system of surfactants and NOMs, the release of PS-NPs were improved owing to the increasing hydrophilicity of PS-NPs, although cationic surfactants also reduced the electrostatic repulsion between PS-NPs and porous media. Increasing antibiotic concentration reduced the electrostatic repulsion between PS-NPs and porous media to inhibit the release of PS-NPs. When bacteria were present whether containing antibiotics or not, the effects on roughness of PS-NPs dominated the release of PS-NPs. The effects of surfactants and NOMs on the PS-NP desorption were similar with the long-term release, with changes in hydrophilicity dominating the process. Whereas the effects of antibiotics and bacteria on the PS-NP desorption were different with the long-term release. Surfactants and NOMs in the presence of surfactants inhibited the fracture of PS-NPs by increasing the hydrophilicity of PS-NPs brought about the coating of water molecules on PS-NPs for protection. Antibiotics had no significant effects on the fracture of PS-NPs due to unaltered vertical forces on PS-NPs and no protective effect. Bacteria in the presence or absence of antibiotics inhibited the fracture of PS-NPs by coating PS-NPs retained in porous media to protect PS-NPs from fracture.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
180
|
Zhou Y, Zhang Z, Bao F, Du Y, Dong H, Wan C, Huang Y, Zhang H. Considering microplastic characteristics in ecological risk assessment: A case study for China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134111. [PMID: 38581870 DOI: 10.1016/j.jhazmat.2024.134111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Microplastics (MPs) pose a significant global concern, requiring a multifaceted approach to their risk assessment procedures, especially concerning their characteristics in the environment. The Horqin Left Middle Banner in Northeast China was chosen for the research region to investigate the abundance, composition, distribution, and ecological impact of MPs in surface agricultural soils. The concentrations of MPs ranged from 300 to 12800 items/kg, with a median concentration of 1550 items/kg (average = 1994 items/kg). The normal-sized MPs (500-5000 µm) had a higher relative abundance than small MPs (<500 µm). MPs were mainly derived from textiles and packaging and were affected by atmospheric transportation. Rayon and PET fibers were the main polymers identified. Furthermore, the potential environmental risks posed by the fundamental characteristics (abundance, chemical composition, and size) of MPs were quantified using multiple risk assessment models. The conditional fragmentation model indicated a propensity for MPs to degrade into smaller particles. Ecological risk assessments using pollution load index, pollution hazard index, and potential ecological risk index models revealed varying levels of risk. This study conducted a comprehensive assessment of the ecological risks of MPs based on their environmental characteristics, emphasizing the importance of considering multiple factors in the risk assessment process. ENVIRONMENT IMPLICATION: This study investigates the occurrence, distribution, and ecological risk of microplastics (MPs) in agricultural soils of the Northeast Plain of China, a major food production area. MPs are persistent organic pollutants that can pose threats to soil health, crop quality, and food security. By analyzing the composition, size, and source of MPs, as well as their fragmentation and stability in soil, this study provides valuable data for assessing the environmental risk of MPs in agricultural regions. The study also suggests strategies for mitigating MPs pollution and protecting soil ecosystems.
Collapse
Affiliation(s)
- Yang Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhengyu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Feifei Bao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuhan Du
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Huiying Dong
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China
| | - Chengrui Wan
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hongyan Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
181
|
Huang JW, Sun YY, Li QS, Zhou HZ, Li YH, Fan XX, Wang JF. Increased risk of heavy metal accumulation in mangrove seedlings in coastal wetland environments due to microplastic inflow. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123927. [PMID: 38582184 DOI: 10.1016/j.envpol.2024.123927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
The recovery phase of mangrove seedlings in coastal wetland ecosystems can be negatively affected by exposure to external pollutants. This study aimed to investigate the impact of microplastics (MPs) influx, specifically polystyrene (PS) and polymethyl methacrylate (PMMA), on the growth of Aegiceras corniculatum seedlings and their accumulation of heavy metals (HMs). PS and PMMA significantly increased HMs accumulation (up to 21.0-548%), particularly in the roots of seedlings, compared to the control treatment (CK). Additionally, elevated activities of malondialdehyde and catalase enzymes were observed in the leaves of seedlings, while peroxidase enzyme activity decreased. Topological analysis of the root sediment microbiota coexistence network revealed that the modularization data increased from 0.69 (CK treatment) to 1.07 (PS treatment) and 5.11 (PMMA treatment) under the combined stress of MPs and HMs. This suggests that the introduction of MPs intensifies microbial modularization. The primary cause of increased HMs accumulation in plants is the MPs input, which influences the secretion of organic acids by plants and facilitates the shift of HMs in sediment to bioavailable states. Furthermore, changes in microbial clustering may also contribute to the elevated HMs accumulation in plants. This study provides valuable insights into the effects of external pollutants on mangrove seedlings and offers new perspectives for the preservation and restoration of mangrove coastal wetlands.
Collapse
Affiliation(s)
- Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Huan-Zhan Zhou
- Changsha Natural Resources Comprehensive Investigation Center, China Geological Survey, 410600, China
| | - Yi-Hao Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, China
| | - Xiang-Xiang Fan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
182
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
183
|
Milillo C, Aruffo E, Di Carlo P, Patruno A, Gatta M, Bruno A, Dovizio M, Marinelli L, Dimmito MP, Di Giacomo V, Paolini C, Pesce M, Ballerini P. Polystyrene nanoplastics mediate oxidative stress, senescence, and apoptosis in a human alveolar epithelial cell line. Front Public Health 2024; 12:1385387. [PMID: 38799687 PMCID: PMC11116779 DOI: 10.3389/fpubh.2024.1385387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Background Nanoplastics, an emerging form of pollution, are easily consumed by organisms and pose a significant threat to biological functions due to their size, expansive surface area, and potent ability to penetrate biological systems. Recent findings indicate an increasing presence of airborne nanoplastics in atmospheric samples, such as polystyrene (PS), raising concerns about potential risks to the human respiratory system. Methods This study investigates the impact of 800 nm diameter-PS nanoparticles (PS-NPs) on A549, a human lung adenocarcinoma cell line, examining cell viability, redox balance, senescence, apoptosis, and internalization. We also analyzed the expression of hallmark genes of these processes. Results We demonstrated that PS-NPs of 800 nm in diameter significantly affected cell viability, inducing oxidative stress, cellular senescence, and apoptosis. PS-NPs also penetrated the cytoplasm of A549 cells. These nanoparticles triggered the transcription of genes comprised in the antioxidant network [SOD1 (protein name: superoxide dismutase 1, soluble), SOD2 (protein name: superoxide dismutase 2, mitochondrial), CAT (protein name: catalase), Gpx1 (protein name: glutathione peroxidase 1), and HMOX1 (protein name: heme oxygenase 1)], senescence-associated secretory phenotype [Cdkn1a (protein name: cyclin-dependent kinase inhibitor 1A), IL1A (protein name: interleukin 1 alpha), IL1B (protein name: interleukin 1 beta), IL6 (protein name: interleukin 6), and CXCL8 (protein name: C-X-C motif chemokine ligand 8)], and others involved in the apoptosis modulation [BAX (protein name: Bcl2 associated X, apoptosis regulator), CASP3 (protein name: caspase 3), and BCL2 (protein name: Bcl2, apoptosis regulator)]. Conclusion Collectively, this investigation underscores the importance of concentration (dose-dependent effect) and exposure duration as pivotal factors in assessing the toxic effects of PS-NPs on alveolar epithelial cells. Greater attention needs to be directed toward comprehending the risks of cancer development associated with air pollution and the ensuing environmental toxicological impacts on humans and other terrestrial mammals.
Collapse
Affiliation(s)
- Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Aruffo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Piero Di Carlo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Antonia Patruno
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Lisa Marinelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marilisa Pia Dimmito
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Viviana Di Giacomo
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mirko Pesce
- UdA-TechLab, Research Center, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
184
|
Peng H, Lin Z, Lu D, Yu B, Li H, Yao J. How do polystyrene microplastics affect the adsorption of copper in soil? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171545. [PMID: 38458454 DOI: 10.1016/j.scitotenv.2024.171545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Microplastics (MPs) commonly coexist with heavy metals in the soil environment. MPs can influence the activity of heavy metals, and the specific mechanisms need to be further explored. Here, different contents of polystyrene (PS) MPs were added to soil to explore their effects on the adsorption and desorption characteristics of copper (Cu2+) in soil. The adsorption process was mainly chemical adsorption and belonged to a spontaneous, endothermic reaction. The hydrophobicity of MPs slowed down the adsorption and desorption rates. The main adsorption mechanisms included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+. These findings provide new insights into the effects of MPs on the fate and risk of heavy metals in soil. ENVIRONMENTAL IMPLICATION: The existing literature concerning the effects of microplastics on the adsorption of heavy metals in soil is insufficient. Our investigation unveiled that the main adsorption mechanisms of different soil samples included complexation by oxygen-containing functional groups, ion exchange (accounting for 33.97-36.04 % of the total adsorption amounts), and electrostatic interactions. MPs lacked oxygen-containing functional groups and were predominantly engaged in ion exchange and electrostatic interactions. MPs diluted, blocked the soil, and covered the active sites of soil, which reduced adsorption (3.56-16.18 %) and increased desorption (0.90-2.07 %) of Cu2+ in soil samples, thus increasing the activity and mobility of Cu2+.
Collapse
Affiliation(s)
- Hongjia Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Zuhong Lin
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Denglong Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Bolun Yu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Jingjing Yao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| |
Collapse
|
185
|
Wu S, Lu H, Yi Z, Chen G, Sun H. Microplastic Has No Effect on Rice Yield and Gaseous N Emission from an Infertile Soil with High Inorganic N Inputs. PLANTS (BASEL, SWITZERLAND) 2024; 13:1279. [PMID: 38732494 PMCID: PMC11085246 DOI: 10.3390/plants13091279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Microplastic might affect the crop yield, nitrogen (N) use efficiency and reactive N losses from agricultural soil systems. However, evaluation of these effects in infertile soil planted with different rice cultivars is lacking. We conducted a soil column experiment to determine the influence of a typical microplastic polyethylene (PE) input into an infertile soil with 270 kg N ha-1 and planted with two rice cultivars, i.e., a common rice Nangeng 5055 (NG) and a hybrid rice Jiafengyou 6 (JFY). The results showed that JFY produced a significantly (p < 0.05) greater grain yield than NG (61.6-66.2 vs. 48.2-52.5 g pot-1) but was not influenced by PE. Overall, PE hardly changed the N use efficiency of NG and JFY. Unexpectedly, PE significantly (p < 0.05) increased the total amino acid content of NG. Compared with JFY, NG volatilized significantly (p < 0.05) more ammonia (NH3) (0.84-0.92 vs. 0.64-0.67 g N pot-1) but emitted equal nitrous oxide (N2O). PE exerted no effect on either NH3 volatilization or the N2O emission flux pattern and cumulative losses of the rice growth cycle, whether with NG or JFY. Some properties of tested soils changed after planting with different rice cultivars and incorporating with microplastic. In conclusion, the rice production, N use efficiency, NH3 volatilization and N2O emission from the N-fertilized infertile soil were pronouncedly influenced by the rice cultivar, but not the PE. However, PE influenced the grain quality of common rice and some properties of tested soils with both rice cultivars.
Collapse
Affiliation(s)
- Si Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.L.); (Z.Y.)
| | - Haiying Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.L.); (Z.Y.)
| | - Zhenghua Yi
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.L.); (Z.Y.)
| | - Gui Chen
- Institute of Biotechnology, Jiaxing Academy of Agricultural Science, Jiaxing 314016, China
| | - Haijun Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (S.W.); (H.L.); (Z.Y.)
| |
Collapse
|
186
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
187
|
Li T, Lan J, Wang Y, Sun L, Li Y, Zhao Z. Enhanced biotoxicity by co-exposure of aged polystyrene and ciprofloxacin: the adsorption and its influence factors. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:185. [PMID: 38695908 DOI: 10.1007/s10653-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/18/2024] [Indexed: 06/17/2024]
Abstract
Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.
Collapse
Affiliation(s)
- Tongtong Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jing Lan
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lulu Sun
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
188
|
Ali W, Buriro RS, Gandahi JA, Chen Y, Aabdin ZU, Bhutto S, Sun J, Zhu J, Liu Z, Zou H. A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chem Biol Interact 2024; 394:110976. [PMID: 38552764 DOI: 10.1016/j.cbi.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
It is widely accepted that humans are constantly exposed to micro-plastics and nano-plastics through various routes, including inhalation of airborne particles, exposure to dust, and consumption of food and water. It is estimated that humans may consume thousand to millions of micro-plastic particles, equating to several milligrams per day. Prolonged exposure to micro-plastics and nano-plastics has been linked to negative effects on different living organisms, including neurotoxicity, gastrointestinal toxicity, nephrotoxicity, and hepatotoxicity, and developmental toxicities. The main purpose of this review is to explore the effect of micro-plastics and nano-plastics on the male and female reproductive system, as well as their offspring, and the associated mechanism implicated in the reproductive and developmental toxicities. Micro-plastics and nano-plastics have been shown to exert negative effects on the reproductive system of both male and female mammals and aquatic animals, including developmental impacts on gonads, gametes, embryo, and their subsequent generation. In addition, micro-plastics and nano-plastics impact the hypothalamic-pituitary axes, leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, poor sperm quality, diminishes ovarian ovulation and immune toxicity. This study discusses the so many different signaling pathways associated in the male and female reproductive and developmental toxicity induced by micro-plastics and nano-plastics.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health Faculty of Veterinary and Animal Sciences, Ziauddin University, Pakistan
| | - Sahar Bhutto
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
189
|
Taurozzi D, Gallitelli L, Cesarini G, Romano S, Orsini M, Scalici M. Passive biomonitoring of airborne microplastics using lichens: A comparison between urban, natural and protected environments. ENVIRONMENT INTERNATIONAL 2024; 187:108707. [PMID: 38692149 DOI: 10.1016/j.envint.2024.108707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
Currently, natural and urban ecosystems are affected by different types of atmospheric deposition, which can compromise the balance of the environment. Plastic pollution represents one of the major threats for biota, including lichens. Epiphytic lichens have value as bioindicators of environmental pollution, climate change, and anthropic impacts. In this study, we aim to investigate the lichen bioaccumulation of airborne microplastics along an anthropogenic pollution gradient. We sampled lichens from the Genera Cladonia and Xanthoria to highlight the effectiveness of lichens as tools for passive biomonitoring of microplastics. We chose three sites, a "natural site" in Altipiani di Arcinazzo, a "protected site" in Castelporziano Presidential estate and an "urban site" in the centre of Rome. Overall, we sampled 90 lichens, observed for external plastic entrapment, melt in oxygen peroxide and analysed for plastic entrapment. To validate the method, we calculated recovery rates of microplastics in lichen. Particularly, 253 MPs particles were detected across the 90 lichen samples: 97 % were fibers, and 3 % were fragments. A gradient in the number of microplastic fibers across the sites emerged, with increasing accumulation of microplastics from the natural site (n = 58) to the urban site (n = 116), with a direct relationship between the length and abundance of airborne microplastic fibers. Moreover, we detected the first evidences of airborne mesoplastics entrapped by lichens. On average, the natural site experienced the shortest fibre length and the centre of Rome the longest. No differences in microplastics accumulation emerged from the two genera. Our results indicated that lichens can effectively be used for passive biomonitoring of microplastic deposition. In this scenario, the role of lichens in entrapping microplastics and protecting pristine areas must be investigated. Furthermore, considering the impact that airborne microplastics can have on human health and the effectiveness of lichens as airborne microplastic bioindicators, their use is encouraged.
Collapse
Affiliation(s)
- Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Luca Gallitelli
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922 Verbania, Italy
| | - Susanna Romano
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Monica Orsini
- Department of Industrial, Electronic and Mechanical Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
190
|
Ikuno Y, Tsujino H, Haga Y, Manabe S, Idehara W, Hokaku M, Asahara H, Higashisaka K, Tsutsumi Y. Polyethylene, whose surface has been modified by UV irradiation, induces cytotoxicity: A comparison with microplastics found in beaches. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116346. [PMID: 38669869 DOI: 10.1016/j.ecoenv.2024.116346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Microplastics, plastic particles 5 mm or less in size, are abundant in the environment; hence, the exposure of humans to microplastics is a great concern. Usually, the surface of microplastics found in the environment has undergone degradation by external factors such as ultraviolet rays and water waves. One of the characteristics of changes caused by surface degradation of microplastics is the introduction of oxygen-containing functional groups. Surface degradation alters the physicochemical properties of plastics, suggesting that the biological effects of environmentally degraded plastics may differ from those of pure plastics. However, the biological effects of plastics introduced with oxygen-containing functional groups through degradation are poorly elucidated owing to the lack of a plastic sample that imitates the degradation state of plastics found in the environment. In this study, we investigated the degradation state of microplastics collected from a beach. Next, we degraded a commercially available polyethylene (PE) particles via vacuum ultraviolet (VUV) irradiation and showed that chemical surface state of PE imitates that of microplastics in the environment. We evaluated the cytotoxic effects of degraded PE samples on immune and epithelial cell lines. We found that VUV irradiation was effective in degrading PE within a short period, and concentration-dependent cytotoxicity was induced by degraded PE in all cell lines. Our results indicate that the cytotoxic effect of PE on different cell types depends on the degree of microplastic degradation, which contributes to our understanding of the effects of PE microplastics on humans.
Collapse
Affiliation(s)
- Yudai Ikuno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Museum Links, Osaka University, 1-13 Machikaneyamacho, Toyonaka, Osaka 560-0043, Japan.
| | - Yuya Haga
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sota Manabe
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Wakaba Idehara
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mii Hokaku
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruyasu Asahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuma Higashisaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Tsutsumi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
191
|
He X, Xie X, Xiang J, Yang M. Convenient Size Analysis of Nanoplastics on a Microelectrode. Anal Chem 2024; 96:6180-6185. [PMID: 38593062 DOI: 10.1021/acs.analchem.3c05065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Chemical recycling is a promising approach to reduce plastic pollution. Timely and accurate size analysis of produced nanoplastics is necessary to monitor the process and assess the quality of chemical recycling. In this work, a sandwich-type microelectrode sensor was developed for the size assessment of nanoplastics. β-Mercaptoethylamine was modified on the microelectrode to enhance its surface positive charge density. Polystyrene (PS) nanoplastics were captured on the sensor through electrostatic interactions. Ferrocene was used as an electrochemical beacon and attached to PS via hydrophobic interactions. The results show a nonlinear dependence of the sensor's current response on the PS particle size. The size resolving ability of the microelectrode is mainly attributed to the small size of the electrode and the resulting attenuation of the electric field strength. For mixed samples with different particle sizes, this method can provide accurate average particle sizes. Through an effective pretreatment process, the method can be applied to PS nanoplastics with different surface properties, ensuring its application in evaluating different chemical recycling methods.
Collapse
Affiliation(s)
- Xuan He
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Xin Xie
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha410083, P. R. China
| |
Collapse
|
192
|
Lima GMR, Mukherjee A, Picchioni F, Bose RK. Characterization of Biodegradable Polymers for Porous Structure: Further Steps toward Sustainable Plastics. Polymers (Basel) 2024; 16:1147. [PMID: 38675066 PMCID: PMC11054705 DOI: 10.3390/polym16081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics-polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 μm2, PBS showed an average porous area of 673 μm2, PHBV displayed open pores with an average area of 116.6 μm2, and PLA exhibited an average porous area of 620 μm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications.
Collapse
Affiliation(s)
| | | | | | - Ranjita K. Bose
- Product Technology Department, University of Groningen, 9747 AG Groningen, The Netherlands; (G.M.R.L.); (A.M.); (F.P.)
| |
Collapse
|
193
|
He F, Sun J, Wan JSH, Nawaz M, Javed Q, Pan L, Khattak WA, Bo Y, Xiang Y, Ren G, Lin X, Du D. Microplastics and cadmium affect invasion success by altering complementarity and selection effects in native community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171135. [PMID: 38402976 DOI: 10.1016/j.scitotenv.2024.171135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The diversity-invasibility hypothesis predicts that native plant communities with high biodiversity should be more resistant to invasion than low biodiversity communities. However, observational studies have found that there is often a positive relationship between native community diversity and invasibility. Pollutants were not tested for their potential to cause this positive relationship. Here, we established native communities with three levels of diversity (1, 2 and 4 species) and introduced an invasive plant [Symphyotrichum subulatum (Michx.) G. L. Nesom] to test the effects of different pollutant treatments (i.e., unpolluted control, microplastics (MPs) alone, cadmium (Cd) alone, and their combination) on the relationship between native community diversity and community invasibility. Our results indicate that different MPs and Cd treatments altered the invasibility of native communities, but this effect may depend on the type of pollutant. MPs single treatment reduced invasion success, and the degree of reduction increased with increasing native community diversity (Diversity 2: - 14.1 %; Diversity 4: - 63.1 %). Cd single treatment increased the aboveground biomass of invasive plants (+ 40.2 %) and invasion success. The presence of MPs inhibited the contribution of Cd to invasion success. Furthermore, we found that the complementarity and selection effects of the native community were negatively correlated with invasion success, and their relative contributions to invasion success also depended on the pollutant type. We found new evidence of how pollutants affect the relationship between native community diversity and habitat invasibility, which provides new perspectives for understanding and managing biological invasions in the context of environmental pollution. This may contribute to promoting the conservation of biodiversity, especially in ecologically sensitive and polluted areas.
Collapse
Affiliation(s)
- Feng He
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Justin S H Wan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mohsin Nawaz
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qaiser Javed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wajid Ali Khattak
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Xiang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guangqian Ren
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin Lin
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
194
|
Li HH, Chen XW, Zhai FH, Li YT, Zhao HM, Mo CH, Luo Y, Xing B, Li H. Arbuscular Mycorrhizal Fungus Alleviates Charged Nanoplastic Stress in Host Plants via Enhanced Defense-Related Gene Expressions and Hyphal Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6258-6273. [PMID: 38450439 DOI: 10.1021/acs.est.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.
Collapse
Affiliation(s)
- Han Hao Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Feng Hua Zhai
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yong Tao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hai Ming Zhao
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce Hui Mo
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yongming Luo
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
195
|
Zhang D, Wu C, Liu Y, Li W, Li S, Peng L, Kang L, Ullah S, Gong Z, Li Z, Ding D, Jin Z, Huang H. Microplastics are detected in human gallstones and have the ability to form large cholesterol-microplastic heteroaggregates. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133631. [PMID: 38335610 DOI: 10.1016/j.jhazmat.2024.133631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Ubiquitous pollution due to microplastics through the food chain is a major cause of various deleterious effects on the human health. The aim of this study was to determine the existence of microplastics and the internal mechanism of microplastics as accelerators of cholelithiasis. Gallstones were collected from 16 patients after cholecystectomy, and microplastics in the gallstones were detected through laser direct infrared and pyrolysis gas chromatographymass spectrometry examinations. Mice model of gallstone were constructed with or without different diameters of microplastic (0.5, 5 and 50 µm). The affinity between microplastic and cholesterol or bilirubin was tested by co-culturing and qualified using molecular dynamics simulations. Finally, altered gut microbiota among the groups were identified using 16 s rRNA sequencing. The presence of microplastics in the gallstones of all the patients were confirmed. Microplastic content was significantly higher in younger chololithiasis patients (age<50 years). Mice fed a high-cholesterol diet with microplastic drinks showed more severe chololithiasis. In terms of the mechanism, microplastics showed a higher affinity for cholesterol than for bilirubin. Significant alterations in the gut microbiota have also been identified after microplastic intake in mice. Our study revealed the presence of microplastics in human gallstones, showcasing their potential to aggravate chololithiasis by forming large cholesterol-microplastic heteroaggregates and altering the gut microbiota.
Collapse
Affiliation(s)
- Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chang Wu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yue Liu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wanshun Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shiyu Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Saif Ullah
- Department of Gastroenterology, First affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zijun Gong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Dan Ding
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
196
|
Liu L, Yang X, Ellam RM, Li Q, Feng D, Song Z, Tang J. Evidence that co-existing cadmium and microplastics have an antagonistic effect on greenhouse gas emissions from paddy field soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133696. [PMID: 38341889 DOI: 10.1016/j.jhazmat.2024.133696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Accumulation of microplastics (MPs) and cadmium (Cd) are ubiquitous in paddy soil. However, the combined effects of MPs and Cd on physiochemical and microbial mechanisms in soils and the attendant implications for greenhouse gas (GHG) emissions, remain largely unknown. Here, we evaluated the influence of polylactic acid (PLA) and polyethylene (PE) MPs on GHG emissions from Cd-contaminated paddy soil using a microcosm experiment under waterlogged and drained conditions. The results showed that PLA significantly increased CH4 and N2O emission fluxes and hence the global warming potential (GWP) of waterlogged soil. Soils treated with MPs+Cd showed significantly reduced GWP compared to those treated only with MPs suggesting that, irrespective of attendant consequences, Cd could alleviate N2O emissions in the presence of MPs. Conversely, the presence of MPs in Cd-contaminated soils tended to alleviate the bioavailability of Cd. Based on a structural equation model analysis, both the MPs-derived dissolved organic matter and the soil bioavailable Cd affected indirectly on soil GHG emissions through their direct influencing on microbial abundance (e.g., Firmicutes, Nitrospirota bacteria). These findings provide new insights into the assessment of GHG emissions and soil/cereal security in response to MPs and Cd coexistence that behaved antagonistically with respect to adverse ecological effects in paddy systems.
Collapse
Affiliation(s)
- Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinzuo Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rob M Ellam
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Qiang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Di Feng
- Shandong Facility Horticulture Bioengineering Research Center/Weifang University of Science and Technology, Weifang 262700, Shandong, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
197
|
Xiang Y, Rillig MC, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Global Responses of Soil Carbon Dynamics to Microplastic Exposure: A Data Synthesis of Laboratory Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5821-5831. [PMID: 38416534 PMCID: PMC10993418 DOI: 10.1021/acs.est.3c06177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) contamination presents a significant global environmental challenge, with its potential to influence soil carbon (C) dynamics being a crucial aspect for understanding soil C changes and global C cycling. This meta-analysis synthesizes data from 110 peer-reviewed publications to elucidate the directional, magnitude, and driving effects of MPs exposure on soil C dynamics globally. We evaluated the impacts of MPs characteristics (including type, biodegradability, size, and concentration), soil properties (initial pH and soil organic C [SOC]), and experimental conditions (such as duration and plant presence) on various soil C components. Key findings included the significant promotion of SOC, dissolved organic C, microbial biomass C, and root biomass following MPs addition to soils, while the net photosynthetic rate was reduced. No significant effects were observed on soil respiration and shoot biomass. The study highlights that the MPs concentration, along with other MPs properties and soil attributes, critically influences soil C responses. Our results demonstrate that both the nature of MPs and the soil environment interact to shape the effects on soil C cycling, providing comprehensive insights and guiding strategies for mitigating the environmental impact of MPs.
Collapse
Affiliation(s)
- Yangzhou Xiang
- Guizhou Provincial Key Laboratory of Geographic State Monitoring of Watershed, School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Matthias C Rillig
- Institut für Biologie, Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Freie Universität Berlin, Berlin D-14195, Germany
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia 08193, Spain
- CREAF - Ecological and Forestry Applications Research Centre, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecolog Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
198
|
Ye Q, Wu Y, Liu W, Ma X, He D, Wang Y, Li J, Wu W. Identification and quantification of nanoplastics in different crops using pyrolysis gas chromatography-mass spectrometry. CHEMOSPHERE 2024; 354:141689. [PMID: 38492677 DOI: 10.1016/j.chemosphere.2024.141689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Quantitative studies of nanoplastics (NPs) abundance on agricultural crops are crucial for understanding the environmental impact and potential health risks of NPs. However, the actual extent of NP contamination in different crops remains unclear, and therefore insufficient quantitative data are available for adequate exposure assessments. Herein, a method with nitric acid digestion, multiple organic extraction combined with pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) quantification was used to determine the chemical composition and mass concentration of NPs in different crops (cowpea, flowering cabbage, rutabagas, and chieh-qua). Recoveries of 74.2-109.3% were obtained for different NPs in standard products (N = 6, RSD <9.6%). The limit of detection (LOD) and the limit of quantitation (LOQ) were 0.02-0.5 μg and 0.06-1.5 μg, respectively. The detection method for NPs exhibited good external calibration curves and linearity with 0.99. The results showed that poly (vinylchloride) (PVC), poly (ethylene terephthalate) (PET), polyethylene (PE), and polyadiohexylenediamine (PA66) NPs could be detected in crop samples, although the accumulation levels associated with the various crops varied significantly. PVC (N.D.-954.3 mg kg-1, dry weight (DW)) and PE (101.3-462.9 mg kg-1, DW) NPs were the dominant components in the samples of all four crop species, while high levels of PET (414.3-1430.1 mg kg-1, DW) NPs were detected in cowpea samples. Furthermore, there were notable differences in the accumulation levels of various edible crop parts, such as stems (60.2%) > leaves (39.8%) in flowering cabbage samples and peas (58.8%) > pods (41.2%) in cowpea samples. This study revealed the actual extent of NP contamination in different types of crops and provided crucial reference data for future research.
Collapse
Affiliation(s)
- Quanyun Ye
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| | - Wangrong Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Xiaorui Ma
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Dechun He
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Yuntao Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Junfei Li
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry Breeding Pollution, Guangzhou, 510655, China.
| |
Collapse
|
199
|
Arif Y, Mir AR, Zieliński P, Hayat S, Bajguz A. Microplastics and nanoplastics: Source, behavior, remediation, and multi-level environmental impact. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120618. [PMID: 38508005 DOI: 10.1016/j.jenvman.2024.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Plastics introduced into the natural environment persist, degrade, and fragment into smaller particles due to various environmental factors. Microplastics (MPs) (ranging from 1 μm to 5 mm) and nanoplastics (NPs) (less than 1 μm) have emerged as pollutants posing a significant threat to all life forms on Earth. Easily ingested by living organisms, they lead to ongoing bioaccumulation and biomagnification. This review summarizes existing studies on the sources of MPs and NPs in various environments, highlighting their widespread presence in air, water, and soil. It primarily focuses on the sources, fate, degradation, fragmentation, transport, and ecotoxicity of MPs and NPs. The aim is to elucidate their harmful effects on marine organisms, soil biota, plants, mammals, and humans, thereby enhancing the understanding of the complex impacts of plastic particles on the environment. Additionally, this review highlights remediation technologies and global legislative and institutional measures for managing waste associated with MPs and NPs. It also shows that effectively combating plastic pollution requires the synergization of diverse management, monitoring strategies, and regulatory measures into a comprehensive policy framework.
Collapse
Affiliation(s)
- Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Anayat Rasool Mir
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Piotr Zieliński
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| |
Collapse
|
200
|
Wang X, Deng K, Zhang P, Chen Q, Magnuson JT, Qiu W, Zhou Y. Microplastic-mediated new mechanism of liver damage: From the perspective of the gut-liver axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170962. [PMID: 38360312 DOI: 10.1016/j.scitotenv.2024.170962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
Microplastics (MPs) are environmental contaminants that are present in all environments and can enter the human body, accumulate in various organs, and cause harm through the ingestion of food, inhalation, and dermal contact. The connection between bowel and liver disease and the interplay between gut, liver, and flora has been conceptualized as the "gut-liver axis". Microplastics can alter the structure of microbial communities in the gut and the liver can also be a target for microplastic invasion. Numerous studies have found that when MPs impair human health, they not only promote dysbiosis of the gut microbiota and disruption of the gut barrier but also cause liver damage. For this reason, the gut-liver axis provides a new perspective in understanding this toxic response. The cross-talk between MPs and the gut-liver axis has attracted the attention of the scientific community, but knowledge about whether MPs cause gut-liver interactions through the gut-liver axis is still very limited, and the effect of MPs on liver injury is not well understood. MPs can directly induce microbiota disorders and gut barrier dysfunction. As a result, harmful bacteria and metabolites in the gut enter the blood through the weak intestinal barrier (portal vein channel along the gut-liver axis) and reach the liver, causing liver damage (inflammatory damage, metabolic disorders, oxidative stress, etc.). This review provides an integrated perspective of the gut-liver axis to help conceptualize the mechanisms by which MP exposure induces gut microbiota dysbiosis and hepatic injury and highlights the connection between MPs and the gut-liver axis. Therefore, from the perspective of the gut-liver axis, targeting intestinal flora is an important way to eliminate microplastic liver damage.
Collapse
Affiliation(s)
- Xiaomei Wang
- Health Science Center, Ningbo University, Ningbo 315211, China; The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Kaili Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Zhang
- Ningbo Hangzhou Bay Hospital, Ningbo 315336, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Jason T Magnuson
- U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO 65201, USA
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuping Zhou
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China; Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo 315020, China; Institute of Digestive Disease of Ningbo University, Ningbo 315020, China.
| |
Collapse
|