151
|
Méheust Y, Delord K, Bonnet-Lebrun AS, Raclot T, Vasseur J, Allain J, Decourteillle V, Bost CA, Barbraud C. Human infrastructures correspond to higher Adélie penguin breeding success and growth rate. Oecologia 2024; 204:675-688. [PMID: 38459994 DOI: 10.1007/s00442-024-05523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 02/01/2024] [Indexed: 03/11/2024]
Abstract
Anthropogenic activities generate increasing disturbance in wildlife especially in extreme environments where species have to cope with rapid environmental changes. In Antarctica, while studies on human disturbance have mostly focused on stress response through physiological and behavioral changes, local variability in population dynamics has been addressed more scarcely. In addition, the mechanisms by which breeding communities are affected around research stations remain unclear. Our study aims at pointing out the fine-scale impact of human infrastructures on the spatial variability in Adélie penguin (Pygoscelis adeliae) colonies dynamics. Taking 24 years of population monitoring, we modeled colony breeding success and growth rate in response to both anthropic and land-based environmental variables. Building density around colonies was the second most important variable explaining spatial variability in breeding success after distance from skua nests, the main predators of penguins on land. Building density was positively associated with penguins breeding success. We discuss how buildings may protect penguins from avian predation and environmental conditions. The drivers of colony growth rate included topographical variables and the distance to human infrastructures. A strong correlation between 1-year lagged growth rate and colony breeding success was coherent with the use of public information by penguins to select their initial breeding site. Overall, our study brings new insights about the relative contribution and ecological implications of human presence on the local population dynamics of a sentinel species in Antarctica.
Collapse
Affiliation(s)
- Yann Méheust
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France.
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Anne-Sophie Bonnet-Lebrun
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Thierry Raclot
- Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS, 69037, Strasbourg, France
| | - Julien Vasseur
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Jimmy Allain
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Virgil Decourteillle
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Charles-André Bost
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR7372 CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| |
Collapse
|
152
|
Levenson HK, Metz BN, Tarpy DR. Effects of study design parameters on estimates of bee abundance and richness in agroecosystems: a meta-analysis. ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA 2024; 117:92-106. [PMID: 38486925 PMCID: PMC10933562 DOI: 10.1093/aesa/saae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024]
Abstract
Pollinators are critical for agricultural production and food security, leading to many ongoing surveys of pollinators (especially bees) in crop and adjacent landscapes. These surveys have become increasingly important to better understand the community of potential pollinators, quantify relative insect abundance, and secure crop ecosystem services. However, as some bee populations are declining, there is a need to align and improve bee survey efforts, so that they can best meet research and conservation goals, particularly in light of the logistical and financial constraints of conducting such studies. Here, we mined the existing literature on bee surveys in or around agricultural lands to better understand how sampling methods can be optimized to maximize estimates of 2 key measures of bee communities (abundance and richness). After reviewing 72 papers spanning 20 yr of publication, we found that study duration, number of sites, sampling time, and sampling method most significantly influenced abundance, while the number of trips per year and collection method significantly influenced richness. Our analysis helps to derive thresholds, priorities, and recommendations that can be applied to future studies describing bee communities in agroecosystems.
Collapse
Affiliation(s)
- Hannah K Levenson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Bradley N Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
153
|
Tranberg O, Hekkala AM, Lindroos O, Löfroth T, Jönsson M, Sjögren J, Hjältén J. Translocation of deadwood in ecological compensation: A novel way to compensate for habitat loss. AMBIO 2024; 53:482-496. [PMID: 37819443 PMCID: PMC10837401 DOI: 10.1007/s13280-023-01934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Restoration of degraded habitat is frequently used in ecological compensation. However, ecological restoration suffers from innate problems of long delivery times of features shown to be good proxies for biodiversity, e.g., large dead trees. We tested a possible way to circumvent this problem; the translocation of hard-to-come deadwood substrates from an impact area to a compensation area. Following translocation, deadwood density in the compensation area was locally equivalent to the impact area, around 20 m3 ha-1, a threshold for supporting high biodiversity of rare and red-listed species. However, deadwood composition differed between the impact and compensation area, showing a need to include more deadwood types, e.g., late decomposition deadwood, in the translocation scheme. To guide future compensation efforts, the cost for translocation at different spatial scales was calculated. We conclude that translocation of deadwood could provide a cost-efficient new tool for ecological compensation/restoration but that the method needs refinement.
Collapse
Affiliation(s)
- Olov Tranberg
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden.
| | - Anne-Maarit Hekkala
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ola Lindroos
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Therese Löfroth
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Mari Jönsson
- SLU Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jörgen Sjögren
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Joakim Hjältén
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| |
Collapse
|
154
|
Kessler C, Shafer ABA. Genomic Analyses Capture the Human-Induced Demographic Collapse and Recovery in a Wide-Ranging Cervid. Mol Biol Evol 2024; 41:msae038. [PMID: 38378172 PMCID: PMC10917209 DOI: 10.1093/molbev/msae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The glacial cycles of the Quaternary heavily impacted species through successions of population contractions and expansions. Similarly, populations have been intensely shaped by human pressures such as unregulated hunting and land use changes. White-tailed and mule deer survived in different refugia through the Last Glacial Maximum, and their populations were severely reduced after the European colonization. Here, we analyzed 73 resequenced deer genomes from across their North American range to understand the consequences of climatic and anthropogenic pressures on deer demographic and adaptive history. We found strong signals of climate-induced vicariance and demographic decline; notably, multiple sequentially Markovian coalescent recovers a severe decline in mainland white-tailed deer effective population size (Ne) at the end of the Last Glacial Maximum. We found robust evidence for colonial overharvest in the form of a recent and dramatic drop in Ne in all analyzed populations. Historical census size and restocking data show a clear parallel to historical Ne estimates, and temporal Ne/Nc ratio shows patterns of conservation concern for mule deer. Signatures of selection highlight genes related to temperature, including a cold receptor previously highlighted in woolly mammoth. We also detected immune genes that we surmise reflect the changing land use patterns in North America. Our study provides a detailed picture of anthropogenic and climatic-induced decline in deer diversity and clues to understanding the conservation concerns of mule deer and the successful demographic recovery of white-tailed deer.
Collapse
Affiliation(s)
- Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
155
|
Gao L, Mi C. Double jeopardy: global change and interspecies competition threaten Siberian cranes. PeerJ 2024; 12:e17029. [PMID: 38436031 PMCID: PMC10908270 DOI: 10.7717/peerj.17029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Anthropogenic global change is precipitating a worldwide biodiversity crisis, with myriad species teetering on the brink of extinction. The Arctic, a fragile ecosystem already on the frontline of global change, bears witness to rapid ecological transformations catalyzed by escalating temperatures. In this context, we explore the ramifications of global change and interspecies competition on two arctic crane species: the critically endangered Siberian crane (Leucogeranus leucogeranus) and the non-threatened sandhill crane (Grus canadensis). How might global climate and landcover changes affect the range dynamics of Siberian cranes and sandhill cranes in the Arctic, potentially leading to increased competition and posing a greater threat to the critically endangered Siberian cranes? To answer these questions, we integrated ensemble species distribution models (SDMs) to predict breeding distributions, considering both abiotic and biotic factors. Our results reveal a profound divergence in how global change impacts these crane species. Siberian cranes are poised to lose a significant portion of their habitats, while sandhill cranes are projected to experience substantial range expansion. Furthermore, we identify a growing overlap in breeding areas, intensifying interspecies competition, which may imperil the Siberian crane. Notably, we found the Anzhu Islands may become a Siberian crane refuge under global change, but competition with Sandhill Cranes underscores the need for enhanced conservation management. Our study underscores the urgency of considering species responses to global changes and interspecies dynamics in risk assessments and conservation management. As anthropogenic pressures continue to mount, such considerations are crucial for the preservation of endangered species in the face of impending global challenges.
Collapse
Affiliation(s)
- Linqiang Gao
- Institute of Zoology, Chinese Academy of Science, Beijing, China
| | - Chunrong Mi
- Institute of Zoology, Chinese Academy of Science, Beijing, China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jercey, United States
| |
Collapse
|
156
|
Wang H, Dong Y, Jiang Y, Zhang N, Liu Y, Lu X, Fan Y. Multiple stressors determine the process of the benthic diatom community assembly and network stability in urban water bodies in Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169536. [PMID: 38141986 DOI: 10.1016/j.scitotenv.2023.169536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Human activities have triggered biodiversity loss, often resulting in biotic homogenization, which poses a threat to human well-being. Nevertheless, the overall influence of diverse environmental stressors on intra- and inter-community diversity remains insufficiently elucidated. This study aimed to quantify and reveal the impact of environmental stressors on the alpha and beta diversities of benthic diatom communities in the Harbin urban river network during the summer and autumn of 2022 and spring of 2023. The marked seasonal variations observed in alpha and beta diversity indices highlighted the distinct community compositions. Nonetheless, varying types of urban water pollutants were the primary drivers of biotic homogenization in terms of both taxonomic and functional diversities and played a prominent role in steering diversity shifts. These pollutants indirectly led to biotic homogenization by altering water quality parameters and affecting the ecological dynamics of benthic diatom communities. Furthermore, diverse responses to stressors were identified in taxonomic and functional diversities, providing additional insights for understanding ecological shifts in communities. Taxonomic beta diversity was related to environmental filtering, whereas functional beta diversity resulted from stressor-spatial dimension interactions. Our study emphasises that relying solely on traditional water quality monitoring may not fully reveal the current state of river ecosystem protection, and the need to study the continuous changes in biodiversity across seasons in urban waterbodies from the perspective of various stressors is highlighted.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yanlong Dong
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yutong Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Yan Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xinxin Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
157
|
Cheng EMY, Cheng CML, Choo J, Yan Y, Carrasco LR. Biodiversity footprints of 151 popular dishes from around the world. PLoS One 2024; 19:e0296492. [PMID: 38381742 PMCID: PMC10880993 DOI: 10.1371/journal.pone.0296492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 12/14/2023] [Indexed: 02/23/2024] Open
Abstract
Habitat loss for food production is a key threat to global biodiversity. Despite the importance of dietary choices on our capacity to mitigate the on-going biodiversity crisis, unlike with specific ingredients or products, consumers have limited information on the biodiversity implications of choosing to eat a certain popular dish. Here we estimated the biodiversity footprints of 151 popular local dishes from around the world when globally and locally produced and after calorical content standardization. We find that specific ingredients (beef, legumes, rice) encroaching on biodiversity hotspots with already very high agricultural pressure (e.g. India) lead to high biodiversity footprint in the dishes. Examples of high-biodiversity-footprint popular dishes were beef dishes such as fraldinha (beef cut dish) originating from Brazil and legume dishes such as chana masala (chickpea curry) from India. Regardless of assuming locally or globally produced, feedlot or pasture livestock production, vegan and vegetarian dishes presented lower biodiversity footprints than dishes containing meat. Our results demonstrate the feasibility of analysing biodiversity footprint at the dish level across multiple countries, making sustainable eating decisions more accessible to consumers.
Collapse
Affiliation(s)
- Elissa M. Y. Cheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Carina M. L. Cheng
- Department of Statistics and Data Science, National University of Singapore, Singapore, Singapore
| | - Jacqueline Choo
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yanyun Yan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Luis Roman Carrasco
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
158
|
Zhuo Y, Wang M, Liu Z, Xu W, Abdulnazar A, Rajabi AM, Davletbakov A, Haider J, Khan MZ, Loik N, Faryabi SP, Michel S, Ostrowski S, Moheb Z, Ruckstuhl K, da Silva AA, Alves J, Yang W. Border fences reduce potential for transboundary migration of Marco Polo Sheep (Ovis ammon polii) in the Pamir Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169298. [PMID: 38128653 DOI: 10.1016/j.scitotenv.2023.169298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Border fences have severely impeded the transboundary migration of a number of large mammals worldwide, with central Asia being one of the most impacted. The Marco Polo sheep (Ovis ammon polii), an iconic species of Pamir, is threatened in its transboundary movement by increasing border fencing among their five distributed countries, including Tajikistan, Kyrgyzstan, China, Afghanistan, and Pakistan. In this study, by building ensemble species distribution models, we found that eastern Tajikistan had the largest suitable Macro Polo sheep habitat (about 42 % of the total suitable habitat), followed by China (about 32 %). We used least-cost paths to identify 51 ecological corridors including 5 transboundary ecological corridors, which may be important to maintain connectivity in both domestic and transboundary regions. To assess the potential barrier effect of border fences, we assessed four scenarios (30, 40, 50 and 60°) corresponding to the upper limit of the slope for the construction of fences. In areas too steep for fencing, these could be used by wild sheep to cross barriers or borders and may represent migration or movement routes, defined as natural passages. In the most pessimistic Scenario 60, only 25 migratory passages along the border fences were identified, compared to 997 in the most optimistic scenario (Scenario 30), indicating a strong negative effect of intensive border fencing on the transboundary movement of Marco Polo sheep. The establishment of transnational conservation parks, and ensuring permeability is maintained in key areas, could have a positive impact on the connectivity and persistence of Marco Polo sheep populations, and provide important lessons for other large migratory mammals in transboundary regions.
Collapse
Affiliation(s)
- Yingying Zhuo
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori 831900, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muyang Wang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori 831900, China.
| | - Zhongjun Liu
- Forestry and Grassland Bureau of Xinjiang Uygur Autonomous Region of China, Urumqi 830011, China
| | - Wenxuan Xu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori 831900, China
| | - Abdulnazarov Abdulnazar
- Pamir Biological Institute, the Academy of Sciences of the Republic of Tajikistan, Khujand, Tajikistan
| | | | - Askar Davletbakov
- Institute for Biology and Soil Sciences, National Academy of Sciences of the Kyrgyz Republic, Bishkek, Kyrgyzstan
| | - Jibran Haider
- Gilgit-Baltistan Forest and Wildlife Management Department, Forest Complex, Jutial, Gilgit, Pakistan
| | - Muhammad Zafar Khan
- Department of Forestry, Range & Wildlife Management, Karakoram International University, Gilgit, Pakistan
| | - Nabiev Loik
- Institute of Zoology and Parasitology, the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | | | | | | | - Zalmai Moheb
- Wildlife Conservation Society (WCS), Afghanistan
| | - Kathreen Ruckstuhl
- Department of Biological Sciences, University of Calgary, 2500 University Drive Northwest, Calgary, AB T2N 1N4, Canada
| | - António Alves da Silva
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Joana Alves
- Centre for Functional Ecology (CFE), TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Weikang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi 830011, China; Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; Mori Wildlife Monitoring and Experimentation Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Mori 831900, China.
| |
Collapse
|
159
|
Cowl VB, Comizzoli P, Appeltant R, Bolton RL, Browne RK, Holt WV, Penfold LM, Swegen A, Walker SL, Williams SA. Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu Rev Anim Biosci 2024; 12:91-112. [PMID: 37988633 DOI: 10.1146/annurev-animal-071423-093523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.
Collapse
Affiliation(s)
- Veronica B Cowl
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA;
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium;
| | | | - Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize;
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom;
| | - Linda M Penfold
- South East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA;
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia;
| | - Susan L Walker
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
| | - Suzannah A Williams
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
160
|
Liu J, Zhong J. Landscape evolution in China's key ecological function zones during 1990-2015. Sci Rep 2024; 14:2655. [PMID: 38302526 PMCID: PMC10834530 DOI: 10.1038/s41598-024-52863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/24/2024] [Indexed: 02/03/2024] Open
Abstract
Landscape evolution has profound effects on ecosystems. Recently, some studies suggest that China has implemented plans leading in the greening of the world by mainly describing the changes based on satellite data. However, few studies have analyzed the policy effect on ecosystem improvement from the perspective of landscape pattern evolution. Among the numerous ecological policy plans, China's key ecological function zones plan is an important one. In this study, we focus on depicting the long-term and large-scale landscape evolution in China's key ecological function zones, which are accounting for 40.2% of China's land area, and include four-type ecoregions where ecosystems are fragile or important, to comprehensively explore the environmental influences of policy planning. For this purpose, we first described the landscape composition changes and conversion mechanisms in China's key ecological function zones from 1990 to 2015. Then we captured the detailed pattern evolution characteristics by landscape indices. The results show that these ecoregions were mostly evolving in an unfavorable direction in these 25 years, i.e. destruction of habitats and increment of fragmentation. Although greening areas increased based on other recent researches, the landscape pattern became worse, indicating it is necessary for the detailed analysis of landscape ecology and more accurate ecological planning. We also found the deterioration of the ecological environment had been uncharacteristically stopped or even improved in wind prevention and sand fixation ecoregions and biodiversity maintenance ecoregions after the implementation of this plan. Furthermore, we assumed that the policy is more prominent in these prohibiting sabotages and protecting areas with fragile ecological bases, which may be caused by the differentiated transfer payments in different ecoregions. Finally, some planning suggestions, such as stricter land use control, the regional balance of ecological transfer payments and deepening of ecological migration policies, etc., were proposed for promoting better future environmental changes.
Collapse
Affiliation(s)
- Jiafeng Liu
- China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, 267 North Fourth Ring Middle Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Digital Mapping and Land Information Application, Ministry of Natural Resources, 129 Luoyu Road, Wuhan, 430079, People's Republic of China.
| | - Jing Zhong
- School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, People's Republic of China
| |
Collapse
|
161
|
Wall J, Hahn N, Carroll S, Mwiu S, Goss M, Sairowua W, Tiedeman K, Kiambi S, Omondi P, Douglas-Hamilton I, Wittemyer G. Land use drives differential resource selection by African elephants in the Greater Mara Ecosystem, Kenya. MOVEMENT ECOLOGY 2024; 12:11. [PMID: 38303081 PMCID: PMC10832223 DOI: 10.1186/s40462-023-00436-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Understanding drivers of space use by African elephants is critical to their conservation and management, particularly given their large home-ranges, extensive resource requirements, ecological role as ecosystem engineers, involvement in human-elephant conflict and as a target species for ivory poaching. In this study we investigated resource selection by elephants inhabiting the Greater Mara Ecosystem in Southwestern Kenya in relation to three distinct but spatially contiguous management zones: (i) the government protected Maasai Mara National Reserve (ii) community-owned wildlife conservancies, and (iii) elephant range outside any formal wildlife protected area. We combined GPS tracking data from 49 elephants with spatial covariate information to compare elephant selection across these management zones using a hierarchical Bayesian framework, providing insight regarding how human activities structure elephant spatial behavior. We also contrasted differences in selection by zone across several data strata: sex, season and time-of-day. Our results showed that the strongest selection by elephants was for closed-canopy forest and the strongest avoidance was for open-cover, but that selection behavior varied significantly by management zone and selection for cover was accentuated in human-dominated areas. When contrasting selection parameters according to strata, variability in selection parameter values reduced along a protection gradient whereby elephants tended to behave more similarly (limited plasticity) in the human dominated, unprotected zone and more variably (greater plasticity) in the protected reserve. However, avoidance of slope was consistent across all zones. Differences in selection behavior was greatest between sexes, followed by time-of-day, then management zone and finally season (where seasonal selection showed the least differentiation of the contrasts assessed). By contrasting selection coefficients across strata, our analysis quantifies behavioural switching related to human presence and impact displayed by a cognitively advanced megaherbivore. Our study broadens the knowledge base about the movement ecology of African elephants and builds our capacity for both management and conservation.
Collapse
Affiliation(s)
- Jake Wall
- Mara Elephant Project, Nairobi, Kenya.
- Colorado State University, Fort Collins, USA.
| | - Nathan Hahn
- Colorado State University, Fort Collins, USA
| | | | - Stephen Mwiu
- Kenya Wildlife Research and Training Institute, Naivasha, Kenya
| | - Marc Goss
- Mara Elephant Project, Nairobi, Kenya
| | | | - Kate Tiedeman
- Max Planck Institute of Animal Behavior, Constance, Germany
| | - Sospeter Kiambi
- Kenya Wildlife Research and Training Institute, Naivasha, Kenya
| | - Patrick Omondi
- Kenya Wildlife Research and Training Institute, Naivasha, Kenya
| | | | - George Wittemyer
- Colorado State University, Fort Collins, USA
- Save the Elephants, Nairobi, Kenya
| |
Collapse
|
162
|
Do Linh San E. Time for a paradigm shift? Small carnivores' sensitivity highlights the importance of monitoring mid-rank predators in future global change studies. J Anim Ecol 2024; 93:126-131. [PMID: 38234260 DOI: 10.1111/1365-2656.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Research Highlight: Jachowski, D. S., Marneweck, C. J., Olfenbuttel, C., & Harris, S. N. (2024). Support for the size-mediated sensitivity hypothesis within a diverse carnivore community. Journal of Animal Ecology, https://doi.org/10.1111/1365-2656.13916. A current paradigm in ecological research suggests that top predators are suitable sentinel species to identify ecosystem dysfunctions and monitor the effects of climate change. However, the adequacy of top predators to systematically take this function may be mistakenly inferred or unintentionally conflated from the fact that these species are regarded as biodiversity indicators or keystone, umbrella and flagship species in most ecosystems. Regarding terrestrial mammalian carnivores (order Carnivora), some researchers recently suggested that the smaller species likely possess a higher sensitivity to environmental changes than large carnivores because of their biological attributes and their intermediate position in food webs. To test this hypothesis, Jachowski et al. (2024) used camera trapping followed by occupancy and structural equation modelling to explore the dynamics of a diverse carnivore community and the factors that influence them. Their results confirmed that small carnivores are more sensitive to habitat changes and are interconnected by a greater number of significant pathways compared with larger carnivores. This support for the size-mediated sensitivity hypothesis strengthens the proposition that small carnivores (and other mid-rank predators) are ideal sentinel species for monitoring the effects of the wide range of contemporary and future environmental changes. Time will tell whether this new 'middle-out ecology' paradigm will be considered in future global change studies.
Collapse
Affiliation(s)
- Emmanuel Do Linh San
- Department of Zoology & Entomology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
163
|
Bao Q, Tay NL, Lim CY, Chua DHH, Kee SK, Choolani M, Loh YH, Ng SC, Chai C. Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Sci Rep 2024; 14:2391. [PMID: 38287040 PMCID: PMC10825216 DOI: 10.1038/s41598-023-50510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Advanced molecular and cellular technologies provide promising tools for wildlife and biodiversity conservation. Induced pluripotent stem cell (iPSC) technology offers an easily accessible and infinite source of pluripotent stem cells, and have been derived from many threatened wildlife species. This paper describes the first successful integration-free reprogramming of adult somatic cells to iPSCs, and their differentiation, from three endangered Southeast Asian primates: the Celebes Crested Macaque (Macaca nigra), the Lar Gibbon (Hylobates lar), and the Siamang (Symphalangus syndactylus). iPSCs were also generated from the Proboscis Monkey (Nasalis larvatus). Differences in mechanisms could elicit new discoveries regarding primate evolution and development. iPSCs from endangered species provides a safety net in conservation efforts and allows for sustainable sampling for research and conservation, all while providing a platform for the development of further in vitro models of disease.
Collapse
Affiliation(s)
- Qiuye Bao
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Nicole Liling Tay
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Christina Yingyan Lim
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | | | - Su Keyau Kee
- Cytogenetics Laboratory, Department of Pathology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Soon Chye Ng
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Sincere Healthcare Group, 8 Sinaran Drive, Singapore, 307470, Singapore.
| | - Chou Chai
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
164
|
Gaynor KM. A big-headed problem drives an ecological chain reaction. Science 2024; 383:370-371. [PMID: 38271504 DOI: 10.1126/science.adn3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Disruption of key species interactions reverberates across an African savanna.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Departments of Zoology and Botany, The University of British Columbia (Musqueam) Territory, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
165
|
Alonso JC, Abril-Colón I, Ucero A, Palacín C. Anthropogenic mortality threatens the survival of Canarian houbara bustards. Sci Rep 2024; 14:2056. [PMID: 38267521 PMCID: PMC10810086 DOI: 10.1038/s41598-024-52641-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Anthropogenic mortality is a major cause of global mortality in terrestrial vertebrates. Quantifying its impact on the dynamics of threatened species is essential to improve their conservation. We investigated cause-specific mortality in Canarian houbara bustards (Chlamydotis undulata fuertaventurae), an endangered subspecies endemic to the Canary Islands. We monitored 51 individuals tagged with solar-powered GSM/GPRS loggers for an average of 3.15 years, and recorded 7 casualties at aerial lines (13.73% of the sample; 5 at power lines, 2 at telephone lines), 1 (1.96%) at a wire fence, 4 road kills (7.84%) and 1 case of predation by cat (1.96%). Cox proportional hazards models showed that anthropogenic and natural annual mortality rates were similar (respectively, 6.20% and 6.36% of the individuals). We estimate that 33-35 houbaras die each year in the Canary Islands due to anthropogenic causes. Population viability models using these data and juvenile productivity values obtained over seven years predicted the extinction of the species in 50 years. Eliminating anthropogenic mortality, the population could be recovered, but would still require management actions to improve habitat quality. Conservation measures to reduce anthropogenic mortality due to power line fatalities, roadkills and predation by cats, as well as to increase productivity, are urgently needed, particularly on Fuerteventura, where houbaras are on the brink of extinction.
Collapse
Affiliation(s)
- Juan C Alonso
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Inmaculada Abril-Colón
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Alberto Ucero
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Palacín
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006, Madrid, Spain
| |
Collapse
|
166
|
Carroll SL, Schmidt GM, Waller JS, Graves TA. Evaluating density-weighted connectivity of black bears (Ursus americanus) in Glacier National Park with spatial capture-recapture models. MOVEMENT ECOLOGY 2024; 12:8. [PMID: 38263096 PMCID: PMC11334611 DOI: 10.1186/s40462-023-00445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Improved understanding of wildlife population connectivity among protected area networks can support effective planning for the persistence of wildlife populations in the face of land use and climate change. Common approaches to estimating connectivity often rely on small samples of individuals without considering the spatial structure of populations, leading to limited understanding of how individual movement links to demography and population connectivity. Recently developed spatial capture-recapture (SCR) models provide a framework to formally connect inference about individual movement, connectivity, and population density, but few studies have applied this approach to empirical data to support connectivity planning. METHODS We used mark-recapture data collected from 924 genetic detections of 598 American black bears (Ursus americanus) in 2004 with SCR ecological distance models to simultaneously estimate density, landscape resistance to movement, and population connectivity in Glacier National Park northwest Montana, USA. We estimated density and movement parameters separately for males and females and used model estimates to calculate predicted density-weighted connectivity surfaces. RESULTS Model results indicated that landscape structure influences black bear density and space use in Glacier. The mean density estimate was 16.08 bears/100 km2 (95% CI 12.52-20.6) for females and 9.27 bears/100 km2 (95% CI 7.70-11.14) for males. Density increased with forest cover for both sexes. For male black bears, density decreased at higher grizzly bear (Ursus arctos) densities. Drainages, valley bottoms, and riparian vegetation decreased estimates of landscape resistance to movement for male and female bears. For males, forest cover also decreased estimated resistance to movement, but a transportation corridor bisecting the study area strongly increased resistance to movement presenting a barrier to connectivity. CONCLUSIONS Density-weighed connectivity surfaces highlighted areas important for population connectivity that were distinct from areas with high potential connectivity. For black bears in Glacier and surrounding landscapes, consideration of both vegetation and valley topography could inform the placement of underpasses along the transportation corridor in areas characterized by both high population density and potential connectivity. Our study demonstrates that the SCR ecological distance model can provide biologically realistic, spatially explicit predictions to support movement connectivity planning across large landscapes.
Collapse
Affiliation(s)
- Sarah L Carroll
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Greta M Schmidt
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - John S Waller
- Glacier National Park, P.O. Box 128, West Glacier, MT, 59936, USA
| | - Tabitha A Graves
- U.S. Geological Survey, Northern Rocky Mountain Science Center, PO Box 169, West Glacier, MT, 59936, USA
| |
Collapse
|
167
|
Thavornkanlapachai R, Armstrong KN, Knuckey C, Huntley B, Hanrahan N, Ottewell K. Species-specific SNP arrays for non-invasive genetic monitoring of a vulnerable bat. Sci Rep 2024; 14:1847. [PMID: 38253562 PMCID: PMC10803360 DOI: 10.1038/s41598-024-51461-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Genetic tagging from scats is one of the minimally invasive sampling (MIS) monitoring approaches commonly used to guide management decisions and evaluate conservation efforts. Microsatellite markers have traditionally been used but are prone to genotyping errors. Here, we present a novel method for individual identification in the Threatened ghost bat Macroderma gigas using custom-designed Single Nucleotide Polymorphism (SNP) arrays on the MassARRAY system. We identified 611 informative SNPs from DArTseq data from which three SNP panels (44-50 SNPs per panel) were designed. We applied SNP genotyping and molecular sexing to 209 M. gigas scats collected from seven caves in the Pilbara, Western Australia, employing a two-step genotyping protocol and identifying unique genotypes using a custom-made R package, ScatMatch. Following data cleaning, the average amplification rate was 0.90 ± 0.01 and SNP genotyping errors were low (allelic dropout 0.003 ± 0.000) allowing clustering of scats based on one or fewer allelic mismatches. We identified 19 unique bats (9 confirmed/likely males and 10 confirmed/likely females) from a maternity and multiple transitory roosts, with two male bats detected using roosts, 9 km and 47 m apart. The accuracy of our SNP panels enabled a high level of confidence in the identification of individual bats. Targeted SNP genotyping is a valuable tool for monitoring and tracking of non-model species through a minimally invasive sampling approach.
Collapse
Affiliation(s)
- Rujiporn Thavornkanlapachai
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia.
| | - Kyle N Armstrong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
- South Australian Museum, Adelaide, SA, 5000, Australia
| | - Chris Knuckey
- Biologic Environmental, 24 Wickham Street, East Perth, WA, 6004, Australia
| | - Bart Huntley
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| | - Nicola Hanrahan
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0815, Australia
| | - Kym Ottewell
- Department of Biodiversity, Conservation and Attractions, Bentley Delivery Centre, Locked Bag 104, Bentley, WA, 6983, Australia
| |
Collapse
|
168
|
de Lima RAF, Dauby G, de Gasper AL, Fernandez EP, Vibrans AC, Oliveira AAD, Prado PI, Souza VC, F de Siqueira M, Ter Steege H. Comprehensive conservation assessments reveal high extinction risks across Atlantic Forest trees. Science 2024; 383:219-225. [PMID: 38207046 DOI: 10.1126/science.abq5099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
Biodiversity is declining globally, yet many biodiversity hotspots still lack comprehensive species conservation assessments. Using multiple International Union for Conservation of Nature (IUCN) Red List criteria to evaluate extinction risks and millions of herbarium and forest inventory records, we present automated conservation assessments for all tree species of the Atlantic Forest biodiversity hotspot, including ~1100 heretofore unassessed species. About 65% of all species and 82% of endemic species are classified as threatened. We rediscovered five species classified as Extinct on the IUCN Red List and identified 13 endemics as possibly extinct. Uncertainties in species information had little influence on the assessments, but using fewer Red List criteria severely underestimated threat levels. We suggest that the conservation status of tropical forests worldwide is worse than previously reported.
Collapse
Affiliation(s)
- Renato A F de Lima
- Tropical Botany, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
- Departamento de Ciências Biológicas, ESALQ, Universidade de São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, Brazil
| | - Gilles Dauby
- Botanique et Modélisation de l'Architecture des Plantes et des Végétations (AMAP), Université de Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France
| | - André L de Gasper
- Departamento de Ciências Naturais, Universidade Regional de Blumenau, Rua Antônio da Veiga, 140, 89030-903 Blumenau, Brazil
| | - Eduardo P Fernandez
- Centro Nacional de Conservação da Flora (IUCN SSC Brazil Plant Red List Authority), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, 22460-030 Rio de Janeiro, Brazil
| | - Alexander C Vibrans
- Departamento de Engenharia Florestal, Universidade Regional de Blumenau, Rua São Paulo, 3250, 89030-000 Blumenau, Brazil
| | - Alexandre A de Oliveira
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 321, 05508-090 São Paulo, Brazil
| | - Paulo I Prado
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 321, 05508-090 São Paulo, Brazil
| | - Vinícius C Souza
- Departamento de Ciências Biológicas, ESALQ, Universidade de São Paulo, Avenida Pádua Dias, 11, 13418-900 Piracicaba, Brazil
| | - Marinez F de Siqueira
- Centro Nacional de Conservação da Flora (IUCN SSC Brazil Plant Red List Authority), Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, 22460-030 Rio de Janeiro, Brazil
- Departamento de Biologia, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, 22451-900 Rio de Janeiro, Brazil
| | - Hans Ter Steege
- Tropical Botany, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, 3584 CS Utrecht, Netherlands
| |
Collapse
|
169
|
Diaz-Suarez A, Noreikiene K, Kahar S, Ozerov MY, Gross R, Kisand V, Vasemägi A. DNA metabarcoding reveals spatial and temporal variation of fish eye fluke communities in lake ecosystems. Int J Parasitol 2024; 54:33-46. [PMID: 37633409 DOI: 10.1016/j.ijpara.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Eye flukes (Diplostomidae) are diverse and abundant trematode parasites that form multi-species communities in fish with negative effects on host fitness and survival. However, the environmental factors and host-related characteristics that determine species diversity, composition, and coexistence in such communities remain poorly understood. Here, we developed a cost-effective cox1 region-specific DNA metabarcoding approach to characterize parasitic diplostomid communities in two common fish species (Eurasian perch and common roach) collected from seven temperate lakes in Estonia. We found considerable inter- and intra-lake, as well as inter-host species, variation in diplostomid communities. Sympatric host species characterization revealed that parasite communities were typically more diverse in roach than perch. Additionally, we detected five positive and two negative diplostomid species associations in roach, whereas only a single negative association was observed in perch. These results indicate that diplostomid communities in temperate lakes are complex and dynamic systems exhibiting both spatial and temporal heterogeneity. They are influenced by various environmental factors and by host-parasite and inter-parasite interactions. We expect that the described methodology facilitates ecological and biodiversity research of diplostomid parasites. It is also adaptable to other parasite groups where it could serve to improve current understanding of diversity, distribution, and interspecies interactions of other understudied taxa.
Collapse
Affiliation(s)
- Alfonso Diaz-Suarez
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia.
| | - Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia. https://twitter.com/snaudale
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - Mikhail Y Ozerov
- Biodiversity Unit, University of Turku, 20014 Turku, Finland; Department of Biology, University of Turku, 20014 Turku, Finland; Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia
| | - Veljo Kisand
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006 Tartu, Estonia; Department of Aquatic Resources, Swedish University of Agricultural Sciences, Stångholmsvägen 2, 17893 Drottningholm, Sweden
| |
Collapse
|
170
|
Payne ARD, Mannion PD, Lloyd GT, Davis KE. Decoupling speciation and extinction reveals both abiotic and biotic drivers shaped 250 million years of diversity in crocodile-line archosaurs. Nat Ecol Evol 2024; 8:121-132. [PMID: 38049481 PMCID: PMC10781641 DOI: 10.1038/s41559-023-02244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/26/2023] [Indexed: 12/06/2023]
Abstract
Whereas living representatives of Pseudosuchia, crocodylians, number fewer than 30 species, more than 700 pseudosuchian species are known from their 250-million-year fossil record, displaying far greater ecomorphological diversity than their extant counterparts. With a new time-calibrated tree of >500 species, we use a phylogenetic framework to reveal that pseudosuchian evolutionary history and diversification dynamics were directly shaped by the interplay of abiotic and biotic processes over hundreds of millions of years, supported by information theory analyses. Speciation, but not extinction, is correlated with higher temperatures in terrestrial and marine lineages, with high sea level associated with heightened extinction in non-marine taxa. Low lineage diversity and increased speciation in non-marine species is consistent with opportunities for niche-filling, whereas increased competition may have led to elevated extinction rates. In marine lineages, competition via increased lineage diversity appears to have driven both speciation and extinction. Decoupling speciation and extinction, in combination with ecological partitioning, reveals a more complex picture of pseudosuchian evolution than previously understood. As the number of species threatened with extinction by anthropogenic climate change continues to rise, the fossil record provides a unique window into the drivers that led to clade success and those that may ultimately lead to extinction.
Collapse
Affiliation(s)
- Alexander R D Payne
- Department of Biology, University of York, York, UK
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
| | - Philip D Mannion
- Department of Earth Sciences, University College London, London, UK
| | | | - Katie E Davis
- Department of Biology, University of York, York, UK.
| |
Collapse
|
171
|
Hogan KFE, Jones HP, Savage K, Burke AM, Guiden PW, Hosler SC, Rowland-Schaefer E, Barber NA. Functional consequences of animal community changes in managed grasslands: An application of the CAFE approach. Ecology 2024; 105:e4192. [PMID: 37878728 DOI: 10.1002/ecy.4192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
In the midst of an ongoing biodiversity crisis, much research has focused on species losses and their impacts on ecosystem functioning. The functional consequences (ecosystem response) of shifts in communities are shaped not only by changes in species richness, but also by compositional shifts that result from species losses and gains. Species differ in their contribution to ecosystem functioning, so species identity underlies the consequences of species losses and gains on ecosystem functions. Such research is critical to better predict the impact of disturbances on communities and ecosystems. We used the "Community Assembly and the Functioning of Ecosystems" (CAFE) approach, a modification of the Price equation to understand the functional consequences and relative effects of richness and composition changes in small nonvolant mammal and dung beetle communities as a result of two common disturbances in North American prairie restorations, prescribed fire and the reintroduction of large grazing mammals. Previous research in this system has shown dung beetles are critically important decomposers, while small mammals modulate much energy in prairie food webs. We found that dung beetle communities were more responsive to bison reintroduction and prescribed fires than small nonvolant mammals. Dung beetle richness increased after bison reintroduction, with higher dung beetle community biomass resulting from changes in remaining species (context-dependent component) rather than species turnover (richness components); prescribed fire caused a minor increase in dung beetle biomass for the same reason. For small mammals, bison reintroduction reduced energy transfer through the loss of species, while prescribed fire had little impact on either small mammal richness or energy transfer. The CAFE approach demonstrates how bison reintroduction controls small nonvolant mammal communities by increasing prairie food web complexity, and increases dung beetle populations with possible benefits for soil health through dung mineralization and soil bioturbation. Prescribed fires, however, have little effect on small mammals and dung beetles, suggesting a resilience to fire. These findings illustrate the key role of re-establishing historical disturbance regimes when restoring endangered prairie ecosystems and their ecological function.
Collapse
Affiliation(s)
- Katharine F E Hogan
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Holly P Jones
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
- Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, Illinois, USA
| | - Kirstie Savage
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Angela M Burke
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Peter W Guiden
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Sheryl C Hosler
- Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Erin Rowland-Schaefer
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Nicholas A Barber
- Department of Biology, San Diego State University, San Diego, California, USA
| |
Collapse
|
172
|
Petrenko JA, Martin PR, Fanelli RE, Bonier F. Urban tolerance does not protect against population decline in North American birds. Biol Lett 2024; 20:20230507. [PMID: 38290550 PMCID: PMC10827415 DOI: 10.1098/rsbl.2023.0507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Population declines of organisms are widespread and severe, but some species' populations have remained stable, or even increased. The reasons some species are less vulnerable to population decline than others are not well understood. Species that tolerate urban environments often have a broader environmental tolerance, which, along with their ability to tolerate one of the most human-modified habitats (i.e. cities), might allow them to persist in the face of diverse anthropogenic challenges. Here, we examined the relationship between urban tolerance and annual population trajectories for 397 North American bird species. Surprisingly, we found that urban tolerance was unrelated to species' population trajectories. The lack of a relationship between urban tolerance and population trajectories may reflect other factors driving population declines independent of urban tolerance, challenges that are amplified in cities (e.g. climate warming, disease), and other human impacts (e.g. conservation efforts, broad-scale land-use changes) that have benefitted some urban-avoidant species. Overall, our results illustrate that urban tolerance does not protect species against population decline.
Collapse
Affiliation(s)
| | - Paul R. Martin
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | - Rachel E. Fanelli
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Frances Bonier
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
173
|
Algeo TJ, Shen J. Theory and classification of mass extinction causation. Natl Sci Rev 2024; 11:nwad237. [PMID: 38116094 PMCID: PMC10727847 DOI: 10.1093/nsr/nwad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 12/21/2023] Open
Abstract
Theory regarding the causation of mass extinctions is in need of systematization, which is the focus of this contribution. Every mass extinction has both an ultimate cause, i.e. the trigger that leads to various climato-environmental changes, and one or more proximate cause(s), i.e. the specific climato-environmental changes that result in elevated biotic mortality. With regard to ultimate causes, strong cases can be made that bolide (i.e. meteor) impacts, large igneous province (LIP) eruptions and bioevolutionary events have each triggered one or more of the Phanerozoic Big Five mass extinctions, and that tectono-oceanic changes have triggered some second-order extinction events. Apart from bolide impacts, other astronomical triggers (e.g. solar flares, gamma bursts and supernova explosions) remain entirely in the realm of speculation. With regard to proximate mechanisms, most extinctions are related to either carbon-release or carbon-burial processes, the former being associated with climatic warming, ocean acidification, reduced marine productivity and lower carbonate δ13C values, and the latter with climatic cooling, increased marine productivity and higher carbonate δ13C values. Environmental parameters such as marine redox conditions and terrestrial weathering intensity do not show consistent relationships with carbon-cycle changes. In this context, mass extinction causation can be usefully classified using a matrix of ultimate and proximate factors. Among the Big Five mass extinctions, the end-Cretaceous biocrisis is an example of a bolide-triggered carbon-release event, the end-Permian and end-Triassic biocrises are examples of LIP-triggered carbon-release events, and the Late Ordovician and Late Devonian biocrises are examples of bioevolution-triggered carbon-burial events. Whereas the bolide-impact and LIP-eruption mechanisms appear to invariably cause carbon release, bioevolutionary triggers can result in variable carbon-cycle changes, e.g. carbon burial during the Late Ordovician and Late Devonian events, carbon release associated with modern anthropogenic climate warming, and little to no carbon-cycle impact due to certain types of ecosystem change (e.g. the advent of the first predators around the end-Ediacaran; the appearance of Paleolithic human hunters in Australasia and the Americas). Broadly speaking, studies of mass extinction causation have suffered from insufficiently critical thinking-an impartial survey of the extant evidence shows that (i) hypotheses of a common ultimate cause (e.g. bolide impacts or LIP eruptions) for all Big Five mass extinctions are suspect given manifest differences in patterns of environmental and biotic change among them; (ii) the Late Ordovician and Late Devonian events were associated with carbon burial and long-term climatic cooling, i.e. changes that are inconsistent with a bolide-impact or LIP-eruption mechanism; and (iii) claims of periodicity in Phanerozoic mass extinctions depended critically on the now-disproven idea that they shared a common extrinsic trigger (i.e. bolide impacts).
Collapse
Affiliation(s)
- Thomas J Algeo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences—Wuhan, Wuhan430074, China
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences—Wuhan, Wuhan430074, China
- Department of Geosciences, University of Cincinnati, Cincinnati, OH45221, USA
| | - Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences—Wuhan, Wuhan430074, China
| |
Collapse
|
174
|
Lynggaard C, Frøslev TG, Johnson MS, Olsen MT, Bohmann K. Airborne environmental DNA captures terrestrial vertebrate diversity in nature. Mol Ecol Resour 2024; 24:e13840. [PMID: 37497670 DOI: 10.1111/1755-0998.13840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/12/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
The current biodiversity and climate crises highlight the need for efficient tools to monitor terrestrial ecosystems. Here, we provide evidence for the use of airborne eDNA analyses as a novel method for detecting terrestrial vertebrate communities in nature. Metabarcoding of 143 airborne eDNA samples collected during 3 days in a mixed forest in Denmark yielded 64 bird, mammal, fish and amphibian taxa, of which the detected 57 'wild' taxa represent over a quarter of the around 210 terrestrial vertebrates that occur in the overall area. We provide evidence for the spatial movement and temporal patterns of airborne eDNA and for the influence of weather conditions on vertebrate detections. This study demonstrates airborne eDNA for high-resolution biomonitoring of vertebrates in terrestrial systems and elucidates its potential to guide global nature management and conservation efforts in the ongoing biodiversity crisis.
Collapse
Affiliation(s)
- Christina Lynggaard
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tobias Guldberg Frøslev
- Section for GeoGenetics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- DevLabs, Copenhagen, Denmark
| | - Morten Tange Olsen
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Bohmann
- Section for Molecular Ecology & Evolution, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
175
|
Currie TE, Borgerhoff Mulder M, Fogarty L, Schlüter M, Folke C, Haider LJ, Caniglia G, Tavoni A, Jansen REV, Jørgensen PS, Waring TM. Integrating evolutionary theory and social-ecological systems research to address the sustainability challenges of the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220262. [PMID: 37952618 PMCID: PMC10645068 DOI: 10.1098/rstb.2022.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/19/2023] [Indexed: 11/14/2023] Open
Abstract
The rapid, human-induced changes in the Earth system during the Anthropocene present humanity with critical sustainability challenges. Social-ecological systems (SES) research provides multiple approaches for understanding the complex interactions between humans, social systems, and environments and how we might direct them towards healthier and more resilient futures. However, general theories of SES change have yet to be fully developed. Formal evolutionary theory has been applied as a dynamic theory of change of complex phenomena in biology and the social sciences, but rarely in SES research. In this paper, we explore the connections between both fields, hoping to foster collaboration. After sketching out the distinct intellectual traditions of SES research and evolutionary theory, we map some of their terminological and theoretical connections. We then provide examples of how evolutionary theory might be incorporated into SES research through the use of systems mapping to identify evolutionary processes in SES, the application of concepts from evolutionary developmental biology to understand the connections between systems changes and evolutionary changes, and how evolutionary thinking may help design interventions for beneficial change. Integrating evolutionary theory and SES research can lead to a better understanding of SES changes and positive interventions for a more sustainable Anthropocene. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Thomas E. Currie
- Human Behaviour and Cultural Evolution Group, Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Monique Borgerhoff Mulder
- Department of Anthropology, University of California Davis, Davis, CA 95616, USA
- Santa Fe Institute, Santa Fe, NM 87506, USA
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Laurel Fogarty
- Max-Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maja Schlüter
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carl Folke
- Beijer Institute of Ecological Economics, The Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - L. Jamila Haider
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Guido Caniglia
- Konrad Lorenz Institute for Evolution and Cognition Research, A-3400 Klosterneuburg, Austria
| | - Alessandro Tavoni
- Department of Economics, University of Bologna, 40126 Bologna, Italy
- Grantham Research Institute on Climate Change and the Environment, London School of Economics, London WC2A 2AE, UK
| | - Raf E. V. Jansen
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Peter Søgaard Jørgensen
- Stockholm Resilience Centre, Stockholm University, SE-106 91 Stockholm, Sweden
- Global Economic Dynamics and the Biosphere, Royal Swedish Academy of Sciences, SE-104 05 Stockholm, Sweden
| | - Timothy M. Waring
- Mitchell Center for Sustainability Solutions and School of Economics, University of Maine, Orono, ME 04469-5710, USA
| |
Collapse
|
176
|
Rowe HI, Johnson B, Broatch J, Cruz TMP, Prudic KL. Winter Rains Support Butterfly Diversity, but Summer Monsoon Rainfall Drives Post-Monsoon Butterfly Abundance in the Arid Southwest of the US. INSECTS 2023; 15:5. [PMID: 38276819 PMCID: PMC10816195 DOI: 10.3390/insects15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Butterfly populations are declining worldwide, reflecting our current global biodiversity crisis. Because butterflies are a popular and accurate indicator of insect populations, these declines reflect an even more widespread threat to insects and the food webs upon which they rely. As small ectotherms, insects have a narrow range of habitable conditions; hence, extreme fluctuations and shifts caused by climate change may increase insects' risk of extinction. We evaluated trends of butterfly richness and abundance and their relationship with relevant climate variables in Arizona, U.S.A., using the past 40 years of community science data. We focused on precipitation and temperature as they are known to be influential for insect survival, particularly in arid areas like southwestern U.S.A. We found that preceding winter precipitation is a driver of both spring and summer/fall butterfly richness and spring butterfly abundance. In contrast, summer/fall butterfly abundance was driven by summer monsoon precipitations. The statistically significant declines over the 40-year period were summer/fall butterfly abundance and spring butterfly richness. When controlling for the other variables in the model, there was an average annual 1.81% decline in summer/fall season butterfly abundance and an average annual decline of 2.13 species in the spring season. As climate change continues to negatively impact winter precipitation patterns in this arid region, we anticipate the loss of butterfly species in this region and must consider individual butterfly species trends and additional management and conservation needs.
Collapse
Affiliation(s)
- Helen Ivy Rowe
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
- Parsons Field Institute, McDowell Sonoran Conservancy, Scottsdale, AZ 85260, USA
| | - Bradly Johnson
- School of Mathematical and Natural Sciences, Arizona State University West, Phoenix, AZ 85069, USA (J.B.)
| | - Jennifer Broatch
- School of Mathematical and Natural Sciences, Arizona State University West, Phoenix, AZ 85069, USA (J.B.)
| | - Terese Maxine Papag Cruz
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA; (T.M.P.C.); (K.L.P.)
| | - Kathleen L. Prudic
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721, USA; (T.M.P.C.); (K.L.P.)
- Arizona Institute for Resilience, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
177
|
Cooke R, Sayol F, Andermann T, Blackburn TM, Steinbauer MJ, Antonelli A, Faurby S. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nat Commun 2023; 14:8116. [PMID: 38114469 PMCID: PMC10730700 DOI: 10.1038/s41467-023-43445-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Birds are among the best-studied animal groups, but their prehistoric diversity is poorly known due to low fossilization potential. Hence, while many human-driven bird extinctions (i.e., extinctions caused directly by human activities such as hunting, as well as indirectly through human-associated impacts such as land use change, fire, and the introduction of invasive species) have been recorded, the true number is likely much larger. Here, by combining recorded extinctions with model estimates based on the completeness of the fossil record, we suggest that at least ~1300-1500 bird species (~12% of the total) have gone extinct since the Late Pleistocene, with 55% of these extinctions undiscovered (not yet discovered or left no trace). We estimate that the Pacific accounts for 61% of total bird extinctions. Bird extinction rate varied through time with an intense episode ~1300 CE, which likely represents the largest human-driven vertebrate extinction wave ever, and a rate 80 (60-95) times the background extinction rate. Thus, humans have already driven more than one in nine bird species to extinction, with likely severe, and potentially irreversible, ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Tobias Andermann
- Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, 95447, Bayreuth, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
178
|
Gepts P. Biocultural diversity and crop improvement. Emerg Top Life Sci 2023; 7:151-196. [PMID: 38084755 PMCID: PMC10754339 DOI: 10.1042/etls20230067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Biocultural diversity is the ever-evolving and irreplaceable sum total of all living organisms inhabiting the Earth. It plays a significant role in sustainable productivity and ecosystem services that benefit humanity and is closely allied with human cultural diversity. Despite its essentiality, biodiversity is seriously threatened by the insatiable and inequitable human exploitation of the Earth's resources. One of the benefits of biodiversity is its utilization in crop improvement, including cropping improvement (agronomic cultivation practices) and genetic improvement (plant breeding). Crop improvement has tended to decrease agricultural biodiversity since the origins of agriculture, but awareness of this situation can reverse this negative trend. Cropping improvement can strive to use more diverse cultivars and a broader complement of crops on farms and in landscapes. It can also focus on underutilized crops, including legumes. Genetic improvement can access a broader range of biodiversity sources and, with the assistance of modern breeding tools like genomics, can facilitate the introduction of additional characteristics that improve yield, mitigate environmental stresses, and restore, at least partially, lost crop biodiversity. The current legal framework covering biodiversity includes national intellectual property and international treaty instruments, which have tended to limit access and innovation to biodiversity. A global system of access and benefit sharing, encompassing digital sequence information, would benefit humanity but remains an elusive goal. The Kunming-Montréal Global Biodiversity Framework sets forth an ambitious set of targets and goals to be accomplished by 2030 and 2050, respectively, to protect and restore biocultural diversity, including agrobiodiversity.
Collapse
Affiliation(s)
- Paul Gepts
- Department of Plant Sciences, Section of Crop and Ecosystem Sciences, University of California, Davis, CA 95616-8780, U.S.A
| |
Collapse
|
179
|
Bhatia U, Dubey S, Gouhier TC, Ganguly AR. Network-based restoration strategies maximize ecosystem recovery. Commun Biol 2023; 6:1256. [PMID: 38086885 PMCID: PMC10716433 DOI: 10.1038/s42003-023-05622-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Redressing global patterns of biodiversity loss requires quantitative frameworks that can predict ecosystem collapse and inform restoration strategies. By applying a network-based dynamical approach to synthetic and real-world mutualistic ecosystems, we show that biodiversity recovery following collapse is maximized when extirpated species are reintroduced based solely on their total number of connections in the original interaction network. More complex network-based strategies that prioritize the reintroduction of species that improve 'higher order' topological features such as compartmentalization do not provide meaningful performance improvements. These results suggest that it is possible to design nearly optimal restoration strategies that maximize biodiversity recovery for data-poor ecosystems in order to ensure the delivery of critical natural services that fuel economic development, food security, and human health around the globe.
Collapse
Affiliation(s)
- Udit Bhatia
- Discipline of Civil Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India.
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA.
| | - Sarth Dubey
- Discipline of Computer Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Tarik C Gouhier
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, 01908, USA
| | - Auroop R Ganguly
- Sustainability and Data Sciences Lab, Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
180
|
De León LF, Martinez-Urtaza J. Editorial overview: Novel approaches to gauge the human footprint on the biosphere. Curr Opin Biotechnol 2023; 84:103018. [PMID: 37924687 DOI: 10.1016/j.copbio.2023.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Human disturbances are altering the biosphere in unprecedented ways. Yet, the precise picture of how these disturbances are altering the biosphere and the consequences for humans and the planet reamain undefined. The knowledge and tools to quantify these impacts are often dispersed across traditionally independent scientific disciplines. This special issue brings together a large diversity of topics and global experts under the common theme of using novel advances and tools to gauge the human footprint on the biosphere. The topics discussed illustrate how the integration of novel tools and approaches is key to quantify and address the most pressing environmental issues affecting our planet today and their potential consequences for humans. The global scope of this special issue provides a roadmap to address these challenges in a diverse range of environments and types of anthropogenetic disturbances.
Collapse
Affiliation(s)
- Luis F De León
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| | - Jaime Martinez-Urtaza
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
181
|
McClure CJW, Berkunsky I, Buechley ER, Dunn L, Johnson J, McCabe J, Oppel S, Rolek BW, Sutton LJ, Gumbs R. Conserving the evolutionary history of birds. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14141. [PMID: 37424371 DOI: 10.1111/cobi.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
In the midst of the sixth mass extinction, limited resources are forcing conservationists to prioritize which species and places will receive conservation action. Evolutionary distinctiveness measures the isolation of a species on its phylogenetic tree. Combining a species' evolutionary distinctiveness with its globally endangered status creates an EDGE score. We use EDGE scores to prioritize the places and species that should be managed to conserve bird evolutionary history. We analyzed all birds in all countries and important bird areas. We examined parrots, raptors, and seabirds in depth because these groups are especially threatened and relatively speciose. The three focal groups had greater median threatened evolutionary history than other taxa, making them important for conserving bird evolutionary history. Australia, Brazil, Indonesia, Madagascar, New Zealand, and the Philippines were especially critical countries for bird conservation because they had the most threatened evolutionary history for endemic birds and are important for parrots, raptors, and seabirds. Increased enforcement of international agreements for the conservation of parrots, raptors, and seabirds is needed because these agreements protect hundreds of millions of years of threatened bird evolutionary history. Decisive action is required to conserve the evolutionary history of birds into the Anthropocene.
Collapse
Affiliation(s)
| | - Igor Berkunsky
- Instituto Multidisciplinario sobre Ecosistemas y Desarrollo Sustentable-CICPBA, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | | | - Leah Dunn
- The Peregrine Fund, Boise, Idaho, USA
| | - Jeff Johnson
- Wolf Creek Operating Foundation, Wolf, Wyoming, USA
| | | | - Steffen Oppel
- RSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Edinburgh, UK
| | | | | | - Rikki Gumbs
- EDGE of Existence Programme, Zoological Society of London, London, UK
- Department of Life Sciences, Imperial College London, Berkshire, UK
| |
Collapse
|
182
|
Martínez-Núñez C, Martínez-Prentice R, García-Navas V. Protected area coverage of vulnerable regions to conserve functional diversity of birds. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14131. [PMID: 37259609 DOI: 10.1111/cobi.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Global-change drivers are increasing the rates of species extinction worldwide, posing a serious threat to ecosystem functioning. Preserving the functional diversity of species is currently a priority to mitigate abrupt biodiversity loss in the coming decades. Therefore, understanding what factors better predict functional diversity loss in bird assemblages at a global scale and how existing protected areas cover the most vulnerable regions is of key importance for conservation. We examined the environmental factors associated with the risk of functional diversity loss under 3 scenarios of bird species extinction based on species distribution range size, generation length, and International Union for the Conservation of Nature conservation status. Then, we identified regions that deserve special conservation focus. We also assessed how efficiently extant terrestrial protected areas preserve particularly vulnerable bird assemblages based on predicted scenarios of extinction risk. The vulnerability of bird functional diversity increased as net primary productivity, land-use diversity, mean annual temperature, and elevation decreased. Low values for these environmental factors were associated with a higher risk of functional diversity loss worldwide through two mechanisms: one independent of species richness that affects assemblages with low levels of niche packing and high functional dissimilarity among species, and the other that affects assemblages with low species richness and high rates of extinction. Existing protected areas ineffectively safeguarded regions with a high risk of losing functional diversity in the next decades. The global predictors and the underlying mechanisms of functional vulnerability in bird assemblages we identified can inform strategies aimed at preserving bird-driven ecological functions worldwide.
Collapse
Affiliation(s)
- Carlos Martínez-Núñez
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | - Ricardo Martínez-Prentice
- Institute of Agriculture and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Vicente García-Navas
- Department of Integrative Ecology, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
183
|
Fagan B, Pitchford JW, Stepney S, Thomas CD. Increased dispersal explains increasing local diversity with global biodiversity declines. GLOBAL CHANGE BIOLOGY 2023; 29:6713-6726. [PMID: 37819684 DOI: 10.1111/gcb.16948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/11/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
The narrative of biodiversity decline in response to human impacts is overly simplistic because different aspects of biodiversity show different trajectories at different spatial scales. It is also debated whether human-caused biodiversity changes lead to subsequent, accelerating change (cascades) in ecological communities, or alternatively build increasingly robust community networks with decreasing extinction rates and reduced invasibility. Mechanistic approaches are needed that simultaneously reconcile different aspects of biodiversity change, and explore the robustness of communities to further change. We develop a trophically structured, mainland-archipelago metacommunity model of community assembly. Varying the parameters across model simulations shows that local alpha diversity (the number of species per island) and regional gamma diversity (the total number of species in the archipelago) depend on both the rate of extirpation per island and on the rate of dispersal between islands within the archipelago. In particular, local diversity increases with increased dispersal and heterogeneity between islands, but regional diversity declines because the islands become biotically similar and local one-island and few-island species are excluded (homogenisation, or reduced beta diversity). This mirrors changes observed empirically: real islands have gained species (increased local and island-scale community diversity) with increased human-assisted transfers of species, but global diversity has declined with the loss of endemic species. However, biological invasions may be self-limiting. High-dispersal, high local-diversity model communities become resistant to subsequent invasions, generating robust species-community networks unless dispersal is extremely high. A mixed-up world is likely to lose many species, but the resulting ecological communities may nonetheless be relatively robust.
Collapse
Affiliation(s)
- Brennen Fagan
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Mathematics, University of York, York, UK
| | - Jon W Pitchford
- Department of Mathematics, University of York, York, UK
- Department of Biology, University of York, York, UK
| | - Susan Stepney
- Department of Computer Science, University of York, York, UK
| | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York, UK
- Department of Biology, University of York, York, UK
| |
Collapse
|
184
|
Zhang W, Liao Z, Xiao Q, Zhou J, Shi X, Li C, Chen Y, Xu W. Habitat-specific conservation priorities of multidimensional diversity patterns of amphibians in China effectively contribute to the '3030' target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165959. [PMID: 37541511 DOI: 10.1016/j.scitotenv.2023.165959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Amphibia is the most threatened animal group among all land vertebrates in the context of anthropogenic global change. Filling the conservation gaps for this taxonomic group could help achieve the ambitious target of covering 30 % of the land by 2030 ('3030' target) set by the 15-th meeting of the Conference of the Parties (COP15). In this study, we compiled the most up-to-date occurrence records and corresponding species-specific traits and phylogenies of amphibians in China (particularly those newly described in the past decade) to explore the spatial distribution patterns of multidimensional diversity (including taxonomic, functional, and phylogenetic) for different species groups (including all, endemic and threatened). Additionally, a new conservation gap index (CGI) was proposed and applied to the analysis of multi-objective conservation strategies. The results showed that the spatial distribution of taxonomic, functional and phylogenetic diversity of amphibians in China is markedly geographically diverse, with common hotspots for all three concentrated in the humid mountainous regions of southern China. The CGI, which is independent of arbitrary threshold selection and grid cell size, showed that the conservation gap for amphibians in China is largest in biomes such as tropical and subtropical moist broadleaf forests and temperate broadleaf and mixed forests. The multi-objective conservation analysis revealed that the Yangtze River basin, Pearl River basin and Southeast Basin in China have pivotal roles in achieving the '3030' target due to their high taxonomic, phylogenetic and functional diversity, relatively high proportion of threatened and endemic species, and low coverage of existing nature reserves. Notably, sustainable management of less-protected habitats, including farmlands and grasslands, can reduce the area requirement of strict protection for reaching the '3030' conservation goal. This study provides practical strategies for guiding amphibian conservation by systematically integrating multidimensional biodiversity information, habitat features and the spatial distributions of the existing natural reserves.
Collapse
Affiliation(s)
- Wenyan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Qi Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqin Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Youhua Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Weihua Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
185
|
Wallen-Russell C, Pearlman N, Wallen-Russell S, Cretoiu D, Thompson DC, Voinea SC. A Catastrophic Biodiversity Loss in the Environment Is Being Replicated on the Skin Microbiome: Is This a Major Contributor to the Chronic Disease Epidemic? Microorganisms 2023; 11:2784. [PMID: 38004795 PMCID: PMC10672968 DOI: 10.3390/microorganisms11112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
There has been a catastrophic loss of biodiversity in ecosystems across the world. A similar crisis has been observed in the human gut microbiome, which has been linked to "all human diseases affecting westernized countries". This is of great importance because chronic diseases are the leading cause of death worldwide and make up 90% of America's healthcare costs. Disease development is complex and multifactorial, but there is one part of the body's interlinked ecosystem that is often overlooked in discussions about whole-body health, and that is the skin microbiome. This is despite it being a crucial part of the immune, endocrine, and nervous systems and being continuously exposed to environmental stressors. Here we show that a parallel biodiversity loss of 30-84% has occurred on the skin of people in the developed world compared to our ancestors. Research has shown that dysbiosis of the skin microbiome has been linked to many common skin diseases and, more recently, that it could even play an active role in the development of a growing number of whole-body health problems, such as food allergies, asthma, cardiovascular diseases, and Parkinson's, traditionally thought unrelated to the skin. Damaged skin is now known to induce systemic inflammation, which is involved in many chronic diseases. We highlight that biodiversity loss is not only a common finding in dysbiotic ecosystems but also a type of dysbiosis. As a result, we make the case that biodiversity loss in the skin microbiome is a major contributor to the chronic disease epidemic. The link between biodiversity loss and dysbiosis forms the basis of this paper's focus on the subject. The key to understanding why biodiversity loss creates an unhealthy system could be highlighted by complex physics. We introduce entropy to help understand why biodiversity has been linked with ecosystem health and stability. Meanwhile, we also introduce ecosystems as being governed by "non-linear physics" principles-including chaos theory-which suggests that every individual part of any system is intrinsically linked and implies any disruption to a small part of the system (skin) could have a significant and unknown effect on overall system health (whole-body health). Recognizing the link between ecosystem health and human health allows us to understand how crucial it could be to maintain biodiversity across systems everywhere, from the macro-environment we inhabit right down to our body's microbiome. Further, in-depth research is needed so we can aid in the treatment of chronic diseases and potentially change how we think about our health. With millions of people currently suffering, research to help mitigate the crisis is of vital importance.
Collapse
Affiliation(s)
| | - Nancy Pearlman
- Ecology Center of Southern California, Los Angeles, CA 90035, USA;
| | | | - Dragos Cretoiu
- Department of Medical Genetics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Dana Claudia Thompson
- Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute for Mother and Child Health, 011062 Bucharest, Romania
| | - Silviu Cristian Voinea
- Department of Surgical Oncology, Prof. Dr. Al. Trestioreanu Oncology Institute, Carol Davila University of Medicine and Pharmacy, 022328 Bucharest, Romania
| |
Collapse
|
186
|
Leroux C, Le Viol I, Valet N, Kerbiriou C, Barré K. Disentangling mechanisms responsible for wind energy effects on European bats. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118987. [PMID: 37741193 DOI: 10.1016/j.jenvman.2023.118987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Abstract
Mitigating anthropogenic climate change involves deployments of renewable energy worldwide, including wind energy, which can cause significant impacts on flying animals. Bats have highly contrasted responses to wind turbines (WT), either through attraction increasing collision risks, or avoidance leading to habitat losses. However, the underlying mechanisms remain largely unknown despite the expected rapid evolution of WT size and densities. Here, using an extensive acoustic sampling (i.e. 361 sites-nights) up to 1483 m from WT at regional scale, we disentangle the effects of WT size (ground clearance and rotor diameter), configuration (density and distance), and operation (blade rotation speed and wake effect) on hedgerow use by 8 bat species/groups and one vertical community distribution index. Our results reveal that all WT parameters affected bat activity and their vertical distribution. Especially, we show that the relative activity of high-flying species in the community was lower for higher WT density and lower ground clearance. Medium-flying species were sensitive to wind turbine distance, with either attraction or avoidance depending on proximity to the wake area and wind conditions. Specifically, wind turbine distance, wake effect and their interaction each affected the activity of one, three, and three species out of eight, respectively. Blade rotation and rotor diameter affected the activity of four and three species/groups, respectively, and ground clearance affected the activity of five ones. Taken together, WT configuration, operation, and size parameters affected the activity of three, five, and seven out of eight species/groups, respectively. These results call for the consideration of all these factors when assessing the ecological sustainability of future wind farms. The study especially advocates to avoid high WT densities, large rotors, and to site WT as far as possible from optimal habitats such as woody edges and not between them and the source of prevailing winds, in order to limit bats-WT interactions.
Collapse
Affiliation(s)
- Camille Leroux
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université Station Marine, 1 place de la Croix, 29900, Concarneau, France; Auddicé Biodiversité - ZAC du Chevalement, 5 rue des Molettes, 59286, Roost-Warendin, France.
| | - Isabelle Le Viol
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université Station Marine, 1 place de la Croix, 29900, Concarneau, France.
| | - Nicolas Valet
- Auddicé Biodiversité - ZAC du Chevalement, 5 rue des Molettes, 59286, Roost-Warendin, France
| | - Christian Kerbiriou
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université Station Marine, 1 place de la Croix, 29900, Concarneau, France.
| | - Kévin Barré
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université Station Marine, 1 place de la Croix, 29900, Concarneau, France.
| |
Collapse
|
187
|
Wang Z, Pang Y, Ulus C, Zhu X. Counting manatee aggregations using deep neural networks and Anisotropic Gaussian Kernel. Sci Rep 2023; 13:19793. [PMID: 37957170 PMCID: PMC10643465 DOI: 10.1038/s41598-023-45507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main food source, and often spend up to eight hours a day grazing. They move slow and frequently stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to environment change and other risks. Accurate counting manatee aggregations within a region is not only biologically meaningful in observing their habit, but also crucial for designing safety rules for boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we propose a deep learning based crowd counting approach to automatically count number of manatees within a region, by using low quality images as input. Because manatees have unique shape and they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. making it difficult to accurately count manatee numbers. To address the challenges, we propose to use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density functions can maximally capture shapes of individual manatees in different aggregations. After that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to learn manatee densities and calculate number of manatees in the scene. By using generic low quality images extracted from surveillance videos, our experiment results and comparison show that AGK kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The proposed method works particularly well for counting manatee aggregations in environments with complex background.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Yiran Pang
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Cihan Ulus
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Xingquan Zhu
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, 33431, USA.
| |
Collapse
|
188
|
Andraczek K, Weigelt A, Cantuarias CJB, Fischer M, Hinderling J, Prati D, Rauwolf EMN, van der Plas F. Relationships between species richness and biomass production are context dependent in grasslands differing in land-use and seed addition. Sci Rep 2023; 13:19663. [PMID: 37952061 PMCID: PMC10640580 DOI: 10.1038/s41598-023-47020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Despite evidence from grasslands experiments suggesting that plant species loss reduces biomass production, the strength of biodiversity-ecosystem functioning relationships in managed grasslands is still debated. High land-use intensity and reduced species pools are often suggested to make relationships between biodiversity and productivity less positive or even negative, but concrete evidence is still scarce. We investigated biodiversity-productivity relationships over two years in 150 managed grasslands in Germany. Specifically, we distinguished between relationships of biodiversity and biomass production in managed grasslands (1) varying in land-use intensity (e.g. of mowing, grazing and/or fertilization), (2) where land-use intensity is experimentally reduced, and (3) where additionally to land-use reductions, species pools are enlarged by seed addition. Among grasslands varying in land-use intensity, we found negative biodiversity-productivity relationships. Land-use reduction weakened these relationships, towards neutral, and sometimes, even positive relationships. Seed addition reduced species pool limitations, but this did not strengthen biodiversity-productivity relationships. Our findings indicate that land-use intensity is an important factor explaining the predominantly negative biodiversity-productivity relationships in managed grasslands. While we did not find that species pool limitations weakened biodiversity-productivity relationships, our results are based on a two-year-old experiment, possibly such effects are only visible in the long-term. Ultimately, advancing insights on biodiversity-ecosystem functioning relationships helps us to understand under which conditions agricultural production may benefit from promoting biodiversity.
Collapse
Affiliation(s)
- Karl Andraczek
- Faculty of Life Sciences, Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany.
| | - Alexandra Weigelt
- Faculty of Life Sciences, Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 03401, Leipzig, Germany
| | - Cristóbal J Bottero Cantuarias
- Faculty of Life Sciences, Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Hochschulstrasse 4, 3012, Bern, Switzerland
| | - Judith Hinderling
- Institute of Plant Sciences, University of Bern, Hochschulstrasse 4, 3012, Bern, Switzerland
| | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Hochschulstrasse 4, 3012, Bern, Switzerland
| | - Esther M N Rauwolf
- Faculty of Life Sciences, Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
| | - Fons van der Plas
- Faculty of Life Sciences, Systematic Botany and Functional Biodiversity, Leipzig University, Johannisallee 21, 04103, Leipzig, Germany
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, Wageningen, The Netherlands
| |
Collapse
|
189
|
Kowalewski M, Nawrot R, Scarponi D, Tomašových A, Zuschin M. Marine conservation palaeobiology: What does the late Quaternary fossil record tell us about modern-day extinctions and biodiversity threats? CAMBRIDGE PRISMS. EXTINCTION 2023; 1:e24. [PMID: 40078671 PMCID: PMC11895752 DOI: 10.1017/ext.2023.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 03/14/2025]
Abstract
Near-time conservation palaeobiology uses palaeontological, archaeological and other geohistorical records to study the late Quaternary transition of the biosphere from its pristine past to its present-day, human-altered state. Given the scarcity of data on recent extinctions in the oceans, geohistorical records are critical for documenting human-driven extinctions and extinction threats in the marine realm. The historical perspective can provide two key insights. First, geohistorical records archive the state of pre-industrial oceans at local, regional and global scales, thus enabling the detection of recent extinctions and extirpations as well as shifts in species distribution, abundance, body size and ecosystem function. Second, we can untangle the contributions of natural and anthropogenic processes by documenting centennial-to-millennial changes in the composition and diversity of marine ecosystems before and after the onset of major human impacts. This long-term perspective identifies recently emerging patterns and processes that are unprecedented, thus allowing us to better assess human threats to marine biodiversity. Although global-scale extinctions are not well documented for brackish and marine invertebrates, geohistorical studies point to numerous extirpations, declines in ecosystem functions, increases in range fragmentation and dwindling abundance of previously widespread species, indicating that marine ecosystems are accumulating a human-driven extinction debt.
Collapse
Affiliation(s)
- Michał Kowalewski
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rafał Nawrot
- Department of Palaeontology, University of Vienna, Vienna, Austria
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Bologna, Italy
| | - Adam Tomašových
- Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Vienna, Austria
| |
Collapse
|
190
|
Takaya K, Taguchi Y, Ise T. Identification of hybrids between the Japanese giant salamander ( Andrias japonicus) and Chinese giant salamander ( Andrias cf. davidianus) using deep learning and smartphone images. Ecol Evol 2023; 13:e10698. [PMID: 37953985 PMCID: PMC10632944 DOI: 10.1002/ece3.10698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 11/14/2023] Open
Abstract
Human-mediated hybridization between native and non-native species is causing biodiversity loss worldwide. Hybridization has contributed to the extinction of many species through direct and indirect processes such as loss of reproductive opportunity and genetic introgression. Therefore, it is essential to manage hybrids to conserve biodiversity. However, specialized knowledge is required to identify the target species based on visual characteristics when two species have similar features. Although image recognition technology can be a powerful tool for identifying hybrids, studies have yet to utilize deep learning approaches. Hence, this study aimed to identify hybrids between the native Japanese giant salamander (Andrias japonicus) and the non-native Chinese giant salamander (Andrias cf. davidianus) using EfficientNetV2 and smartphone images. We used smartphone images of 11 individuals of native A. japonicus (five training and six test images) and 20 individuals of hybrids between A. japonicus and A. cf. davidianus (five training and 15 test images). In our experimental environment, an AI model constructed with EfficientNetV2 exhibited 100% accuracy in identifying hybrids. In addition, gradient-weighted class activation mapping revealed that the AI model was able to classify A. japonicus and hybrids between A. japonicus and A. cf. davidianus on the basis of the dorsal head spot patterning. Our approach thus enables the identification of hybrids against A. japonicus, which was previously considered difficult by non-experts. Furthermore, since this study achieved reliable identification using smartphone images, it is expected to be applied to a wide range of citizen science projects.
Collapse
Affiliation(s)
- Kosuke Takaya
- Graduate School of AgricultureKyoto UniversityKyotoJapan
| | - Yuki Taguchi
- Hiroshima City Asa Zoological ParkHiroshimaJapan
| | - Takeshi Ise
- Field Science Education and Research CenterKyoto UniversityKyotoJapan
| |
Collapse
|
191
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
192
|
Chapman CA, Angedakin S, Butynski TM, Gogarten JF, Mitani JC, Struhsaker TT. Primate population dynamics in Ngogo, Kibale National Park, Uganda, over nearly five decades. Primates 2023; 64:609-620. [PMID: 37656336 DOI: 10.1007/s10329-023-01087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Many anthropogenic-driven changes, such as hunting, have clear and immediate negative impacts on wild primate populations, but others, like climate change, may take generations to become evident. Thus, informed conservation plans will require decades of population monitoring. Here, we expand the duration of monitoring of the diurnal primates at Ngogo in Kibale National Park, Uganda, from 32.9 to 47 years. Over the 3531 censuses that covered 15,340 km, we encountered 2767 primate groups. Correlation analyses using blocks of 25 census walks indicate that encounters with groups of black and white colobus, blue monkeys, and baboons neither increased nor decreased significantly over time, while encounters with groups of redtail monkeys and chimpanzees marginally increased. Encounters with mangabeys and L'Hoesti monkeys increased significantly, while red colobus encounters dramatically decreased. Detailed studies of specific groups at Ngogo document changes in abundances that were not always well represented in the censuses because these groups expanded into areas away from the transect, such as nearby regenerating forest. For example, the chimpanzee population increased steadily over the last 2 + decades but this increase is not revealed by our census data because the chimpanzees expanded, mainly to the west of the transect. This highlights that extrapolating population trends to large areas based on censuses at single locations should be done with extreme caution, as forests change over time and space, and primates adapt to these changes in several ways.
Collapse
Affiliation(s)
- Colin A Chapman
- Biology Department, Vancouver Island University, 900 Fifth Street, Nanaimo, BC, V9R 5S5, Canada.
- Wilson Center, Washington, D.C., USA.
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi'an, China.
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa.
| | - Samuel Angedakin
- Department of Environmental Management, Makerere University, PO Box 7062, Kampala, Uganda
| | - Thomas M Butynski
- Eastern Africa Primate Diversity and Conservation Program, PO Box 149, Nanyuki, 10400, Kenya
| | - Jan F Gogarten
- Helmholtz Institute for One Health, Helmholtz-Centre for Infectious Research, Greifswald, Germany
- Department of Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
| | - John C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
- Ngogo Chimpanzee Project, Phoenix, AZ, USA
| | | |
Collapse
|
193
|
Niz WC, Laurino IRA, Freitas DMD, Rolim FA, Motta FS, Pereira-Filho GH. Modeling risks in marine protected areas: Mapping of habitats, biodiversity, and cultural ecosystem services in the southernmost atlantic coral reef. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118855. [PMID: 37634404 DOI: 10.1016/j.jenvman.2023.118855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
Marine Protected Area (MPA) is a fundamental strategy for the maintenance of ocean ecological processes worldwide and, consequently, their associated ecosystem services. Nevertheless, the quality of the services provided by MPAs, including cultural services such as recreational activities, depends on the effective management of marine habitats and biodiversity. Here, we performed an ecosystemic assessment in reef environments within a subtropical MPA, modeling the potential risks for their habitats and their recreational activities. The Queimada Grande Island (QGI), southeastern Brazil, was used as the model area since this island encompasses a unique and irreplaceable marine habitat, the Southernmost Atlantic coral reef. We firstly assessed and mapped the habitats, the biodiversity, and the recreational activities associated with QGI reefs. Next, we considered different scenarios of management for the modeling risks across the study area. We found that the coral reef and its adjacent habitats, such as the rhodolith bed, make the sheltered face of the island an important area for the provision of the cultural ecosystem services and overlapping uses such as onboard recreational fishing, spearfishing, and recreational diving. This area was also evaluated as the one under the highest risk of impact, considering the current scenario of management. The most successful scenario modeling to reduce these risks was the hypothetical implementation of a 66% reduction of all activities over all QGI habitats. Despite that, the scenario simulating the application of the regulations present in the MPA management plan was enough to reduce almost half the maximum risk value. Therefore, we concluded that to provide a balance among conservation, uses, and the local economy, the application of these regulations is the better management scenario modeled for the study area. Such results provided useful information and tools for local management and decision-making in this singular marine environment, also being an example for mapping ecosystem services and modeling risks in MPAs worldwide.
Collapse
Affiliation(s)
- Willians C Niz
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Universidade Federal de São Paulo (UNIFESP), Dr. Carvalho de Mendonça, 144, Encruzilhada, 11070-100, Santos, SP, Brazil
| | - Ivan R A Laurino
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Universidade Federal de São Paulo (UNIFESP), Dr. Carvalho de Mendonça, 144, Encruzilhada, 11070-100, Santos, SP, Brazil
| | - Débora M de Freitas
- Coastal Integrated Studies Group, Biosciences Institute, São Paulo State University (UNESP), Coastal Campus. Praça Infante Dom Henrique S/nº, Parque Bitaru, 11330-900, Sao Vicente, SP, Brazil
| | - Fernanda A Rolim
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Universidade Federal de São Paulo (UNIFESP), Dr. Carvalho de Mendonça, 144, Encruzilhada, 11070-100, Santos, SP, Brazil
| | - Fabio S Motta
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Universidade Federal de São Paulo (UNIFESP), Dr. Carvalho de Mendonça, 144, Encruzilhada, 11070-100, Santos, SP, Brazil
| | - Guilherme H Pereira-Filho
- Laboratório de Ecologia e Conservação Marinha (LABECMar), Universidade Federal de São Paulo (UNIFESP), Dr. Carvalho de Mendonça, 144, Encruzilhada, 11070-100, Santos, SP, Brazil.
| |
Collapse
|
194
|
Mooney A, Ryder OA, Houck ML, Staerk J, Conde DA, Buckley YM. Maximizing the potential for living cell banks to contribute to global conservation priorities. Zoo Biol 2023; 42:697-708. [PMID: 37283210 DOI: 10.1002/zoo.21787] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/30/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023]
Abstract
Although cryobanking represents a powerful conservation tool, a lack of standardized information on the species represented in global cryobanks, and inconsistent prioritization of species for future sampling, hinder the conservation potential of cryobanking, resulting in missed conservation opportunities. We analyze the representation of amphibian, bird, mammal, and reptile species within the San Diego Zoo Wildlife Alliance Frozen Zoo® living cell collection (as of April 2019) and implement a qualitative framework for the prioritization of species for future sampling. We use global conservation assessment schemes (including the International Union for Conservation of Nature (IUCN) Red List of Threatened Species™, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), the Alliance for Zero Extinction, the EDGE of Existence, and Climate Change Vulnerability), and opportunities for sample acquisition from the global zoo and aquarium community, to identify priority species for cryobanking. We show that 965 species, including 5% of all IUCN Red List "Threatened" amphibians, birds, mammals, and reptiles, were represented in the collection and that sampling from within existing zoo and aquarium collections could increase representation to 16.6% (by sampling an additional 707 "Threatened" species). High-priority species for future cryobanking efforts include the whooping crane (Grus americana), crested ibis (Nipponia nippon), and Siberian crane (Leucogeranus leucogeranus). Each of these species are listed under every conservation assessment scheme and have ex situ populations available for sampling. We also provide species prioritizations based on subsets of these assessment schemes together with sampling opportunities from the global zoo and aquarium community. We highlight the difficulties in obtaining in situ samples, and encourage the formation of a global cryobanking database together with the establishment of new cryobanks in biodiversity-rich regions.
Collapse
Affiliation(s)
- Andrew Mooney
- Dublin Zoo, Phoenix Park, Dublin, Ireland
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
- Species360 Conservation Science Alliance, Bloomington, Minnesota, USA
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, Escondido, California, USA
| | - Marlys L Houck
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, Escondido, California, USA
| | - Johanna Staerk
- Species360 Conservation Science Alliance, Bloomington, Minnesota, USA
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Dalia A Conde
- Species360 Conservation Science Alliance, Bloomington, Minnesota, USA
- Interdisciplinary Centre on Population Dynamics, University of Southern Denmark, Odense M, Denmark
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Yvonne M Buckley
- School of Natural Sciences, Zoology, Trinity College Dublin, Dublin, Ireland
- School of Biological Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
195
|
Chellapurath M, Khandelwal PC, Schulz AK. Bioinspired robots can foster nature conservation. Front Robot AI 2023; 10:1145798. [PMID: 37920863 PMCID: PMC10619165 DOI: 10.3389/frobt.2023.1145798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
We live in a time of unprecedented scientific and human progress while being increasingly aware of its negative impacts on our planet's health. Aerial, terrestrial, and aquatic ecosystems have significantly declined putting us on course to a sixth mass extinction event. Nonetheless, the advances made in science, engineering, and technology have given us the opportunity to reverse some of our ecosystem damage and preserve them through conservation efforts around the world. However, current conservation efforts are primarily human led with assistance from conventional robotic systems which limit their scope and effectiveness, along with negatively impacting the surroundings. In this perspective, we present the field of bioinspired robotics to develop versatile agents for future conservation efforts that can operate in the natural environment while minimizing the disturbance/impact to its inhabitants and the environment's natural state. We provide an operational and environmental framework that should be considered while developing bioinspired robots for conservation. These considerations go beyond addressing the challenges of human-led conservation efforts and leverage the advancements in the field of materials, intelligence, and energy harvesting, to make bioinspired robots move and sense like animals. In doing so, it makes bioinspired robots an attractive, non-invasive, sustainable, and effective conservation tool for exploration, data collection, intervention, and maintenance tasks. Finally, we discuss the development of bioinspired robots in the context of collaboration, practicality, and applicability that would ensure their further development and widespread use to protect and preserve our natural world.
Collapse
Affiliation(s)
- Mrudul Chellapurath
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Pranav C. Khandelwal
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute of Flight Mechanics and Controls, University of Stuttgart, Stuttgart, Germany
| | - Andrew K. Schulz
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| |
Collapse
|
196
|
Roberts HE, Fanson KV, Hodgens N, Parrott ML, Bennett P, Jamieson LT. Scent detection dogs as a novel method for oestrus detection in an endangered species, the Tasmanian devil ( Sarcophilus harrisii). Front Vet Sci 2023; 10:1224172. [PMID: 37915949 PMCID: PMC10616266 DOI: 10.3389/fvets.2023.1224172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
Captive breeding is a critical tool for conservation of endangered species. Identifying the correct time to pair males and females can be a major challenge for captive breeding programmes, with current methods often being invasive or slow. Detection dogs may provide a non-invasive way to determine female receptivity, but this has not been explored in captive wildlife. This exploratory study investigated the use of detection dogs as a novel method of oestrus detection in the endangered Tasmanian devil (Sarcophilus harrisii). Faecal samples were collected from 11 captive female devils during the breeding seasons of 2020 and 2021. Three dogs with prior detection experience were trained and subsequently assessed (n = 188 searches per dog), on their ability to discriminate between oestrus and non-oestrus devil faecal samples, in a one sample set-up. When assessed on training samples, dogs were able to correctly discriminate oestrus from non-oestrus with a mean sensitivity of 69.1% and mean specificity of 65.7%. When assessed on novel samples, their sensitivity to oestrus dropped (mean sensitivity of 48.6%). However, they were still able to correctly identify non-oestrus samples (mean specificity of 68.1%). This study is the first to explore detection dogs' ability to identify oestrus in a captive breeding programme for endangered wildlife, providing a promising tool for non-invasive monitoring of reproductive status in wildlife.
Collapse
Affiliation(s)
- Hannah E. Roberts
- Wildlife Conservation and Reproductive Endocrinology Lab, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Kerry V. Fanson
- Wildlife Conservation and Reproductive Endocrinology Lab, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Naomi Hodgens
- Wildlife Detection Dog Program, Wildlife Conservation & Science, Zoos Victoria, Melbourne, VIC, Australia
| | - Marissa L. Parrott
- Wildlife Conservation & Science, Zoos Victoria, Parkville, VIC, Australia
| | - Pauleen Bennett
- Anthrozoology Research Group, Department of Psychology, Counselling and Therapy, La Trobe University, Bendigo, VIC, Australia
| | - La Toya Jamieson
- Wildlife Detection Dog Program, Wildlife Conservation & Science, Zoos Victoria, Melbourne, VIC, Australia
| |
Collapse
|
197
|
Seize the moment: researchers have a rare opportunity to make progress in protecting global biodiversity. Nature 2023; 622:7-8. [PMID: 37789247 DOI: 10.1038/d41586-023-03103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
|
198
|
Justin Nowakowski A, Watling JI, Murray A, Deichmann JL, Akre TS, Muñoz Brenes CL, Todd BD, McRae L, Freeman R, Frishkoff LO. Protected areas slow declines unevenly across the tetrapod tree of life. Nature 2023; 622:101-106. [PMID: 37758956 DOI: 10.1038/s41586-023-06562-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Protected areas (PAs) are the primary strategy for slowing terrestrial biodiversity loss. Although expansion of PA coverage is prioritized under the Convention on Biological Diversity, it remains unknown whether PAs mitigate declines across the tetrapod tree of life and to what extent land cover and climate change modify PA effectiveness1,2. Here we analysed rates of change in abundance of 2,239 terrestrial vertebrate populations across the globe. On average, vertebrate populations declined five times more slowly within PAs (-0.4% per year) than at similar sites lacking protection (-1.8% per year). The mitigating effects of PAs varied both within and across vertebrate classes, with amphibians and birds experiencing the greatest benefits. The benefits of PAs were lower for amphibians in areas with converted land cover and lower for reptiles in areas with rapid climate warming. By contrast, the mitigating impacts of PAs were consistently augmented by effective national governance. This study provides evidence for the effectiveness of PAs as a strategy for slowing tetrapod declines. However, optimizing the growing PA network requires targeted protection of sensitive clades and mitigation of threats beyond PA boundaries. Provided the conditions of targeted protection, adequate governance and well-managed landscapes are met, PAs can serve a critical role in safeguarding tetrapod biodiversity.
Collapse
Affiliation(s)
- A Justin Nowakowski
- Working Land and Seascapes, Smithsonian Institution, Washington, DC, USA.
- Smithsonian Environmental Research Center, Edgewater, MD, USA.
- Moore Center for Science, Conservation International, Arlington, VA, USA.
| | | | - Alexander Murray
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
- Department of Biology, Tarleton State University, Stephenville, TX, USA
| | - Jessica L Deichmann
- Working Land and Seascapes, Smithsonian Institution, Washington, DC, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
- Liz Claiborne & Art Ortenberg Foundation, New York, NY, USA
| | - Thomas S Akre
- Working Land and Seascapes, Smithsonian Institution, Washington, DC, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | | | - Brian D Todd
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Louise McRae
- Institute of Zoology, Zoological Society of London, London, UK
| | - Robin Freeman
- Institute of Zoology, Zoological Society of London, London, UK
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
199
|
Finn C, Grattarola F, Pincheira-Donoso D. More losers than winners: investigating Anthropocene defaunation through the diversity of population trends. Biol Rev Camb Philos Soc 2023; 98:1732-1748. [PMID: 37189305 DOI: 10.1111/brv.12974] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
The global-scale decline of animal biodiversity ('defaunation') represents one of the most alarming consequences of human impacts on the planet. The quantification of this extinction crisis has traditionally relied on the use of IUCN Red List conservation categories assigned to each assessed species. This approach reveals that a quarter of the world's animal species are currently threatened with extinction, and ~1% have been declared extinct. However, extinctions are preceded by progressive population declines through time that leave demographic 'footprints' that can alert us about the trajectories of species towards extinction. Therefore, an exclusive focus on IUCN conservation categories, without consideration of dynamic population trends, may underestimate the true extent of the processes of ongoing extinctions across nature. In fact, emerging evidence (e.g. the Living Planet Report), reveals a widespread tendency for sustained demographic declines (an average 69% decline in population abundances) of species globally. Yet, animal species are not only declining. Many species worldwide exhibit stable populations, while others are even thriving. Here, using population trend data for >71,000 animal species spanning all five groups of vertebrates (mammals, birds, reptiles, amphibians and fishes) and insects, we provide a comprehensive global-scale assessment of the diversity of population trends across species undergoing not only declines, but also population stability and increases. We show a widespread global erosion of species, with 48% undergoing declines, while 49% and 3% of species currently remain stable or are increasing, respectively. Geographically, we reveal an intriguing pattern similar to that of threatened species, whereby declines tend to concentrate around tropical regions, whereas stability and increases show a tendency to expand towards temperate climates. Importantly, we find that for species currently classed by the IUCN Red List as 'non-threatened', 33% are declining. Critically, in contrast with previous mass extinction events, our assessment shows that the Anthropocene extinction crisis is undergoing a rapid biodiversity imbalance, with levels of declines (a symptom of extinction) greatly exceeding levels of increases (a symptom of ecological expansion and potentially of evolution) for all groups. Our study contributes a further signal indicating that global biodiversity is entering a mass extinction, with ecosystem heterogeneity and functioning, biodiversity persistence, and human well-being under increasing threat.
Collapse
Affiliation(s)
- Catherine Finn
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Florencia Grattarola
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00, Czech Republic
| | - Daniel Pincheira-Donoso
- MacroBiodiversity Lab, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| |
Collapse
|
200
|
Poulsen JR, Maicher V, Malinowski H, DeSisto C. Situating defaunation in an operational framework to advance biodiversity conservation. Bioscience 2023; 73:721-727. [PMID: 37854893 PMCID: PMC10580966 DOI: 10.1093/biosci/biad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Anthropogenic pressures are causing the widespread loss of wildlife species and populations, with adverse consequences for ecosystem functioning. This phenomenon has been widely but inconsistently referred to as defaunation. A cohesive, quantitative framework for defining and evaluating defaunation is necessary for advancing biodiversity conservation. Likening defaunation to deforestation, we propose an operational framework for defaunation that defines it and related terms, situates defaunation relative to intact communities and faunal degradation, and encourages quantitative, ecologically reasonable, and equitable measurements. We distinguish between defaunation, the conversion of an ecosystem from having wild animals to not having wild animals, and faunal degradation, the process of losing animals or species from an animal community. The quantification of context-relevant defaunation boundaries or baselines is necessary to compare faunal communities over space and time. Situating a faunal community on the degradation curve can promote Global Biodiversity Framework targets, advancing the 2050 Vision for Biodiversity.
Collapse
Affiliation(s)
- John R Poulsen
- The Nature Conservancy, Boulder, Colorado, United States
- Duke University, Durham, North Carolina, United States
| | - Vincent Maicher
- CAFI Forest Research and Monitoring for The Nature Conservancy, Gabon
| | | | - Camille DeSisto
- Nicholas School of the Environment, Duke University, United States
| |
Collapse
|