151
|
Connelley TK, MacHugh ND, Pelle R, Weir W, Morrison WI. Escape from CD8+ T cell response by natural variants of an immunodominant epitope from Theileria parva is predominantly due to loss of TCR recognition. THE JOURNAL OF IMMUNOLOGY 2011; 187:5910-20. [PMID: 22058411 DOI: 10.4049/jimmunol.1102009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymorphism of immunodominant CD8(+) T cell epitopes can facilitate escape from immune recognition of pathogens, leading to strain-specific immunity. In this study, we examined the TCR β-chain (TRB) diversity of the CD8(+) T cell responses of cattle against two immunodominant epitopes from Theileria parva (Tp1(214-224) and Tp2(49-59)) and investigated the role of TCR recognition and MHC binding in determining differential recognition of a series of natural variants of the highly polymorphic Tp2(49-59) epitope by CD8(+) T cell clones of defined TRB genotype. Our results show that both Tp1(214-224) and Tp2(49-59) elicited CD8(+) T cell responses using diverse TRB repertoires that showed a high level of stability following repeated pathogenic challenge over a 3-y period. Analysis of single-alanine substituted versions of the Tp2(49-59) peptide demonstrated that Tp2(49-59)-specific clonotypes had a broad range of fine specificities for the epitope. Despite this diversity, all natural variants exhibited partial or total escape from immune recognition, which was predominantly due to abrogation of TCR recognition, with mutation resulting in loss of the lysine residue at P8, playing a particularly dominant role in escape. The levels of heterozygosity in individual Tp2(49-59) residues correlated closely with loss of immune recognition, suggesting that immune selection has contributed to epitope polymorphism.
Collapse
Affiliation(s)
- Timothy K Connelley
- The Roslin Institute and The Royal Dick School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
152
|
Jiang J, Fisher EM, Murasko DM. CD8 T cell responses to influenza virus infection in aged mice. Ageing Res Rev 2011; 10:422-7. [PMID: 21315186 DOI: 10.1016/j.arr.2011.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 01/15/2023]
Abstract
Influenza is one of the most common infectious diseases afflicting humans, particularly the elderly. The murine model has been widely employed for investigation of immunity to influenza virus infection. In this paper, we review the recent advances in understanding the diminished CD8 T cell immune response to influenza virus infection in aged mice. Possible mechanisms of impaired CD8 T cell responses with aging are addressed, including: (1) the role of dendritic cells (DCs); (2) the effect of age-associated changes in the T cell repertoire; and (3) the interactions with CD4 T cells, including T regulatory (Treg) cells and CD4 T helper cells. The aged murine model of the CD8 T cell response to influenza virus is helping to elucidate the mechanisms of immunosenescence which can lead to therapeutic improvements in the primary CD8 T cell response to new infections, as well as the development of new strategies for immunization to prevent influenza in the elderly.
Collapse
|
153
|
Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C. High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011; 85:9334-45. [PMID: 21752903 PMCID: PMC3165743 DOI: 10.1128/jvi.00460-11] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center/NIAID HIV Vaccine Trials Network (HVTN), Seattle, Washington
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Beatriz Mothe
- Lluita contra la Sida Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Badalona, Barcelona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kari L. Hartman
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Leah M. Henry
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Laura E. Ruff
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Christian Brander
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
154
|
Single cell analysis reveals similar functional competence of dominant and nondominant CD8 T-cell clonotypes. Proc Natl Acad Sci U S A 2011; 108:15318-23. [PMID: 21876175 DOI: 10.1073/pnas.1105419108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immune protection from infectious diseases and cancer is mediated by individual T cells of different clonal origin. Their functions are tightly regulated but not yet fully characterized. Understanding the contribution of each T cell will improve the prediction of immune protection based on laboratory assessment of T-cell responses. Here we developed techniques for simultaneous molecular and functional assessment of single CD8 T cells directly ex vivo. We studied two groups of patients with melanoma after vaccination with two closely related tumor antigenic peptides. Vaccination induced T cells with strong memory and effector functions, as found in virtually all T cells of the first patient group, and fractions of T cells in the second group. Interestingly, high functionality was not restricted to dominant clonotypes. Rather, dominant and nondominant clonotypes acquired equal functional competence. In parallel, this was also found for EBV- and CMV-specific T cells. Thus, the nondominant clonotypes may contribute similarly to immunity as their dominant counterparts.
Collapse
|
155
|
Baumgaertner P, Jandus C, Rivals JP, Derré L, Lövgren T, Baitsch L, Guillaume P, Luescher IF, Berthod G, Matter M, Rufer N, Michielin O, Speiser DE. Vaccination-induced functional competence of circulating human tumor-specific CD8 T-cells. Int J Cancer 2011; 130:2607-17. [PMID: 21796616 DOI: 10.1002/ijc.26297] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/10/2011] [Indexed: 02/04/2023]
Abstract
T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.
Collapse
Affiliation(s)
- Petra Baumgaertner
- Clinical Tumor Immune-Biology Unit, Ludwig Center for Cancer Research of the University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Cicin-Sain L, Sylwester AW, Hagen SI, Siess DC, Currier N, Legasse AW, Fischer MB, Koudelka CW, Axthelm MK, Nikolich-Zugich J, Picker LJ. Cytomegalovirus-specific T cell immunity is maintained in immunosenescent rhesus macaques. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:1722-32. [PMID: 21765018 PMCID: PMC3151292 DOI: 10.4049/jimmunol.1100560] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although CMV infection is largely benign in immunocompetent people, the specific T cell responses associated with control of this persistent virus are enormous and must be maintained for life. These responses may increase with advanced age and have been linked to an "immune risk profile" that is associated with poor immune responsiveness and increased mortality in aged individuals. Based on this association, it has been suggested that CMV-specific T cell responses might become dysfunctional with age and thereby contribute to the development of immune senescence by homeostatic disruption of other T cell populations, diminished control of CMV replication, and/or excess chronic inflammation. In this study, we use the rhesus macaque (RM) model of aging to ask whether the quantity and quality of CMV-specific T cell responses differ between healthy adult RMs and elderly RMs that manifest hallmarks of immune aging. We demonstrate that the size of the CD4(+) and CD8(+) CMV-specific T cell pools are similar in adult versus old RMs and show essentially identical phenotypic and functional characteristics, including a dominant effector memory phenotype, identical patterns of IFN-γ, TNF-α, and IL-2 production and cytotoxic degranulation, and comparable functional avidities of optimal epitope-specific CD8(+) T cells. Most importantly, the response to and protection against an in vivo CMV challenge were identical in adult and aged RMs. These data indicate that CMV-specific T cell immunity is well maintained in old RMs and argue against a primary role for progressive dysfunction of these responses in the development of immune senescence.
Collapse
Affiliation(s)
- Luka Cicin-Sain
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
- Department of Vaccinology and Applied Microbiology, Helmoltz Centre for Infection Research, Braunschweig, Germany
| | - Andrew W. Sylwester
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| | - Shoko I. Hagen
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| | - Don C. Siess
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| | - Noreen Currier
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
| | - Alfred W. Legasse
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| | - Miranda B. Fischer
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
| | - Caroline W. Koudelka
- Biostatistics Shared Resource, Knight Cancer Institute at the Oregon Health & Science University, Portland, OR
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute (VGTI), Oregon Health & Science University, Beaverton, OR
- Oregon National Primate Research Center (ONPRC), Oregon Health & Science University, Beaverton, OR
| |
Collapse
|
157
|
Nonrandom attrition of the naive CD8+ T-cell pool with aging governed by T-cell receptor:pMHC interactions. Proc Natl Acad Sci U S A 2011; 108:13694-9. [PMID: 21813761 DOI: 10.1073/pnas.1107594108] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunity against new infections declines in the last quartile of life, as do numbers of naive T cells. Peripheral maintenance of naive T cells over the lifespan is necessary because their production drastically declines by puberty, a result of thymic involution. We report that this maintenance is not random in advanced aging. As numbers and diversity of naive CD8(+) T cells declined with aging, surviving cells underwent faster rates of homeostatic proliferation, were selected for high T-cell receptor:pMHC avidity, and preferentially acquired "memory-like" phenotype. These high-avidity precursors preferentially responded to infection and exhibited strong antimicrobial function. Thus, T-cell receptor avidity for self-pMHC provides a proofreading mechanism to maintain some of the fittest T cells in the otherwise crumbling naive repertoire, providing a degree of compensation for numerical and diversity defects in old T cells.
Collapse
|
158
|
Blackman MA, Woodland DL. The narrowing of the CD8 T cell repertoire in old age. Curr Opin Immunol 2011; 23:537-42. [PMID: 21652194 PMCID: PMC3163762 DOI: 10.1016/j.coi.2011.05.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/17/2011] [Indexed: 01/03/2023]
Abstract
Immune function declines progressively with age, resulting in increased susceptibility of the elderly to infection and impaired responses to vaccines. A diverse repertoire of T cells is essential for a vigorous immune response, and an important manifestation of immune aging is the progressive loss of repertoire diversity, predominantly among CD8 T cells in both mice and humans. Importantly, perturbations in the peripheral T cell repertoire, including reduction of the CD4:CD8 ratio and cytomegalovirus-driven T cell clonal expansions, make a major contribution to the 'immune risk phenotype' defined for humans, which predicts two-year mortality in very old individuals.
Collapse
|
159
|
Major histocompatibility complex-dependent cytotoxic T lymphocyte repertoire and functional avidity contribute to strain-specific disease susceptibility after murine respiratory syncytial virus infection. J Virol 2011; 85:10135-43. [PMID: 21795345 DOI: 10.1128/jvi.00816-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Susceptibility to respiratory syncytial virus (RSV) infection in mice is genetically determined. While RSV causes little pathology in C57BL/6 mice, pulmonary inflammation and weight loss occur in BALB/c mice. Using major histocompatibility complex (MHC)-congenic mice, we observed that the H-2(d) allele can partially transfer disease susceptibility to C57BL/6 mice. This was not explained by altered viral elimination or differences in the magnitude of the overall virus-specific cytotoxic T lymphocyte (CTL) response. However, H-2(d) mice showed a more focused response, with 70% of virus-specific CTL representing Vβ8.2(+) CTL directed against the immunodominant epitope M2-1 82, while in H-2(b) mice only 20% of antiviral CTL were Vβ9(+) CTL specific for the immunodominant epitope M187. The immunodominant H-2(d)-restricted CTL lysed target cells less efficiently than the immunodominant H-2(b) CTL, probably contributing to prolonged CTL stimulation and cytokine-mediated immunopathology. Accordingly, reduction of dominance of the M2-1 82-specific CTL population by introduction of an M187 response in the F1 generation of a C57BL/6N × C57BL/6-H-2(d) mating (C57BL/6-H-2(dxb) mice) attenuated disease. Moreover, disease in H-2(d) mice was less pronounced after infection with an RSV mutant failing to activate M2-1 82-specific CTL or after depletion of Vβ8.2(+) cells. These data illustrate how the MHC-determined diversity and functional avidity of CTL responses contribute to disease susceptibility after viral infection.
Collapse
|
160
|
Day EB, Charlton KL, La Gruta NL, Doherty PC, Turner SJ. Effect of MHC class I diversification on influenza epitope-specific CD8+ T cell precursor frequency and subsequent effector function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6319-28. [PMID: 21536802 PMCID: PMC3103778 DOI: 10.4049/jimmunol.1000883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Earlier studies of influenza-specific CD8(+) T cell immunodominance hierarchies indicated that expression of the H2K(k) MHC class I allele greatly diminishes responses to the H2D(b)-restriced D(b)PA(224) epitope (acid polymerase, residues 224-233 complexed with H2D(b)). The results suggested that the presence of H2K(k) during thymic differentiation led to the deletion of a prominent Vβ7(+) subset of D(b)PA(224)-specific TCRs. The more recent definition of D(b)PA(224)-specific TCR CDR3β repertoires in H2(b) mice provides a new baseline for looking again at this possible H2K(k) effect on D(b)PA(224)-specific TCR selection. We found that immune responses to several H2D(b)- and H2K(b)-restricted influenza epitopes were indeed diminished in H2(bxk) F(1) versus homozygous mice. In the case of D(b)PA(224), lower numbers of naive precursors were part of the explanation, though a similar decrease in those specific for the D(b)NP(366) epitope did not affect response magnitude. Changes in precursor frequency were not associated with any major loss of TCR diversity and could not fully account for the diminished D(b)PA(224)-specific response. Further functional and phenotypic characterization of influenza-specific CD8(+) T cells suggested that the expansion and differentiation of the D(b)PA(224)-specific set is impaired in the H2(bxk) F(1) environment. Thus, the D(b)PA(224) response in H2(bxk) F(1) mice is modulated by factors that affect the generation of naive epitope-specific precursors and the expansion and differentiation of these T cells during infection, rather than clonal deletion of a prominent Vβ7(+) subset. Such findings illustrate the difficulties of predicting and defining the effects of MHC class I diversification on epitope-specific responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Epitopes, T-Lymphocyte/immunology
- Female
- H-2 Antigens/immunology
- Influenza A virus/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-2/immunology
- Interleukin-2/metabolism
- Kinetics
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Precursor Cells, T-Lymphoid/immunology
- Precursor Cells, T-Lymphoid/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- E Bridie Day
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | |
Collapse
|
161
|
Structural basis for enabling T-cell receptor diversity within biased virus-specific CD8+ T-cell responses. Proc Natl Acad Sci U S A 2011; 108:9536-41. [PMID: 21606376 DOI: 10.1073/pnas.1106851108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogen-specific responses are characterized by preferred profiles of peptide+class I MHC (pMHCI) glycoprotein-specific T-cell receptor (TCR) Variable (V)-region use. How TCRV-region bias impacts TCRαβ heterodimer selection and resultant diversity is unclear. The D(b)PA(224)-specific TCR repertoire in influenza A virus-infected C57BL/6J (B6) mice exhibits a preferred TCRV-region bias toward the TRBV29 gene segment and an optimal complementarity determining region (CDR3) β-length of 6 aa. Despite these restrictions, D(b)PA(224)-specific BV29(+) T cells use a wide array of unique CDR3β sequences. Structural characterization of a single, TRBV29(+)D(b)P(A224)-specific TCRαβ-pMHCI complex demonstrated that CDR3α amino acid side chains made specific peptide interactions, but the CDR3β main chain exclusively contacted peptides. Thus, length but not amino acid sequence was key for recognition and flexibility in Vβ-region use. In support of this hypothesis, retrovirus expression of the D(b)PA(224)-specific TCRVα-chain was used to constrain pairing within a naive/immune epitope-specific repertoire. The retrogenic TCRVα paired with a diversity of CDR3βs in the context of a preferred TCRVβ spectrum. Overall, these data provide an explanation for the combination of TCRV region bias and diversity within selected repertoires, even as they maintain exquisite pMHCI specificity.
Collapse
|
162
|
Diverse peptide presentation of rhesus macaque major histocompatibility complex class I Mamu-A 02 revealed by two peptide complex structures and insights into immune escape of simian immunodeficiency virus. J Virol 2011; 85:7372-83. [PMID: 21561910 DOI: 10.1128/jvi.00350-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class I (MHC I)-restricted CD8(+) T-cell responses play a pivotal role in anti-human immunodeficiency virus (HIV) immunity and the control of viremia. The rhesus macaque is an important animal model for HIV-related research. Among the MHC I alleles of the rhesus macaque, Mamu-A 02 is prevalent, presenting in ≥20% of macaques. In this study, we determined the crystal structure of Mamu-A 02, the second structure-determined MHC I from the rhesus macaque after Mamu-A 01. The peptide presentation characteristics of Mamu-A 02 are exhibited in complex structures with two typical Mamu-A 02-restricted CD8(+) T-cell epitopes, YY9 (Nef159 to -167; YTSGPGIRY) and GY9 (Gag71 to -79; GSENLKSLY), derived from simian immunodeficiency virus (SIV). These two peptides utilize similar primary anchor residues (Ser or Thr) at position 2 and Tyr at position 9. However, the central region of YY9 is different from that of GY9, a difference that may correlate with the immunogenic variance of these peptides. Further analysis indicated that the distinct conformations of these two peptides are modulated by four flexible residues in the Mamu-A 02 peptide-binding groove. The rare combination of these four residues in Mamu-A 02 leads to a variant presentation for peptides with different residues in their central regions. Additionally, in the two structures of the Mamu-A 02 complex, we compared the binding of rhesus and human β(2) microglobulin (β(2)m) to Mamu-A 02. We found that the peptide presentation of Mamu-A 02 is not affected by the interspecies interaction with human β(2)m. Our work broadens the understanding of CD8(+) T-cell-specific immunity against SIV in the rhesus macaque.
Collapse
|
163
|
Miconnet I, Marrau A, Farina A, Taffé P, Vigano S, Harari A, Pantaleo G. Large TCR Diversity of Virus-Specific CD8 T Cells Provides the Mechanistic Basis for Massive TCR Renewal after Antigen Exposure. THE JOURNAL OF IMMUNOLOGY 2011; 186:7039-49. [DOI: 10.4049/jimmunol.1003309] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
164
|
A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd. PLoS One 2011; 6:e18806. [PMID: 21533277 PMCID: PMC3075270 DOI: 10.1371/journal.pone.0018806] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/20/2011] [Indexed: 11/19/2022] Open
Abstract
Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test ('reactors'). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling.
Collapse
|
165
|
Two distinct conformations of a rinderpest virus epitope presented by bovine major histocompatibility complex class I N*01801: a host strategy to present featured peptides. J Virol 2011; 85:6038-48. [PMID: 21450819 DOI: 10.1128/jvi.00030-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The presentation of viral peptide epitopes to host cytotoxic T lymphocytes (CTLs) is crucial for adaptive cellular immunity to clear the virus infection, especially for some chronic viral infections. Indeed, hosts have developed effective strategies to achieve this goal. The ideal scenario would be that the peptide epitopes stimulate a broad spectrum of CTL responses with diversified T-cell receptor (TCR) usage (the TCR repertoire). It is believed that a diversified TCR repertoire requires a "featured" peptide to be presented by the host major histocompatibility complex (MHC). A featured peptide can be processed and presented in a number of ways. Here, using the X-ray diffraction method, the crystal structures of an antigenic peptide derived from rinderpest virus presented by bovine MHC class I N*01801 (BoLA-A11) have been solved, and two distinct conformations of the presented peptide are clearly displayed. A detailed analysis of the structure and comparative sequences revealed that the polymorphic amino acid isoleucine 73 (Ile73) is extremely flexible, allowing the MHC groove to adopt different conformations to accommodate the rinderpest virus peptide. This makes the peptide more featured by exposing different amino acids for T-cell recognition. The crystal structures also demonstrated that the N*01801 molecule has an unusually large A pocket, resulting in the special conformation of the P1 residue at the N terminus of the peptide. We propose that this strategy of host peptide presentation might be beneficial for creating a diversified TCR repertoire, which is important for a more-effective CTL response.
Collapse
|
166
|
Rudd BD, Venturi V, Davenport MP, Nikolich-Zugich J. Evolution of the antigen-specific CD8+ TCR repertoire across the life span: evidence for clonal homogenization of the old TCR repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:2056-2064. [PMID: 21248263 PMCID: PMC4119821 DOI: 10.4049/jimmunol.1003013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Defects in T cell responses against pathogens and reduced diversity of TCRs have been described at both extremes of the life span. Yet, we still lack information on how Ag-specific T cell populations are maintained and/or altered from birth to old age. In this study, for the first time to our knowledge, we provide insight into Ag-specific TCR repertoire changes over the life span at the single-cell level. We have examined the TCR diversity of the primary CD8(+) T cell response to the immunodominant HSV-1 epitope HSV glycoprotein B 495-502 (HSV gB(498-505); SSIEFARL) (gB-8p) in neonatal, adult, and old C57BL/6 mice. The global distinctive features of the gB-8p-specific TCR repertoire were preserved in mice of different ages. However, both old and especially neonatal mice exhibited significant decreases in TCR diversity compared with that of adult mice. Still, although the neonatal Ag-specific repertoire comprised expectedly shorter germline-biased CDR3β lengths, the repertoire was surprisingly complex, and only a minority of responding cells lacked random nucleotide additions. Changes with aging included increased use of the already dominant TCRVβ10 family, a trend for lower content of the TCR containing the germline WG motif in the CDR3, and a remarkable sharing of one dominant clonotype between individual old mice, implying operation of selective mechanisms. Implications for the rational design of vaccines for neonates and the elderly are discussed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/virology
- Cellular Senescence/genetics
- Cellular Senescence/immunology
- Clone Cells
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Evolution, Molecular
- Herpesvirus 1, Human/immunology
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/genetics
- Longevity/genetics
- Longevity/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Envelope Proteins/biosynthesis
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| | - Vanessa Venturi
- Computational Biology Unit, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Miles P. Davenport
- Complex Systems in Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and, the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson ,AZ 85719
| |
Collapse
|
167
|
Billam P, Bonaparte KL, Liu J, Ruckwardt TJ, Chen M, Ryder AB, Wang R, Dash P, Thomas PG, Graham BS. T Cell receptor clonotype influences epitope hierarchy in the CD8+ T cell response to respiratory syncytial virus infection. J Biol Chem 2011; 286:4829-41. [PMID: 21118816 PMCID: PMC3039322 DOI: 10.1074/jbc.m110.191437] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/27/2010] [Indexed: 01/19/2023] Open
Abstract
CD8+ T cell responses are important for recognizing and resolving viral infections. To better understand the selection and hierarchy of virus-specific T cell responses, we compared the T cell receptor (TCR) clonotype in parent and hybrid strains of respiratory syncytial virus-infected mice. K(d)M2(82-90) (SYIGSINNI) in BALB/c and D(b)M(187-195) (NAITNAKII) in C57Bl/6 are both dominant epitopes in parent strains but assume a distinct hierarchy, with K(d)M2(82-90) dominant to D(b)M(187-195) in hybrid CB6F1/J mice. The dominant K(d)M2(82-90) response is relatively public and is restricted primarily to the highly prevalent Vβ13.2 in BALB/c and hybrid mice, whereas D(b)M(187-195) responses in C57BL/6 mice are relatively private and involve multiple Vβ subtypes, some of which are lost in hybrids. A significant frequency of TCR CDR3 sequences in the D(b)M(187-195) response have a distinct "(D/E)WG" motif formed by a limited number of recombination strategies. Modeling of the dominant epitope suggested a flat, featureless structure, but D(b)M(187-195) showed a distinctive structure formed by Lys(7). The data suggest that common recombination events in prevalent Vβ genes may provide a numerical advantage in the T cell response and that distinct epitope structures may impose more limited options for successful TCR selection. Defining how epitope structure is interpreted to inform T cell function will improve the design of future gene-based vaccines.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Chimera/genetics
- Chimera/immunology
- Chimera/metabolism
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Complementarity Determining Regions/metabolism
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Mice
- Mice, Inbred BALB C
- Models, Immunological
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Respiratory Syncytial Virus Infections/genetics
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/metabolism
- Respiratory Syncytial Viruses/genetics
- Respiratory Syncytial Viruses/immunology
- Respiratory Syncytial Viruses/metabolism
- Species Specificity
Collapse
Affiliation(s)
- Padma Billam
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Kathryn L. Bonaparte
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Jie Liu
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Tracy J. Ruckwardt
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Man Chen
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Alex B. Ryder
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| | - Rui Wang
- the Molecular Biology Section, Laboratory of Immunology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1892, and
| | - Pradyot Dash
- the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Paul G. Thomas
- the Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Barney S. Graham
- From the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20892-3017
| |
Collapse
|
168
|
Allen S, Turner SJ, Bourges D, Gleeson PA, Driel IR. Shaping the T‐cell repertoire in the periphery. Immunol Cell Biol 2010; 89:60-9. [DOI: 10.1038/icb.2010.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stacey Allen
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria Australia
| | - Stephen J Turner
- Department of Microbiology and Immunology, The University of Melbourne Parkville Victoria Australia
| | - Dorothée Bourges
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria Australia
| | - Ian R Driel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria Australia
| |
Collapse
|
169
|
Valkenburg SA, Day EB, Swan NG, Croom HA, Carbone FR, Doherty PC, Turner SJ, Kedzierska K. Fixing an irrelevant TCR alpha chain reveals the importance of TCR beta diversity for optimal TCR alpha beta pairing and function of virus-specific CD8+ T cells. Eur J Immunol 2010; 40:2470-81. [PMID: 20690181 DOI: 10.1002/eji.201040473] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TCR repertoire diversity can influence the efficacy of CD8(+) T-cell populations, with greater breadth eliciting better protection. We analyzed TCR beta diversity and functional capacity for influenza-specific CD8(+) T cells expressing a single TCR alpha chain. Mice (A7) transgenic for the H2K(b)OVA(257-264)-specific V alpha 2.7 TCR were challenged with influenza to determine how fixing this "irrelevant" TCR alpha affects the "public" and restricted D(b)NP(366) (+)CD8(+) versus the "private" and diverse D(b)PA(224) (+)CD8(+) responses. Though both D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets are generated in virus-primed A7 mice, the constrained D(b)NP(366) (+)CD8(+) population lacked the characteristic, public TCRV beta 8.3, and consequently was reduced in magnitude and pMHC-I avidity. For the more diverse D(b)PA(224) (+)CD8(+) T cells, this particular forcing led to a narrowing and higher TCR beta conservation of the dominant V beta 7, though the responses were of comparable magnitude to C57BL/6J controls. Interestingly, although both the TCR beta diversity and the cytokine profiles were reduced for the D(b)NP(366) (+)CD8(+) and D(b)PA(224) (+)CD8(+) sets in spleen, the latter measure of polyfunctionality was comparable for T cells recovered from the infected lungs of A7 and control mice. Even "sub-optimal" TCR alpha beta pairs can operate effectively when exposed in a milieu of high virus load. Thus, TCR beta diversity is important for optimal TCR alpha beta pairing and function when TCR alpha is limiting.
Collapse
Affiliation(s)
- Sophie A Valkenburg
- Department of Microbiology and Immunology, University of Melbourne, Vic 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Protective immunity against a variety of infections depends on the amplification and differentiation of rare naïve antigen-specific CD4 and CD8 T cells. Recent evidence indicates that the clonotypic composition of the responding T-cell compartment has a critical role in the immune defense against pathogens. The present review compares and contrasts how naive CD4 and CD8 T cells recognize their cognate antigen, and discusses the factors that regulate the genesis and maintenance of the CD4 and CD8 T-cell receptor repertoire diversity.
Collapse
|
171
|
Vaccination reduces simian-human immunodeficiency virus sequence reversion through enhanced viral control. J Virol 2010; 84:12782-9. [PMID: 20881040 DOI: 10.1128/jvi.01193-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been suggested that vaccination prior to infection may direct the mutational evolution of human immunodeficiency virus type 1 (HIV-1) to a less fit virus, resulting in an attenuated course of disease. The present study was initiated to explore whether prior immunization might prevent the reversion of the virus to the wild-type form. Mamu-A*01 monkeys were vaccinated to generate a cytotoxic T-lymphocyte response to the immunodominant Gag p11C epitope and were then challenged with a cloned pathogenic CXCR4-tropic simian-human immunodeficiency virus (SHIV) expressing a mutant Gag p11C sequence (Δp11C SHIV). The epitopic and extraepitopic compensatory mutations introduced into gag of Δp11C SHIV resulted in attenuated replicative capacity and eventual reversions to the wild-type Gag p11C sequence in naïve rhesus monkeys. However, in vaccinated rhesus monkeys, no reversions of the challenge virus were observed, an effect that may have been a consequence of significantly decreased viral replication rather than a redirection of the mutational evolution of the virus. These findings highlight the multifactorial pressures that affect the evolution of primate immunodeficiency viruses.
Collapse
|
172
|
Novel immunodominant peptide presentation strategy: a featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J Virol 2010; 84:11849-57. [PMID: 20844028 DOI: 10.1128/jvi.01464-10] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antigenic peptides recognized by virus-specific cytotoxic T lymphocytes (CTLs) are presented by major histocompatibility complex (MHC; or human leukocyte antigen [HLA] in humans) molecules, and the peptide selection and presentation strategy of the host has been studied to guide our understanding of cellular immunity and vaccine development. Here, a severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid (N) protein-derived CTL epitope, N1 (QFKDNVILL), restricted by HLA-A*2402 was identified by a series of in vitro studies, including a computer-assisted algorithm for prediction, stabilization of the peptide by co-refolding with HLA-A*2402 heavy chain and β(2)-microglobulin (β(2)m), and T2-A24 cell binding. Consequently, the antigenicity of the peptide was confirmed by enzyme-linked immunospot (ELISPOT), proliferation assays, and HLA-peptide complex tetramer staining using peripheral blood mononuclear cells (PBMCs) from donors who had recovered from SARS donors. Furthermore, the crystal structure of HLA-A*2402 complexed with peptide N1 was determined, and the featured peptide was characterized with two unexpected intrachain hydrogen bonds which augment the central residues to bulge out of the binding groove. This may contribute to the T-cell receptor (TCR) interaction, showing a host immunodominant peptide presentation strategy. Meanwhile, a rapid and efficient strategy is presented for the determination of naturally presented CTL epitopes in the context of given HLA alleles of interest from long immunogenic overlapping peptides.
Collapse
|
173
|
Palermo B, Del Bello D, Sottini A, Serana F, Ghidini C, Gualtieri N, Ferraresi V, Catricalà C, Belardelli F, Proietti E, Natali PG, Imberti L, Nisticò P. Dacarbazine Treatment before Peptide Vaccination Enlarges T-Cell Repertoire Diversity of Melan-A–Specific, Tumor-Reactive CTL in Melanoma Patients. Cancer Res 2010; 70:7084-92. [DOI: 10.1158/0008-5472.can-10-1326] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
174
|
Maintenance or emergence of chronic phase secondary cytotoxic T lymphocyte responses after loss of acute phase immunodominant responses does not protect SIV-infected rhesus macaques from disease progression. J Biomed Biotechnol 2010; 2010:279391. [PMID: 20589067 PMCID: PMC2877203 DOI: 10.1155/2010/279391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/19/2010] [Accepted: 03/09/2010] [Indexed: 11/17/2022] Open
Abstract
The simian immunodeficiency virus- (SIV-) infected rhesus macaque is the preferred animal model for vaccine development, but the correlates of protection in this model are not completely understood. In this paper, we document the cytotoxic T lymphocyte (CTL) response to SIV and its effects on viral evolution in an effort to identify events associated with disease progression regardless of MHC allele expression. We observed the evolution of epitopes targeted by CTLs in a group of macaques that included long-term nonprogressing (LTNP), slowly progressing (SP), normally progressing (NP), and rapidly progressing (RP) animals. Collectively, our data (1) identify novel CTL epitopes from an SP animal that are not restricted by known protective alleles, (2) illustrate that, in this small study, RP and NP animals accrue more mutations in CTL epitopes than in SP or LTNP macaques, and (3) demonstrate that the loss of CTL responses to immunodominant epitopes is associated with viral replication increases, which are not controlled by secondary CTL responses. These findings provide further evidence for the critical role of the primary cell-mediated immune responses in the control of retroviral infections.
Collapse
|
175
|
La Gruta NL, Rothwell WT, Cukalac T, Swan NG, Valkenburg SA, Kedzierska K, Thomas PG, Doherty PC, Turner SJ. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest 2010; 120:1885-94. [PMID: 20440073 DOI: 10.1172/jci41538] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 03/10/2010] [Indexed: 12/27/2022] Open
Abstract
CD8+ T cell responses to viral infection are characterized by the emergence of dominant and subdominant CTL populations. The immunodominance hierarchies of these populations are highly reproducible for any given spectrum of virus-induced peptide-MHCI complexes and are likely determined by multiple factors. Recent studies demonstrate a direct correlation between naive epitope-specific CD8+ T cell precursor (CTLp) frequency and the magnitude of the response after antigen challenge. Thus, the number of available precursors in the naive pool has emerged as a key predictor of immunodominance. In contrast to this, we report here no consistent relationship between CTLp frequency and the subsequent magnitude of the immune response for 4 influenza virus-derived epitopes following intranasal infection of mice with influenza A virus. Rather, the characteristic, antigen-driven T cell immunodominance hierarchy was determined by the extent of recruitment from the available pool of epitope-specific precursors and the duration of their continued expansion over the course of the infection. These findings suggest possibilities for enhancing protective immune memory by maximizing both the size and diversity of typically subdominant T cell responses through rational vaccine design.
Collapse
Affiliation(s)
- Nicole L La Gruta
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Speiser DE, Romero P. Molecularly defined vaccines for cancer immunotherapy, and protective T cell immunity. Semin Immunol 2010; 22:144-54. [PMID: 20413326 DOI: 10.1016/j.smim.2010.03.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 03/15/2010] [Indexed: 11/28/2022]
Abstract
Malignant cells are frequently recognized and destroyed by T cells, hence the development of T cell vaccines against established tumors. The challenge is to induce protective type 1 immune responses, with efficient Th1 and CTL activation, and long-term immunological memory. These goals are similar as in many infectious diseases, where successful immune protection is ideally induced with live vaccines. However, large-scale development of live vaccines is prevented by their very limited availability and vector immunogenicity. Synthetic vaccines have multiple advantages. Each of their components (antigens, adjuvants, delivery systems) contributes specifically to induction and maintenance of T cell responses. Here we summarize current experience with vaccines based on proteins and peptide antigens, and discuss approaches for the molecular characterization of clonotypic T cell responses. With carefully designed step-by-step modifications of innovative vaccine formulations, T cell vaccination can be optimized towards the goal of inducing therapeutic immune responses in humans.
Collapse
Affiliation(s)
- Daniel E Speiser
- Clinical Investigation Center, Ludwig Institute for Cancer Research Ltd., Lausanne branch, University of Lausanne, Switzerland.
| | | |
Collapse
|
177
|
Theodossis A, Guillonneau C, Welland A, Ely LK, Clements CS, Williamson NA, Webb AI, Wilce JA, Mulder RJ, Dunstone MA, Doherty PC, McCluskey J, Purcell AW, Turner SJ, Rossjohn J. Constraints within major histocompatibility complex class I restricted peptides: presentation and consequences for T-cell recognition. Proc Natl Acad Sci U S A 2010; 107:5534-9. [PMID: 20212169 PMCID: PMC2851776 DOI: 10.1073/pnas.1000032107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of "independent pegs" that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of alphabeta-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of "constrained" peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DPalpha-EEFGRAFSF) and an H2-D(b) restricted influenza peptide (D(b)PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV --> SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.
Collapse
Affiliation(s)
- Alex Theodossis
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Carole Guillonneau
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Andrew Welland
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Lauren K. Ely
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Craig S. Clements
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Nicholas A. Williamson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia; and
| | - Andrew I. Webb
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia; and
| | - Jacqueline A. Wilce
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Roger J. Mulder
- Ian Wark Laboratory, Commonwealth Scientific and Industrial Research Organisation Molecular and Health Technologies, Victoria 3169, Australia
| | - Michelle A. Dunstone
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia; and
| | - Stephen J. Turner
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Jamie Rossjohn
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
178
|
Rudd BD, Venturi V, Smithey MJ, Way SS, Davenport MP, Nikolich-Zugich J. Diversity of the CD8+ T cell repertoire elicited against an immunodominant epitope does not depend on the context of infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:2958-2965. [PMID: 20164421 PMCID: PMC4161216 DOI: 10.4049/jimmunol.0903493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The diversity of the pathogen-specific T cell repertoire is believed to be important in allowing recognition of different pathogen epitopes and their variants and thereby reducing the opportunities for mutation-driven pathogen escape. However, the extent to which the TCR repertoire can be manipulated by different vaccine strategies so as to obtain broad diversity and optimal protection is incompletely understood. We have investigated the influence of the infectious/inflammatory context on the TCR diversity of the CD8(+) T cell response specific for the immunodominant epitope in C57BL/6 mice, derived from glycoprotein B of HSV-1. To that effect, we compared TCR V segment utilization, CDR3 length, and sequence diversity of the response to natural HSV-1 infection with those elicited by either Listeria monocytogenes or vaccinia virus expressing the immunodominant epitope in C57BL/6 mice. We demonstrate that although the type of infection in which the epitope was encountered can influence the magnitude of the CD8(+) T cell responses, TCR beta-chain repertoires did not significantly differ among the three infections. These results suggest that widely different live vaccine vectors may have little impact upon the diversity of the induced CTL response, which has important implications for the design of live CTL vaccine strategies against acute and chronic infections.
Collapse
Affiliation(s)
- Brian D. Rudd
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Vanessa Venturi
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Megan J. Smithey
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| | - Sing Sing Way
- Department of Pediatrics, Center for Infectious Disease and Microbiology Translational Research, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Janko Nikolich-Zugich
- Department of Immunobiology and the Arizona Center on Aging, University of Arizona College of Medicine, Tucson, AZ 85724 and the BIO-5 Institute, University of Arizona, Tucson,AZ 85719
| |
Collapse
|
179
|
Kedzierska K, Valkenburg SA, Guillonneau C, Hubert FX, Cukalac T, Curtis JM, Stambas J, Scott HS, Kedzierski L, Venturi V, Davenport MP. Diversity and clonotypic composition of influenza-specific CD8+ TCR repertoires remain unaltered in the absence of Aire. Eur J Immunol 2010; 40:849-58. [PMID: 19950188 DOI: 10.1002/eji.200939918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TCR repertoire diversity is important for the protective efficacy of CD8(+) T cells, limiting viral escape and cross-reactivity between unrelated epitopes. The exact mechanism for selection of restricted versus diverse TCR repertoires is far from clear, although one thought is that the epitopes resembling self-peptides might select a limited array of TCR due to the deletion of autoreactive TCR. The molecule Aire promotes the expression of tissue-specific Ag on thymic medullary epithelial cells and the deletion of autoreactive cells, and in the absence of Aire autoreactive cells persist. However, the contribution of Aire-dependent peptides to the selection of the Ag-specific TCR repertoire remains unknown. In this study, we dissect restricted (D(b)NP(366)%(+)CD8(+)) and diverse (D(b)PA(224)%(+)CD8(+), K(d)NP(147)%(+)CD8(+)) TCR repertoires responding to three influenza-derived peptides in Aire-deficient mice on both B6 and BALB/c backgrounds. Our study shows that the number, qualitative characteristics and TCR repertoires of all influenza-specific, D(b)NP(366)%(+)CD8(+), D(b)PA(224)%(+)CD8(+) and K(d)NP(147)%(+)CD8(+) T cells are not significantly altered in the absence of Aire. This provides the first demonstration that the selection of an Ag-specific T-cell repertoire is not significantly perturbed in the absence of Aire.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Vingert B, Perez-Patrigeon S, Jeannin P, Lambotte O, Boufassa F, Lemaître F, Kwok WW, Theodorou I, Delfraissy JF, Thèze J, Chakrabarti LA, for the ANRS EP36 HIV Controllers Study Group. HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity. PLoS Pathog 2010; 6:e1000780. [PMID: 20195518 PMCID: PMC2829066 DOI: 10.1371/journal.ppat.1000780] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/20/2010] [Indexed: 12/11/2022] Open
Abstract
HIV controllers are rare individuals who spontaneously control HIV replication in the absence of antiretroviral treatment. Emerging evidence indicates that HIV control is mediated through very active cellular immune responses, though how such responses can persist over time without immune exhaustion is not yet understood. To investigate the nature of memory CD4+ T cells responsible for long-term anti-HIV responses, we characterized the growth kinetics, Vbeta repertoire, and avidity for antigen of patient-derived primary CD4+ T cell lines. Specific cell lines were obtained at a high rate for both HIV controllers (16/17) and efficiently treated patients (19/20) in response to the immunodominant Gag293 peptide. However, lines from controllers showed faster growth kinetics than those of treated patients. After normalizing for growth rates, IFN-gamma responses directed against the immunodominant Gag293 peptide showed higher functional avidity in HIV controllers, indicating differentiation into highly efficient effector cells. In contrast, responses to Gag161, Gag263, or CMV peptides did not differ between groups. Gag293-specific CD4+ T cells were characterized by a diverse Vbeta repertoire, suggesting that multiple clones contributed to the high avidity CD4+ T cell population in controllers. The high functional avidity of the Gag293-specific response could be explained by a high avidity interaction between the TCR and the peptide-MHC complex, as demonstrated by MHC class II tetramer binding. Thus, HIV controllers harbor a pool of memory CD4+ T cells with the intrinsic ability to recognize minimal amounts of Gag antigen, which may explain how they maintain an active antiviral response in the face of very low viremia.
Collapse
Affiliation(s)
- Benoît Vingert
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | | | - Patricia Jeannin
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Olivier Lambotte
- Institut National de la Santé et de la Recherche Médicale (INSERM) U802, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Le Kremlin-Bicêtre, France
| | | | - Fabrice Lemaître
- G5 Dynamiques des Réponses Immunes, Institut Pasteur, Paris, France
- INSERM U668, Equipe Avenir, Institut Pasteur, Paris, France
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | | | - Jean-François Delfraissy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U802, Le Kremlin-Bicêtre, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Internal Medicine and Infectious Diseases, Bicêtre Hospital, Le Kremlin-Bicêtre, France
- Université Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jacques Thèze
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
| | - Lisa A. Chakrabarti
- Unité d'Immunogénétique Cellulaire, Institut Pasteur, Paris, France
- * E-mail:
| | | |
Collapse
|
181
|
Ho CS, Lunney JK, Lee JH, Franzo-Romain MH, Martens GW, Rowland RRR, Smith DM. Molecular characterization of swine leucocyte antigen class II genes in outbred pig populations. Anim Genet 2010; 41:428-32. [PMID: 20121817 DOI: 10.1111/j.1365-2052.2010.02019.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly polymorphic swine leucocyte antigen (SLA) genes are among the most important determinants of swine immune responses to disease and vaccines. Accurate and effective SLA genotyping methods are required to understand how SLA gene polymorphisms affect immunity, especially in outbred pigs with diverse genetic backgrounds. In this study, we present a simple and rapid molecular-based typing system for characterizing SLA class II alleles of the DRB1, DQB1 and DQA loci. This system utilizes a set of 47 sequence-specific PCR primers developed to differentiate alleles by groups that share similar sequence motifs. We applied this typing method to investigate the SLA class II diversity in four populations of outbred pigs (n = 206) and characterized a total of 19 SLA class II haplotypes, six of which were shared by at least three of the sampled pig populations. We found that Lr-0.1 (DRB1*01XX-DQB1*01XX-DQA*01XX) was the most prevalent haplotype with a combined frequency of 16.0%, followed by Lr-0.2 (DRB1*02XX-DQB1*02XX-DQA*02XX) with 14.6% and Lr-0.15b (DRB1*04XX-DQB1*0202-DQA*02XX) with 14.1%. Over 70% of the pigs (n = 147) had at least one copy of one of these three haplotypes. The PCR-based typing system described in this study demonstrates a reliable and unambiguous detection method for SLA class II alleles. It will be a valuable tool for studying the influence of SLA diversity on various immunological, pathological and physiological traits in outbred pigs.
Collapse
Affiliation(s)
- C-S Ho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Warren RL, Holt RA. A census of predicted mutational epitopes suitable for immunologic cancer control. Hum Immunol 2010; 71:245-54. [PMID: 20035814 DOI: 10.1016/j.humimm.2009.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 11/25/2022]
Abstract
The adaptive immune system can protect against spontaneously arising tumors, and the potential exists to reduce cancer incidence by priming adaptive immune responses with vaccines. Immunologic cancer control has been implemented for cancers caused by infectious agents, but not for spontaneous cancers caused by mutation. This is largely due to the high cost of preventative clinical trials and the lack of validated tumor epitopes. Here we evaluate, computationally, all known somatic mutations in human tumors for their antigenic potential. All possible human leukocyte antigen (HLA) class I presented peptides containing recurrent somatic cancer mutations with frequency > 5% were screened by three independent epitope prediction algorithms (SYFPEITHI, BIMAS, and IEDB). Using stringent filters, a total of 20 genes, 35 mutations, and 159 candidate epitopes were identified, each presented by up to four distinct HLA class I alleles. The top-ranking gene from our survey was KRAS, which figures prominently because there are frequent hotspot mutations in numerous, prevalent cancers, and mutant peptides are predicted to be presented by several common HLA alleles. From our data, we estimate that prophylactic vaccination could provide meaningful levels of prevention of tumors associated with common recurrent mutations.
Collapse
Affiliation(s)
- René L Warren
- British Columbia Cancer Agency, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | |
Collapse
|
183
|
Baumgartner CK, Ferrante A, Nagaoka M, Gorski J, Malherbe LP. Peptide-MHC class II complex stability governs CD4 T cell clonal selection. THE JOURNAL OF IMMUNOLOGY 2009; 184:573-81. [PMID: 20007533 DOI: 10.4049/jimmunol.0902107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The clonal composition of the T cell response can affect its ability to mediate infection control or to induce autoimmunity, but the mechanisms regulating the responding TCR repertoire remain poorly defined. In this study, we immunized mice with wild-type or mutated peptides displaying varying binding half-lives with MHC class II molecules to measure the impact of peptide-MHC class II stability on the clonal composition of the CD4 T cell response. We found that, although all peptides elicited similar T cell response size on immunization, the clonotypic diversity of the CD4 T cell response correlated directly with the half-life of the immunizing peptide. Peptides with short half-lives focused CD4 T cell response toward high-affinity clonotypes expressing restricted public TCR, whereas peptides with longer half-lives broadened CD4 T cell response by recruiting lower-affinity clonotypes expressing more diverse TCR. Peptides with longer half-lives did not cause the elimination of high-affinity clonotypes, and at a low dose, they also skewed CD4 T cell response toward higher-affinity clonotypes. Taken collectively, our results suggest the half-life of peptide-MHC class II complexes is the primary parameter that dictates the clonotypic diversity of the responding CD4 T cell compartment.
Collapse
|
184
|
Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 2009; 22:711-23. [DOI: 10.1111/j.1755-148x.2009.00634.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
185
|
Effective simian immunodeficiency virus-specific CD8+ T cells lack an easily detectable, shared characteristic. J Virol 2009; 84:753-64. [PMID: 19889785 DOI: 10.1128/jvi.01596-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8(+) T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8(+) T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8(+) T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8(+) T cells to suppress viral replication from SIVmac239-infected CD4(+) T cells. Using this assay, we established an antiviral hierarchy when we compared CD8(+) T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8(+) T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8(+) T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8(+) T-cell response may be comprised of several factors.
Collapse
|
186
|
Wynn KK, Crough T, Campbell S, McNeil K, Galbraith A, Moss DJ, Silins SL, Bell S, Khanna R. Narrowing of T‐cell receptor beta variable repertoire during symptomatic herpesvirus infection in transplant patients. Immunol Cell Biol 2009; 88:125-35. [DOI: 10.1038/icb.2009.74] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katherine K Wynn
- Australian Centre for Vaccine Development, and Tumour Immunology Laboratory, Department of Infectious Diseases, Queensland Institute of Medical Research Brisbane Queensland Australia
- School of Medicine, University of Queensland Brisbane Queensland Australia
| | - Tania Crough
- Australian Centre for Vaccine Development, and Tumour Immunology Laboratory, Department of Infectious Diseases, Queensland Institute of Medical Research Brisbane Queensland Australia
| | - Scott Campbell
- Princess Alexandra Hospital, and Department of Medicine, University of Queensland Brisbane Queensland Australia
| | - Keith McNeil
- The Prince Charles Hospital and Department of Medicine, University of Queensland Brisbane Queensland Australia
| | - Andrew Galbraith
- The Prince Charles Hospital and Department of Medicine, University of Queensland Brisbane Queensland Australia
| | - Denis J Moss
- Australian Centre for Vaccine Development, and Tumour Immunology Laboratory, Department of Infectious Diseases, Queensland Institute of Medical Research Brisbane Queensland Australia
| | - Sharon L Silins
- Australian Centre for Vaccine Development, and Tumour Immunology Laboratory, Department of Infectious Diseases, Queensland Institute of Medical Research Brisbane Queensland Australia
| | - Scott Bell
- The Prince Charles Hospital and Department of Medicine, University of Queensland Brisbane Queensland Australia
| | - Rajiv Khanna
- Australian Centre for Vaccine Development, and Tumour Immunology Laboratory, Department of Infectious Diseases, Queensland Institute of Medical Research Brisbane Queensland Australia
| |
Collapse
|
187
|
Concurrent vaccination with two distinct vaccine platforms targeting the same antigen generates phenotypically and functionally distinct T-cell populations. Cancer Immunol Immunother 2009; 59:397-408. [PMID: 19756595 DOI: 10.1007/s00262-009-0759-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE Studies comparing two or more vaccine platforms have historically evaluated each platform based on its ability to induce an immune response and may conclude that one vaccine is more efficacious than the other(s), leading to a recommendation for development of the more effective vaccine for clinical studies. Alternatively, these studies have documented the advantages of a diversified prime and boost regimen due to amplification of the antigen-specific T-cell population. We hypothesize here that two vaccine platforms targeting the same antigen might induce shared and distinct antigen-specific T-cell populations, and examined the possibility that two distinct vaccines could be used concomitantly. EXPERIMENTAL DESIGN Using recombinant poxvirus and yeast vaccines, we compared the T-cell populations induced by these two platforms in terms of serum cytokine response, T-cell gene expression, T-cell receptor phenotype, antigen-specific cytokine expression, T-cell avidity, and T-cell antigen-specific tumor cell lysis. RESULTS These studies demonstrate for the first time that vaccination with a recombinant poxvirus platform (rV/F-CEA/TRICOM) or a heat-killed yeast vaccine platform (yeast-CEA) elicits T-cell populations with both shared and unique phenotypic and functional characteristics. Furthermore, both the antigen and the vector play a role in the induction of distinct T-cell populations. CONCLUSIONS In this study, we demonstrate that concurrent administration of two vaccines targeting the same antigen induces a more diverse T-cell population that leads to enhanced antitumor efficacy. These studies provide the rationale for future clinical studies investigating concurrent administration of vaccine platforms targeting a single antigen to enhance the antigen-specific immune response.
Collapse
|
188
|
Cukalac T, Moffat JM, Venturi V, Davenport MP, Doherty PC, Turner SJ, Stambas J. Narrowed TCR diversity for immunised mice challenged with recombinant influenza A-HIV Env(311-320) virus. Vaccine 2009; 27:6755-61. [PMID: 19744584 DOI: 10.1016/j.vaccine.2009.08.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 11/25/2022]
Abstract
Understanding CD8+ T cell responses generated by live virus vectors is critical for the rational design of next generation HIV CTL-based vaccines. We used recombinant influenza viruses expressing the HIV Env(311-320) peptide in the neuraminidase stalk to study response magnitude, cytokine production and repertoire diversity for the elicited CD8+ D(d)Env(311) CTL set. The insertion of the CD8+ D(d)Env(311) epitope into the NA stalk resulted in a decrease in viral fitness that was reflected in lower lung viral titres. While not affecting the magnitude of endogenous primary influenza-specific responses, the introduction of the D(d)Env(311) CD8+ T cell epitope altered the hierarchy of responses following secondary challenge. The CD8+ K(d)NP(147) response increased 9-fold in the spleen following secondary infection whereas the CD8+ D(d)Env(311) response increased 15-fold in the spleen. Moreover, this study is the first to describe narrowing of CD8+ TCR repertoire diversity in the context of an evolving secondary immune response against influenza A virus. Analysis of Vbeta bias for CD8+ D(d)Env(311) T cell responses showed a narrowing of CD8+ Vbeta8.1/8.2 D(d)Env(311) TCR repertoire diversity. This work further emphasizes the importance of understanding vaccine-induced CD8+ T cell responses.
Collapse
Affiliation(s)
- Tania Cukalac
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
189
|
Dominant CD8+ T-lymphocyte responses suppress expansion of vaccine-elicited subdominant T lymphocytes in rhesus monkeys challenged with pathogenic simian-human immunodeficiency virus. J Virol 2009; 83:10028-35. [PMID: 19641002 DOI: 10.1128/jvi.01015-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerging data suggest that a cytotoxic T-lymphocyte response against a diversity of epitopes confers greater protection against a human immunodeficiency virus/simian immunodeficiency virus infection than does a more focused response. To facilitate the creation of vaccine strategies that will generate cellular immune responses with the greatest breadth, it will be important to understand the mechanisms employed by the immune response to regulate the relative magnitudes of dominant and nondominant epitope-specific cellular immune responses. In this study, we generated dominant Gag p11C- and subdominant Env p41A-specific CD8(+) T-lymphocyte responses in Mamu-A*01(+) rhesus monkeys through vaccination with plasmid DNA and recombinant adenovirus encoding simian-human immunodeficiency virus (SHIV) proteins. Infection of vaccinated Mamu-A*01(+) rhesus monkeys with a SHIV Gag Deltap11C mutant virus generated a significantly increased expansion of the Env p41A-specific CD8(+) T-lymphocyte response in the absence of secondary Gag p11C-specific CD8(+) T-lymphocyte responses. These results indicate that the presence of the Gag p11C-specific CD8(+) T-lymphocyte response following virus challenge may exert suppressive effects on primed Env p41A-specific CD8(+) T-lymphocyte responses. These findings suggest that immunodomination exerted by dominant responses during SHIV infection may diminish the breadth of recall responses primed during vaccination.
Collapse
|
190
|
Almeida JR, Sauce D, Price DA, Papagno L, Shin SY, Moris A, Larsen M, Pancino G, Douek DC, Autran B, Sáez-Cirión A, Appay V. Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 2009; 113:6351-60. [PMID: 19389882 PMCID: PMC2710928 DOI: 10.1182/blood-2009-02-206557] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 04/15/2009] [Indexed: 12/23/2022] Open
Abstract
CD8(+) T cells are major players in the immune response against HIV. However, recent failures in the development of T cell-based vaccines against HIV-1 have emphasized the need to reassess our basic knowledge of T cell-mediated efficacy. CD8(+) T cells from HIV-1-infected patients with slow disease progression exhibit potent polyfunctionality and HIV-suppressive activity, yet the factors that unify these properties are incompletely understood. We performed a detailed study of the interplay between T-cell functional attributes using a bank of HIV-specific CD8(+) T-cell clones isolated in vitro; this approach enabled us to overcome inherent difficulties related to the in vivo heterogeneity of T-cell populations and address the underlying determinants that synthesize the qualities required for antiviral efficacy. Conclusions were supported by ex vivo analysis of HIV-specific CD8(+) T cells from infected donors. We report that attributes of CD8(+) T-cell efficacy against HIV are linked at the level of antigen sensitivity. Highly sensitive CD8(+) T cells display polyfunctional profiles and potent HIV-suppressive activity. These data provide new insights into the mechanisms underlying CD8(+) T-cell efficacy against HIV, and indicate that vaccine strategies should focus on the induction of HIV-specific T cells with high levels of antigen sensitivity to elicit potent antiviral efficacy.
Collapse
Affiliation(s)
- Jorge R Almeida
- Institut National de la Santé et de la Recherche Médicale Unité, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Turner SJ, La Gruta NL, Kedzierska K, Thomas PG, Doherty PC. Functional implications of T cell receptor diversity. Curr Opin Immunol 2009; 21:286-90. [PMID: 19524428 PMCID: PMC2706259 DOI: 10.1016/j.coi.2009.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/05/2009] [Indexed: 01/27/2023]
Abstract
Naive T cells are recruited into any given host response by recognizing a spectrum of possible antigens with 'sufficient' avidity. Does selecting a more functionally diverse array give better immune control? Perhaps low avidity 'killers' that 'kiss and run' operate optimally to eliminate virus-infected targets, while high avidity 'helpers' that stay faithfully in place produce more cytokine. Recent findings indeed suggest that the selection of a broad T cell receptor repertoire is characteristic of the initial phase following antigen contact, while continued exposure leads to further cycles of division and the progressive numerical dominance of 'best-fit' clonotypes. Here, we review recent advances demonstrating a link between T cell repertoire diversity and immunity to infection, and consider the potential mechanisms at play.
Collapse
Affiliation(s)
- Stephen J Turner
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia, 3010; ;
| | - Nicole L La Gruta
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia, 3010; ;
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia, 3010; ;
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA, 38105. e-mail ;
| | - Peter C Doherty
- Department of Microbiology and Immunology, The University of Melbourne, Royal Parade, Parkville, Victoria, Australia, 3010; ;
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA, 38105. e-mail ;
| |
Collapse
|
192
|
MHC class II variation in the endangered European mink Mustela lutreola (L. 1761)—consequences for species conservation. Immunogenetics 2009; 61:281-8. [PMID: 19263000 DOI: 10.1007/s00251-009-0362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
|
193
|
Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology 2009; 126:147-64. [PMID: 19125886 PMCID: PMC2632693 DOI: 10.1111/j.1365-2567.2008.02848.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/18/2008] [Accepted: 03/18/2008] [Indexed: 01/16/2023] Open
Abstract
The development of fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) multimers in conjunction with continuing advances in flow cytometry has transformed the study of antigen-specific T cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we bring together and discuss some of the 'tricks' that can be used to get the most out of pMHC multimers. These include: (1) simple procedures that can substantially enhance the staining intensity of cognate T cells with pMHC multimers; (2) the use of pMHC multimers to stain T cells with very-low-affinity T-cell receptor (TCR)/pMHC interactions, such as those that typically predominate in tumour-specific responses; and (3) the physical grading and clonotypic dissection of antigen-specific T cells based on the affinity of their cognate TCR using mutant pMHC multimers in conjunction with new approaches to the molecular analysis of TCR gene expression. We also examine how soluble pMHC can be used to examine T-cell activation, manipulate T-cell responses and study allogeneic and superantigen interactions with TCRs. Finally, we discuss the problems that arise with pMHC class II (pMHCII) multimers because of the low affinity of TCR/pMHCII interactions and lack of 'coreceptor help'.
Collapse
Affiliation(s)
- Linda Wooldridge
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
194
|
Gras S, Burrows SR, Kjer-Nielsen L, Clements CS, Liu YC, Sullivan LC, Bell MJ, Brooks AG, Purcell AW, McCluskey J, Rossjohn J. The shaping of T cell receptor recognition by self-tolerance. Immunity 2009; 30:193-203. [PMID: 19167249 DOI: 10.1016/j.immuni.2008.11.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/14/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
During selection of the T cell repertoire, the immune system navigates the subtle distinction between self-restriction and self-tolerance, yet how this is achieved is unclear. Here we describe how self-tolerance toward a trans-HLA (human leukocyte antigen) allotype shapes T cell receptor (TCR) recognition of an Epstein-Barr virus (EBV) determinant (FLRGRAYGL). The recognition of HLA-B8-FLRGRAYGL by two archetypal TCRs was compared. One was a publicly selected TCR, LC13, that is alloreactive with HLA-B44; the other, CF34, lacks HLA-B44 reactivity because it arises when HLA-B44 is coinherited in trans with HLA-B8. Whereas the alloreactive LC13 TCR docked at the C terminus of HLA-B8-FLRGRAYGL, the CF34 TCR docked at the N terminus of HLA-B8-FLRGRAYGL, which coincided with a polymorphic region between HLA-B8 and HLA-B44. The markedly contrasting footprints of the LC13 and CF34 TCRs provided a portrait of how self-tolerance shapes the specificity of TCRs selected into the immune repertoire.
Collapse
Affiliation(s)
- Stephanie Gras
- Department of Biochemistry and Molecular Biology, The Protein Crystallography Unit, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Ahmed M, Lanzer KG, Yager EJ, Adams PS, Johnson LL, Blackman MA. Clonal expansions and loss of receptor diversity in the naive CD8 T cell repertoire of aged mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:784-92. [PMID: 19124721 PMCID: PMC2724652 DOI: 10.4049/jimmunol.182.2.784] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are well-characterized age-related changes in the peripheral repertoire of CD8 T cells characterized by reductions in the ratio of naive:memory T cells and the development of large clonal expansions in the memory pool. In addition, the TCR repertoire of naive T cells is reduced with aging. Because a diverse repertoire of naive T cells is essential for a vigorous response to new infections and vaccinations, there is much interest in understanding the mechanisms responsible for declining repertoire diversity. It has been proposed that one reason for declining repertoire diversity in the naive T cell pool is an increasing dependence on homeostatic proliferation in the absence of new thymic emigrants for maintenance of the naive peripheral pool. In this study, we have analyzed the naive CD8 T cell repertoire in young and aged mice by DNA spectratype and sequence analysis. Our data show that naive T cells from aged mice have perturbed spectratype profiles compared with the normally Gaussian spectratype profiles characteristic of naive CD8 T cells from young mice. In addition, DNA sequence analysis formally demonstrated a loss of diversity associated with skewed spectratype profiles. Unexpectedly, we found multiple repeats of the same sequence in naive T cells from aged but not young mice, consistent with clonal expansions previously described only in the memory T cell pool. Clonal expansions among naive T cells suggests dysregulation in the normal homeostatic proliferative mechanisms that operate in young mice to maintain diversity in the naive T cell repertoire.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Cell Separation
- Clone Cells
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/genetics
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Homeostasis/immunology
- Immunologic Memory/genetics
- Mice
- Mice, Inbred C57BL
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
Collapse
|
196
|
Archbold JK, Macdonald WA, Gras S, Ely LK, Miles JJ, Bell MJ, Brennan RM, Beddoe T, Wilce MCJ, Clements CS, Purcell AW, McCluskey J, Burrows SR, Rossjohn J. Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition. ACTA ACUST UNITED AC 2009; 206:209-19. [PMID: 19139173 PMCID: PMC2626662 DOI: 10.1084/jem.20082136] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell–mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR–HLA-B*4405EENLLDFVRF complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.
Collapse
Affiliation(s)
- Julia K Archbold
- The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Much effort has been devoted to the design of vaccines that induce adaptive cellular immunity, in particular CD8+ T cells, which have a central role in the host response to viral infections and cancers. To date, however, the development of effective T cell vaccines remains elusive. This is due, in part, to the lack of clearly defined correlates of protection and the inherent difficulties that hinder full characterization of the determinants of successful T cell immunity in humans. Recent data from the disparate fields of infectious disease and tumor immunology have converged, with an emphasis on the functional attributes of individual antigen-specific T cell clonotypes, to provide a better understanding of CD8+ T cell efficacy. This new knowledge paves the way to the design of more effective T cell vaccines and highlights the importance of comprehensive immunomonitoring.
Collapse
Affiliation(s)
- Victor Appay
- Cellular Immunology Laboratory, Institut Nationale de la Santé et de la Recherche Médicale U543, Avenir Group, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie Paris 06, 91 Boulevard de l'hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
198
|
Conejeros P, Phan A, Power M, Alekseyev S, O'Connell M, Dempson B, Dixon B. MH class IIalpha polymorphism in local and global adaptation of Arctic charr (Salvelinus alpinus L.). Immunogenetics 2008; 60:325-37. [PMID: 18488215 DOI: 10.1007/s00251-008-0290-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 03/03/2008] [Indexed: 11/29/2022]
Abstract
Arctic charr, a highly plastic salmonid that inhabits the circumpolar region, colonized its current environment after the last glaciation. Recent colonization limits the capacity of many techniques to define and characterize constituent populations. As a novel approach, we used the major histocompatibility (MH) class IIalpha gene polymorphism as a marker that would characterize the genetic divergence of global Arctic charr populations caused by drift and by local adaptation to pathogens. We were able to detect significant isolation of all the lineages previously defined by mitochondrial DNA sequencing and also isolation of some populations within those groups. We found that most of the polymorphism of the class IIalpha gene was distributed globally, which indicates ancestral selection; however, in most cases, distinctive allele frequencies and specific haplotypes distinguished each population suggesting that recent selection has also occurred. Although all studied populations showed similar MH class IIalpha polymorphisms, we also found variation in which particular amino acid positions were polymorphic and which were constant in the different populations studied. This variation provides a greater adaptive capacity for the MH class IIalpha receptors in Arctic charr and is yet another illustration of the extraordinary plasticity of the species.
Collapse
Affiliation(s)
- Pablo Conejeros
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
199
|
Abstract
Abstract Herpes simplex viruses are evolutionarily ancient and ubiquitous. In the past 20 years, there has been increasing recognition of a worldwide pandemic of HSV-2 infection. Moreover, HSV-2 prevalence has increased despite fairly widespread use of antiviral drugs for HSV. The success of HSV-1 and HSV-2 stems from latency within long-lived neurons and frequent mucocutaneous shedding. The generally mild medical consequences of HSV infection reflect a functional equilibrium between host and microbe in most immunocompetent persons. However, significant gaps in our knowledge of the correlates of disease severity and HSV immune evasion are limiting rational advances in these areas. Human genetic studies are gradually outlining important innate responses, while recent imaging and biopsy studies have begun to show that the temporal and spatial anatomic interplay between virus reactivation and host immune response may be important in reactivations and disease expression.
Collapse
Affiliation(s)
- David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | |
Collapse
|
200
|
Lang A, Brien JD, Messaoudi I, Nikolich-Zugich J. Age-related dysregulation of CD8+ T cell memory specific for a persistent virus is independent of viral replication. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:4848-57. [PMID: 18354208 PMCID: PMC4161215 DOI: 10.4049/jimmunol.180.7.4848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The immune system devotes substantial resources to the lifelong control of persistent pathogens, which were hypothesized to play an important role in immune aging. Specifically, the presence of latent herpesviruses has been correlated with immune exhaustion and shorter lifespan in octogenarians. But neither the causality nor the mechanistic link(s) were established, and the relative roles of persistent antigenic stimulation and of virus-independent homeostatic disturbances in T cell aging remain unresolved. We longitudinally analyzed expansion, contraction, and long-term maintenance of CD8(+) T cells responding to localized infection with a latent virus, HSV-1. Young mice exhibited the expected expansion and contraction of HSV-1-specific cells and the stable maintenance of memory T cells into advanced adulthood. However, upon entry into senescence, many (>40%) animals exhibited an accumulation in Ag-specific cells (memory inflation) which in some animals was comparable to that observed in acute infection. Inflation occurred to the same extent in control mice and mice continuously treated with the anti-HSV drug famciclovir, which inhibits viral replication and was able to reduce expression of the glycoprotein B. Age-related inflation was also found long after infection with an acute virus. The inflating cells largely maintained Ag-specific function, and exhibited typical central memory phenotype, with no signs of Ag-specific activation. They exhibited increased expression of CD122 and CD127, akin to the Ag-independent T cell clonal expansions found in old specific pathogen-free laboratory mice. This collectively suggests that, in this model, the inflating cells may be selected for high responsiveness to environmental cytokines largely in an Ag-independent manner.
Collapse
Affiliation(s)
- Anna Lang
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - James D. Brien
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - Ilhem Messaoudi
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| | - Janko Nikolich-Zugich
- Vaccine and Gene Therapy Institute and the Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006
| |
Collapse
|