151
|
Higher levels of cervicovaginal inflammatory and regulatory cytokines and chemokines in healthy young women with immature cervical epithelium. J Reprod Immunol 2010; 88:66-71. [PMID: 21051089 DOI: 10.1016/j.jri.2010.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/13/2010] [Accepted: 07/15/2010] [Indexed: 11/24/2022]
Abstract
Young women aged 15-24 years have the highest rates of sexually transmitted infections (STIs). The vulnerability of adolescents is often attributed to risky sexual behaviors, whereas biological factors affecting mucosal immunity are poorly understood. The objective of this cross-sectional study was to examine associations between the type of cervical epithelium and protein levels of 11 cervicovaginal cytokines and chemokines in non-pregnant healthy young women. Cervical epithelial types were viewed on colpophotography and measured quantitatively using computerized planimetry. We selected 16 women with immature epithelium (predominantly columnar and early/mid squamous metaplasia), and 16 women with mature epithelium (predominantly squamous epithelium). Cytokine levels were measured in cervicovaginal lavage samples by MILLIPLEX™ MAP Human Cytokine/Chemokine multiplex immunoassay. Bivariate Box-Cox regression models compared cytokine levels between immature and mature groups. Multivariate Box-Cox models adjusted separately for age, years since menarche, days since last menses, years of sexual activity, number of lifetime sexual partners, HPV infection, hormonal contraceptive use, smoking, bacterial vaginosis by Nugent's criteria, and polymorphonuclear cells on wet prep. The mean age was 19.2 years. Women with immature epithelium demonstrated significantly higher levels of IL-1α, IL-1β, IL-6, IL-8, MIP-1α, RANTES, TNFα, IL-10, IL-12 and IFNγ (each p<0.01), compared to women with mature epithelium. Results remained highly significant in the multivariate models. Cytokine profiles in the healthy state may foreshadow differential responses to pathogens. Cervical epithelial type should be measured in clinical studies involving cervicovaginal immune markers.
Collapse
|
152
|
|
153
|
Sheldon IM, Roberts MH. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS One 2010; 5:e12906. [PMID: 20877575 PMCID: PMC2943929 DOI: 10.1371/journal.pone.0012906] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ascending infections of the female genital tract with bacteria causes pelvic inflammatory disease (PID), preterm labour and infertility. Lipopolysaccharide (LPS) is the main component of the cell wall of Gram-negative bacteria. Innate immunity relies on the detection of LPS by Toll-like receptor 4 (TLR4) on host cells. Binding of LPS to TLR4 on immune cells stimulates secretion of pro-inflammatory cytokines such as IL-6, chemokines such as CXCL1 and CCL20, and prostaglandin E(2). The present study tested the hypothesis that TLR4 on endometrial epithelial and stromal cells is essential for the innate immune response to LPS in the female genital tract. METHODOLOGY/PRINCIPAL FINDINGS Wild type (WT) mice expressed TLR4 in the endometrium. Intrauterine infusion of purified LPS caused pelvic inflammatory disease, with accumulation of granulocytes throughout the endometrium of WT but not Tlr4(-/-) mice. Intra-peritoneal infusion of LPS did not cause PID in WT or Tlr4(-/-) mice, indicating the importance of TLR4 in the endometrium for the detection of LPS in the female genital tract. Stromal and epithelial cells isolated from the endometrium of WT but not Tlr4(-/-) mice, secreted IL-6, CXCL1, CCL20 and prostaglandin E(2) in response to LPS, in a concentration and time dependent manner. Co-culture of combinations of stromal and epithelial cells from WT and Tlr4(-/-) mice provided little evidence of stromal-epithelial interactions in the response to LPS. CONCLUSIONS/SIGNIFICANCE The innate immune response to LPS in the female genital tract is dependent on TLR4 on the epithelial and stromal cells of the endometrium.
Collapse
Affiliation(s)
- Iain Martin Sheldon
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom.
| | | |
Collapse
|
154
|
Bulla R, De Seta F, Radillo O, Agostinis C, Durigutto P, Pellis V, De Santo D, Crovella S, Tedesco F. Mannose-binding lectin is produced by vaginal epithelial cells and its level in the vaginal fluid is influenced by progesterone. Mol Immunol 2010; 48:281-6. [PMID: 20728220 DOI: 10.1016/j.molimm.2010.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 07/20/2010] [Accepted: 07/25/2010] [Indexed: 11/30/2022]
Abstract
Mannose-binding lectin (MBL) is a recognition molecule of the complement (C) system and binds to carbohydrate ligands present on a wide range of pathogenic bacteria, viruses, fungi, and parasites. MBL has been detected in the cervico-vaginal cavity where it can provide a first-line defence against infectious agents colonizing the lower tract of the reproductive system. Analysis of the cervico-vaginal lavage (CVL) obtained from 11 normal cycling women at different phases of the menstrual cycle revealed increased levels of MBL in the secretive phase. Part of this MBL derives from the circulation as indicated by the presence of transferrin in CVL tested as a marker of vascular and tissue permeability. The local synthesis of MBL is suggested by the finding that its level is substantially higher than that of transferrin in the secretive phase. The contribution of endometrium is negligible since the MBL level did not change before and after hysterectomy. RT-PCR and in situ RT-PCR analysis showed that the vaginal tissue, and in particular the basal layer of the epithelium, is a source of MBL which binds to the basal membrane and to cells of the outer layers of the epithelium. In conclusion, we have shown that MBL detected in CVL derives both from plasma as result of transudation and from local synthesis and its level is progesterone dependent increasing in the secretive phase of the menstrual cycle.
Collapse
Affiliation(s)
- R Bulla
- Department of Life Sciences, University of Trieste, via Valerio 28, 34127 Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Shao R, Zhang SX, Weijdegård B, Zou S, Egecioglu E, Norström A, Brännström M, Billig H. Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights. Mol Hum Reprod 2010; 16:907-15. [PMID: 20647263 PMCID: PMC2989829 DOI: 10.1093/molehr/gaq063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human ectopic pregnancy (EP) remains a common cause of pregnancy-related first trimester death. Nitric oxide (NO) is synthesized from L-arginine by three NO synthases (NOS) in different tissues, including the Fallopian tube. Studies of knockout mouse models have improved our understanding of the function of NOS isoforms in reproduction, but their roles and specific mechanisms in infection-induced tubal dysfunction have not been fully elucidated. Here, we provide an overview of the expression, regulation and possible function of NOS isoforms in the Fallopian tube, highlighting the effects of infection-induced changes in the tubal cellular microenvironment (imbalance of NO production) on tubal dysfunction and the potential involvement of NOS isoforms in tubal EP after Chlamydia trachomatis genital infection. The non-equivalent regulation of tubal NOS isoforms during the menstrual cycle suggests that endogenous ovarian steroid hormones regulate NOS in an isoform-specific manner. The current literature suggests that infection with C. trachomatis induces an inflammatory response that eventually leads to tubal epithelial destruction and functional impairment, caused by a high NO output mediated by inducible NOS (iNOS). Therefore, tissue-specific therapeutic approaches to suppress iNOS expression may help to prevent ectopic implantation in patients with prior C. trachomatis infection of the Fallopian tube.
Collapse
Affiliation(s)
- Ruijin Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Timmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab 2010; 21:353-61. [PMID: 20172738 PMCID: PMC2880223 DOI: 10.1016/j.tem.2010.01.011] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Appropriate and timely cervical remodeling is key for successful birth. Premature cervical opening can result in preterm birth which occurs in 12.5% of pregnancies. Research focused on the mechanisms of term and preterm cervical remodeling is essential to prevent prematurity. This review highlights recent findings that better define molecular processes driving progressive disorganization of the cervical extracellular matrix. This includes studies that redefine the role of immune cells and identify diverse functions of the cervical epithelia and hyaluronan in remodeling. New investigations proposing that infection-induced premature cervical remodeling is distinct from the normal process are presented. Recent advances in our understanding of term and preterm cervical remodeling provide new directions for investigation and compel investigators to reevaluate currently accepted models.
Collapse
Affiliation(s)
- Brenda Timmons
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75235-9032, USA
| | | | | |
Collapse
|
157
|
Zarnani AH, Shahbazi M, Salek-Moghaddam A, Zareie M, Tavakoli M, Ghasemi J, Rezania S, Moravej A, Torkabadi E, Rabbani H, Jeddi-Tehrani M. Vitamin D3 receptor is expressed in the endometrium of cycling mice throughout the estrous cycle. Fertil Steril 2010; 93:2738-43. [DOI: 10.1016/j.fertnstert.2009.09.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 09/23/2009] [Accepted: 09/23/2009] [Indexed: 10/20/2022]
|
158
|
Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 2010; 6:e1000852. [PMID: 20386714 PMCID: PMC2851733 DOI: 10.1371/journal.ppat.1000852] [Citation(s) in RCA: 455] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 03/08/2010] [Indexed: 01/25/2023] Open
Abstract
While several clinical studies have shown that HIV-1 infection is associated with increased permeability of the intestinal tract, there is very little understanding of the mechanisms underlying HIV-induced impairment of mucosal barriers. Here we demonstrate that exposure to HIV-1 can directly breach the integrity of mucosal epithelial barrier, allowing translocation of virus and bacteria. Purified primary epithelial cells (EC) isolated from female genital tract and T84 intestinal cell line were grown to form polarized, confluent monolayers and exposed to HIV-1. HIV-1 X4 and R5 tropic laboratory strains and clinical isolates were seen to reduce transepithelial resistance (TER), a measure of monolayer integrity, by 30–60% following exposure for 24 hours, without affecting viability of cells. The decrease in TER correlated with disruption of tight junction proteins (claudin 1, 2, 4, occludin and ZO-1) and increased permeability. Treatment of ECs with HIV envelope protein gp120, but not HIV tat, also resulted in impairment of barrier function. Neutralization of gp120 significantly abrogated the effect of HIV. No changes to the barrier function were observed when ECs were exposed to Env defective mutant of HIV. Significant upregulation of inflammatory cytokines, including TNF-α, were seen in both intestinal and genital epithelial cells following exposure to HIV-1. Neutralization of TNF-α reversed the reduction in TERs. The disruption in barrier functions was associated with viral and bacterial translocation across the epithelial monolayers. Collectively, our data shows that mucosal epithelial cells respond directly to envelope glycoprotein of HIV-1 by upregulating inflammatory cytokines that lead to impairment of barrier functions. The increased permeability could be responsible for small but significant crossing of mucosal epithelium by virus and bacteria present in the lumen of mucosa. This mechanism could be particularly relevant to mucosal transmission of HIV-1 as well as immune activation seen in HIV-1 infected individuals. Clinical studies have shown that HIV-1 infected patients have increased intestinal permeability. In chronically infected patients that progress to AIDS, there is activation of immune cells consistent with leakage of microbes via the gut. However, the mechanism by which this occurs is not clear. Here, we show that direct exposure of intestinal and genital epithelial cells to HIV leads to breaching of the mucosal barrier and increased leakage of both bacteria and virus across the epithelium. The mechanism of this breakdown appears to be due to inflammatory factors produced by epithelial cells themselves, in response to HIV-1 exposure, that destroy the tight junctions between epithelial cells, thereby allowing microbes access to the inside of the body. Interestingly, we found that treatment of epithelial cells with just the surface glycoprotein from HIV could lead to similar breakdown of the barrier. This implies that when mucosal epithelial cells come in direct contact with large amounts of HIV-1, the virus can cross into the inside of the body and cause direct infection of target cells. The crossing of the bacteria by similar mechanism can lead to chronic inflammation and activation of immune cells of the body.
Collapse
|
159
|
Wira CR, Fahey JV, Ghosh M, Patel MV, Hickey DK, Ochiel DO. Sex hormone regulation of innate immunity in the female reproductive tract: the role of epithelial cells in balancing reproductive potential with protection against sexually transmitted pathogens. Am J Reprod Immunol 2010; 63:544-65. [PMID: 20367623 DOI: 10.1111/j.1600-0897.2010.00842.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The immune system in the female reproductive tract (FRT) does not mount an attack against HIV or other sexually transmitted infections (STI) with a single endogenously produced microbicide or with a single arm of the immune system. Instead, the body deploys dozens of innate antimicrobials to the secretions of the female reproductive tract. Working together, these antimicrobials along with mucosal antibodies attack many different viral, bacterial and fungal targets. Within the FRT, the unique challenges of protection against sexually transmitted pathogens coupled with the need to sustain the development of an allogeneic fetus have evolved in such a way that sex hormones precisely regulate immune function to accomplish both tasks. The studies presented in this review demonstrate that estradiol and progesterone secreted during the menstrual cycle act both directly and indirectly on epithelial cells and other immune cells in the reproductive tract to modify immune function in a way that is unique to specific sites throughout the FRT. As presented in this review, studies from our laboratory and others demonstrate that the innate immune response is under hormonal control, varies with the stage of the menstrual cycle, and as such is suppressed at mid-cycle to optimize conditions for successful fertilization and pregnancy. In doing so, a window of STI vulnerability is created during which potential pathogens including HIV enter the reproductive tract to infect host targets.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
Measures to prevent sexual mucosal transmission of human immunodeficiency virus (HIV)-1 are urgently needed to curb the growth of the acquired immunodeficiency syndrome (AIDS) pandemic and ultimately bring it to an end. Studies in animal models and acute HIV-1 infection reviewed here reveal potential viral vulnerabilities at the mucosal portal of entry in the earliest stages of infection that might be most effectively targeted by vaccines and microbicides, thereby preventing acquisition and averting systemic infection, CD4 T-cell depletion and pathologies that otherwise rapidly ensue.
Collapse
Affiliation(s)
- Ashley T Haase
- Department of Microbiology, University of Minnesota, Minnesota 55455, USA.
| |
Collapse
|
161
|
Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, Chandler A, Roberts MH, Price SB, Gilbert RO, Simpson KW. Specific strains of Escherichia coli are pathogenic for the endometrium of cattle and cause pelvic inflammatory disease in cattle and mice. PLoS One 2010; 5:e9192. [PMID: 20169203 PMCID: PMC2820550 DOI: 10.1371/journal.pone.0009192] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 01/19/2010] [Indexed: 01/19/2023] Open
Abstract
Background Escherichia coli are widespread in the environment and pathogenic strains cause diseases of mucosal surfaces including the female genital tract. Pelvic inflammatory disease (PID; metritis) or endometritis affects ∼40% of cattle after parturition. We tested the expectation that multiple genetically diverse E. coli from the environment opportunistically contaminate the uterine lumen after parturition to establish PID. Methodology/Principal Findings Distinct clonal groups of E. coli were identified by Random Amplification of Polymorphic DNA (RAPD) and Multilocus sequence typing (MLST) from animals with uterine disease and these differed from known diarrhoeic or extra-intestinal pathogenic E. coli. The endometrial pathogenic E. coli (EnPEC) were more adherent and invasive for endometrial epithelial and stromal cells, compared with E. coli isolated from the uterus of clinically unaffected animals. The endometrial epithelial and stromal cells produced more prostaglandin E2 and interleukin-8 in response to lipopolysaccharide (LPS) purified from EnPEC compared with non-pathogenic E. coli. The EnPEC or their LPS also caused PID when infused into the uterus of mice with accumulation of neutrophils and macrophages in the endometrium. Infusion of EnPEC was only associated with bacterial invasion of the endometrium and myometrium. Despite their ability to invade cultured cells, elicit host cell responses and establish PID, EnPEC lacked sixteen genes commonly associated with adhesion and invasion by enteric or extraintestinal pathogenic E. coli, though the ferric yersiniabactin uptake gene (fyuA) was present in PID-associated EnPEC. Endometrial epithelial or stromal cells from wild type but not Toll-like receptor 4 (TLR4) null mice secreted prostaglandin E2 and chemokine (C-X-C motif) ligand 1 (CXCL1) in response to LPS from EnPEC, highlighting the key role of LPS in PID. Conclusions/Significance The implication arising from the discovery of EnPEC is that development of treatments or vaccines for PID should focus specifically on EnPEC and not other strains of E. coli.
Collapse
Affiliation(s)
- I Martin Sheldon
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Hel Z, Stringer E, Mestecky J. Sex steroid hormones, hormonal contraception, and the immunobiology of human immunodeficiency virus-1 infection. Endocr Rev 2010; 31:79-97. [PMID: 19903932 PMCID: PMC2852204 DOI: 10.1210/er.2009-0018] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Worldwide, an increasing number of women use oral or injectable hormonal contraceptives. However, inadequate information is available to aid women and health care professionals in weighing the potential risks of hormonal contraceptive use in individuals living with HIV-1 or at high risk of infection. Numerous epidemiological studies and challenge studies in a rhesus macaque model suggest that progesterone-based contraceptives increase the risk of HIV-1 infection in humans and simian immunodeficiency virus (SIV) infection in macaques, accelerate disease progression, and increase viral shedding in the genital tract. However, because several other studies in humans have not observed any effect of exogenously administered progesterone on HIV-1 acquisition and disease progression, the issue continues to be a topic of intense research and ongoing discussion. In contrast to progesterone, systemic or intravaginal treatment with estrogen efficiently protects female rhesus macaques against the transmission of SIV, likely by enhancing the natural protective properties of the lower genital tract mucosal tissue. Although the molecular and cellular mechanisms underlying the effect of sex steroid hormones on HIV-1 and SIV acquisition and disease progression are not well understood, progesterone and estrogen are known to regulate a number of immune mechanisms that may exert an effect on retroviral infection. This review summarizes current knowledge of the effects of various types of sex steroid hormones on immune processes involved in the biology of HIV-1 infection.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, Alabama 35294-2170, USA.
| | | | | |
Collapse
|
163
|
Sheldon IM, Price SB, Cronin J, Gilbert RO, Gadsby JE. Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle. Reprod Domest Anim 2009; 44 Suppl 3:1-9. [PMID: 19660075 DOI: 10.1111/j.1439-0531.2009.01465.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Clinical and subclinical endometritis are common causes of infertility and subfertility in high producing dairy cattle, delaying the onset of ovarian cyclic activity after parturition, extending luteal phases and reducing conception rates. Escherichia coli and Arcanobacterium pyogenes cause endometrial damage and inflammation. Components of microbes, such as lipopolysaccharide (LPS), are detected by Toll-like receptors on endometrial cells, leading to secretion of cytokines, chemokines and antimicrobial peptides. Long luteal phases associated with endometritis are probably caused by a switch in endometrial prostaglandin production from prostaglandin F2a (PGF) to prostaglandin E2. In addition, LPS impairs the function of the hypothalamus and pituitary, and directly perturbs ovarian granulosa cells steroidogenesis, providing mechanisms to explain the association between uterine disease and anovulatory anoestrus. Cows with uterine disease that ovulate have lower peripheral plasma progesterone concentrations that may further reduce the chance of conception associated with endometritis.
Collapse
Affiliation(s)
- I M Sheldon
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, UK.
| | | | | | | | | |
Collapse
|
164
|
Kaushic C. The role of the local microenvironment in regulating susceptibility and immune responses to sexually transmitted viruses in the female genital tract. J Reprod Immunol 2009; 83:168-72. [PMID: 19857903 DOI: 10.1016/j.jri.2009.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 07/22/2009] [Accepted: 08/01/2009] [Indexed: 12/28/2022]
Abstract
Sexually transmitted viruses cause chronic infections that have serious long-term health consequences. Based on the evidence from clinical and epidemiological studies, women carry a disproportionately higher burden of sexually transmitted diseases. The reasons for this are not well understood and possibly relate to a variety of social, behavioral and economic factors. In addition to these factors there are biological reasons that contribute to the higher prevalence in women. In this context it is critical to focus on and understand the local microenvironment of the female genital tract, since the majority of viral infections in women occur by heterosexual transmission. The genital tract is also the target site for initiation and maintenance of protective immune responses that could prevent or eliminate viral infections. The epithelial cells of the genital tract provide the first line of defense against viral entry. The interactions between each sexually transmitted virus and the genital epithelium are distinct and determine the outcome of exposure. They are also influenced by a number of factors in the local genital milieu. Among these factors are the female sex hormones that regulate both the susceptibility as well as immune responses to viral infections in the genital tract. Better understanding of the interactions of viruses with the local environment in the female genital tract will lead to development of novel methods to prevent sexually transmitted infections as well as to enhance innate and adaptive immunity.
Collapse
Affiliation(s)
- Charu Kaushic
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, Michael G. DeGroote Center for Learning and Discovery Room 4014, McMaster University, Ontario, Canada.
| |
Collapse
|
165
|
Ghosh M, Shen Z, Fahey JV, Cu-Uvin S, Mayer K, Wira CR. Trappin-2/Elafin: a novel innate anti-human immunodeficiency virus-1 molecule of the human female reproductive tract. Immunology 2009; 129:207-19. [PMID: 19824918 DOI: 10.1111/j.1365-2567.2009.03165.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Trappin-2/Elafin is a serine protease inhibitor that plays a major role as an anti-inflammatory mediator at mucosal surfaces. In addition, Trappin-2/Elafin has antibacterial activity against Gram-positive and Gram-negative bacterial and fungal pathogens. In this study we examined the production of Trappin-2/Elafin by epithelial cells from the human upper and lower female reproductive tract as well as its activity as an anti-human immunodeficiency virus (HIV)-1 molecule. We found that primary uterine, Fallopian tube, cervical and ectocervical epithelial cells produce Trappin-2/Elafin constitutively and that production of Trappin-2/Elafin is enhanced following stimulation with Poly(I:C), especially by the uterine cells. Given the presence of Trappin-2/Elafin in the reproductive tract, we tested the ability of recombinant Trappin-2/Elafin to inhibit HIV-1, an important sexually transmitted pathogen. We found that recombinant Trappin-2/Elafin was able to inhibit both T-cell-tropic X4/IIIB and macrophage-tropic R5/BaL HIV-1 in a dose-dependent manner. The inhibitory activity was observed when virus was incubated with Trappin-2/Elafin but not when Trappin-2/Elafin was added to cells either before infection or after infection. This suggests that the mechanism of inhibition is likely to be a direct interaction between HIV-1 and Trappin-2/Elafin. Additionally, we measured the levels of secreted Trappin-2/Elafin in cervico-vaginal lavages (CVL) from both HIV-positive and HIV-negative women and found that average levels of secreted Trappin-2/Elafin were higher in the CVL from HIV-negative women, although the values did not reach statistical significance. We also found that women at the secretory phase of the menstrual cycle produced more Trappin-2/Elafin in CVL relative to women at the proliferative phase of the menstrual cycle. Our data suggest that Trappin-2/Elafin might be an important endogenous microbicide of the female reproductive tract that is protective against HIV-1.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
166
|
Distribution of eosinophil granulocytes and mast cells in the reproductive tract of female goats in the preimplantation phase. Vet Res Commun 2009; 33:545-54. [PMID: 19184632 DOI: 10.1007/s11259-009-9203-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Changes in eosinophil granulocytes and mast cells post-insemination may affect conceptus implantation, but information regarding the numbers of such cells in the mammalian reproductive tract is limited. This study investigated the preimplantation distribution of eosinophil granulocytes and mast cells (MCs) in the reproductive tract organs of female goats. Uterus, uterine cervix and uterine tubes samples were obtained at slaughter. Cornu uteri were washed in phosphate buffer solution (each animal contained at least one embryo). Tissues were fixed in 10% neutral buffered formol, Carnoy solution and Mota's fixative (basic lead acetate) for 48 h and embedded in paraffin. Six-micrometre-thick sections were stained with Congo red (for eosinophil granulocytes) and toluidine blue in 1% aqueous solution at pH 1.0 for 5 min (for MCs). In the uterus, MCs occurred in highest numbers in the myometrium. Higher MC numbers were observed in uterus, uterine and uterine tubes in the preimplantation (experimental) group (cycle synchronised through 7 days intravaginal sponge with 0.3 g P(4)) compared with the control group (P < 0.05). Eosinophil granulocyte numbers were significantly higher in the experimental group than in the control group (P < 0.05). These results indicate preimplantation-related changes in numbers of eosinophil granulocytes and MCs in goat reproductive tract organs.
Collapse
|
167
|
Davies D, Meade KG, Herath S, Eckersall PD, Gonzalez D, White JO, Conlan RS, O'Farrelly C, Sheldon IM. Toll-like receptor and antimicrobial peptide expression in the bovine endometrium. Reprod Biol Endocrinol 2008; 6:53. [PMID: 19017375 PMCID: PMC2627908 DOI: 10.1186/1477-7827-6-53] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/18/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The endometrium is commonly infected with bacteria leading to severe disease of the uterus in cattle and humans. The endometrial epithelium is the first line of defence for this mucosal surface against bacteria and Toll-like receptors (TLRs) are a critical component of the innate immune system for detection of pathogen associated molecular patterns (PAMPs). Antimicrobial peptides, acute phase proteins and Mucin-1 (MUC-1) also provide non-specific defences against microbes on mucosal surfaces. The present study examined the expression of innate immune defences in the bovine endometrium and tested the hypothesis that endometrial epithelial cells express functional receptors of the TLR family and the non-specific effector molecules for defence against bacteria. METHODS Bovine endometrial tissue and purified populations of primary epithelial and stromal cells were examined using RT-PCR for gene expression of TLRs, antimicrobial peptides and MUC-1. Functional responses were tested by evaluating the secretion of prostaglandin E(2) and acute phase proteins when cells were treated with bacterial PAMPs such as bacterial lipopolysaccharide (LPS) and lipoproteins. RESULTS The endometrium expressed TLRs 1 to 10, whilst purified populations of epithelial cells expressed TLRs 1 to 7 and 9, and stromal cells expressed TLRs 1 to 4, 6, 7, 9 and 10. The TLRs appear to be functional as epithelial cells secreted prostaglandin E(2) in response to bacterial PAMPs. In addition, the epithelial cells expressed antimicrobial peptides, such as Tracheal and Lingual Antimicrobial Peptides (TAP and LAP) and MUC-1, which were upregulated when the cells were treated with LPS. However, the epithelial cells did not express appreciable amounts of the acute phase proteins haptoglobin or serum amyloid A. CONCLUSION Epithelial cells have an essential role in the orchestration of innate immune defence of the bovine endometrium and are likely to be the key to prevention of endometrial infection with bacteria.
Collapse
Affiliation(s)
- Darren Davies
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Kieran G Meade
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Shan Herath
- Department of Veterinary Clinical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - P David Eckersall
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Rd, Glasgow, G61 1QH, UK
| | - Deyarina Gonzalez
- Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - John O White
- Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - R Steven Conlan
- Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - Cliona O'Farrelly
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - I Martin Sheldon
- Institute of Life Science, School of Medicine, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
168
|
Nazli A, Yao XD, Smieja M, Rosenthal KL, Ashkar AA, Kaushic C. Differential induction of innate anti-viral responses by TLR ligands against Herpes simplex virus, type 2, infection in primary genital epithelium of women. Antiviral Res 2008; 81:103-12. [PMID: 19013198 DOI: 10.1016/j.antiviral.2008.10.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/02/2008] [Accepted: 10/07/2008] [Indexed: 11/16/2022]
Abstract
Genital epithelial cells (GECs) are the first line of mucosal defense against sexually transmitted infections. We exploited the ability of GECs to mount innate immune responses, by using TLR ligands to induce anti-viral activity against Herpes simplex virus, type 2 (HSV-2). Primary cultures of GECs were grown to confluent, polarized monolayers and found to express different levels of mRNA for TLR1-10. Innate anti-viral responses against HSV-2 infection were determined following treatment with eight different TLR ligands. HSV-2 replication was significantly inhibited following treatment with ligands for TLR3, 5 and 9, while lipo-polysaccharide (LPS), a TLR4 ligand, failed to provide any protection. Biologically active interferon-beta and nitric oxide production by GECs correlated with anti-viral activity. Following treatment with TLR3 ligand Poly I:C, inflammatory cytokines were upregulated. Poly I:C treatment led to activation of downstream transcription factors including interferon regulatory factor-3 (IRF-3) and NFkappaB. Anti-viral responses induced by TLR ligands in GECs may provide a unique alternative to topical microbicides by enhancing body's own mucosal innate defense mechanisms against sexually transmitted viruses.
Collapse
Affiliation(s)
- Aisha Nazli
- Center For Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Michael G. DeGroote Center for Learning and Discovery, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | | | | | |
Collapse
|
169
|
A new strategy to understand how HIV infects women: identification of a window of vulnerability during the menstrual cycle. AIDS 2008; 22:1909-17. [PMID: 18784454 DOI: 10.1097/qad.0b013e3283060ea4] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
170
|
Giles DK, Wyrick PB. Trafficking of chlamydial antigens to the endoplasmic reticulum of infected epithelial cells. Microbes Infect 2008; 10:1494-503. [PMID: 18832043 DOI: 10.1016/j.micinf.2008.09.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Revised: 08/29/2008] [Accepted: 09/02/2008] [Indexed: 01/02/2023]
Abstract
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.
Collapse
Affiliation(s)
- David K Giles
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | |
Collapse
|
171
|
Estradiol selectively regulates innate immune function by polarized human uterine epithelial cells in culture. Mucosal Immunol 2008; 1:317-25. [PMID: 19079193 PMCID: PMC4815904 DOI: 10.1038/mi.2008.20] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this study was to examine the role of E(2) in regulating innate immune protection by human uterine epithelial cells (UECs). Recognizing that UECs produce cytokines and chemokines to recruit and activate immune cells as well as viral and bacterial antimicrobials, we sought to examine the effect of E(2) on constitutive and Toll-like receptor (TLR) agonist (lipopolysaccharide (LPS) and poly (I:C))-induced immune responses. The secretion by polarized UECs in culture of interleukin (IL)-6, macrophage inhibitory factor (MIF), and secretory leukocyte protease inhibitor (SLPI) was examined as well as the mRNA expression of human beta-defensin-2 (HBD2), tumor necrosis factor (TNF)-alpha, IL-8, and nuclear factor (NF)-kB. When incubated with E(2) for 24-48 h, we found that E(2) stimulated UEC secretion of SLPI (fourfold) and mRNA expression of HBD2 (fivefold). Moreover, when antibacterial activity in UEC secretions was measured using Staphylococcus aureus, E(2) increased the secretion of soluble factor(s) with antibacterial activity. In contrast, E(2) had no effect on constitutive secretion of proinflammatory cytokines and chemokines by UECs but completely inhibited LPS- and poly (I:C)-induced secretion of MIF, IL-6, and IL-8. Estradiol also reversed the stimulatory effects of IL-1beta on mRNA expression of TNF-alpha, IL-8, and NF-kB by 85, 95, and 70%, respectively. As SLPI is known to inhibit NF-kB expression, these findings suggest that E(2) inhibition of proinflammatory cytokines may be mediated through SLPI regulation of NF-kB. Overall, these findings indicate that the production of cytokines, chemokines, and antimicrobials by UECs are differentially regulated by E(2). Further, it suggests that with E(2) regulation, epithelial cells that line the uterine cavity have evolved immunologically to be sensitive to viral and bacterial infections as well as the constraints of procreation.
Collapse
|
172
|
Ochiel DO, Fahey JV, Ghosh M, Haddad SN, Wira CR. Innate Immunity in the Female Reproductive Tract: Role of Sex Hormones in Regulating Uterine Epithelial Cell Protection Against Pathogens. CURRENT WOMEN'S HEALTH REVIEWS 2008; 4:102-117. [PMID: 19644567 PMCID: PMC2717724 DOI: 10.2174/157340408784246395] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mucosal immune system in the upper female reproductive tract is uniquely prepared to maintain a balance between the presence of commensal bacteria, sexually transmitted bacterial and viral pathogens, allogeneic spermatozoa, and an immunologically distinct fetus. At the center of this dynamic system are the epithelial cells that line the Fallopian tubes, uterus, cervix and vagina. Epithelial cells provide a first line of defense that confers continuous protection, by providing a physical barrier as well as secretions containing bactericidal and virucidal agents. In addition to maintaining a state of ongoing protection, these cells have evolved to respond to pathogens, in part through Toll-like receptors (TLRs), to enhance innate immune protection and, when necessary, to contribute to the initiation of an adaptive immune response. Against this backdrop, epithelial cell innate and adaptive immune function is modulated to meet the constraints of procreation. The overall goal of this review is to focus on the dynamic role of epithelial cells in the upper reproductive tract, with special emphasis on the uterus, to define the unique properties of these cells as they maintain homeostasis in preparation for successful fertilization and pregnancy while at the same time confer protection against sexually transmitted infections, which threaten to compromise women's reproductive health and survival. By understanding the nature of this protection and the ways in which innate and adaptive immunity are regulated by sex hormones, these studies provide the opportunity to contribute to the foundation of information essential for ensuring reproductive health.
Collapse
Affiliation(s)
- Daniel O Ochiel
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756 USA
| | | | | | | | | |
Collapse
|
173
|
Gill N, Davies EJ, Ashkar AA. The role of toll-like receptor ligands/agonists in protection against genital HSV-2 infection. Am J Reprod Immunol 2008; 59:35-43. [PMID: 18154594 DOI: 10.1111/j.1600-0897.2007.00558.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Control of virus replication initially depends on rapid activation of the innate immune responses. Toll-like receptor (TLR) ligands are potent inducers of innate immunity against viral infections, including herpes simplex virus (HSV). HSV-2 is currently one of the most common sexually transmitted infections in developed nations and is becoming more prevalent in adolescents. HSV-2 infects the genital mucosa and is associated with an increased risk of obtaining other sexually transmitted infections such as HIV. There is currently no vaccine available against HSV-2. In the last several years, there has been an interest in utilizing Toll-like receptor (TLR) ligands to initiate innate immune responses in order to provide an early line of defence against viral replication. This review highlights recent studies investigating the effect of various TLR ligands on genital HSV-2 infection. A considerable body of information has been published on the effect of local delivery of TLR ligands on HSV-2 replication in genital mucosa. We have outlined ligands that have a potential to provide protection against HSV-2 infection. In addition, we have presented possible mechanisms by which the local delivery of TLR ligands provides innate protection against genital HSV-2.
Collapse
Affiliation(s)
- Navkiran Gill
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | |
Collapse
|
174
|
Abstract
Chlamydia trachomatis causes genital tract infections that affect men, women, and children on a global scale. This review focuses on innate and adaptive immune responses in the female reproductive tract (FRT) to genital tract infections with C. trachomatis. It covers C. trachomatis infections and highlights our current knowledge of genital tract infections, serovar distribution, infectious load, and clinical manifestations of these infections in women. The unique features of the immune system of the FRT will be discussed and will include a review of our current knowledge of innate and adaptive immunity to chlamydial infections at this mucosal site. The use of animal models to study the pathogenesis of, and immunity to, Chlamydia infection of the female genital tract will also be discussed and a review of recent immunization and challenge experiments in the murine model of chlamydial FRT infection will be presented.
Collapse
|
175
|
Azawi OI. Postpartum uterine infection in cattle. Anim Reprod Sci 2008; 105:187-208. [PMID: 18280065 DOI: 10.1016/j.anireprosci.2008.01.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 12/25/2007] [Accepted: 01/14/2008] [Indexed: 10/22/2022]
Abstract
Postpartum uterine infections results from uterine contamination with bacteria during parturition. The prevalence of uterine infections varies considerably among studies. Uterine infection implies adherence of pathogenic organisms to the mucosa, colonization or penetration of the epithelium, and/or release of bacterial toxins that lead to establishment of uterine disease. The development of uterine disease depends on the immune response of the cow, as well as the species and number (load or challenge) of bacteria. The postpartum uterus has a disrupted surface epithelium in contact with fluid and tissue debris that can support bacterial growth. A variety of species of bacteria, both Gram-positive and Gram-negative aerobes and anaerobes, can be isolated from the early postpartum uterus. Most of these are environmental contaminants that are gradually eliminated during the first 6 weeks postpartum. A normal postpartum cow resolves uterine infection by rapid involution of the uterus and cervix, discharge of uterine content, and mobilization of natural host defenses, including mucus, antibodies and phagocytic cells. Clinical signs of uterine infection vary with the virulence of the causative organisms and the presence of factors that predispose to the disease. The treatment of endometritis and metritis in bovine should be directed towards improving fertility. The antibiotic should be active against the main uterine pathogens and should maintain its activity in the environment of the uterus. Also, should not inhibit the normal defense mechanisms and should be well tolerated and not induce irritation in the endometrium. Effective use of hormones in uterine infection requires knowledge of both normal reproductive endocrinology and the therapeutic characteristics of available hormonal preparations.
Collapse
Affiliation(s)
- O I Azawi
- Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Mosul, Mosul, Iraq.
| |
Collapse
|
176
|
Aflatoonian R, Fazeli A. Toll-like receptors in female reproductive tract and their menstrual cycle dependent expression. J Reprod Immunol 2008; 77:7-13. [PMID: 17493683 DOI: 10.1016/j.jri.2007.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/27/2007] [Accepted: 03/23/2007] [Indexed: 12/19/2022]
Abstract
Rapid innate immune defences against infection usually involve the recognition of invading pathogens by specific pattern recognition receptors recently attributed to the family of Toll-like receptors (TLR). TLRs constitute a major part of innate immune system, and have been characterised in different tissues and organs. Reports from our laboratory and others have demonstrated the existence of TLRs in the female reproductive tract, yet TLRs have not been explored completely in this system. There is little known about variation in TLR expression during the menstrual cycle and the effects that sex hormones may have on their expression and function. Here, we review recent information regarding the existence of TLRs in the female reproductive tract, their function in the maintenance of innate immune system in this tract and their potential role in pregnancy.
Collapse
Affiliation(s)
- Reza Aflatoonian
- Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield, Level 4, Jessop Wing, Tree Root Walk, Sheffield, UK
| | | |
Collapse
|
177
|
Cauci S, Culhane JF, Di Santolo M, McCollum K. Among pregnant women with bacterial vaginosis, the hydrolytic enzymes sialidase and prolidase are positively associated with interleukin-1beta. Am J Obstet Gynecol 2008; 198:132.e1-7. [PMID: 17714681 DOI: 10.1016/j.ajog.2007.05.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 03/09/2007] [Accepted: 05/22/2007] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The objective of the study was to explore the mechanisms of local innate immunity induction and modulation in pregnant women with bacterial vaginosis (BV). STUDY DESIGN A total of 200 singleton pregnant women in early gestation (12 +/- 4 weeks) with BV (Nugent 7-10) without concurrent vaginal infections with Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, syphilis, and yeast. Concentrations of vaginal interleukin (IL)-1beta and IL-8, the number of neutrophils, and the levels of sialidase and prolidase hydrolytic enzymes were determined in vaginal fluid. RESULTS Concentrations of vaginal IL-1beta had a strong positive correlation with levels of sialidase (P < .001) and prolidase (P < .001). Conversely, such enzymes were negatively correlated with the ratio of IL-8/IL-1beta (both P < .001) and were not significantly associated with concentrations of IL-8. Notably, the number of vaginal neutrophils had a negative correlation with sialidase (P = .007). CONCLUSION The strong induction of IL-1beta in BV-positive women appears to be associated with the production of the hydrolytic enzymes sialidase and prolidase by BV-associated bacteria. However, these 2 enzymes may inhibit the expected amplification of the proinflammatory IL-1beta cascade as evaluated by the down-regulation of the IL-8/IL-1beta ratio. A blunted response to IL-1beta signals may cause the poor rise of neutrophils, which is peculiar to BV. This impairment of local defense may contribute to increased susceptibility to adverse outcomes in BV-positive pregnant women.
Collapse
Affiliation(s)
- Sabina Cauci
- Department of Biomedical Sciences and Technologies, University of Udine School of Medicine, Udine, Italy.
| | | | | | | |
Collapse
|
178
|
Cotreau MM, Chennathukuzhi VM, Harris HA, Han L, Dorner AJ, Apseloff G, Varadarajan U, Hatstat E, Zakaria M, Strahs AL, Crabtree JS, Winneker RC, Jelinsky SA. A study of 17beta-estradiol-regulated genes in the vagina of postmenopausal women with vaginal atrophy. Maturitas 2007; 58:366-76. [PMID: 17997058 DOI: 10.1016/j.maturitas.2007.09.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 09/11/2007] [Accepted: 09/17/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND Vaginal atrophy (VA) is a prevalent disorder in postmenopausal women that is characterized by decreased epithelial thickness, reduced vaginal maturation index (VMI) and increased vaginal pH. Current medical therapy consists of local or systemic replacement of estrogens. OBJECTIVE The goal of this study was to understand, at a molecular level, the effect of estradiol (E2) on the vaginal epithelium. METHODS Nineteen women were treated with E2 delivered through a skin patch at a dose of 0.05mg/day for 12 weeks. The diagnosis of VA was confirmed by a VMI with < or =5% superficial cells and vaginal pH>5.0. Vaginal biopsy samples were collected at baseline and after treatment. Differentially expressed mRNA transcripts in these biopsies were determined by microarray analysis. RESULTS All 19 subjects had increased VMI (>5%) and/or reduced pH (< or =5) following treatment. Most subjects also had increased serum E2 levels and reduced serum FSH levels. Transcriptional profiling of vaginal biopsies identified over 3000 E2-regulated genes, including those involved in several key pathways known to regulate cell growth and proliferation, barrier function and pathogen defense. CONCLUSIONS E2 controls a plethora of cellular pathways that are concordant with its profound effect on vaginal physiology. The data presented here are a useful step toward understanding the role of E2 in vaginal tissue and the development of novel therapeutics for the treatment of VA.
Collapse
Affiliation(s)
- Monette M Cotreau
- Discovery Translational Medicine, Wyeth Research, Cambridge, MA, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ghosh M, Schaefer TM, Fahey JV, Wright JA, Wira CR. Antiviral responses of human Fallopian tube epithelial cells to toll-like receptor 3 agonist poly(I:C). Fertil Steril 2007; 89:1497-506. [PMID: 17669408 PMCID: PMC2647142 DOI: 10.1016/j.fertnstert.2007.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 05/11/2007] [Accepted: 05/11/2007] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To examine the expression of toll-like receptors (TLR) by primary human Fallopian tube epithelial cells (FTEC) and to determine whether exposure to the TLR3 agonist poly(I:C) induces an antiviral response. DESIGN Tissue culture study. SETTING University medical center. PATIENT(S) Premenopausal women undergoing hysterectomy. INTERVENTION(S) Primary human FTEC were grown to confluence and high transepithelial resistance and treated with TLR agonists. Conditioned media was collected and RNA was extracted and analyzed for the expression of cytokines, chemokines, and antimicrobial genes. MAIN OUTCOME MEASURE(S) The RNA was analyzed by real-time polymerase chain reaction and protein levels were assessed by enzyme-linked immunosorbent assay. RESULT(S) The FTEC were demonstrated to express TLR1-9 but not 10. Treatment of FTEC with TLR3 agonist poly(I:C) resulted in increased expression of interleukin-8, tumor-necrosis factor alpha, human beta-defensin 2, interferon beta, and interferon stimulated genes myxovirus resistance gene 1, 2',5'-oligoadenylate synthetase, and protein kinase R. Additionally, FTEC exposed to poly(I:C) also resulted in the induction of TLR2, TLR3, and TLR7. CONCLUSION(S) Our results suggest that FTEC are sensitive to viral infection and/or exposure to viral double-stranded RNA and can respond by secreting proinflammatory cytokines that mediate the initiation of an inflammatory response as well as expressing genes that can directly inhibit viral replication.
Collapse
Affiliation(s)
- Mimi Ghosh
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.
| | | | | | | | | |
Collapse
|
180
|
Yao XD, Fernandez S, Kelly MM, Kaushic C, Rosenthal KL. Expression of Toll-like receptors in murine vaginal epithelium is affected by the estrous cycle and stromal cells. J Reprod Immunol 2007; 75:106-19. [PMID: 17572507 DOI: 10.1016/j.jri.2007.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/24/2007] [Accepted: 04/26/2007] [Indexed: 11/28/2022]
Abstract
Vaginal epithelium is regulated by female sex hormones and serves as the first line of innate immune defense against sexually transmitted infections (STIs). This occurs in part through recognition of pathogens via Toll-like receptors (TLRs); however, the expression and role of TLRs in reproductive tract immunity are poorly understood. Here, we have compared the effect of the estrous cycle and treatment with DepoProvera (Depo) on TLR mRNA expression in whole mouse vaginal tissue, vaginal epithelium isolated using laser capture microdissection (LCM) and in primary vaginal epithelial cells (ECs) grown in vitro. Distinct patterns of TLR expression were observed in LCM-isolated vaginal epithelium versus whole vaginal tissue. Absolute quantitative RT-PCR of LCM vaginal epithelium showed that expression of all TLRs, except TLR11, was significantly increased during the diestrus phase or following Depo-treatment. TLR2 mRNA showed an extraordinary increase in expression in both diestrus and following Depo-treatment (23-fold) over that in the estrus phase. Although TLR2 protein was expressed at similar levels over the estrous cycle in whole vaginal tissue, full-length TLR2 protein was only detected during diestrus or after Depo-treatment in LCM-isolated vaginal epithelium. Distinct TLR mRNA expression profiles were seen also in primary vaginal ECs in vitro and only expression of TLR2 was significantly decreased in ECs cultured in the presence of stromal cells. Thus, TLR expression in vaginal ECs is regulated by sex hormones and can be affected by stromal cells. These findings contribute to our understanding of innate immune defense against STIs and enhance the quality of woman's reproductive health.
Collapse
Affiliation(s)
- Xiao-Dan Yao
- Centre for Gene Therapeutics, Department of Pathology & Molecular Medicine, McMaster University, MDCL 4019, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
181
|
Cassone A, De Bernardis F, Santoni G. Anticandidal immunity and vaginitis: novel opportunities for immune intervention. Infect Immun 2007; 75:4675-86. [PMID: 17562759 PMCID: PMC2044548 DOI: 10.1128/iai.00083-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Cassone
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
182
|
Fest S, Aldo PB, Abrahams VM, Visintin I, Alvero A, Chen R, Chavez SL, Romero R, Mor G. Trophoblast?Macrophage Interactions: a Regulatory Network for the Protection of Pregnancy. Am J Reprod Immunol 2007; 57:55-66. [PMID: 17156192 DOI: 10.1111/j.1600-0897.2006.00446.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Macrophages are one of the first immune cells observed at the implantation site. Their presence has been explained as the result of an immune response toward paternal antigens. The mechanisms regulating monocyte migration and differentiation at the implantation site are largely unknown. In the present study, we demonstrate that trophoblast cells regulate monocyte migration and differentiation. We propose that trophoblast cells 'educate' monocytes/macrophages to create an adequate environment that promote trophoblast survival. METHOD OF STUDY CD14(+) monocytes were isolated from peripheral blood using magnetic beads. Co-culture experiments were conducted using a two-chamber system. Monocytes were stimulated with lipopolysaccharide (LPS) and cytokine levels were determined using multiplex cytokine detecting assay. RESULTS Trophoblast cells increase monocyte migration and induce a significant increase in the secretion and production of the pro-inflammatory cytokines [interleukin-6 (IL-6), IL-8, tumor necrosis factor-alpha] and chemokines (growth-related oncogen-alpha, monocyte chemoattractant protein-1, macrophage inflammatory protein-1beta, RANTES). Furthermore, the response of monocytes to LPS was different in monocytes pre-exposed to trophoblast cells. CONCLUSION The results of this study suggest that trophoblast cells are able to recruit and successfully educate monocytes to produce and secrete a pro-inflammatory cytokine and chemokine profile supporting its growth and survival. Furthermore we demonstrate that trophoblast cells can modulate monocytes response to bacterial stimuli.
Collapse
Affiliation(s)
- Stefan Fest
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Soboll G, Crane-Godreau MA, Lyimo MA, Wira CR. Effect of oestradiol on PAMP-mediated CCL20/MIP-3 alpha production by mouse uterine epithelial cells in culture. Immunology 2006; 118:185-94. [PMID: 16771853 PMCID: PMC1782293 DOI: 10.1111/j.1365-2567.2006.02353.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study was undertaken to establish whether mouse uterine epithelial cells produce CCL20/macrophage inflammatory protein 3 alpha (CCL20/MIP-3 alpha) and to determine whether secretion is under hormonal control and influenced by pathogen-associated molecular patterns (PAMPs). In the absence of PAMPs, polarized uterine epithelial cells grown to confluence on cell culture inserts constitutively secreted CCL20/MIP-3 alpha with preferential accumulation into the apical compartment. When epithelial cells were treated with the Toll-like receptor (TLR) agonists Pam3Cys (TLR2/1), peptidoglycan (TLR2/6) or lipopolysaccharide (LPS; TLR4), CCL20/MIP-3 alpha increased rapidly (4 hr) in both apical and basolateral secretions. Time-course studies indicated that responses to PAMPs added to the apical surface persisted for 12-72 hr. Stimulation with loxoribin (TLR7) and DNA CpG motif (TLR9) increased basolateral but not apical secretion of CCL20/MIP-3 alpha. In contrast, the viral agonist Poly(I:C) (TLR3) had no effect on either apical or basolateral secretion. In other studies, we found that oestradiol added to the culture media decreased the constitutive release of CCL20/MIP-3 alpha. Moreover, when added to the culture media along with LPS, oestradiol inhibited LPS-induced increases in CCL20/MIP-3 alpha secretion into both the apical and basolateral compartments. In summary, these results indicate that CCL20/MIP-3 alpha is produced in response to PAMPs. Since CCL20/MIP-3 alpha is chemotactic for immature dendritic cells, B cells and memory T cells and has antimicrobial properties, these studies suggest that CCL20/MIP-3 alpha production by epithelial cells, an important part of the innate immune defence in the female reproductive tract, is under hormonal control and is responsive to microbial challenge.
Collapse
Affiliation(s)
- Gisela Soboll
- Department of Physiology, Dartmouth Medical SchoolLebanon, NH, USA
| | - Mardi A Crane-Godreau
- Departments of Microbiology and Immunology, Dartmouth Medical SchoolLebanon, NH, USA
| | | | - Charles R Wira
- Department of Physiology, Dartmouth Medical SchoolLebanon, NH, USA
| |
Collapse
|
184
|
Soboll G, Schaefer TM, Wira CR. Effect of toll-like receptor (TLR) agonists on TLR and microbicide expression in uterine and vaginal tissues of the mouse. ACTA ACUST UNITED AC 2006; 55:434-46. [PMID: 16674601 DOI: 10.1111/j.1600-0897.2006.00381.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PROBLEM Epithelial cells lining the uterine lumen are the first line of defense against pathogenic microbes. The objective of this study was to examine the expression of Toll-like receptors (TLRs), defensins and secretory leukocyte protease inhibitor (SLPI) in the mouse uterus and vagina and in primary uterine epithelial cells and to determine whether TLR agonists induce TLR and defensin expression. METHOD OF STUDY The mRNA expression of alpha- and beta-defensins (AD1, 2 and 5 and BD1, 2 and 4) and SLPI was examined by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) along with the secretion of macrophage chemotactic protein-1 (MCP-1), measured by enzyme-linked immunosorbent assay. RESULTS Expression of TLR1-9 as well as beta-defensins 1, 2 and 4 and SLPI by uterine and vaginal tissues was demonstrated by RT-PCR. beta-Defensins and SLPI expression was greater in the vagina than in the uterus. Comparison of fresh and polarized uterine epithelial cells indicated that TLR2-6 expression was unaffected by culture. Incubation of polarized epithelial cells with TLR agonists [lipopolysaccharide (LPS), Pam3Cys, Poly (I:C) or PGN] induced TLR5 and TLR9 expression but had no effect on TLR4, defensins or SLPI. Furthermore, exposure to LPS, Pam3Cys, Poly (I:C) or PGN, induced MCP-1 secretion by polarized epithelial cells in culture. CONCLUSION These results indicate that the uterus and vagina as well as uterine epithelial cells are responsive to bacterial and viral pathogens. Not only do epithelial cells respond to TLR agonists by releasing MCP-1, which mediates inflammatory responses, but they also influence the expression of selected TLR genes to further enhance innate immune protection.
Collapse
Affiliation(s)
- Gisela Soboll
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
185
|
Entrican G, Wheelhouse NM. Immunity in the female sheep reproductive tract. Vet Res 2006; 37:295-309. [PMID: 16611549 DOI: 10.1051/vetres:2006002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/18/2005] [Indexed: 11/14/2022] Open
Abstract
Immune surveillance in the female reproductive tract is dependent on the interplay of many factors that include the expression of pattern recognition receptors on epithelial cells, resident leukocyte populations and hormones, none of which are uniform. The lower reproductive tract must accommodate the presence of commensal organisms whereas the upper reproductive tract is sterile. However, the upper female reproductive tract has its own immunological challenge in that it must tolerate the presence of a semi-allogeneic fetus if pregnancy is to succeed. So, immune activation and effector mechanisms to control pathogens may be qualitatively and quantitatively different along the reproductive tract. Our knowledge of innate and adaptive immunity in the sheep is less comprehensive than that of human or mouse. Nevertheless, comparative studies suggest that there are likely to be conserved innate immune sensory mechanisms (e.g. Toll-like receptors) and defence mechanisms (anti-proteases, defensins) that combine to limit infection in its early stages while shaping the adaptive response that leads to immunological memory and long-term protection. There are many pathogens that target the reproductive tract, and in particular the placenta, where specialised immunoregulatory mechanisms are operational. Among such pathogens are bacteria belonging to the genera Chlamydia/Chlamydophila that chronically infect the reproductive tracts of sheep and humans and ultimately cause disease through inflammation and tissue damage. An understanding of the immunological microenvironment of the reproductive tract is important for the design of novel control strategies to control chlamydial disease.
Collapse
Affiliation(s)
- Gary Entrican
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh EH26 0PZ, United Kingdom.
| | | |
Collapse
|
186
|
Fahey JV, Wallace PK, Johnson K, Guyre PM, Wira CR. Antigen Presentation by Human Uterine Epithelial Cells to Autologous T Cells. Am J Reprod Immunol 2006; 55:1-11. [PMID: 16364006 DOI: 10.1111/j.1600-0897.2005.00343.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PROBLEM Epithelial cells, as sentinels of immune protection in the endometrium, use innate immune mechanisms to protect against infection from pathogenic microbes. Our goal in this study was to assess the ability of human uterine epithelial cells to present antigen to cells of the adaptive immune system. METHOD OF STUDY Highly purified preparations of uterine epithelial cells from 11 patients were assessed for their ability to present tetanus toxoid (TT) to autologous T cells. Leukocyte contamination in the epithelial cell preparations was numerically and functionally determined. Using confocal microscopy, epithelial cells were tested for the expression of CD40 and CD1d. RESULTS Purified preparations of endometrial epithelial cells isolated from every patient presented TT recall antigen to autologous T cells. Leukocyte contamination of epithelial cell preparations was insignificant. Uterine epithelial cells express CD40 and CD1d. CONCLUSION Antigen presentation is an additional aspect of uterine epithelial cell function in maintaining women's health.
Collapse
Affiliation(s)
- John V Fahey
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | | | |
Collapse
|
187
|
Trophoblast Cells as Immune Regulators. IMMUNOLOGY OF PREGNANCY 2006. [PMCID: PMC7120375 DOI: 10.1007/0-387-34944-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Medawar, in the early 1950s, recognized for the first time, the unique immunology of the maternal-fetal interface and its potential relevance for transplantation. In his original work, he described the “fetal allograft analogy” whereby the fetus may be viewed as a semi-allogeneic conceptus that has evaded rejection by the maternal immune system. Although numerous hypotheses have been proposed to prove this observation, none have demonstrated that the maternal immune system is antagonist to the invading trophoblast. In the present manuscript we have reviewed recent studies demonstrating the expression and function of TLRs in trophoblast cells and based on this data we propose an alternative view for maternal-fetal immune interactions.
Collapse
|
188
|
Wira CR, Rossoll RM, Young RC. Polarized uterine epithelial cells preferentially present antigen at the basolateral surface: role of stromal cells in regulating class II-mediated epithelial cell antigen presentation. THE JOURNAL OF IMMUNOLOGY 2005; 175:1795-804. [PMID: 16034121 DOI: 10.4049/jimmunol.175.3.1795] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To study Ag presentation in the female reproductive tract, DO11.10 TCR transgenic mice specific for the class II MHC-restricted OVA(323-339) peptide and non-transgenic BALB/c mice were used. We report here that freshly isolated uterine epithelial cells, uterine stromal, and vaginal APCs present OVA and OVA(323-339) peptide to naive- and memory T cells, which is reduced when cells are incubated with Abs to CD80 and 86. To determine whether polarized primary epithelial cells present Ags, uterine epithelial cells were cultured on cell inserts in either the upright or inverted position. After reaching confluence, as indicated by high transepithelial resistance (>2000 ohms/well), Ag presentation by epithelial cells incubated with memory T cells and OVA(323-339) peptide placed on the basolateral surface (inverted) was 2- to 3-fold greater than that seen with epithelial cells in contact with T cells and peptide on the apical surface (upright). In contrast, whereas freshly isolated epithelial cells process OVA, polarized epithelial cells did not. When epithelial cells grown upright on inserts were incubated with T cells and OVA(323-339) peptide, coculture with either hepatocyte growth factor or conditioned stromal medium increased epithelial cell Ag presentation (approximately 90% higher than controls). These studies indicate that uterine stromal cells produce a soluble factor(s) in addition to a hepatocyte growth factor, which regulates epithelial cell Ag presentation. Overall, these results demonstrate that polarized epithelial cells are able to present Ags and suggest that uterine stromal cells communicate with epithelial cells via a soluble factor(s) to regulate Ag presentation in the uterus.
Collapse
Affiliation(s)
- Charles R Wira
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756-0001, USA.
| | | | | |
Collapse
|
189
|
Fahey JV, Rossoll RM, Wira CR. Sex hormone regulation of anti-bacterial activity in rat uterine secretions and apical release of anti-bacterial factor(s) by uterine epithelial cells in culture. J Steroid Biochem Mol Biol 2005; 93:59-66. [PMID: 15748833 DOI: 10.1016/j.jsbmb.2004.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 11/18/2004] [Indexed: 11/21/2022]
Abstract
In mature female rats, sex hormones regulate the reproductive (estrous) cycle to optimize mating and fertility. During the part of the estrous cycle when mating occurs, and when estrogen is the dominant sex hormone, the uterus is susceptible to infection with bacteria that can be deleterious for survival and fertility. The present study investigated whether sex hormones regulate innate immunity in the female reproductive tract by affecting the secretion of an anti-bacterial factor(s) in the rat uterus. Uterine fluids from intact rats at the proestrous stage of the estrous cycle significantly inhibited Staphylococcus aureus growth. When ovariectomized rats were treated with estradiol, anti-bacterial activity against both S. aureus and Escherichia coli increased in uterine secretions with hormone treatment. In contrast, rats injected with either progesterone and estradiol or progesterone alone displayed no bactericidal activity indicating that progesterone reversed the stimulatory effect of estradiol on anti-bacterial activity. In other studies, isolated uterine epithelial cells from intact animals were grown to confluence and high transepithelial resistance on cell inserts. Analysis of apical secretions indicated that a soluble factor(s) is released by polarized epithelial cells which inhibits bacterial growth. These results demonstrate that sex hormones influence the presence of a broad-spectrum bactericidal factor(s) in luminal secretions of the rat uterus. Further these studies suggest that epithelial cells which line the uterine lumen are a primary source of anti-bacterial activity.
Collapse
Affiliation(s)
- John V Fahey
- Department of Physiology, Borwell Building, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH 03756, USA
| | | | | |
Collapse
|