151
|
Di Cesare A, Losasso C, Barco L, Eckert EM, Conficoni D, Sarasini G, Corno G, Ricci A. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars. Sci Rep 2016; 6:28759. [PMID: 27357537 PMCID: PMC4928088 DOI: 10.1038/srep28759] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Carmen Losasso
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Lisa Barco
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| | - Ester M. Eckert
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Daniele Conficoni
- Department Animal Medicine, Production and Health, University of Padua, viale dell’Università, 35020, Legnaro, Italy
| | - Giulia Sarasini
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council – Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50,28822, Verbania, Italy
| | - Antonia Ricci
- Food Safety Department, Istituto Zooprofilattico Sperimentale delle Venezie, viale dell’Università 10, 35020, Legnaro, Italy
| |
Collapse
|
152
|
Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules 2016; 21:molecules21060790. [PMID: 27322231 PMCID: PMC6273597 DOI: 10.3390/molecules21060790] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.
Collapse
|
153
|
Müller C, Sokol L, Vesper O, Sauert M, Moll I. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Antibiotics (Basel) 2016; 5:E19. [PMID: 27258317 PMCID: PMC4929434 DOI: 10.3390/antibiotics5020019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
The bacteriostatic aminoglycoside antibiotic kasugamycin inhibits protein synthesis at an initial step without affecting translation elongation. It binds to the mRNA track of the ribosome and prevents formation of the translation initiation complex on canonical mRNAs. In contrast, translation of leaderless mRNAs continues in the presence of the drug in vivo. Previously, we have shown that kasugamycin treatment in E. coli stimulates the formation of protein-depleted ribosomes that are selective for leaderless mRNAs. Here, we provide evidence that prolonged kasugamycin treatment leads to selective synthesis of specific proteins. Our studies indicate that leaderless and short-leadered mRNAs are generated by different molecular mechanisms including alternative transcription and RNA processing. Moreover, we provide evidence for ribosome heterogeneity in response to kasugamycin treatment by alteration of the modification status of the stalk proteins bL7/L12.
Collapse
Affiliation(s)
- Christian Müller
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Lena Sokol
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Martina Sauert
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| | - Isabella Moll
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, A-1030 Vienna, Austria.
| |
Collapse
|
154
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
155
|
Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM, Rogers LM, Hunter SS, Settles ML, Forney LJ, Ponciano JM, Top EM. Evolutionary Paths That Expand Plasmid Host-Range: Implications for Spread of Antibiotic Resistance. Mol Biol Evol 2016; 33:885-97. [PMID: 26668183 PMCID: PMC4840908 DOI: 10.1093/molbev/msv339] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The World Health Organization has declared the emergence of antibiotic resistance to be a global threat to human health. Broad-host-range plasmids have a key role in causing this health crisis because they transfer multiple resistance genes to a wide range of bacteria. To limit the spread of antibiotic resistance, we need to gain insight into the mechanisms by which the host range of plasmids evolves. Although initially unstable plasmids have been shown to improve their persistence through evolution of the plasmid, the host, or both, the means by which this occurs are poorly understood. Here, we sought to identify the underlying genetic basis of expanded plasmid host-range and increased persistence of an antibiotic resistance plasmid using a combined experimental-modeling approach that included whole-genome resequencing, molecular genetics and a plasmid population dynamics model. In nine of the ten previously evolved clones, changes in host and plasmid each slightly improved plasmid persistence, but their combination resulted in a much larger improvement, which indicated positive epistasis. The only genetic change in the plasmid was the acquisition of a transposable element from a plasmid native to the Pseudomonas host used in these studies. The analysis of genetic deletions showed that the critical genes on this transposon encode a putative toxin-antitoxin (TA) and a cointegrate resolution system. As evolved plasmids were able to persist longer in multiple naïve hosts, acquisition of this transposon also expanded the plasmid's host range, which has important implications for the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Wesley Loftie-Eaton
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Hirokazu Yano
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | | | | | - Julie M Hughes
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Linda M Rogers
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Samuel S Hunter
- Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Matthew L Settles
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | - Larry J Forney
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| | | | - Eva M Top
- Department of Biological Sciences, University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho
| |
Collapse
|
156
|
Wei Y, Gao Z, Zhang H, Dong Y. Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA. Biochem Biophys Res Commun 2016; 472:592-7. [PMID: 26972252 DOI: 10.1016/j.bbrc.2016.03.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
Toxin-antitoxin (TA) loci are widespread in bacteria plasmids and chromosomes, and target various cellular functions to regulate cell growth and death. A type II TA system RnlA-RnlB from Escherichia coli is associated with phage-resistance. After the infection of bacteriophage T4 with Dmd defection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs. Dmd can bind to RnlA directly and neutralize RnlA toxicity to allow phage reproduction. Dmd represent a heterogenous antitoxin of RnlA replacing antitoxin RnlB. Here, we reported two structures of Dmd from T4 phage and RB69 phage. Both Dmd structures are high similar with a compacted domain composed of a four-stranded anti-parallel β-sheet and an α-helix. Chromatography and SAXS suggest Dmd forms a dimer in solution consistent with that in crystal. Structure-based mutagenesis of Dmd reveals key residues involved in RnlA-binding. Possibility cavities in Dmd used for compounds design were modeled. Our structural study revealed the recognition and inhibition mechanism of RnlA by Dmd and providing a potential laboratory phage prevention target for drug design.
Collapse
Affiliation(s)
- Yong Wei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Heng Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
157
|
Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications. Toxins (Basel) 2016; 8:49. [PMID: 26907343 PMCID: PMC4773802 DOI: 10.3390/toxins8020049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
Collapse
|
158
|
Epidemiology of Extended-Spectrum β-Lactamase-Producing Escherichia coli in the Human-Livestock Environment. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016. [DOI: 10.1007/s40588-016-0027-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
159
|
Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The vapB-vapC Operon of Acidovorax citrulli Functions as a Bona-fide Toxin-Antitoxin Module. Front Microbiol 2016; 6:1499. [PMID: 26779154 PMCID: PMC4701950 DOI: 10.3389/fmicb.2015.01499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Toxin-antitoxin systems are commonly found on plasmids and chromosomes of bacteria and archaea. These systems appear as biscystronic genes encoding a stable toxin and a labile antitoxin, which protects the cells from the toxin's activity. Under specific, mostly stressful conditions, the unstable antitoxin is degraded, the toxin becomes active and growth is arrested. Using genome analysis we identified a putative toxin-antitoxin encoding system in the genome of the plant pathogen Acidovorax citrulli. The system is homologous to vapB-vapC systems from other bacterial species. PCR and phylogenetic analyses suggested that this locus is unique to group II strains of A. citrulli. Using biochemical and molecular analyses we show that A. citrulli VapBC module is a bona-fide toxin-antitoxin module in which VapC is a toxin with ribonuclease activity that can be counteracted by its cognate VapB antitoxin. We further show that transcription of the A. citrulli vapBC locus is induced by amino acid starvation, chloramphenicol and during plant infection. Due to the possible role of TA systems in both virulence and dormancy of human pathogenic bacteria, studies of these systems are gaining a lot of attention. Conversely, studies characterizing toxin-antitoxin systems in plant pathogenic bacteria are lacking. The study presented here validates the activity of VapB and VapC proteins in A. citrulli and suggests their involvement in stress response and host-pathogen interactions.
Collapse
Affiliation(s)
- Reut Shavit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Mario Lebendiker
- Protein Purification Facility, Wolfson Centre for Applied Structural Biology, Edmund J. Safra Campus, The Hebrew University of JerusalemJerusalem, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
160
|
Savari M, Rostami S, Ekrami A, Bahador A. Characterization of Toxin-Antitoxin (TA) Systems in Pseudomonas aeruginosa Clinical Isolates in Iran. Jundishapur J Microbiol 2016; 9:e26627. [PMID: 27099681 PMCID: PMC4834025 DOI: 10.5812/jjm.26627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 09/01/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background: Pseudomonas aeruginosa is among the most problematic hospital and community-acquired pathogens. Toxin-antitoxin (TA) systems are maintenance regulatory systems in bacteria and have recently been considered new targets for antimicrobial therapy. The prevalence and transcription of these systems in clinical isolates are still unknown. Objectives: The aim of this study was to characterize three types of TA systems (parDE, relBE, and higBA) among P. aeruginosa clinical isolates. Materials and Methods: We typed our clinical isolates by ERIC-PCR (enterobacterial repetitive intergenic consensus sequence-based polymerase chain reaction) and BOX-PCR. We then investigated 174 P. aeruginosa clinical isolates from three hospitals in Ahvaz, Iran, for the presence of TA system genes, and determined whether these systems were encoded on chromosomes or plasmids by amplification of the flanking regions. Results: Our results showed that in the 174 P. aeruginosa isolates, relBE and higBA were universal, but parDE was less prevalent. Both of the flanking regions of the parDE genes in all positive isolates were amplified. The flanking regions of nearly all relBE genes were amplified. Amplification was observed for the downstream sequence of every higBA locus, as well as for the region upstream of higBA, except in 14 strains. Conclusions: Based on the presence of TA systems in the majority of P. aeruginosa isolates, these could be used as a novel target for antimicrobial therapy.
Collapse
Affiliation(s)
- Mohammad Savari
- Department of Microbiology, Medicine school, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Soodabeh Rostami
- Infectious Disease and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Alireza Ekrami
- Department of Laboratory Medical Sciences, Faculty of Para Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Abbas Bahador
- Department of Microbiology, Medicine school, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Abbas Bahador, Department of Microbiology, Medicine school, Tehran University of Medical Sciences, Tehran, IR Iran. Tel/Fax: +98-2188955810, E-mail:
| |
Collapse
|
161
|
Sheppard AE, Nakad R, Saebelfeld M, Masche AC, Dierking K, Schulenburg H. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis. J Invertebr Pathol 2015; 133:34-40. [PMID: 26592941 DOI: 10.1016/j.jip.2015.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
Abstract
In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods.
Collapse
Affiliation(s)
- Anna E Sheppard
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany.
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Manja Saebelfeld
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Anna C Masche
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
162
|
The Native Plasmid pML21 Plays a Role in Stress Tolerance in Enterococcus faecalis ML21, as Analyzed by Plasmid Curing Using Plasmid Incompatibility. Appl Biochem Biotechnol 2015; 178:451-61. [PMID: 26519343 DOI: 10.1007/s12010-015-1886-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
To investigate the role of the native plasmid pML21 in Enterococcus faecalis ML21's response to abiotic stresses, the plasmid pML21 was cured based on the principle of plasmid incompatibility and segregational instability, generating E. faecalis mutant strain ML0. The mutant and the wild strains were exposed to abiotic stresses: bile salts, low pH, H2O2, ethanol, heat, and NaCl, and their survival rate was measured. We found that curing of pML21 lead to reduced tolerance to stress in E. faecalis ML0, especially oxidative and osmotic stress. Complementation analysis suggested that the genes from pML21 played different role in stress tolerance. The result indicated that pML21 plays a role in E. faecalis ML21's response to abiotic stresses.
Collapse
|
163
|
Yang QE, Sun J, Li L, Deng H, Liu BT, Fang LX, Liao XP, Liu YH. IncF plasmid diversity in multi-drug resistant Escherichia coli strains from animals in China. Front Microbiol 2015; 6:964. [PMID: 26441898 PMCID: PMC4585273 DOI: 10.3389/fmicb.2015.00964] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to characterize a collection of 103 multidrug resistance IncF plasmids recovered from Escherichia coli of food producing and companion animals between 2003 and 2012. A total of 103 incF plasmids were characterized using an established PCR-based IncF replicon sequence typing (RST) system to identify FII, FIA, and FIB (FAB) groups. Plasmids were also analyzed using-restriction fragment length polymorphism (RFLP). Antibiotic Resistance determinants bla CTX-M , plasmid-mediated quinolone resistance (PMQR) genes and rmtB and plasmid addiction systems (PAS) were identified by PCR screening. A total of 20 different RSTs from 103 IncF plasmids were identified. The groups F2 and F33 with the RST formulae A-: B- were the most frequently encountered types (63.1%). The antibiotic resistance genes (ARGs) bla CTX-M , rmtB, and oqxB were carried by 82, 37, and 34 IncF plasmids, respectively. Most of these plasmids carried more than one resistance gene (59.2%, 61/103). The IncF plasmids also had a high frequency of addiction systems (mean 2.54) and two antisense RNA-regulated systems (hok-sok and srnBC) and a protein antitoxin-regulated system (pemKI) were the most prevalent. Not surprisingly, RFLP profiles among the IncF plasmids were diverse even though some shared identical IncF-RSTs. This is the first extensive study of IncF plasmid-positive E. coli isolates from animals in China. Our results demonstrate that IncF is the most prevalent plasmid family in E. coli plasmids and they commonly carry multiple resistance determinants that render them resistant to different antibiotic classes simultaneously. IncF plasmids also harbor addiction systems, promoting their stability and maintenance in the bacterial host, under changing environmental conditions.
Collapse
Affiliation(s)
- Qiu-E Yang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jian Sun
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Liang Li
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Hui Deng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Bao-Tao Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Liang-Xing Fang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Xiao-Ping Liao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ya-Hong Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University Guangzhou, China ; Jiangsu Co-Innovation Centre for Prevention and Control of Important Animal Infectious Diseases and Zoonoses Yangzhou, China
| |
Collapse
|
164
|
Melničáková J, Bečárová Z, Makroczyová J, Barák I. Analysis of the Bacillus cereus SpoIIS antitoxin-toxin system reveals its three-component nature. Front Microbiol 2015; 6:808. [PMID: 26300872 PMCID: PMC4526809 DOI: 10.3389/fmicb.2015.00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/22/2015] [Indexed: 11/13/2022] Open
Abstract
Programmed cell death in bacteria is generally associated with two-component toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harboring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin-antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein's toxic function.
Collapse
Affiliation(s)
- Jana Melničáková
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Zuzana Bečárová
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Jana Makroczyová
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Imrich Barák
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| |
Collapse
|
165
|
Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids. Infect Immun 2015; 83:4103-17. [PMID: 26238712 DOI: 10.1128/iai.00769-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/26/2015] [Indexed: 12/22/2022] Open
Abstract
Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.
Collapse
|
166
|
Park DJ, Yu JK, Park KG, Park YJ. Genotypes of Ciprofloxacin-Resistant Klebsiella pneumoniae in Korea and Their Characteristics According to the Genetic Lineages. Microb Drug Resist 2015. [PMID: 26207318 DOI: 10.1089/mdr.2015.0001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated the molecular genotypes of ciprofloxacin-resistant Klebsiella pneumoniae and their characteristics according to the genetic lineages. For 160 K. pneumoniae collected in 2013, ciprofloxacin minimum inhibitory concentrations (MICs) were determined by agar dilution method. The genotypes of ciprofloxacin-resistant K. pneumoniae isolates were determined by multilocus sequence typing (MLST) and wzi gene typing. The presence of plasmid-mediated resistance determinants [qnrA, qnrB, qnrS, aac(6')-Ib-cr, blaCTX-M, and blaSHV] was investigated. The gyrA and parC genes were sequenced. Fifty-seven isolates showed ciprofloxacin resistance. By MLST, four major sequence types (STs) or clonal complexes (CCs), that is, ST307, CC11, CC147, and ST15, were found and the two most prevalent STs were ST307 (14/57, 24.6%) and ST11 (12/57, 21.1%). By wzi gene sequencing, 46 of the 57 isolates could be differentiated. All the ST307 isolates had an identical wzi sequence and harbored qnrB. The majority of them harbored aac(6')-Ib-cr (85.7%) and CTX-M-15 (92.9%). In contrast, 12 ST11 isolates were divided into five sublineages by wzi sequence and qnrB, qnrS, and aac(6')-Ib-cr were carried by nine, seven, and three isolates, respectively. They harbored SHV-type extended-spectrum β-lactamase more frequently than CTX-M-15 (nine and four isolates, respectively). The prevalence of CTX-M-15, qnrB1, and aac(6')-Ib-cr was significantly higher in ST307 than in ST11 (p=0.003, p=0.000, and p=0.002, respectively). Both clones had identical amino acid substitution in gyrA (S83I) and parC (S80I). K. pneumoniae ST307 and ST11 were the two most common clones, and the ST307 isolates were highly homogeneous, suggesting their recent emergence.
Collapse
Affiliation(s)
- Dong Jin Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Jin Kyung Yu
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Kang Gyun Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea , Seoul, Korea
| | - Yeon-Joon Park
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea , Seoul, Korea
| |
Collapse
|
167
|
Andrukov BG, Somova LM, Timchenko NF. STRATEGY OF PROGRAMMED CELL DEATH IN PROKARYOTES. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2015. [DOI: 10.15789/2220-7619-2015-1-15-26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Programmed cell death (PCD) was first studied in eukaryotic organisms. This system also operates in the development life cycle of prokaryotes. The system PCD in microorganisms is activated a wide range of signals in response to the stresses associated with adverse environmental conditions or exposure to antibacterial agents. The results of numerous studies in the past decade allow considering the system PCD in prokaryotes as an evolutionary conservation of the species. These results significantly expanded understanding of the role of PCD in microorganisms and opened a number of important areas of research of the morphological and molecular genetic approaches to the study of death strategies for the survival in bacterial populations. The purpose of the review is to summarize the morphological and molecular genetic characteristics of PCD in prokaryotes which are real manifestations of the mechanisms of this phenomenon.
Collapse
|
168
|
Andrews ESV, Arcus VL. The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb) 2015; 95:385-94. [PMID: 25999286 DOI: 10.1016/j.tube.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022]
Abstract
PhoH2 proteins are found in a diverse range of organisms that span the bacterial tree and little is known about this large protein family. PhoH2 proteins have two domains: An N-terminal PIN domain fused to a C-terminal PhoH domain. The genome of Mycobacterium tuberculosis encodes 48 PIN domains and 47 of these constitute the VapC components of the 47 VapBC toxin-antitoxins. The 48th member of the M. tuberculosis PIN domain array is found in the single PhoH2 protein encoded in the genome. All characterized PIN domain proteins are RNases and the PhoH domains are predicted ATPases. This fusion of a PIN domain with an ATPase reflects a much wider association between PIN domains and PhoH domains across many prokaryote genomes. Here, we examine PhoH2 proteins from M. tuberculosis, Mycobacterium smegmatis and a thermophilic homologue from Thermobispora bispora and we show that PhoH2 is a sequence-specific RNA helicase and RNAse. In addition, phoH2 from M. tuberculosis and M. smegmatis is part of a longer mRNA transcript which includes a small, unannotated open reading frame (ORF) upstream of the phoH2 gene. This small gene overlaps with the beginning of the phoH2 gene in a manner similar to the PIN domain toxin-antitoxin operons. We have annotated the upstream gene as phoAT and its putative promoter elements satisfy previously characterized consensus sequences at the -10 site. Conditional growth experiments carried out in M. smegmatis revealed a negative effect on growth by the expression of M. tuberculosis PhoH2 that was alleviated by co-expression of the PhoAT peptide. Thus in M. tuberculosis, PhoH2 represents a new variation on a type II PIN domain toxin-antitoxin systems such that the toxin-antitoxin is now coupled to an RNA helicase whose predicted biological function is to unwind and cleave RNA in a sequence specific manner.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Vickery L Arcus
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| |
Collapse
|
169
|
Wei Y, Zhan L, Gao Z, Privé GG, Dong Y. Crystal structure of GnsA from Escherichia coli. Biochem Biophys Res Commun 2015; 462:1-7. [PMID: 25839658 DOI: 10.1016/j.bbrc.2015.03.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
Abstract
Escherichia Coli GnsA is a regulator of phosphatidylethanolamine synthesis and functions as a suppressor of both a secG null mutation and fabA6 mutations. GnsA may also be a toxin with the cognate antitoxin YmcE. Here we report the crystal structure of GnsA to 1.8 Å. GnsA forms a V shaped hairpin structure that is tightly associated into a homodimer. Our comprehensive structural study suggests that GnsA is structurally similar to an outer membrane protein, suggesting a function of protein binding.
Collapse
Affiliation(s)
- Yong Wei
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Lihong Zhan
- School of Life Science, University of Science and Technology of China, Hefei 230027, China; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zengqiang Gao
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Gilbert G Privé
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Yuhui Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
170
|
Vadyvaloo V, Viall AK, Jarrett CO, Hinz AK, Sturdevant DE, Joseph Hinnebusch B. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. MICROBIOLOGY-SGM 2015; 161:1198-1210. [PMID: 25804213 PMCID: PMC4635514 DOI: 10.1099/mic.0.000082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Yersinia pestis PhoPQ gene regulatory system is induced during infection of the flea digestive tract and is required to produce adherent biofilm in the foregut, which greatly enhances bacterial transmission during a flea bite. To understand the in vivo context of PhoPQ induction and to determine PhoP-regulated targets in the flea, we undertook whole-genome comparative transcriptional profiling of Y. pestis WT and ΔphoP strains isolated from infected fleas and from temperature-matched in vitro planktonic and flow-cell biofilm cultures. In the absence of PhoP regulation, the gene expression program indicated that the bacteria experienced diverse physiological stresses and were in a metabolically less active state. Multiple stress response genes, including several toxin–antitoxin loci and YhcN family genes responsible for increased acid tolerance, were upregulated in the phoP mutant during flea infection. The data implied that PhoPQ was induced by low pH in the flea gut, and that PhoP modulated physiological adaptation to acid and other stresses encountered during infection of the flea. This adaptive response, together with PhoP-dependent modification of the bacterial outer surface that includes repression of pH 6 antigen fimbriae, supports stable biofilm development in the flea foregut.
Collapse
Affiliation(s)
- Viveka Vadyvaloo
- 1Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Austin K Viall
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Clayton O Jarrett
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Angela K Hinz
- 1Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, 99164, USA
| | - Daniel E Sturdevant
- 3Genomics Unit, Research Technologies Section, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - B Joseph Hinnebusch
- 2Plague Section, Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
171
|
Czarnecki J, Dziewit L, Kowalski L, Ochnio M, Bartosik D. Maintenance and genetic load of plasmid pKON1 of Paracoccus kondratievae, containing a highly efficient toxin-antitoxin module of the hipAB family. Plasmid 2015; 80:45-53. [PMID: 25752994 DOI: 10.1016/j.plasmid.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
Paracoccus kondratievae NCIMB 13773(T), isolated from the maize rhizosphere, carries a large (95,049 bp) plasmid pKON1, whose structure has been significantly influenced by transposition. Almost 30% of the plasmid genome is composed of complete or truncated insertion sequences (ISs), representing seven IS families. The ISs are accompanied by numerous genes and gene clusters commonly found in bacterial chromosomes, encoding, among others, (i) a putative type III secretion system of the Rhizobiales-T3SS family, (ii) a type I restriction-modification system associated with the anti-codon nuclease (ACNase) gene prrC and (iii) OstA and OstB proteins involved in trehalose synthesis. The backbone of pKON1 is composed of replication and partitioning modules conserved in several large alphaproteobacterial replicons, including secondary chromid pAMI6 of Paracoccus aminophilus JCM 7686 and chromosome 2 (chromid) of Rhodobacter sphaeroides 2.4.1. pKON1 also contains a toxin-antitoxin system of the hipAB family, whose presence precludes removal of the plasmid from bacterial cells. This system, unlike two other related hipAB-family loci originating from plasmid pAMI8 and the chromosome of Paracoccus aminophilus JCM 7686, is highly efficient and permits very stable maintenance of a heterologous replicon in various hosts.
Collapse
Affiliation(s)
- Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Lukasz Kowalski
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Ochnio
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
172
|
Structure-function analysis of VapB4 antitoxin identifies critical features of a minimal VapC4 toxin-binding module. J Bacteriol 2015; 197:1197-207. [PMID: 25622615 DOI: 10.1128/jb.02508-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Bacterial toxin-antitoxin systems play a critical role in the regulation of gene expression, leading to developmental changes, reversible dormancy, and cell death. Type II toxin-antitoxin pairs, composed of protein toxins and antitoxins, exist in nearly all bacteria and are classified into six groups on the basis of the structure of the toxins. The VapBC group comprises the most common type II system and, like other toxin-antitoxin systems, functions to elicit dormancy by inhibiting protein synthesis. Activation of toxin function requires protease degradation of the VapB antitoxin, which frees the VapC toxin from the VapBC complex, allowing it to hydrolyze the RNAs required for translation. Generally, type II antitoxins bind with high specificity to their cognate toxins via a toxin-binding domain and endow the complex with DNA-binding specificity via a DNA-binding domain. Despite the ubiquity of VapBC systems and their critical role in the regulation of gene expression, few functional studies have addressed the details of VapB-VapC interactions. Here we report on the results of experiments designed to identify molecular determinants of the specificity of the Mycobacterium tuberculosis VapB4 antitoxin for its cognate VapC4 toxin. The results identify the minimal domain of VapB4 required for this interaction as well as the amino acid side chains required for binding to VapC4. These findings have important implications for the evolution of VapBC toxin-antitoxin systems and their potential as targets of small-molecule protein-protein interaction inhibitors. IMPORTANCE VapBC toxin-antitoxin pairs are the most widespread type II toxin-antitoxin systems in bacteria, where they are thought to play key roles in stress-induced dormancy and the formation of persisters. The VapB antitoxins are critical to these processes because they inhibit the activity of the toxins and provide the DNA-binding specificity that controls the synthesis of both proteins. Despite the importance of VapB antitoxins and the existence of several VapBC crystal structures, little is known about their functional features in vivo. Here we report the findings of the first comprehensive structure-function analysis of a VapB toxin. The results identify the minimal toxin-binding domain, its modular antitoxin function, and the specific amino acid side chains required for its activity.
Collapse
|
173
|
Wang J, Stephan R, Zurfluh K, Hächler H, Fanning S. Characterization of the genetic environment of bla ESBL genes, integrons and toxin-antitoxin systems identified on large transferrable plasmids in multi-drug resistant Escherichia coli. Front Microbiol 2015; 5:716. [PMID: 25610429 PMCID: PMC4285173 DOI: 10.3389/fmicb.2014.00716] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/01/2014] [Indexed: 01/08/2023] Open
Abstract
Objectives: Previously 14 conjugative plasmids from multi-drug resistant (MDR) Escherichia coli from healthy humans and food-producing animals in Switzerland were sequenced. The aim of this study was to extend the genetic characterization of these plasmids with a focus on blaESBL genes including blaCTX-M-1 and blaTEM, class 1 integrons and toxin-antitoxin (TA) systems contained therein. Methods: The nucleotide sequences and subsequent annotation therein of 14 conjugative plasmids were previously determined from their corresponding transconjugants. The TA loci were confirmed by RASTA-Bacteria. Results: Eight of the conjugative plasmids identified were found to encode genes expressing ESBLs. Structural heterogeneity was noted in the regions flanking both the blaCTX-M-1 and blaTEM genes. The blaCTX-M-1 genes were associated with the common insertion sequences ISEcp1 and IS26, and uniquely with an IS5 element in one case; while blaTEM genes were found to be associated with IS26 and Tn2. A new blaTEM-210 gene was identified. Seven class 1 integrons were also identified and assigned into 3 groups, denoted as In54, In369 and In501. Sixteen TA loci belonging to 4 of the TA gene families (relBE, vapBC, ccd and mazEF) were identified on 11 of these plasmids. Conclusions: Comparative sequence analysis of these plasmids provided data on the structures likely to contribute to sequence diversity associated with these accessory genes, including IS26, ISEcp1 and Tn2. All of them contribute to the dissemination of the corresponding resistance genes located on the different plasmids. There appears to be no association between β-lactam encoding genes and TA systems.
Collapse
Affiliation(s)
- Juan Wang
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland
| | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Katrin Zurfluh
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Herbert Hächler
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich Zürich, Switzerland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin Dublin, Ireland ; School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast Belfast, UK
| |
Collapse
|
174
|
Abstract
DNA topoisomerases are enzymes that control the topology of DNA in all cells. There are two types, I and II, classified according to whether they make transient single- or double-stranded breaks in DNA. Their reactions generally involve the passage of a single- or double-strand segment of DNA through this transient break, stabilized by DNA-protein covalent bonds. All topoisomerases can relax DNA, but DNA gyrase, present in all bacteria, can also introduce supercoils into DNA. Because of their essentiality in all cells and the fact that their reactions proceed via DNA breaks, topoisomerases have become important drug targets; the bacterial enzymes are key targets for antibacterial agents. This article discusses the structure and mechanism of topoisomerases and their roles in the bacterial cell. Targeting of the bacterial topoisomerases by inhibitors, including antibiotics in clinical use, is also discussed.
Collapse
|
175
|
Komi KK, Ge YM, Xin XY, Ojcius DM, Sun D, Hu WL, Zhao X, Lin X, Yan J. RETRACTED: ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection. Microbes Infect 2015; 17:34-47. [PMID: 25461800 DOI: 10.1016/j.micinf.2014.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the corresponding author and the editorial office of Microbes and Infection. An independent reviewer of the retraction request was also appointed given that one of the authors is the Editor-in- Chief. For figure 1C, Lanes 1 and 2 appear to share some unexpected similarities, except for the bottom band, which also appear to be the band of interest. Sections of Figure 2C appear similar to sections of Figure 5D of a paper that had already appeared in Molecular Microbiology, volume 83, issue 5 (2012) 1006-1023. https://doi.org/10.1111/j.1365-2958.2012.07985.x. In figure 3A, Flow cytograms share identical/similar patterns highlighted in various colours. Peculiarly, some of these patterns can be seen as horizontal rotations of others along the axis that separates different quadrants. (ie red green & purple). Moreover, some quadrants appear to have very high densities of events that are suprisingly limited by quadrant gates (most noticeably quadrants B2 from the second column of panels. Figure 5A-B it was found that there were duplicated bands were produced. Figures 5C and 5D, it was found that bands across each individual gel appear identical. One of the conditions of submission of a paper for publication is that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process”.
Collapse
Affiliation(s)
- Komi Koukoura Komi
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China.
| | - Yu-Mei Ge
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xiao-Yang Xin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - David M Ojcius
- Health Sciences Research Institute and Molecular Cell Biology Department, University of California, Merced, CA 95343, USA.
| | - Dexter Sun
- New York Presbyterian Hospital & Hospital for Special Surgery, Weill Medical College, Cornell University, New York, NY, USA.
| | - Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xin Zhao
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Xu'ai Lin
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
176
|
Expression, purification, and functional analysis of novel RelE operon from X. nematophila. ScientificWorldJournal 2014; 2014:428159. [PMID: 25538952 PMCID: PMC4265723 DOI: 10.1155/2014/428159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/10/2014] [Indexed: 02/03/2023] Open
Abstract
Bacterial toxin-antitoxin (TA) complexes induce programmed cell death and also function to relieve cell from stress by various response mechanisms. Escherichia coli RelB-RelE TA complex consists of a RelE toxin functionally counteracted by RelB antitoxin. In the present study, a novel homolog of RelE toxin designated as Xn-relE toxin from Xenorhabdus nematophila possessing its own antitoxin designated as Xn-relEAT has been identified. Expression and purification of recombinant proteins under native conditions with GST and Ni-NTA chromatography prove the existence of novel TA module. The expression of recombinant Xn-relE under tightly regulated ara promoter in E. coli Top 10 cells confirms its toxic nature in endogenous toxicity assay. The neutralization activity in endogenous toxicity assay by Xn-relEAT antitoxin confirms its antidote nature when studying the whole TA operon under ara regulated promoter. This study promotes newly discovered TA module to be regarded as important as other proteins of type II toxin-antitoxin system.
Collapse
|
177
|
De Gieter S, Konijnenberg A, Talavera A, Butterer A, Haesaerts S, De Greve H, Sobott F, Loris R, Garcia-Pino A. The intrinsically disordered domain of the antitoxin Phd chaperones the toxin Doc against irreversible inactivation and misfolding. J Biol Chem 2014; 289:34013-23. [PMID: 25326388 PMCID: PMC4256337 DOI: 10.1074/jbc.m114.572396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/16/2014] [Indexed: 11/06/2022] Open
Abstract
The toxin Doc from the phd/doc toxin-antitoxin module targets the cellular translation machinery and is inhibited by its antitoxin partner Phd. Here we show that Phd also functions as a chaperone, keeping Doc in an active, correctly folded conformation. In the absence of Phd, Doc exists in a relatively expanded state that is prone to dimerization through domain swapping with its active site loop acting as hinge region. The domain-swapped dimer is not capable of arresting protein synthesis in vitro, whereas the Doc monomer is. Upon binding to Phd, Doc becomes more compact and is secured in its monomeric state with a neutralized active site.
Collapse
Affiliation(s)
- Steven De Gieter
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Albert Konijnenberg
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Ariel Talavera
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Annika Butterer
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and
| | - Sarah Haesaerts
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Henri De Greve
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Pleinlaan 2, B-1050 Brussels, Belgium, and
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry and Center for Proteomics (CFP-CeProMa), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| | - Remy Loris
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe)
| | - Abel Garcia-Pino
- From Structural Biology Brussels, Department of Biotechnology (DBIT), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium, Molecular Recognition Unit (MoRe),
| |
Collapse
|
178
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
179
|
Tamang MD, Gurung M, Kang MS, Nam HM, Moon DC, Jang GC, Jung SC, Park YH, Lim SK. Characterization of plasmids encoding CTX-M β-lactamase and their addiction systems in Escherichia coli isolates from animals. Vet Microbiol 2014; 174:456-462. [DOI: 10.1016/j.vetmic.2014.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/16/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022]
|
180
|
Hamilton B, Manzella A, Schmidt K, DiMarco V, Butler JS. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site. PLoS One 2014; 9:e112921. [PMID: 25391136 PMCID: PMC4229260 DOI: 10.1371/journal.pone.0112921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.
Collapse
Affiliation(s)
- Brooke Hamilton
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alexander Manzella
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Karyn Schmidt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Victoria DiMarco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
181
|
|
182
|
Citorik RJ, Mimee M, Lu TK. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014; 32:1141-5. [PMID: 25240928 PMCID: PMC4237163 DOI: 10.1038/nbt.3011] [Citation(s) in RCA: 506] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/07/2014] [Indexed: 02/06/2023]
Abstract
Current antibiotics tend to be broad spectrum, leading to indiscriminate killing of commensal bacteria and accelerated evolution of drug resistance. Here, we use CRISPR-Cas technology to create antimicrobials whose spectrum of activity is chosen by design. RNA-guided nucleases (RGNs) targeting specific DNA sequences are delivered efficiently to microbial populations using bacteriophage or bacteria carrying plasmids transmissible by conjugation. The DNA targets of RGNs can be undesirable genes or polymorphisms, including antibiotic resistance and virulence determinants in carbapenem-resistant Enterobacteriaceae and enterohemorrhagic Escherichia coli. Delivery of RGNs significantly improves survival in a Galleria mellonella infection model. We also show that RGNs enable modulation of complex bacterial populations by selective knockdown of targeted strains based on genetic signatures. RGNs constitute a class of highly discriminatory, customizable antimicrobials that enact selective pressure at the DNA level to reduce the prevalence of undesired genes, minimize off-target effects and enable programmable remodeling of microbiota.
Collapse
Affiliation(s)
- Robert J Citorik
- 1] MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mark Mimee
- 1] MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timothy K Lu
- 1] MIT Microbiology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [2] MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [5] Harvard Biophysics Program, Harvard University, Boston, Massachusetts, USA. [6] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
183
|
Das U, Pogenberg V, Subhramanyam UKT, Wilmanns M, Gourinath S, Srinivasan A. Crystal structure of the VapBC-15 complex from Mycobacterium tuberculosis reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of toxin-antitoxin assembly. J Struct Biol 2014; 188:249-58. [PMID: 25450593 DOI: 10.1016/j.jsb.2014.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Abstract
Although PIN (PilT N-terminal)-domain proteins are known to have ribonuclease activity, their specific mechanism of action remains unknown. VapCs form a family of ribonucleases that possess a PIN-domain assembly and are known as toxins. The activities of VapCs are impaired by VapB antitoxins. Here we present the crystal structure of the VapBC-15 toxin-antitoxin complex from Mycobacterium tuberculosis determined to 2.1Å resolution. The VapB-15 and VapC-15 components assemble into one heterotetramer (VapB2C2) and two heterotrimers (VapBC2) in each asymmetric unit of the crystal. The active site of VapC-15 toxin consists of a cluster of acidic amino acid residues and two divalent metal ions, forming a well organised ribonuclease active site. The distribution of the catalytic-site residues of the VapC-15 toxin is similar to that of T4 RNase H and of Methanococcus jannaschii FEN-1, providing strong evidence that these three proteins share a similar mechanism of activity. The presence of both VapB2C2 and VapBC2 emphasizes the fact that the same antitoxin can bind the toxin in 1:1 and 1:2 ratios. The crystal structure determination of the VapBC-15 complex reveals for the first time a PIN-domain ribonuclease protein that shows two metal ions at the active site and a variable mode of toxin-antitoxin assembly. The structure further shows that VapB-15 antitoxin binds to the same groove meant for the binding of putative substrate (RNA), resulting in the inhibition of VapC-15's toxicity.
Collapse
Affiliation(s)
- Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
184
|
Wieteska Ł, Skulimowski A, Cybula M, Szemraj J. Toxins vapC and pasB from prokaryotic TA modules remain active in mammalian cancer cells. Toxins (Basel) 2014; 6:2948-61. [PMID: 25271785 PMCID: PMC4210878 DOI: 10.3390/toxins6102948] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 11/17/2022] Open
Abstract
Among the great number of addictive modules which have been discovered, only a few have been characterized. However, research concerning the adoption of toxins from these systems shows their great potential as a tool for molecular biology and medicine. In our study, we tested two different toxins derived from class II addictive modules, pasAB from plasmid pTF-FC2 (Thiobacillus ferrooxidans) and vapBC 2829Rv (Mycobacterium tuberculosis), in terms of their usefulness as growth inhibitors of human cancer cell lines, namely KYSE 30, MCF-7 and HCT 116. Transfection of the pasB and vapC genes into the cells was conducted with the use of two different expression systems. Cellular effects, such as apoptosis, necrosis and changes in the cell cycle, were tested by applying flow cytometry with immunofluorescence staining. Our findings demonstrated that toxins VapC and PasB demonstrate proapoptotic activity in the human cancer cells, regardless of the expression system used. As for the toxin PasB, observed changes were more subtle than for the VapC. The level of expression for both the genes was monitored by QPCR and did not reveal statistically significant differences within the same cell line.
Collapse
Affiliation(s)
- Łukasz Wieteska
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Aleksander Skulimowski
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Magdalena Cybula
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
185
|
Kumar S, Engelberg-Kulka H. Quorum sensing peptides mediating interspecies bacterial cell death as a novel class of antimicrobial agents. Curr Opin Microbiol 2014; 21:22-7. [PMID: 25244032 DOI: 10.1016/j.mib.2014.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/27/2023]
Abstract
mazEF is a toxin-antitoxin stress-induced module which is abundant on the chromosome of most bacteria including pathogens and most extensively studied in Escherichia coli. E. coli mazEF mediated cell death is a population phenomenon requiring the quorum-sensing (QS) 'Extracellular Death Factor' (EDF), the E. coli peptide NNWNN. E. coli mazEF-mediated cell death can also be triggered by different QS peptides secreted by the Gram positive bacterium Bacillus subtilis and the Gram negative bacterium Pseudomonas aeruginosa. Thus, the different EDFs belong to a family of QS peptides that mediates interspecies cell death. We suggest that members of the EDF family may become the basis for a novel class of antimicrobial agents to trigger death from outside the bacterial cells.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Hanna Engelberg-Kulka
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
186
|
Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol 2014; 55:313-32. [PMID: 25251995 DOI: 10.1146/annurev-pharmtox-010814-124712] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We face an impending crisis in our ability to treat infectious disease brought about by the emergence of antibiotic-resistant pathogens and a decline in the development of new antibiotics. Urgent action is needed. This review focuses on a less well-understood aspect of antibiotic action: the complex metabolic events that occur subsequent to the interaction of antibiotics with their molecular targets and play roles in antibiotic lethality. Independent lines of evidence from studies of the action of bactericidal antibiotics on diverse bacteria collectively suggest that the initial interactions of drugs with their targets cannot fully account for the antibiotic lethality and that these interactions elicit the production of reactive oxidants including reactive oxygen species that contribute to bacterial cell death. Recent challenges to this concept are considered in the context of the broader literature of this emerging area of research. Possible ways that this new knowledge might be exploited to improve antibiotic therapy are also considered.
Collapse
Affiliation(s)
- Daniel J Dwyer
- Department of Cell Biology and Molecular Genetics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742;
| | | | | |
Collapse
|
187
|
Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay. PLoS One 2014; 9:e102232. [PMID: 25068267 PMCID: PMC4113224 DOI: 10.1371/journal.pone.0102232] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/16/2014] [Indexed: 12/29/2022] Open
Abstract
Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL) and narrow spectrum (NSBL) beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13), blaGIM (2/2), blaKPC (27/27), blaNDM (5/5), blaIMP-2/4/7/8/13/14/15/16/31 (10/10), blaOXA-23 (12/13), blaOXA-40-group (7/7), blaOXA-48-group (32/33), blaOXA-51 (1/1) and blaOXA-58 (1/1). Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16), blaOXA-2 (4/4), blaOXA-9 (33/33), OXA-10 (3/3), blaOXA-51 (25/25), blaOXA-58 (2/2), CTX-M1/M15 (17/17) and blaVIM (1/1)]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4%) isolates, including Acinetobacter baumannii (28/28), Enterobacter spec. (5/5), Escherichia coli (4/4), Klebsiella pneumoniae (62/63), Klebsiella oxytoca (0/2), Pseudomonas aeruginosa (12/12), Citrobacter freundii (1/1) and Citrobacter braakii (2/2), were correctly identified by a panel of species specific probes. This assay might be easily extended, adapted and transferred to point of care platforms enabling fast surveillance, rapid detection and appropriate early treatment of infections caused by multiresistant Gram-negative bacteria.
Collapse
|
188
|
Lopes APY, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EAL. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 2014; 9:e101678. [PMID: 25047537 PMCID: PMC4105405 DOI: 10.1371/journal.pone.0101678] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Collapse
Affiliation(s)
| | - Luana M. Lopes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Tatiana R. Fraga
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rosa M. Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | - André L. Sanson
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Elisabeth Cheng
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Erika Nakajima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
189
|
Cottell JL, Saw HTH, Webber MA, Piddock LJV. Functional genomics to identify the factors contributing to successful persistence and global spread of an antibiotic resistance plasmid. BMC Microbiol 2014; 14:168. [PMID: 24961279 PMCID: PMC4083329 DOI: 10.1186/1471-2180-14-168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background The spread of bacterial plasmids is an increasing global problem contributing to the widespread dissemination of antibiotic resistance genes including β-lactamases. Our understanding of the details of the biological mechanisms by which these natural plasmids are able to persist in bacterial populations and are able to establish themselves in new hosts via conjugative transfer is very poor. We recently identified and sequenced a globally successful plasmid, pCT, conferring β-lactam resistance. Results Here, we investigated six plasmid encoded factors (tra and pil loci; rci shufflon recombinase, a putative sigma factor, a putative parB partitioning gene and a pndACB toxin-antitoxin system) hypothesised to contribute to the ‘evolutionary success’ of plasmid pCT. Using a functional genomics approach, the role of these loci was investigated by systematically inactivating each region and examining the impact on plasmid persistence, conjugation and bacterial host biology. While the tra locus was found to be essential for all pCT conjugative transfer, the second conjugation (pil) locus was found to increase conjugation frequencies in liquid media to particular bacterial host recipients (determined in part by the rci shufflon recombinase). Inactivation of the pCT pndACB system and parB did not reduce the stability of this plasmid. Conclusions Our findings suggest the success of pCT may be due to a combination of factors including plasmid stability within a range of bacterial hosts, a lack of a fitness burden and efficient transfer rates to new bacterial hosts rather than the presence of a particular gene or phenotype transferred to the host. The methodology used in our study could be applied to other ‘successful’ globally distributed plasmids to discover the role of currently unknown plasmid backbone genes or to investigate other factors which allow these elements to persist and spread.
Collapse
Affiliation(s)
| | | | | | - Laura J V Piddock
- Institute of Microbiology and Infection, School of Immunity and Infection, The College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
190
|
Abstract
Genetically programmed death of an organism, or phenoptosis, can be found not only in animals and plants, but also in bacteria. Taking into account intrapopulational relations identified in bacteria, it is easy to imagine the importance of phenoptosis in the regulation of a multicellular bacterial community in the real world of its existence. For example, autolysis of part of the population limits the spread of viral infection. Destruction of cells with damaged DNA contributes to the maintenance of low level of mutations. Phenoptosis can facilitate the exchange of genetic information in a bacterial population as a result of release of DNA from lysed cells. Bacteria use a special "language" to transmit signals in a population; it is used for coordinated regulation of gene expression. This special type of regulation of bacterial gene expression is usually active at high densities of bacteria populations, and it was named "quorum sensing" (QS). Different molecules can be used for signaling purposes. Phenoptosis, which is carried out by toxin-antitoxin systems, was found to depend on the density of the population; it requires a QS factor, which is called the extracellular death factor. The study of phenoptosis in bacteria is of great practical importance. The components that make up the systems ensuring the programmed cell death, including QS factor, may be used for the development of drugs that will activate mechanisms of phenoptosis and promote the destruction of pathogenic bacteria. Comparative genomic analysis revealed that the genes encoding several key enzymes involved in apoptosis of eukaryotes, such as paracaspases and metacaspases, apoptotic ATPases, proteins containing NACHT leucine-rich repeat, and proteases similar to mitochondrial HtrA-like protease, have homologs in bacteria. Proteomics techniques have allowed for the first time to identify the proteins formed during phenoptosis that participate in orderly liquidation of Streptomyces coelicolor and Escherichia coli cells. Among these proteins enzymes have been found that are involved in the degradation of cellular macromolecules, regulatory proteins, and stress-induced proteins. Future studies involving methods of biochemistry, genetics, genomics, proteomics, transcriptomics, and metabolomics should support a better understanding of the "mystery" of bacterial programmed cell death; this knowledge might be used to control bacterial populations.
Collapse
Affiliation(s)
- O A Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
191
|
Abstract
TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.
Collapse
|
192
|
Zaitseva YV, Popova AA, Khmel IA. Quorum sensing regulation in bacteria of the family enterobacteriaceae. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414030120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
193
|
Siddaramappa S, Challacombe JF, Petersen JM, Pillai S, Kuske CR. Comparative analyses of a putative Francisella conjugative element. Genome 2014; 57:137-44. [PMID: 24884689 DOI: 10.1139/gen-2013-0231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large circular plasmid detected in Francisella novicida-like strain PA10-7858, designated pFNPA10, was sequenced completely and analyzed. This 41,013-bp plasmid showed no homology to any of the previously sequenced Francisella plasmids and was 8-10 times larger in size than them. A total of 57 ORFs were identified within pFNPA10 and at least 9 of them encoded putative proteins with homology to different conjugal transfer proteins. The presence of iteron-like direct repeats and an ORF encoding a putative replication protein within pFNPA10 suggested that it replicated by the theta mode. Phylogenetic analyses indicated that pFNPA10 had no near neighbors in the databases and that it may have originated within an environmental Francisella lineage. Based on its features, pFNPA10 appears to be a novel extra-chromosomal genetic element within the genus Francisella. The suitability of pFNPA10 as a vector for transformation of species of Francisella by conjugation remains to be explored.
Collapse
|
194
|
Sadeghifard N, Soheili S, Sekawi Z, Ghafourian S. Is the mazEF toxin-antitoxin system responsible for vancomycin resistance in clinical isolates of Enterococcus faecalis? GMS HYGIENE AND INFECTION CONTROL 2014; 9:Doc05. [PMID: 24653969 PMCID: PMC3960931 DOI: 10.3205/dgkh000225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci.
Collapse
Affiliation(s)
| | - Sara Soheili
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| | - Zamberi Sekawi
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| | - Sobhan Ghafourian
- Department of Medical Microbiology, University Putra Malaysia, Malaysia
| |
Collapse
|
195
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
196
|
Wen Y, Behiels E, Devreese B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis 2014; 70:240-9. [DOI: 10.1111/2049-632x.12145] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Yurong Wen
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Ester Behiels
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| | - Bart Devreese
- Unit for Biological Mass Spectrometry and Proteomics; Laboratory for Protein Biochemistry and Biomolecular Engineering (L-ProBE); Ghent University; Ghent Belgium
| |
Collapse
|
197
|
Tripathi A, Dewan PC, Siddique SA, Varadarajan R. MazF-induced growth inhibition and persister generation in Escherichia coli. J Biol Chem 2014; 289:4191-205. [PMID: 24375411 PMCID: PMC3924284 DOI: 10.1074/jbc.m113.510511] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/24/2013] [Indexed: 11/06/2022] Open
Abstract
Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.
Collapse
Affiliation(s)
- Arti Tripathi
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Pooja C. Dewan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Shahbaz A. Siddique
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India and
- Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur P. O., Bangalore 560 004, India
| |
Collapse
|
198
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
199
|
Feng J, Kessler DA, Ben-Jacob E, Levine H. Growth feedback as a basis for persister bistability. Proc Natl Acad Sci U S A 2014; 111:544-9. [PMID: 24344277 PMCID: PMC3890803 DOI: 10.1073/pnas.1320396110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A small fraction of cells in many bacterial populations, called persisters, are much less sensitive to antibiotic treatment than the majority. Persisters are in a dormant metabolic state, even while remaining genetically identical to the actively growing cells. Toxin and antitoxin modules in bacteria are believed to be one possible cause of persistence. A two-gene operon, HipBA, is one of many chromosomally encoded toxin and antitoxin modules in Escherichia coli and the HipA7 allelic variant was the first validated high-persistence mutant. Here, we present a stochastic model that can generate bistability of the HipBA system, via the reciprocal coupling of free HipA to the cellular growth rate. The actively growing state and the dormant state each correspond to a stable state of this model. Fluctuations enable transitions from one to the other. This model is fully in agreement with experimental data obtained with synthetic promoter constructs.
Collapse
Affiliation(s)
- Jingchen Feng
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, TX 77005
| | - David A. Kessler
- Department of Physics, Bar-Ilan University, Ramat Gan IL52900, Israel; and
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, TX 77005
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics and Department of Bioengineering, Rice University, Houston, TX 77005
| |
Collapse
|
200
|
Wang H, Bian X, Xia L, Ding X, Müller R, Zhang Y, Fu J, Stewart AF. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res 2013; 42:e37. [PMID: 24369425 PMCID: PMC3950717 DOI: 10.1093/nar/gkt1339] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombineering, which is the use of homologous recombination for DNA engineering in Escherichia coli, usually uses antibiotic selection to identify the intended recombinant. When combined in a second step with counterselection using a small molecule toxin, seamless products can be obtained. Here, we report the advantages of a genetic strategy using CcdB as the counterselectable agent. Expression of CcdB is toxic to E. coli in the absence of the CcdA antidote so counterselection is initiated by the removal of CcdA expression. CcdB counterselection is robust and does not require titrations or experiment-to-experiment optimization. Because counterselection strategies necessarily differ according to the copy number of the target, we describe two variations. For multi-copy targets, we use two E. coli hosts so that counterselection is exerted by the transformation step that is needed to separate the recombined and unrecombined plasmids. For single copy targets, we put the ccdA gene onto the temperature-sensitive pSC101 Red expression plasmid so that counterselection is exerted by the standard temperature shift to remove the expression plasmid. To reduce unwanted intramolecular recombination, we also combined CcdB counterselection with Redα omission. These options improve the use of counterselection in recombineering with BACs, plasmids and the E. coli chromosome.
Collapse
Affiliation(s)
- Hailong Wang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology-State Key Laboratory Breeding Base of Microbial Molecular Biology, College of Life Science, Hunan Normal University, 410081 Changsha, People's Republic of China, Department of Genomics, Dresden University of Technology, BioInnovations-Zentrum, Tatzberg 47-51, 01307 Dresden, Germany, Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Shanda Nanlu 27, 250100 Jinan, People's Republic of China, Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany and Gene Bridges GmbH, Building C2.3, Saarland University, 66123 Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|