151
|
Liu Z, Lim CY, Su MYF, Soh SLY, Shui G, Wenk MR, Grove KL, Radda GK, Han W, Xiao X. Neonatal overnutrition in mice exacerbates high-fat diet-induced metabolic perturbations. J Endocrinol 2013; 219:131-43. [PMID: 23959078 DOI: 10.1530/joe-13-0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO-HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO-HFD mice. Consistent with greater inflammation, CPO-HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR-HFD) mice. Furthermore, when compared with CTR-HFD mice, CPO-HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.
Collapse
Affiliation(s)
- Zhiguo Liu
- Laboratory of Lipid and Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing 400016, People's Republic of China Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, Agency for Science Technology and Research (A*STAR), #02-02 Helios, 11 Biopolis Way, Singapore 138667, Singapore Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119275, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Yang C, Jurczyk A, diIorio P, Norowski E, Brehm MA, Grant CW, Guberski DL, Greiner DL, Bortell R. Salicylate prevents virus-induced type 1 diabetes in the BBDR rat. PLoS One 2013; 8:e78050. [PMID: 24147110 PMCID: PMC3797740 DOI: 10.1371/journal.pone.0078050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022] Open
Abstract
Epidemiologic and clinical evidence suggests that virus infection plays an important role in human type 1 diabetes pathogenesis. We used the virus-inducible BioBreeding Diabetes Resistant (BBDR) rat to investigate the ability of sodium salicylate, a non-steroidal anti-inflammatory drug (NSAID), to modulate development of type 1 diabetes. BBDR rats treated with Kilham rat virus (KRV) and polyinosinic:polycytidylic acid (pIC, a TLR3 agonist) develop diabetes at nearly 100% incidence by ~2 weeks. We found distinct temporal profiles of the proinflammatory serum cytokines, IL-1β, IL-6, IFN-γ, IL-12, and haptoglobin (an acute phase protein) in KRV+pIC treated rats. Significant elevations of IL-1β and IL-12, coupled with sustained elevations of haptoglobin, were specific to KRV+pIC and not found in rats co-treated with pIC and H1, a non-diabetogenic virus. Salicylate administered concurrently with KRV+pIC inhibited the elevations in IL-1β, IL-6, IFN-γ and haptoglobin almost completely, and reduced IL-12 levels significantly. Salicylate prevented diabetes in a dose-dependent manner, and diabetes-free animals had no evidence of insulitis. Our data support an important role for innate immunity in virus-induced type 1 diabetes pathogenesis. The ability of salicylate to prevent diabetes in this robust animal model demonstrates its potential use to prevent or attenuate human autoimmune diabetes.
Collapse
Affiliation(s)
- Chaoxing Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Agata Jurczyk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Philip diIorio
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Elaine Norowski
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael A. Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Christian W. Grant
- Biomedical Research Models, Worcester, Massachusetts, United States of America
| | - Dennis L. Guberski
- Biomedical Research Models, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rita Bortell
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- *E-mail:
| |
Collapse
|
153
|
Ahrén B, Accili D, Boitard C, Cerasi E, Thorens B, Seino S. Shifting the paradigm of islet inflammation--good guy or bad guy? Diabetes Obes Metab 2013; 15 Suppl 3:4-9. [PMID: 24003915 PMCID: PMC4018748 DOI: 10.1111/dom.12184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
154
|
Donath MY. Targeting inflammation in the treatment of type 2 diabetes. Diabetes Obes Metab 2013; 15 Suppl 3:193-6. [PMID: 24003937 DOI: 10.1111/dom.12172] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/15/2013] [Indexed: 12/12/2022]
Abstract
Islets of patients with type 2 diabetes display the typical features of an inflammatory process characterized by the presence of cytokines, chemokines, immune cell infiltration, impaired function and tissue destruction with fibrotic areas. Functional studies have shown that targeting inflammation may improve insulin secretion and sensitivity. In particular clinical proof of concept studies using modulators of the interleukin-1β (IL-1β)-nuclear factor--κB (NF-κB) pathway demonstrated the role of the innate immune system in type 2 diabetes. This programme has now entered the phase 3 of clinical development. Other targets such as tumour necrosis factor α (TNFα) may be equally important but have been neglected based on poorly designed studies. In this article we discuss the mechanisms of islet inflammation in type 2 diabetes and review the opportunity of clinical translation.
Collapse
Affiliation(s)
- M Y Donath
- Department of Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
155
|
Kraakman MJ, Allen TL, Whitham M, Iliades P, Kammoun HL, Estevez E, Lancaster GI, Febbraio MA. Targeting gp130 to prevent inflammation and promote insulin action. Diabetes Obes Metab 2013; 15 Suppl 3:170-5. [PMID: 24003934 DOI: 10.1111/dom.12170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are now the most prevalent metabolic diseases in the Western world and the development of new strategies to treat these metabolic diseases is most warranted. Obesity results in a state of chronic low-grade inflammation in metabolically active tissues such as the liver, adipose tissue, brain and skeletal muscle. Work in our laboratory has focussed on the role of the cytokine interleukin-6 (IL)-6 and other IL-6-like cytokines that signal through the gp130 receptor complex. We have focussed on the role of blocking IL-6 trans-signalling to prevent inflammation on the one hand, and activating membrane-bound signalling to promote insulin sensitivity on the other hand. Since the cloning of the IL-6 gene nearly 30 years ago, a pattern has emerged associating IL-6 with a number of diseases associated with inflammation including rheumatoid arthritis (RA), Crohn's disease and several cancers. Accordingly, tocilizumab, an IL-6 receptor-inhibiting monoclonal antibody, is now useful for the treatment of RA. However, this may not be the most optimal strategy to block inflammation associated with IL-6 and may result in unwanted side effects that, paradoxically, could actually promote metabolic disease.
Collapse
Affiliation(s)
- M J Kraakman
- Cellular & Molecular Metabolism Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
156
|
O'Neill CM, Lu C, Corbin KL, Sharma PR, Dula SB, Carter JD, Ramadan JW, Xin W, Lee JK, Nunemaker CS. Circulating levels of IL-1B+IL-6 cause ER stress and dysfunction in islets from prediabetic male mice. Endocrinology 2013; 154:3077-88. [PMID: 23836031 PMCID: PMC3749476 DOI: 10.1210/en.2012-2138] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elevated levels of circulating proinflammatory cytokines are associated with obesity and increased risk of type 2 diabetes, but the mechanism is unknown. We tested whether proinflammatory cytokines IL-1B+IL-6 at low picogram per milliliter concentrations (consistent with serum levels) could directly trigger pancreatic islet dysfunction. Overnight exposure to IL-1B+IL-6 in islets isolated from normal mice and humans disrupted glucose-stimulated intracellular calcium responses; cytokine-induced effects were more severe among islets from prediabetic db/db mice that otherwise showed no signs of dysfunction. IL-1B+IL-6 exposure reduced endoplasmic reticulum (ER) calcium storage, activated ER stress responses (Nos2, Bip, Atf4, and Ddit3 [CHOP]), impaired glucose-stimulated insulin secretion, and increased cell death only in islets from prediabetic db/db mice. Furthermore, we found increased serum levels of IL-1B and IL-6 in diabetes-prone mice at an age before hyperglycemia was exhibited, suggesting that low-grade systemic inflammation develops early in the disease process. In addition, we implanted normal outbred and inbred mice with subcutaneous osmotic mini-pumps containing IL-1B+IL-6 to mimic the serum increases found in prediabetic db/db mice. Both IL-1B and IL-6 were elevated in serum from cytokine-pump mice, but glucose tolerance and blood glucose levels did not differ from controls. However, when compared with controls, isolated islets from cytokine-pump mice showed deficiencies in calcium handling and insulin secretion that were similar to observations with islets exposed to cytokines in vitro. These findings provide proof of principle that low-grade systemic inflammation is present early in the development of type 2 diabetes and can trigger ER stress-mediated islet dysfunction that can lead to islet failure.
Collapse
Affiliation(s)
- Christina M O'Neill
- University of Virginia, Department of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Jung TW, Youn BS, Choi HY, Lee SY, Hong HC, Yang SJ, Yoo HJ, Kim BH, Baik SH, Choi KM. Salsalate and adiponectin ameliorate hepatic steatosis by inhibition of the hepatokine fetuin-A. Biochem Pharmacol 2013; 86:960-9. [PMID: 23948064 DOI: 10.1016/j.bcp.2013.07.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 12/27/2022]
Abstract
Fetuin-A was recently identified as a novel hepatokine which is associated with obesity, insulin resistance and non-alcoholic fatty liver disease. Salsalate, a prodrug of salicylate with an anti-inflammatory effect and lower side effect profile, significantly lowers glucose and triglyceride levels, and increased adiponectin concentrations in randomized clinical trials. In this study, we examined the effects and regulatory mechanisms of salsalate and full length-adiponectin (fAd) on fetuin-A expression, steatosis and lipid metabolism in palmitate-treated HepG2 cells. Incubation of hepatocytes with palmitate significantly increased fetuin-A and SREBP-1c expression which lead to steatosis and knock-down of fetuin-A by siRNA restored these changes. Salsalate significantly down-regulated palmitate-induced fetuin-A mRNA expression and secretion in a dose- and time-dependent manner. Inhibition of palmitate-induced fetuin-A by salsalate was mediated by AMPK-mediated reduction of NFκB activity, which was blocked by AMPK siRNA or an inhibitor of AMPK. Salsalate attenuated the excessive steatosis by palmitate through SREBP-1c regulation in hepatocytes. Furthermore, fAd also showed suppression of palmitate-induced fetuin-A through the AMPK pathway and improvement of steatosis accompanied by restoration of SREBP-1c, PAPR-α and CD36. In preliminary in vivo experiments, salsalate treatment inhibited high fat diet (HFD)-induced steatosis as well as fetuin-A mRNA and protein expression in SD rats. In conclusion, salsalate and fAd improved palmitate-induced steatosis and impairment of lipid metabolism in hepatocytes via fetuin-A inhibition through the AMPK-NFκB pathway.
Collapse
Affiliation(s)
- Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Hocking S, Samocha-Bonet D, Milner KL, Greenfield JR, Chisholm DJ. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev 2013; 34:463-500. [PMID: 23550081 DOI: 10.1210/er.2012-1041] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human adiposity has long been associated with insulin resistance and increased cardiovascular risk, and abdominal adiposity is considered particularly adverse. Intra-abdominal fat is associated with insulin resistance, possibly mediated by greater lipolytic activity, lower adiponectin levels, resistance to leptin, and increased inflammatory cytokines, although the latter contribution is less clear. Liver lipid is also closely associated with, and likely to be an important contributor to, insulin resistance, but it may also be in part the consequence of the lipogenic pathway of insulin action being up-regulated by hyperinsulinemia and unimpaired signaling. Again, intramyocellular triglyceride is associated with muscle insulin resistance, but anomalies include higher intramyocellular triglyceride in insulin-sensitive athletes and women (vs men). Such issues could be explained if the "culprits" were active lipid moieties such as diacylglycerol and ceramide species, dependent more on lipid metabolism and partitioning than triglyceride amount. Subcutaneous fat, especially gluteofemoral, appears metabolically protective, illustrated by insulin resistance and dyslipidemia in patients with lipodystrophy. However, some studies suggest that deep sc abdominal fat may have adverse properties. Pericardial and perivascular fat relate to atheromatous disease, but not clearly to insulin resistance. There has been recent interest in recognizable brown adipose tissue in adult humans and its possible augmentation by a hormone, irisin, from exercising muscle. Brown adipose tissue is metabolically active, oxidizes fatty acids, and generates heat but, because of its small and variable quantities, its metabolic importance in humans under usual living conditions is still unclear. Further understanding of specific roles of different lipid depots may help new approaches to control obesity and its metabolic sequelae.
Collapse
Affiliation(s)
- Samantha Hocking
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Sydney, Australia.
| | | | | | | | | |
Collapse
|
159
|
Goldfine AB, Fonseca V, Jablonski KA, Chen YDI, Tipton L, Staten MA, Shoelson SE. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 2013; 159:1-12. [PMID: 23817699 PMCID: PMC4128629 DOI: 10.7326/0003-4819-159-1-201307020-00003] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Short-duration studies show that salsalate improves glycemia in type 2 diabetes mellitus (T2DM). OBJECTIVE To assess 1-year efficacy and safety of salsalate in T2DM. DESIGN Placebo-controlled, parallel trial; computerized randomization and centralized allocation, with patients, providers, and researchers blinded to assignment. (ClinicalTrials.gov: NCT00799643). SETTING 3 private practices and 18 academic centers in the United States. PATIENTS Persons aged 18 to 75 years with fasting glucose levels of 12.5 mmol/L or less (≤225 mg/dL) and hemoglobin A1c (HbA1c) levels of 7.0% to 9.5% who were treated for diabetes. INTERVENTION 286 participants were randomly assigned (between January 2009 and July 2011) to 48 weeks of placebo (n = 140) or salsalate, 3.5 g/d (n = 146), in addition to current therapies, and 283 participants were analyzed (placebo, n = 137; salsalate, n = 146). MEASUREMENTS Change in hemoglobin A1c level (primary outcome) and safety and efficacy measures. RESULTS The mean HbA1c level over 48 weeks was 0.37% lower in the salsalate group than in the placebo group (95% CI, -0.53% to -0.21%; P < 0.001). Glycemia improved despite more reductions in concomitant diabetes medications in salsalate recipients than in placebo recipients. Lower circulating leukocyte, neutrophil, and lymphocyte counts show the anti-inflammatory effects of salsalate. Adiponectin and hematocrit levels increased more and fasting glucose, uric acid, and triglyceride levels decreased with salsalate, but weight and low-density lipoprotein cholesterol levels also increased. Urinary albumin levels increased but reversed on discontinuation; estimated glomerular filtration rates were unchanged. LIMITATION Trial duration and number of patients studied were insufficient to determine long-term risk-benefit of salsalate in T2DM. CONCLUSION Salsalate improves glycemia in patients with T2DM and decreases inflammatory mediators. Continued evaluation of mixed cardiorenal signals is warranted.
Collapse
Affiliation(s)
- Allison B Goldfine
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|
160
|
Jung TW, Choi HY, Lee SY, Hong HC, Yang SJ, Yoo HJ, Youn BS, Baik SH, Choi KM. Salsalate and Adiponectin Improve Palmitate-Induced Insulin Resistance via Inhibition of Selenoprotein P through the AMPK-FOXO1α Pathway. PLoS One 2013; 8:e66529. [PMID: 23825542 PMCID: PMC3689003 DOI: 10.1371/journal.pone.0066529] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/07/2013] [Indexed: 01/11/2023] Open
Abstract
Selenoprotein P (SeP) was recently identified as a hepatokine that induces insulin resistance (IR) in rodents and humans. Recent clinical trials have shown that salsalate, a prodrug of salicylate, significantly lowers blood glucose levels and increases adiponectin concentrations. We examined the effects of salsalate and full length-adiponectin (fAd) on the expression of SeP under hyperlipidemic conditions and explored their regulatory mechanism on SeP. In palmitate-treated HepG2 cells as well as high fat diet (HFD)-fed male Spraque Dawley (SD) rats and male db/db mice, SeP expression and its regulatory pathway, including AMPK-FOXO1α, were evaluated after administration of salsalate and salicylate. Palmitate treatment significantly increased SeP expression and aggravated IR, while knock-down of SeP by siRNA restored these changes in HepG2 cells. Palmitate-induced SeP expression was inhibited by both salsalate and salicylate, which was mediated by AMPK activation, and was blocked by AMPK siRNA or an inhibitor of AMPK. Chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift (EMSA) assay showed that salsalate suppressed SeP expression by AMPK-mediated phosphorylation of FOXO1α. Moreover, fAd also reduced palmitate-induced SeP expression through the activation of AMPK, which results in improved IR. Both salsalate and salicylate treatment significantly improved glucose intolerance and insulin sensitivity, accompanied by reduced SeP mRNA and protein expression in HFD-fed rats and db/db mice, respectively. Taken together, we found that salsalate and adiponectin ameliorated palmitate-induced IR in hepatocytes via SeP inhibition through the AMPK-FOXO1α pathway. The regulation of SeP might be a novel mechanism mediating the anti-diabetic effects of salsalate and adiponectin.
Collapse
Affiliation(s)
- Tae Woo Jung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Hae Yoon Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - So Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Ho Cheol Hong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Sae Jeong Yang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Hye Jin Yoo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Byung-Soo Youn
- AdipoGen, Inc., Songdo Technopark, Yeonsu-gu, Incheon, Korea
| | - Sei Hyun Baik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University, Seoul, Korea
- * E-mail:
| |
Collapse
|
161
|
Donath MY, Dalmas É, Sauter NS, Böni-Schnetzler M. Inflammation in obesity and diabetes: islet dysfunction and therapeutic opportunity. Cell Metab 2013; 17:860-872. [PMID: 23747245 DOI: 10.1016/j.cmet.2013.05.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/12/2022]
Abstract
The role of the immune system is to restore functionality in response to stress. Increasing evidence shows that this function is not limited to insults by infection or injury and plays a role in response to overnutrition. Initially, this metabolic activation of the immune system is a physiological response, but it may become deleterious with time. Therefore, therapeutic interventions should aim at modulating the immune system rather than simply damping it. In this article, we describe the physiology and pathology of the immune system during obesity and diabetes with a focus on islet inflammation, the IL-1β pathway, and clinical translation.
Collapse
Affiliation(s)
- Marc Y Donath
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland.
| | - Élise Dalmas
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Nadine S Sauter
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Marianne Böni-Schnetzler
- Endocrinology, Diabetes, and Metabolism and Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
162
|
Lee BC, Lee J. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance. Biochim Biophys Acta Mol Basis Dis 2013; 1842:446-62. [PMID: 23707515 DOI: 10.1016/j.bbadis.2013.05.017] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023]
Abstract
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Byung-Cheol Lee
- The Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA; Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jongsoon Lee
- The Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
163
|
Farney JK, Mamedova LK, Coetzee JF, KuKanich B, Sordillo LM, Stoakes SK, Minton JE, Hollis LC, Bradford BJ. Anti-inflammatory salicylate treatment alters the metabolic adaptations to lactation in dairy cattle. Am J Physiol Regul Integr Comp Physiol 2013; 305:R110-7. [PMID: 23678026 DOI: 10.1152/ajpregu.00152.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adapting to the lactating state requires metabolic adjustments in multiple tissues, especially in the dairy cow, which must meet glucose demands that can exceed 5 kg/day in the face of negligible gastrointestinal glucose absorption. These challenges are met through the process of homeorhesis, the alteration of metabolic setpoints to adapt to a shift in physiological state. To investigate the role of inflammation-associated pathways in these homeorhetic adaptations, we treated cows with the nonsteroidal anti-inflammatory drug sodium salicylate (SS) for the first 7 days of lactation. Administration of SS decreased liver TNF-α mRNA and marginally decreased plasma TNF-α concentration, but plasma eicosanoids and liver NF-κB activity were unaltered during treatment. Despite the mild impact on these inflammatory markers, SS clearly altered metabolic function. Plasma glucose concentration was decreased by SS, but this was not explained by a shift in hepatic gluconeogenic gene expression or by altered milk lactose secretion. Insulin concentrations decreased in SS-treated cows on day 7 compared with controls, which was consistent with the decline in plasma glucose concentration. The revised quantitative insulin sensitivity check index (RQUICKI) was then used to assess whether altered insulin sensitivity may have influenced glucose utilization rate with SS. The RQUICKI estimate of insulin sensitivity was significantly elevated by SS on day 7, coincident with the decline in plasma glucose concentration. Salicylate prevented postpartum insulin resistance, likely causing excessive glucose utilization in peripheral tissues and hypoglycemia. These results represent the first evidence that inflammation-associated pathways are involved in homeorhetic adaptations to lactation.
Collapse
Affiliation(s)
- Jaymelynn K Farney
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Dali-Youcef N, Mecili M, Ricci R, Andrès E. Metabolic inflammation: connecting obesity and insulin resistance. Ann Med 2013; 45:242-53. [PMID: 22834949 DOI: 10.3109/07853890.2012.705015] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- Laboratoire de Biochimie et de Biologie Moléculaire, Hôpitaux universitaires de Strasbourg, 1 place de l'hôpital 67091 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
165
|
Keller WR, Kum LM, Wehring HJ, Koola MM, Buchanan RW, Kelly DL. A review of anti-inflammatory agents for symptoms of schizophrenia. J Psychopharmacol 2013; 27:337-42. [PMID: 23151612 PMCID: PMC3641824 DOI: 10.1177/0269881112467089] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Schizophrenia is a chronic debilitating mental disorder that affects about 1% of the US population. The pathophysiology and etiology remain unknown, thus new treatment targets have been challenging and few novel treatments with new mechanisms of action have come to market in the past few decades. Increasing attention has been paid to the role of inflammation in schizophrenia and new data suggests that decreasing inflammation and inflammatory biomarkers may play some role in schizophrenia treatment. This review summarizes the clinical trial literature regarding medications that possess anti-inflammatory properties that have been tested for schizophrenia symptoms and covers such medications as non-steroidal anti-inflammatory agents, such as the cyclo-oxygenase-2 (COX-2) inhibitors and aspirin, omega-3 fatty acids, neurosteroids and minocycline. Overall, there is accumulating evidence, albeit mostly adjunctive treatments, that agents working on inflammatory pathways have some benefits in people with schizophrenia. In the next few years the field will begin to see data on many treatments with anti-inflammatory properties that are currently under study. Hopefully advancements in understanding inflammation and effective treatments having anti-inflammatory properties may help revolutionize our understanding and provide new targets for prevention and treatment in schizophrenia.
Collapse
Affiliation(s)
- William R Keller
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD 21228, USA
| | | | | | | | | | | |
Collapse
|
166
|
Goldfine AB, Conlin PR, Halperin F, Koska J, Permana P, Schwenke D, Shoelson SE, Reaven PD. A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 2013; 56:714-23. [PMID: 23370525 PMCID: PMC4948114 DOI: 10.1007/s00125-012-2819-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Chronic sub-acute inflammation contributes to the pathogenesis of type 2 diabetes mellitus and cardiovascular disease. High doses of salicylate reduce inflammation, glucose and triacylglycerols, and may improve insulin sensitivity, suggesting therapeutic potential in impaired fasting glucose and/or impaired glucose tolerance. This trial aimed to evaluate the effect of salsalate vs placebo on insulin resistance and glycaemia in impaired fasting glucose and/or impaired glucose tolerance. METHODS We conducted a 12 week, two-centre, randomised, placebo-controlled study to evaluate the effect of salsalate (up to 4 g/day) vs placebo on systemic glucose disposal. Secondary objectives included treatment effects on glycaemia, inflammation and cardiovascular risk factors. Seventy-eight participants with impaired fasting glucose and/or impaired glucose tolerance from two VA healthcare systems were enrolled. Randomisation assignment was provided by the coordinating center directly to site pharmacists, and participants and research staff were blinded to treatment assignment. RESULTS Seventy-one individuals were randomised to placebo (n = 36) or salsalate (n = 35). Glucose disposal did not change in either group (salsalate 1% [95% CI -39%, 56%]; placebo 6% [95% CI -20%, 61%], p = 0.3 for placebo vs salsalate). Fasting glucose was reduced by 6% during the study by salsalate (p = 0.006) but did not change with placebo. Declines in glucose were accompanied by declines in fasting C-peptide with salsalate. Insulin clearance was reduced with salsalate. In the salsalate group, triacylglycerol levels were lower by 25% (p = 0.01) and adiponectin increased by 53% (p = 0.02) at the end of the study. Blood pressure, endothelial function and other inflammation markers did not differ between groups. Adipose tissue nuclear factor κB (NF-κB) activity declined in the salsalate group compared with placebo (-16% vs 42%, p = 0.005), but was not correlated with metabolic improvements. The frequency of tinnitus was low but tended to be higher with salsalate therapy (n = 4 vs n = 2). CONCLUSIONS/INTERPRETATION In summary, salsalate therapy was well tolerated, lowered fasting glucose, increased adiponectin and reduced adipose tissue NF-κB activity. These changes were not related to changes in peripheral insulin sensitivity, suggesting additional mechanisms for metabolic improvement. TRIAL REGISTRATION ClinicalTrials.gov NCT00330733. FUNDING Office of Research and Development, Medical Research Service, Department of Veterans Affairs and NIH K24 DK63214.
Collapse
Affiliation(s)
- A. B. Goldfine
- Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - P. R. Conlin
- Department of Medicine, Boston VA Health Care System, Brigham and Women’s Hospital, Boston, MA, USA
| | - F. Halperin
- Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - J. Koska
- Research Department, Phoenix VA Health Care System, Phoenix, AZ, USA
| | - P. Permana
- Research Department, Phoenix VA Health Care System, Phoenix, AZ, USA
| | - D. Schwenke
- Research Department, Phoenix VA Health Care System, Phoenix, AZ, USA
| | - S. E. Shoelson
- Department of Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - P. D. Reaven
- Department of Medicine, Phoenix VA Health Care System, Phoenix, AZ, USA
- Department of Medicine, University of Arizona, Phoenix, AZ, USA
| |
Collapse
|
167
|
Neuropeptide Y is produced by adipose tissue macrophages and regulates obesity-induced inflammation. PLoS One 2013; 8:e57929. [PMID: 23472120 PMCID: PMC3589443 DOI: 10.1371/journal.pone.0057929] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/28/2013] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is induced in peripheral tissues such as adipose tissue with obesity. The mechanism and function of NPY induction in fat are unclear. Given the evidence that NPY can modulate inflammation, we examined the hypothesis that NPY regulates the function of adipose tissue macrophages (ATMs) in response to dietary obesity in mice. NPY was induced by dietary obesity in the stromal vascular cells of visceral fat depots from mice. Surprisingly, the induction of Npy was limited to purified ATMs from obese mice. Significant basal production of NPY was observed in cultured bone marrow derived macrophage and dendritic cells (DCs) and was increased with LPS stimulation. In vitro, addition of NPY to myeloid cells had minimal effects on their activation profiles. NPY receptor inhibition promoted DC maturation and the production of IL-6 and TNFα suggesting an anti-inflammatory function for NPY signaling in DCs. Consistent with this, NPY injection into lean mice decreased the quantity of M1-like CD11c+ ATMs and suppressed Ly6chi monocytes. BM chimeras generated from Npy−/− donors demonstrated that hematopoietic NPY contributes to the obesity-induced induction of Npy in fat. In addition, loss of Npy expression from hematopoietic cells led to an increase in CD11c+ ATMs in visceral fat with high fat diet feeding. Overall, our studies suggest that NPY is produced by a range of myeloid cells and that obesity activates the production of NPY in adipose tissue macrophages with autocrine and paracrine effects.
Collapse
|
168
|
Abstract
Insulin resistance affects the vascular endothelium, and contributes to systemic insulin resistance by directly impairing the actions of insulin to redistribute blood flow as part of its normal actions driving muscle glucose uptake. Impaired vascular function is a component of the insulin resistance syndrome, and is a feature of type 2 diabetes. On this basis, the vascular endothelium has emerged as a therapeutic target where the intent is to improve systemic metabolic state by improving vascular function. We review the available literature presenting studies in humans, evaluating the effects of metabolically targeted and vascular targeted therapies on insulin action and systemic metabolism. Therapies that improve systemic insulin resistance exert strong concurrent effects to improve vascular function and vascular insulin action. RAS-acting agents and statins have widely recognized beneficial effects on vascular function but have not uniformly produced the hoped-for metabolic benefits. These observations support the notion that systemic metabolic benefits can arise from therapies targeted at the endothelium, but improving vascular insulin action does not result from all treatments that improve endothelium-dependent vasodilation. A better understanding of the mechanisms of insulin's actions in the vascular wall will advance our understanding of the specificity of these responses, and allow us to better target the vasculature for metabolic benefits.
Collapse
Affiliation(s)
- Kieren J Mather
- Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
169
|
Abstract
Chronic inflammation is a characteristic of obesity and is associated with accompanying insulin resistance, a hallmark of type 2 diabetes mellitus (T2DM). Although proinflammatory cytokines are known for their detrimental effects on adipose tissue function and insulin sensitivity, their beneficial effects in the regulation of metabolism have not drawn sufficient attention. In obesity, inflammation is initiated by a local hypoxia to augment angiogenesis and improve adipose tissue blood supply. A growing body of evidence suggests that macrophages and proinflammatory cytokines are essential for adipose remodeling and adipocyte differentiation. Phenotypes of multiple lines of transgenic mice consistently suggest that proinflammatory cytokines increase energy expenditure and act to prevent obesity. Removal of proinflammatory cytokines by gene knockout decreases energy expenditure and induces adult-onset obesity. In contrast, elevation of proinflammatory cytokines augments energy expenditure and decreases the risk for obesity. Anti-inflammatory therapies have been tested in more than a dozen clinical trials to improve insulin sensitivity and glucose homeostasis in patients with T2DM, and the results are not encouraging. One possible explanation is that anti-inflammatory therapies also attenuate the beneficial effects of inflammation in stimulating energy expenditure, which may have limited the efficacy of the treatment by promoting energy accumulation. Thus, the positive effects of proinflammatory events should be considered in evaluating the impact of inflammation in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State Univ. System, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
170
|
Carey AL, Siebel AL, Reddy-Luthmoodoo M, Natoli AK, D’Souza W, Meikle PJ, Sviridov D, Drew BG, Kingwell BA. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein. PLoS One 2013; 8:e56601. [PMID: 23437184 PMCID: PMC3578940 DOI: 10.1371/journal.pone.0056601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/14/2013] [Indexed: 01/16/2023] Open
Abstract
Background Emerging evidence suggests that high density lipoprotein (HDL) may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. Methods Human primary and THP-1 macrophages were treated with vehicle (PBS) or acetylated low density lipoprotein (acLDL) with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. Results Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05). This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. Conclusion Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.
Collapse
Affiliation(s)
- Andrew L. Carey
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Andrew L. Siebel
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Medini Reddy-Luthmoodoo
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Alaina K. Natoli
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Wilissa D’Souza
- Lipoproteins and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Peter J. Meikle
- Metabolomics Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Dmitri Sviridov
- Lipoproteins and Atherosclerosis Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Brian G. Drew
- Division of Endocrinology, Diabetes and Hypertension, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bronwyn A. Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
171
|
Lee J. Adipose tissue macrophages in the development of obesity-induced inflammation, insulin resistance and type 2 diabetes. Arch Pharm Res 2013; 36:208-22. [PMID: 23397293 DOI: 10.1007/s12272-013-0023-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022]
Abstract
It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and type 2 diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in type 2 diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of type 2 diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process.
Collapse
Affiliation(s)
- Jongsoon Lee
- Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02115, USA.
| |
Collapse
|
172
|
Fang F, Lu Y, Ma DL, Du TT, Shao SY, Yu XF. A meta-analysis of salicylates for type 2 diabetes mellitus. ACTA ACUST UNITED AC 2013; 33:1-14. [DOI: 10.1007/s11596-013-1063-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Indexed: 01/04/2023]
|
173
|
Nikolajczyk BS, Jagannathan-Bogdan M, Denis GV. The outliers become a stampede as immunometabolism reaches a tipping point. Immunol Rev 2013; 249:253-75. [PMID: 22889227 DOI: 10.1111/j.1600-065x.2012.01142.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity and Type 2 diabetes mellitus (T2D) are characterized by pro-inflammatory alterations in the immune system including shifts in leukocyte subset differentiation and in cytokine/chemokine balance. The chronic, low-grade inflammation resulting largely from changes in T-cell, B-cell, and myeloid compartments promotes and/or exacerbates insulin resistance (IR) that, together with pancreatic islet failure, defines T2D. Animal model studies show that interruption of immune cell-mediated inflammation by any one of several methods almost invariably results in the prevention or delay of obesity and/or IR. However, anti-inflammatory therapies have had a modest impact on established T2D in clinical trials. These seemingly contradictory results indicate that a more comprehensive understanding of human IR/T2D-associated immune cell function is needed to leverage animal studies into clinical treatments. Important outstanding analyses include identifying potential immunological checkpoints in disease etiology, detailing immune cell/adipose tissue cross-talk, and defining strengths/weaknesses of model organism studies to determine whether we can harness the promising new field of immunometabolism to curb the global obesity and T2D epidemics.
Collapse
|
174
|
Ropelle ER, Pauli JR, Cintra DE, da Silva AS, De Souza CT, Guadagnini D, Carvalho BM, Caricilli AM, Katashima CK, Carvalho-Filho MA, Hirabara S, Curi R, Velloso LA, Saad MJ, Carvalheira JB. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes 2013; 62:466-70. [PMID: 22991447 PMCID: PMC3554348 DOI: 10.2337/db12-0339] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of major proteins involved in insulin signaling, thereby reducing insulin sensitivity in skeletal muscle. Conversely, aged iNOS-null mice were protected from S-nitrosation-induced insulin resistance. Moreover, pharmacological treatment with an iNOS inhibitor and acute exercise reduced iNOS-induced S-nitrosation and increased insulin sensitivity in the muscle of aged animals. These findings indicate that the insulin resistance observed in aged mice is mainly mediated through the S-nitrosation of the insulin-signaling pathway.
Collapse
Affiliation(s)
- Eduardo R. Ropelle
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | - José R. Pauli
- School of Applied Sciences, UNICAMP, Limeira, São Paulo, Brazil
| | | | - Adelino S. da Silva
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paolo, Brazil
| | - Cláudio T. De Souza
- Laboratory of Exercise Biochemistry and Physiology, Health Science Unit, University of Southern Santa Catarina (UNESC) Criciúma, Santa Catarina, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Bruno M. Carvalho
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Andrea M. Caricilli
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos K. Katashima
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marco A. Carvalho-Filho
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sandro Hirabara
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Lício A. Velloso
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Mario J.A. Saad
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José B.C. Carvalheira
- Department of Internal Medicine, Faculty of Medical Sciences State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
175
|
Snyder-Cappione JE, Nikolajczyk BS. When diet and exercise are not enough, think immunomodulation. Mol Aspects Med 2013; 34:30-8. [DOI: 10.1016/j.mam.2012.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
176
|
Faghihimani E, Amini M, Adibi A, Naderi Z, Toghiani A, Adibi P. Evaluating the efficacy of Salsalate on prediabetic and diabetic patients with fatty liver: A randomized clinical trial. J Res Pharm Pract 2013; 2:40-43. [PMID: 24991603 PMCID: PMC4076898 DOI: 10.4103/2279-042x.114089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Nearly two-third of the patients with type 2 diabetes have degrees of fatty liver; this may induce some side effects in them. This study aimed to find effect of salsalate on treatment of steatohepatitis and correlation of fatty liver with metabolic syndrome in the setting of impaired glucose metabolism. METHODS In a double-blind randomized trial within two distinct groups, i.e., recently diagnosed diabetics and prediabetic cases allocated in two arms of the intervention to receive 3 g salsalate or placebo. All cases underwent glucose and lipid level studies and liver ultrasound study. FINDINGS Out of 46 patients with diabetes, 34 (74%) had fatty liver in ultrasound; this ratio was 75% in 113 prediabetic cases. Relative frequency of fatty liver stages did not differ between diabetics and prediabetics. Within diabetics, mean aspartate aminotransferase (AST) level of fatty liver cases (23 ± 7 IU/dl) was higher than others (18 ± 3 IU/dl) (P < 0.05). Changes in transaminase levels following intervention did not significantly differ, comparing drug and placebo arms in two subgroups. CONCLUSION According to the findings, if diabetes could be assumed as the logical consequence of prediabetic state, it seems that fatty liver did develop before this preliminary status. In this study, salsalate could not change biochemical markers of fatty liver significantly.
Collapse
Affiliation(s)
- Elham Faghihimani
- Endocrinology and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Amini
- Endocrinology and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atoosa Adibi
- Department of Radiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohreh Naderi
- Department of Internal Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Toghiani
- Young Researchers Club, Islamic Azad University, Najafabad Branch, Isfahan, Iran
| | - Peyman Adibi
- Integrative Functional Gastroenterology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
177
|
Rodríguez-Hernández H, Simental-Mendía LE, Rodríguez-Ramírez G, Reyes-Romero MA. Obesity and inflammation: epidemiology, risk factors, and markers of inflammation. Int J Endocrinol 2013; 2013:678159. [PMID: 23690772 PMCID: PMC3652163 DOI: 10.1155/2013/678159] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/27/2013] [Indexed: 12/23/2022] Open
Abstract
Obesity is a public health problem that has reached epidemic proportions with an increasing worldwide prevalence. The global emergence of obesity increases the risk of developing chronic metabolic disorders. Thus, it is an economic issue that increased the costs of the comorbidities associated. Moreover, in recent years, it has been demonstrated that obesity is associated with chronic systemic inflammation, this status is conditioned by the innate immune system activation in adipose tissue that promotes an increase in the production and release of pro-inflammatory cytokines that contribute to the triggering of the systemic acute-phase response which is characterized by elevation of acute-phase protein levels. On this regard, low-grade chronic inflammation is a characteristic of various chronic diseases such as metabolic syndrome, cardiovascular disease, diabetes, hypertension, non-alcoholic fatty liver disease, and some cancers, among others, which are also characterized by obesity condition. Thus, a growing body of evidence supports the important role that is played by the inflammatory response in obesity condition and the pathogenesis of chronic diseases related.
Collapse
Affiliation(s)
- Heriberto Rodríguez-Hernández
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Av. Universidad and Fanny Anitúa s/n, Zona Centro, 34000 Durango, DGO, Mexico
| | - Luis E. Simental-Mendía
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
- *Luis E. Simental-Mendía:
| | - Gabriela Rodríguez-Ramírez
- Biomedical Research Unit of the Mexican Social Security Institute at Durango, Predio Canoas 100, Los Angeles, 34067 Durango, DGO, Mexico
| | - Miguel A. Reyes-Romero
- Faculty of Medicine and Nutrition, Juárez University of Durango State, Av. Universidad and Fanny Anitúa s/n, Zona Centro, 34000 Durango, DGO, Mexico
| |
Collapse
|
178
|
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013. [PMID: 23720280 DOI: 10.1002/cphy.c110062.metabolic] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Metabolic syndrome (MS) is a collection of cardiometabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia. Although there has been significant debate regarding the criteria and concept of the syndrome, this clustering of risk factors is unequivocally linked to an increased risk of developing type 2 diabetes and cardiovascular disease. Regardless of the true definition, based on current population estimates, nearly 100 million have MS. It is often characterized by insulin resistance, which some have suggested is a major underpinning link between physical inactivity and MS. The purpose of this review is to: (i) provide an overview of the history, causes and clinical aspects of MS, (ii) review the molecular mechanisms of insulin action and the causes of insulin resistance, and (iii) discuss the epidemiological and intervention data on the effects of exercise on MS and insulin sensitivity.
Collapse
Affiliation(s)
- Christian K Roberts
- Exercise and Metabolic Disease Research Laboratory, Translational Sciences Section, School of Nursing, University of California at Los Angeles, Los Angeles, California, USA.
| | | | | |
Collapse
|
179
|
Howe LR. Pharmacologic Interventions with NSAIDs. OBESITY, INFLAMMATION AND CANCER 2013:257-303. [DOI: 10.1007/978-1-4614-6819-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
180
|
Biomarkers and immune-modulating therapies for Type 2 diabetes. Trends Immunol 2012; 33:546-53. [DOI: 10.1016/j.it.2012.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/11/2012] [Accepted: 07/13/2012] [Indexed: 01/04/2023]
|
181
|
Marino JS, Iler J, Dowling AR, Chua S, Bruning JC, Coppari R, Hill JW. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS): evidence of adipocyte hypertrophy and tissue-specific inflammation. PLoS One 2012; 7:e48643. [PMID: 23119079 PMCID: PMC3485364 DOI: 10.1371/journal.pone.0048643] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/27/2012] [Indexed: 02/06/2023] Open
Abstract
Clinical research shows an association between polycystic ovary syndrome (PCOS) and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC) mice) and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC) mice showed reduced or absent ovulation. IR/LepR(POMC) mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC) mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC) mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.
Collapse
Affiliation(s)
- Joseph S. Marino
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Jeffrey Iler
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
| | - Streamson Chua
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Jens C. Bruning
- Department of Mouse Genetics and Metabolism, Institute for Genetics, Cologne Excellence Cluster for Cellular Stress Responses in Aging Associated Diseases, and Center for Molecular Medicine Cologne, 2nd Department for Internal Medicine, University of Cologne, and Max Planck Institute for the Biology of Aging, Cologne, Germany
| | - Roberto Coppari
- Departments of Internal Medicine, Division of Hypothalamic Research, Pharmacology, and Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jennifer W. Hill
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Medical Center, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo Medical Center, Toledo, Ohio, United States of America
| |
Collapse
|
182
|
Goran MI, Alderete TL. Targeting adipose tissue inflammation to treat the underlying basis of the metabolic complications of obesity. NESTLE NUTRITION INSTITUTE WORKSHOP SERIES 2012; 73:49-60; discussion p61-6. [PMID: 23128765 PMCID: PMC4439096 DOI: 10.1159/000341287] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The prevalence of obesity has increased throughout the last three decades due to genetic, metabolic, behavioral, and environmental factors [1]. Obesity in turn increases risk for a number of metabolic diseases including type 2 diabetes, cardiovascular disease, fatty liver disease and some forms of cancer [1]. Despite the well-known link between obesity and increased morbidity, the mechanism of this remains elusive. Thus, the question 'why does increased body fat cause increased metabolic comorbidities' remains unanswered. By understanding the underlying basis of obesity-associated metabolic diseases, different therapies could be designed to target relevant pathways. Although we lack a full understanding of the underlying mechanisms that result in disease, several putative explanations exist for why fat affects metabolic health. One such theory is based on the anatomic location of fat deposition and ectopic fat accumulation [2]. Specifically, current literature suggests that visceral, liver and skeletal fat accumulation affects organ function and contributes to the development of insulin resistance, fatty liver, and the metabolic syndrome [3]. However, even in individuals matched for body fat and fat distribution, significant differences can exist in metabolic outcomes, and the phenomenon of metabolically healthy obese has been well described [4]. More recent data suggest the alternative hypothesis relating excess adipose tissue to disease risk based on the metabolic function and morphological properties of adipose tissue. In this scenario, excess adipose tissue is hypothesized to contribute to a state of chronic inflammation which promotes development of insulin resistance as well as other metabolic complications by stimulating nuclear factor-ĸB and Jun N-terminal kinase pathways in adipocytes and the liver [5]. In this paper, we will review the hypothesis linking excess adipose tissue to increased disease risk through adipose tissue inflammation.
Collapse
Affiliation(s)
- Michael I Goran
- Department of Preventive Medicine and Childhood Obesity Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
183
|
Abstract
Obesity and related type 2 diabetes are increasing at epidemic proportions globally. It is now recognized that inflammatory responses mediated within the adipose tissue in obesity are central to the development of disease. Once initiated, chronic inflammation associated with obesity leads to the modulation of immune cell function. This review will focus specifically on the impact of obesity on γδ T cells, a T-cell subset that is found in high concentrations in epithelial tissues such as the skin, intestine, and lung. Epithelial γδ T cell function is of particular concern in obesity as they are the guardians of the epithelial barrier and mediate repair. A breakdown in their function, and subsequently the deterioration of the epithelium can result in dire consequences for the host. Obese patients are more prone to non-healing injuries, infection, and disease. The resulting inflammation from these pathologies further perpetuates the disease condition already present in obese hosts. Here we will provide insight into the immunomodulation of γδ T cells that occurs in the epithelial barrier during obesity and discuss current therapeutic options.
Collapse
|
184
|
Cao Y, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of salsalate and salicylic acid in normal and diabetic rats. Biopharm Drug Dispos 2012; 33:285-91. [PMID: 22782506 DOI: 10.1002/bdd.1797] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/07/2012] [Accepted: 07/03/2012] [Indexed: 11/09/2022]
Abstract
The pharmacokinetics (PK) of salsalate (SS) and salicylic acid (SA) was assessed in normal Wistar and diabetic Goto-Kakizaki rats. Three PK studies were conducted: (1) PK of SA in normal rats after intravenous dosing of SA at 20, 40, 80 mg/kg. (2) PK of SS and SA in normal rats after oral dosing of SS at 28, 56, 112 mg/kg. (3) PK during 4 months feeding of SS-containing diet in both normal and diabetic rats. The disposition of SS and SA were evaluated simultaneously using a pharmacokinetic model comprising several transit absorption steps and linear and nonlinear dual elimination pathways for SA. The results indicated that the nonlinear elimination pathway of SA only accounted for a small fraction of the total clearance (< 12%) at therapeutic concentrations. A flat profile of SA was observed after oral dosing of SS, particularly at a high dose. The possible reasons for this flat profile were posed. During the SS-diet feeding, the diabetic rats achieved lower blood concentrations of SA than normal rats with a higher apparent clearance (CL/F), possibly due to incomplete (47%) bioavailability. Such CL/F decreased with age in both diabetic and normal rats. The effect of diabetes on SA pharmacokinetics may necessitate increased dosing in the future usage of SS in diabetes.
Collapse
Affiliation(s)
- Yanguang Cao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | |
Collapse
|
185
|
HOU CUIFEN, SUI ZHIHUA. CCR2 Antagonists for the Treatment of Diseases Associated with Inflammation. ANTI-INFLAMMATORY DRUG DISCOVERY 2012. [DOI: 10.1039/9781849735346-00350] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The CCR2 and MCP-1 pathway has become one of the most-studied chemokine systems for therapeutic use in inflammatory diseases and conditions. It plays a pivotal role in inflammatory diseases, especially those that are characterized by monocyte-rich infiltration. This chapter reviews the biology of CCR2 and MCP-1, and their roles in diseases and conditions related to inflammation such as rheumatoid arthritis, multiple sclerosis, asthma, obesity, type 2 diabetes, atherosclerosis, nephropathy, cancer, pulmonary fibrosis and pain. Intense drug-discovery efforts over the past 15 years have generated a large number of CCR2 antagonists in diverse structural classes. Mutagenesis studies have elucidated important residues on CCR2 that interact with many classes of these CCR2 antagonists. To facilitate understanding of CCR2 antagonist SAR, a simple pharmacophore model is used to summarize the large number of diverse chemical structures. The majority of published compounds are classified based on their central core structures using this model. Key SAR points in the published literature are briefly discussed for most of the series. Lead compounds in each chemical series are highlighted where information is available. The challenges in drug discovery and development of CCR2 antagonists are briefly discussed. Clinical candidates in various diseases in the public domain are summarized with a brief discussion about the clinical challenges.
Collapse
Affiliation(s)
- CUIFEN HOU
- Johnson & Johnson Pharmaceutical Research and Development Welsh and McKean Roads, Spring House, PA 19477 USA
| | - ZHIHUA SUI
- Johnson & Johnson Pharmaceutical Research and Development Welsh and McKean Roads, Spring House, PA 19477 USA
| |
Collapse
|
186
|
Vinolo MAR, Rodrigues HG, Festuccia WT, Crisma AR, Alves VS, Martins AR, Amaral CL, Fiamoncini J, Hirabara SM, Sato FT, Fock RA, Malheiros G, dos Santos MF, Curi R. Tributyrin attenuates obesity-associated inflammation and insulin resistance in high-fat-fed mice. Am J Physiol Endocrinol Metab 2012; 303:E272-82. [PMID: 22621868 DOI: 10.1152/ajpendo.00053.2012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNFα and IL-1β by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNFα production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Marco Aurélio Ramirez Vinolo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Avenida Prof. Lineu Prestes, 1524, 05508-900, Butantã, Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
Metabolic syndrome, a network of medical disorders that greatly increase the risk for developing metabolic and cardiovascular diseases, has reached epidemic levels in many areas of today's world. Despite this alarming medicare situation, scientific understandings on the root mechanisms of metabolic syndrome are still limited, and such insufficient knowledge contributes to the relative lack of effective treatments or preventions for related diseases. Recent interdisciplinary studies from neuroendocrinology and neuroimmunology fields have revealed that overnutrition can trigger intracellular stresses to cause inflammatory changes mediated by molecules that control innate immunity. This type of nutrition-related molecular inflammation in the central nervous system, particularly in the hypothalamus, can form a common pathogenic basis for the induction of various metabolic syndrome components such as obesity, insulin resistance, and hypertension. Proinflammatory NF-κB pathway has been revealed as a key molecular system for pathologic induction of brain inflammation, which translates overnutrition and resulting intracellular stresses into central neuroendocrine and neural dysregulations of energy, glucose, and cardiovascular homeostasis, collectively leading to metabolic syndrome. This article reviews recent research advances in the neural mechanisms of metabolic syndrome and related diseases from the perspective of pathogenic induction by intracellular stresses and NF-κB pathway of the brain.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology and Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
188
|
Yellowlees Douglas J, Bhatwadekar AD, Li Calzi S, Shaw LC, Carnegie D, Caballero S, Li Q, Stitt AW, Raizada MK, Grant MB. Bone marrow-CNS connections: implications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2012; 31:481-94. [PMID: 22609081 DOI: 10.1016/j.preteyeres.2012.04.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy is the fourth most common cause of blindness in adults. Current therapies, including anti-VEGF therapy, have partial efficacy in arresting the progression of proliferative diabetic retinopathy and diabetic macular edema. This review provides an overview of a novel, innovative approach to viewing diabetic retinopathy as the result of an inflammatory cycle that affects the bone marrow (BM) and the central and sympathetic nervous systems. Diabetes associated inflammation may be the result of BM neuropathy which skews haematopoiesis towards generation of increased inflammatory cells but also reduces production of endothelial progenitor cells responsible for maintaining healthy endothelial function and renewal. The resulting systemic inflammation further impacts the hypothalamus, promoting insulin resistance and diabetes, and initiates an inflammatory cascade that adversely impacts both macrovascular and microvascular complications, including diabetic retinopathy (DR). This review examines the idea of using anti-inflammatory agents that cross not only the blood-retinal barrier to enter the retina but also have the capability to target the central nervous system and cross the blood-brain barrier to reduce neuroinflammation. This neuroinflammation in key sympathetic centers serves to not only perpetuate BM pathology but promote insulin resistance which is characteristic of type 2 diabetic patients (T2D) but is also seen in T1D. A case series of morbidly obese T2D patients with retinopathy and neuropathy treated with minocycline, a well-tolerated antibiotic that crosses both the blood-retina and blood-brain barrier is presented. Our results indicates that minocycine shows promise for improving visual acuity, reducing pain from peripheral neuropathy, promoting weight loss and improving blood pressure control and we postulate that these observed beneficial effects are due to a reduction of chronic inflammation.
Collapse
Affiliation(s)
- Jane Yellowlees Douglas
- Clinical and Translational Science Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Confavreux CB, Borel O, Lee F, Vaz G, Guyard M, Fadat C, Carlier MC, Chapurlat R, Karsenty G. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int 2012; 23:1645-50. [PMID: 21681611 DOI: 10.1007/s00198-011-1684-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/24/2011] [Indexed: 01/25/2023]
Abstract
Osteocalcin is a hormone secreted by osteoblasts, which regulates energy metabolism by increasing β-cell proliferation, insulin secretion, insulin sensitivity, and energy expenditure. This has been demonstrated in mice, but to date, the evidence implicating osteocalcin in the regulation of energy metabolism in humans are indirect. To address this question more directly, we asked whether a benign osteoblastic tumor, such as osteoma osteoid in young adults, may secrete osteocalcin. The study was designed to assess the effect of surgical resection of osteoid osteoma on osteocalcin and blood glucose levels in comparison with patients undergoing knee surgery and healthy volunteers. Blood collections were performed the day of surgery and the following morning after overnight fasting. Patients and controls were recruited in the orthopedic surgery department of New York Presbiterian Hospital, NY-USA and Hospices Civils de Lyon, France. Seven young males were included in the study: two had osteoid osteoma, two underwent knee surgery, and three were healthy volunteers. After resection of the osteoid osteomas, we observed a decrease of osteocalcin by 62% and 30% from the initial levels. Simultaneously, blood glucose increased respectively by 32% and 15%. Bone turnover markers were not affected. This case study shows for the first time that osteocalcin in humans affects blood glucose level. This study also suggests that ostoid osteoma may be considered, at least in part, as an osteocalcinoma.
Collapse
Affiliation(s)
- C B Confavreux
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
191
|
Nixon M, Wake DJ, Livingstone DE, Stimson RH, Esteves CL, Seckl JR, Chapman KE, Andrew R, Walker BR. Salicylate downregulates 11β-HSD1 expression in adipose tissue in obese mice and in humans, mediating insulin sensitization. Diabetes 2012; 61:790-6. [PMID: 22357964 PMCID: PMC3314355 DOI: 10.2337/db11-0931] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022]
Abstract
Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity. We hypothesized that salicylates downregulate 11β-HSD1 expression, contributing to their metabolic efficacy. We treated diet-induced obese (DIO) 11β-HSD1-deficient mice and C57Bl/6 mice with sodium salicylate for 4 weeks. Glucose tolerance was assessed in vivo. Tissue transcript levels were assessed by quantitative PCR and enzyme activity by incubation with (3)H-steroid. Two weeks' administration of salsalate was also investigated in a randomized double-blind placebo-controlled crossover study in 16 men, with measurement of liver 11β-HSD1 activity in vivo and adipose tissue 11β-HSD1 transcript levels ex vivo. In C57Bl/6 DIO mice, salicylate improved glucose tolerance and downregulated 11β-HSD1 mRNA and activity selectively in visceral adipose. DIO 11β-HSD1-deficient mice were resistant to these metabolic effects of salicylate. In men, salsalate reduced 11β-HSD1 expression in subcutaneous adipose, and in vitro salicylate treatment reduced adipocyte 11β-HSD1 expression and induced adiponectin expression only in the presence of 11β-HSD1 substrate. Reduced intra-adipose glucocorticoid regeneration by 11β-HSD1 is a novel mechanism that contributes to the metabolic efficacy of salicylates.
Collapse
Affiliation(s)
- Mark Nixon
- Endocrinology Unit, Centre for Cardiovascular Science, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, Scotland, U.K.
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Bassi R, Trevisani A, Tezza S, Ben Nasr M, Gatti F, Vergani A, Farina A, Fiorina P. Regenerative therapies for diabetic microangiopathy. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:916560. [PMID: 22536216 PMCID: PMC3321284 DOI: 10.1155/2012/916560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 12/16/2022]
Abstract
Hyperglycaemia occurring in diabetes is responsible for accelerated arterial remodeling and atherosclerosis, affecting the macro- and the microcirculatory system. Vessel injury is mainly related to deregulation of glucose homeostasis and insulin/insulin-precursors production, generation of advanced glycation end-products, reduction in nitric oxide synthesis, and oxidative and reductive stress. It occurs both at extracellular level with increased calcium and matrix proteins deposition and at intracellular level, with abnormalities of intracellular pathways and increased cell death. Peripheral arterial disease, coronary heart disease, and ischemic stroke are the main causes of morbidity/mortality in diabetic patients representing a major clinical and economic issue. Pharmacological therapies, administration of growth factors, and stem cellular strategies are the most effective approaches and will be discussed in depth in this comprehensive review covering the regenerative therapies of diabetic microangiopathy.
Collapse
Affiliation(s)
- Roberto Bassi
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | | | - Sara Tezza
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Moufida Ben Nasr
- Department of Biophysical and Medical Science, Higher Institute of Medical Technology, 1006 Tunis, Tunisia
| | - Francesca Gatti
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- DiSTeBA, Università del Salento, 73100 Lecce, Italy
| | - Andrea Vergani
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonio Farina
- Department of Obstetrics and Gynecology, University of Bologna, 40138 Bologna, Italy
| | - Paolo Fiorina
- Nephrology Division, Transplantation Research Center (TRC), Children's Hospital, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
193
|
Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab 2012; 15:137-49. [PMID: 22244528 PMCID: PMC3278569 DOI: 10.1016/j.cmet.2011.12.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022]
Abstract
The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in environments providing ubiquitous access to palatable, high-fat foods, making it difficult to achieve and maintain weight loss. Consequently, mechanisms by which nutritional environments interact with central homeostatic circuits to influence the threshold for defended adiposity represent critical targets for therapeutic intervention.
Collapse
Affiliation(s)
- Karen K Ryan
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
194
|
Stienstra R, Tack CJ, Kanneganti TD, Joosten LAB, Netea MG. The inflammasome puts obesity in the danger zone. Cell Metab 2012; 15:10-8. [PMID: 22225872 DOI: 10.1016/j.cmet.2011.10.011] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/08/2011] [Accepted: 10/18/2011] [Indexed: 12/11/2022]
Abstract
Obesity-induced inflammation is an important contributor to the induction of insulin resistance. Recently, the cytokine interleukin-1β (IL-1β) has emerged as a prominent instigator of the proinflammatory response in obesity. Several studies over the last year have subsequently deciphered the molecular mechanisms responsible for IL-1β activation in adipose tissue, liver, and macrophages and demonstrated a central role of the processing enzyme caspase-1 and of the protein complex leading to its activation called the inflammasome. These data suggest that activation of the inflammasome represents a crucial step in the road from obesity to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Rinke Stienstra
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen 6525 GA, The Netherlands
| | | | | | | | | |
Collapse
|
195
|
van Diepen JA, Vroegrijk IOCM, Berbée JFP, Shoelson SE, Romijn JA, Havekes LM, Rensen PCN, Voshol PJ. Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2011; 301:E1099-107. [PMID: 21862721 PMCID: PMC4116353 DOI: 10.1152/ajpendo.00185.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic inflammation is strongly involved in the pathophysiology of the metabolic syndrome, a cluster of metabolic risk factors that includes hypertriglyceridemia. Aspirin treatment lowers inflammation via inhibition of NF-κB activity but also reduces hypertriglyceridemia in humans. The aim of this study was to investigate the mechanism by which aspirin improves hypertriglyceridemia. Human apolipoprotein CI (apoCI)-expressing mice (APOC1 mice), an animal model with elevated plasma triglyceride (TG) levels, as well as normolipidemic wild-type (WT) mice were fed a high-fat diet (HFD) and treated with aspirin. Aspirin treatment reduced hepatic NF-κB activity in HFD-fed APOC1 and WT mice, and in addition, aspirin decreased plasma TG levels (-32%, P < 0.05) in hypertriglyceridemic APOC1 mice. This TG-lowering effect could not be explained by enhanced VLDL-TG clearance, but aspirin selectively reduced hepatic production of VLDL-TG in both APOC1 (-28%, P < 0.05) and WT mice (-33%, P < 0.05) without affecting VLDL-apoB production. Aspirin did not alter hepatic expression of genes involved in FA oxidation, lipogenesis, and VLDL production but decreased the incorporation of plasma-derived FA by the liver into VLDL-TG (-24%, P < 0.05), which was independent of hepatic expression of genes involved in FA uptake and transport. We conclude that aspirin improves hypertriglyceridemia by decreasing VLDL-TG production without affecting VLDL particle production. Therefore, the inhibition of inflammatory pathways by aspirin could be an interesting target for the treatment of hypertriglyceridemia.
Collapse
Affiliation(s)
- Janna A van Diepen
- Department of General Internal Medicine, Endocrinology, and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Cao Y, Dubois DC, Sun H, Almon RR, Jusko WJ. Modeling diabetes disease progression and salsalate intervention in Goto-Kakizaki rats. J Pharmacol Exp Ther 2011; 339:896-904. [PMID: 21903749 PMCID: PMC3226370 DOI: 10.1124/jpet.111.185686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/08/2011] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) arises owing to insulin resistance and β-cell dysfunction. Chronic inflammation is widely identified as a cause of T2DM. The Goto-Kakizaki (GK) rat is a spontaneous rodent model for T2DM with chronic inflammation. The purpose of this study was to characterize diabetes progression in GK rats and evaluate the potential role of the anti-inflammatory agent salsalate. The GK rats were divided into control groups (n = 6) and salsalate treatment groups (n = 6), which were fed a salsalate-containing diet from 5 to 21 weeks of age. Blood glucose and salicylate concentrations were measured once a week. Glucose concentrations showed a biphasic increase in which the first phase started at approximately 5 weeks, resulting in an increase by 15 to 25 mg/dl and a second phase at 14 to 15 weeks with an upsurge of more than 100 mg/dl. A mechanism-based model was proposed to describe the natural diabetes progression and salsalate pharmacodynamics by using a population method in S-ADAPT. Two transduction cascades were applied to mimic the two T2DM components: insulin resistance and β-cell dysfunction. Salsalate suppressed both disease factors by a fraction of 0.622 on insulin resistance and 0.134 on β-cell dysfunction. The substantial alleviation of diabetes by salsalate supports the hypothesis that chronic inflammation is a pathogenic factor of diabetes in GK rats. In addition, body weight and food intake were measured and further modeled by a mechanism-based growth model. Modeling results suggest that salsalate reduces weight gain by enhancing metabolic rate and energy expenditure in both GK and Wister-Kyoto rats.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/blood
- Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Blood Glucose/analysis
- Body Weight
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/physiopathology
- Disease Models, Animal
- Disease Progression
- Male
- Models, Biological
- Random Allocation
- Rats
- Rats, Inbred WKY
- Salicylates/blood
- Salicylates/pharmacokinetics
- Salicylates/therapeutic use
- Sodium Salicylate/blood
- Sodium Salicylate/pharmacokinetics
- Software
Collapse
Affiliation(s)
- Yanguang Cao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
197
|
McCarty MF. Full-spectrum antioxidant therapy featuring astaxanthin coupled with lipoprivic strategies and salsalate for management of non-alcoholic fatty liver disease. Med Hypotheses 2011; 77:550-6. [DOI: 10.1016/j.mehy.2011.06.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/12/2011] [Indexed: 12/13/2022]
|
198
|
Zhao Y, Jiang Z, Guo C. New hope for type 2 diabetics: targeting insulin resistance through the immune modulation of stem cells. Autoimmun Rev 2011; 11:137-42. [PMID: 21964164 DOI: 10.1016/j.autrev.2011.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/11/2011] [Indexed: 12/13/2022]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, highlighting the need for a better understanding of the pathogenesis of the disease and the development of innovative therapeutic approaches for the prevention and cure of the condition. Mounting evidence points to the involvement of immune dysfunction in insulin resistance in T2D, suggesting that immune modulation may be a useful tool in treating the disease. Recent advances in the use of adult stem cells from human umbilical cord blood and bone marrow for immune modulation hold promise for overcoming immune dysfunction in T2D without many of the complications associated with traditional immunosuppressive therapies. This review focuses on recent progress in the use of immune modulation in T2D and discusses the potential for future therapies. New insights are provided on the use of cord blood-derived multipotent stem cells (CB-SC) in T2D.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
199
|
Rocha VZ, Folco EJ. Inflammatory concepts of obesity. Int J Inflam 2011; 2011:529061. [PMID: 21837268 PMCID: PMC3151511 DOI: 10.4061/2011/529061] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/25/2011] [Indexed: 12/11/2022] Open
Abstract
Obesity, long considered a condition characterized by the deposition of inert fat, is now recognized as a chronic and systemic inflammatory disease, where adipose tissue plays a crucial endocrine role through the production of numerous bioactive molecules, collectively known as adipokines. These molecules regulate carbohydrate and lipid metabolism, immune function and blood coagulability, and may serve as blood markers of cardiometabolic risk. Local inflammatory loops operate in adipose tissue as a consequence of nutrient overload, and crosstalk among its cellular constituents-adipocytes, endothelial and immune cells-results in the elaboration of inflammatory mediators. These mediators promote important systemic effects that can result in insulin resistance, dysmetabolism and cardiovascular disease. The understanding that inflammation plays a critical role in the pathogenesis of obesity-derived disorders has led to therapeutic approaches that target different points of the inflammatory network induced by obesity.
Collapse
|
200
|
Alkhouri N, Carter-Kent C, Elias M, Feldstein AE. Atherogenic dyslipidemia and cardiovascular risk in children with nonalcoholic fatty liver disease. CLINICAL LIPIDOLOGY 2011; 6:305-314. [PMID: 22162978 PMCID: PMC3234131 DOI: 10.2217/clp.11.19] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease is now regarded as the most common form of chronic liver disease in adults and children. The close association between nonalcoholic fatty liver disease (NAFLD) and the metabolic syndrome has been extensively described. Moreover, a growing body of evidence suggest that NAFLD by itself confers a substantial cardiovascular risk independent of the other components of the metabolic syndrome. Given the significant potential for morbidity and mortality in these patients, and the large proportion of both pediatric and adult population affected, it is important that we clearly define the overall risk, identify early predictors for cardiovascular disease progression, and establish management strategies. In this article, we will focus on current data linking NAFLD and the severity of liver damage present in children with cardiovascular risk.
Collapse
Affiliation(s)
- Naim Alkhouri
- Pediatric Gastroenterology, Lerner Research Institute Cleveland Clinic College of Medicine of CWRU, OH, USA
- Department of Pediatric Gastroenterology, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Christine Carter-Kent
- Pediatric Gastroenterology, Lerner Research Institute Cleveland Clinic College of Medicine of CWRU, OH, USA
| | - Michael Elias
- Pediatric Gastroenterology, Lerner Research Institute Cleveland Clinic College of Medicine of CWRU, OH, USA
| | - Ariel E Feldstein
- Pediatric Gastroenterology, Lerner Research Institute Cleveland Clinic College of Medicine of CWRU, OH, USA
| |
Collapse
|