151
|
Bergamin E, Hallock PT, Burden SJ, Hubbard SR. The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization. Mol Cell 2010; 39:100-9. [PMID: 20603078 PMCID: PMC2917201 DOI: 10.1016/j.molcel.2010.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 03/08/2010] [Accepted: 04/16/2010] [Indexed: 12/29/2022]
Abstract
Formation of the vertebrate neuromuscular junction requires, among others proteins, Agrin, a neuronally derived ligand, and the following muscle proteins: LRP4, the receptor for Agrin; MuSK, a receptor tyrosine kinase (RTK); and Dok7 (or Dok-7), a cytoplasmic adaptor protein. Dok7 comprises a pleckstrin-homology (PH) domain, a phosphotyrosine-binding (PTB) domain, and C-terminal sites of tyrosine phosphorylation. Unique among adaptor proteins recruited to RTKs, Dok7 is not only a substrate of MuSK, but also an activator of MuSK's kinase activity. Here, we present the crystal structure of the Dok7 PH-PTB domains in complex with a phosphopeptide representing the Dok7-binding site on MuSK. The structure and biochemical data reveal a dimeric arrangement of Dok7 PH-PTB that facilitates trans-autophosphorylation of the kinase activation loop. The structure provides the molecular basis for MuSK activation by Dok7 and for rationalizing several Dok7 loss-of-function mutations found in patients with congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Elisa Bergamin
- Structural Biology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, and Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Peter T. Hallock
- Molecular Neurobiology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Steven J. Burden
- Molecular Neurobiology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016
| | - Stevan R. Hubbard
- Structural Biology Program, Kimmel Center for Biology and Medicine of the Skirball Institute, and Department of Pharmacology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
152
|
Srour M, Bolduc V, Guergueltcheva V, Lochmüller H, Gendron D, Shevell MI, Poulin C, Mathieu J, Bouchard JP, Brais B. DOK7 mutations presenting as a proximal myopathy in French Canadians. Neuromuscul Disord 2010; 20:453-7. [PMID: 20610155 DOI: 10.1016/j.nmd.2010.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 03/25/2010] [Accepted: 05/14/2010] [Indexed: 11/28/2022]
Abstract
DOK7 mutations cause a congenital myasthenic syndrome (OMIM 254300) characterized by a "limb-girdle" phenotype. We identified 7 French-Canadian patients with a previously undiagnosed proximal myopathy. A genome wide scan was performed. Homozygosity mapping identified a locus on chromosome 4p16.2 containing DOK7. Sequencing of DOK7 revealed homozygous 1124_1127dupTGCC mutations in all individuals. SNP genotyping of 42kb surrounding DOK7 in our cohort and in 9 patients of various European origins demonstrated a shared haplotype suggesting a common ancestral European mutation. In our cohort, fatigability was not prominent; rather patients reported prolonged periods of increased weakness. Abnormalities on repetitive nerve stimulation and single fiber EMG were not invariably present. There was considerable intra-familial phenotypic variability, and we report an asymptomatic individual. DOK7 mutations should be considered in patients with early-onset myopathy, even in the absence of symptoms suggesting a possible myasthenia.
Collapse
Affiliation(s)
- Myriam Srour
- Laboratoire de neurogénétique de la motricité, Centre de recherche du CHUM, Montréal, Université de Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Mashima R, Hishida Y, Tezuka T, Yamanashi Y. The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2010; 232:273-85. [PMID: 19909370 DOI: 10.1111/j.1600-065x.2009.00844.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian Dok protein family has seven members (Dok-1-Dok-7). The Dok proteins share structural similarities characterized by the NH2-terminal pleckstrin homology and phosphotyrosine-binding domains followed by SH2 target motifs in the COOH-terminal moiety, indicating an adapter function. Indeed, Dok-1 was originally identified as a 62 kDa protein that binds with p120 rasGAP, a potent inhibitor of Ras, upon tyrosine phosphorylation by a variety of protein tyrosine kinases. Among the Dok family, only Dok-1, Dok-2, and Dok-3 are preferentially expressed in hematopoietic/immune cells. Dok-1 and its closest relative Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. By contrast, Dok-3 does not bind with p120 rasGAP. However, accumulating evidence has demonstrated that Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, where the interaction of Dok-3 with SHIP-1 and Grb2 appears to be important. Here, we review the physiological roles and underlying mechanisms of Dok family proteins.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
154
|
Damage-induced neuronal endopeptidase is critical for presynaptic formation of neuromuscular junctions. J Neurosci 2010; 30:6954-62. [PMID: 20484637 DOI: 10.1523/jneurosci.4521-09.2010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Damage-induced neuronal endopeptidase (DINE) is a metalloprotease belonging to the neprilysin family. Expression of DINE mRNA is observed predominantly in subsets of neurons in the CNS and peripheral nervous system during embryonic development, as well as after axonal injury. However, the physiological function of DINE and its substrate remain unknown. We generated DINE-deficient mice to examine the physiological role of DINE. Shortly after birth, these mice died of respiratory failure resulting from a dysfunction of the diaphragm, which showed severe atrophy. As DINE was abundantly expressed in motor neurons and there was atrophy of the diaphragm, we analyzed the interaction between motor nerves and skeletal muscles in the DINE-deficient mice. Although there were no obvious deficiencies in numbers of motor neurons in the spinal cord or in the nerve trajectories from the spinal cord to the skeletal muscle in DINE-deficient mice, detailed histochemical analysis demonstrated a significant decrease of nerve terminal arborization in the diaphragm from embryonic day 12.5. In accordance with the decrease of final branching, the diaphragms from DINE-deficient mice exhibited only a few neuromuscular junctions. Similar changes in nerve terminal morphology were also apparent in other skeletal muscles, including the latissimus dorsi and the intercostal muscles. These data suggest that DINE is a crucial molecule in distal axonal arborization into muscle to establish neuromuscular junctions.
Collapse
|
155
|
Shigemoto K, Kubo S, Mori S, Yamada S, Akiyoshi T, Miyazaki T. Muscle weakness and neuromuscular junctions in aging and disease. Geriatr Gerontol Int 2010; 10 Suppl 1:S137-47. [DOI: 10.1111/j.1447-0594.2010.00608.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
156
|
Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology 2010; 74:1517-23. [PMID: 20458068 PMCID: PMC2875925 DOI: 10.1212/wnl.0b013e3181dd43bf] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in the postsynaptic adaptor protein Dok-7 underlie congenital myasthenic syndrome (CMS) with a characteristic limb girdle pattern of muscle weakness. Patients usually do not respond to or worsen with the standard CMS treatments: cholinesterase inhibitors and 3,4-diaminopyridine. However, anecdotal reports suggest they may improve with ephedrine. METHODS This was an open prospective follow-up study to determine muscle strength in response to ephedrine in Dok-7 CMS. Patients were first evaluated as inpatients for suitability for a trial of treatment with ephedrine. The response was assessed at 2 and 6 to 8 months follow-up clinic visits using a quantitative myasthenia gravis (severity) score (QMG) and mobility measures. RESULTS Ten out of 12 of the cohort with DOK7 mutations tolerated ephedrine. We noted a progressive response to treatment over the 6 to 8 months assessment period with a significant improvement at the final QMG score (p = 0.009). Mobility scores also improved (p = 0.0006). Improvements in the subcomponents of the QMG score that measured proximal muscle function (those muscle groups most severely affected) were most marked, and in some cases were dramatic. All patients reported enhanced activities of daily living at 6-8 months. CONCLUSION Ephedrine appears to be an effective treatment for Dok-7 CMS. It is well-tolerated by most patients and improvement in strength can be profound. Determining the long-term response and the most effective dosing regimen will require further research. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that ephedrine given at doses between 15 and 90 mg/day improves muscle strength in patients with documented mutations in DOK7.
Collapse
Affiliation(s)
- D Lashley
- Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford OX3 9DS, UK
| | | | | | | | | |
Collapse
|
157
|
Kurotsuchi A, Murakumo Y, Jijiwa M, Kurokawa K, Itoh Y, Kodama Y, Kato T, Enomoto A, Asai N, Terasaki H, Takahashi M. Analysis of DOK-6 function in downstream signaling of RET in human neuroblastoma cells. Cancer Sci 2010; 101:1147-55. [PMID: 20210798 PMCID: PMC11159970 DOI: 10.1111/j.1349-7006.2010.01520.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Point mutations and structural alterations of the RET tyrosine kinase gene cause multiple endocrine neoplasia type 2 (MEN 2) and papillary thyroid carcinoma, respectively. RET activation by glial cell line-derived neurotrophic factor (GDNF) is essential for the development of the enteric nervous system and the kidney. The signal through RET tyrosine kinase requires several adaptor proteins including the DOK (downstream of kinase) family of proteins. Of the seven members of the DOK protein family, DOK-1, -4, -5, and -6 have been reported to play roles in the GDNF-RET signaling pathway. Although DOK-6 has been shown to bind to RET and promote GDNF-induced neurite outgrowth in mouse Neuro2A cells, DOK-6 function in human cells remains unclear. In the present study, we investigated the role of DOK-6 in GDNF-RET signaling in human cells including neuroblastoma cells. DOK-6 was constitutively localized to the plasma membrane via its pleckstrin homology (PH) domain, and was phosphorylated following RET activation via a MEN2A mutation or GDNF stimulation. However, DOK-6 could not significantly affect downstream signaling and neurite outgrowth in human neuroblastoma cells. The binding affinity of the DOK-6 phosphotyrosine-binding (PTB) domain to RET was much lower than that of the DOK-1, DOK-4, and SHC PTB domains to RET. These findings indicate that DOK-6 is involved in RET signaling with less influence when compared with DOK-1, DOK-4, and SHC.
Collapse
Affiliation(s)
- Ai Kurotsuchi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Müller JS, Jepson CD, Laval SH, Bushby K, Straub V, Lochmüller H. Dok-7 promotes slow muscle integrity as well as neuromuscular junction formation in a zebrafish model of congenital myasthenic syndromes. Hum Mol Genet 2010; 19:1726-40. [PMID: 20147321 DOI: 10.1093/hmg/ddq049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small signalling adaptor protein Dok-7 has recently been reported as an essential protein of the neuromuscular junction (NMJ). Mutations resulting in partial loss of Dok-7 activity cause a distinct limb-girdle subtype of the inherited NMJ disorder congenital myasthenic syndromes (CMSs), whereas complete loss of Dok-7 results in a lethal phenotype in both mice and humans. Here we describe the zebrafish orthologue of Dok-7 and study its in vivo function. Dok-7 deficiency leads to motility defects in zebrafish embryos and larvae. The relative importance of Dok-7 at different stages of NMJ development varies; it is crucial for the earliest step, the formation of acetylcholine receptor (AChR) clusters in the middle of the muscle fibre prior to motor neuron contact. At later stages, presence of Dok-7 is not absolutely essential, as focal and non-focal synapses do form when Dok-7 expression is downregulated. These contacts however are smaller than in the wild-type zebrafish, reminiscent of the neuromuscular endplate pathology seen in patients with DOK7 mutations. Intriguingly, we also observed changes in slow muscle fibre arrangement; previously, Dok-7 has not been linked to functions other than postsynaptic AChR clustering. Our results suggest an additional role of Dok-7 in muscle. This role seems to be independent of the muscle-specific tyrosine kinase MuSK, the known binding partner of Dok-7 at the NMJ. Our findings in the zebrafish model contribute to a better understanding of the signalling pathways at the NMJ and the pathomechanisms of DOK7 CMSs.
Collapse
Affiliation(s)
- Juliane S Müller
- Institute of Human Genetics, International Centre for Life, Newcastle University, Central Parkway, Newcastle Upon Tyne NE1 3BZ, UK.
| | | | | | | | | | | |
Collapse
|
159
|
Maselli RA, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, Gerke BJ, Soliven B, Wollmann RL. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet 2010; 19:2370-9. [PMID: 20371544 PMCID: PMC2876883 DOI: 10.1093/hmg/ddq110] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We describe a severe congenital myasthenic syndrome (CMS) caused by two missense mutations in the gene encoding the muscle specific receptor tyrosine kinase (MUSK). The identified MUSK mutations M605I and A727V are both located in the kinase domain of MuSK. Intracellular microelectrode recordings and microscopy studies of the neuromuscular junction conducted in an anconeus muscle biopsy revealed decreased miniature endplate potential amplitudes, reduced endplate size and simplification of secondary synaptic folds, which were consistent with postsynaptic deficit. The study also showed a striking reduction of the endplate potential quantal content, consistent with additional presynaptic failure. Expression studies in MuSK deficient myotubes revealed that A727V, which is located within the catalytic loop of the enzyme, caused severe impairment of agrin-dependent MuSK phosphorylation, aggregation of acetylcholine receptors (AChRs) and interaction of MuSK with Dok-7, an essential intracellular binding protein of MuSK. In contrast, M605I, resulted in only moderate impairment of agrin-dependent MuSK phosphorylation, aggregation of AChRs and interaction of MuSK with Dok-7. There was no impairment of interaction of mutants with either the low-density lipoprotein receptor-related protein, Lrp4 (a co-receptor of agrin) or with the mammalian homolog of the Drosophila tumorous imaginal discs (Tid1). Our findings demonstrate that missense mutations in MUSK can result in a severe form of CMS and indicate that the inability of MuSK mutants to interact with Dok-7, but not with Lrp4 or Tid1, is a major determinant of the pathogenesis of the CMS caused by MUSK mutations.
Collapse
Affiliation(s)
- Ricardo A Maselli
- Department of Neurology, School of Veterinary Medicine, University of California Davis, Davis, CA 95618, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Engel AG, Shen XM, Selcen D, Sine SM. What have we learned from the congenital myasthenic syndromes. J Mol Neurosci 2010; 40:143-53. [PMID: 19688192 PMCID: PMC3050586 DOI: 10.1007/s12031-009-9229-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The congenital myasthenic syndromes have now been traced to an array of molecular targets at the neuromuscular junction encoded by no fewer than 11 disease genes. The disease genes were identified by the candidate gene approach, using clues derived from clinical, electrophysiological, cytochemical, and ultrastructural features. For example, electrophysiologic studies in patients suffering from sudden episodes of apnea pointed to a defect in acetylcholine resynthesis and CHAT as the candidate gene (Ohno et al., Proc Natl Acad Sci USA 98:2017-2022, 2001); refractoriness to anticholinesterase medications and partial or complete absence of acetylcholinesterase (AChE) from the endplates (EPs) has pointed to one of the two genes (COLQ and ACHE ( T )) encoding AChE, though mutations were observed only in COLQ. After a series of patients carrying mutations in a disease gene have been identified, the emerging genotype-phenotype correlations provided clues for targeted mutation analysis in other patients. Mutations in EP-specific proteins also prompted expression studies that proved pathogenicity, highlighted important functional domains of the abnormal proteins, and pointed to rational therapy.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Muscle Research Laboratory, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
161
|
Ben Ammar A, Petit F, Alexandri N, Gaudon K, Bauché S, Rouche A, Gras D, Fournier E, Koenig J, Stojkovic T, Lacour A, Petiot P, Zagnoli F, Viollet L, Pellegrini N, Orlikowski D, Lazaro L, Ferrer X, Stoltenburg G, Paturneau-Jouas M, Hentati F, Fardeau M, Sternberg D, Hantaï D, Richard P, Eymard B. Phenotype genotype analysis in 15 patients presenting a congenital myasthenic syndrome due to mutations in DOK7. J Neurol 2009; 257:754-66. [DOI: 10.1007/s00415-009-5405-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/30/2009] [Accepted: 11/16/2009] [Indexed: 10/20/2022]
|
162
|
Schara U, Barisic N, Deschauer M, Lindberg C, Straub V, Strigl-Pill N, Wendt M, Abicht A, Müller J, Lochmüller H. Ephedrine therapy in eight patients with congenital myasthenic syndrome due to DOK7 mutations. Neuromuscul Disord 2009; 19:828-32. [DOI: 10.1016/j.nmd.2009.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
163
|
Lee Y, Rudell J, Ferns M. Rapsyn interacts with the muscle acetylcholine receptor via alpha-helical domains in the alpha, beta, and epsilon subunit intracellular loops. Neuroscience 2009; 163:222-32. [PMID: 19482062 PMCID: PMC2728176 DOI: 10.1016/j.neuroscience.2009.05.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 12/12/2022]
Abstract
At the developing vertebrate neuromuscular junction, the acetylcholine receptor becomes aggregated at high density in the postsynaptic muscle membrane. Receptor localization is regulated by the motoneuron-derived factor, agrin, and requires an intracellular, scaffolding protein called rapsyn. However, it remains unclear where rapsyn binds on the acetylcholine receptor and how their interaction is regulated. In this study, we identified rapsyn's binding site on the acetylcholine receptor using chimeric constructs where the intracellular domain of CD4 was substituted for the major intracellular loop of each mouse acetylcholine receptor subunit. When expressed in heterologous cells, we found that rapsyn clustered and cytoskeletally anchored CD4-alpha, beta and epsilon subunit loops but not CD4-delta loop. Rapsyn-mediated clustering and anchoring was highest for beta loop, followed by epsilon and alpha, suggesting that rapsyn interacts with the loops with different affinities. Moreover, by making deletions within the beta subunit intracellular loop, we show that rapsyn interacts with the alpha-helical region, a secondary structural motif present in the carboxyl terminal portion of the subunit loops. When expressed in muscle cells, rapsyn co-immunoprecipitated together with a CD4-alpha helical region chimera, independent of agrin signaling. Together, these findings demonstrate that rapsyn interacts with the acetylcholine receptor via an alpha-helical structural motif conserved between the alpha, beta and epsilon subunits. Binding at this site likely mediates the critical rapsyn interaction involved in localizing the acetylcholine receptor at the neuromuscular junction.
Collapse
Affiliation(s)
- Y Lee
- Department of Anesthesiology and Physiology and Membrane Biology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
164
|
Affiliation(s)
- Georgina Burke
- Department of Neurology, Wessex Neurological Centre, Southampton General Hospital, Southampton SO16 6YD, UK.
| | | | | | | | | |
Collapse
|
165
|
Huzé C, Bauché S, Richard P, Chevessier F, Goillot E, Gaudon K, Ben Ammar A, Chaboud A, Grosjean I, Lecuyer HA, Bernard V, Rouche A, Alexandri N, Kuntzer T, Fardeau M, Fournier E, Brancaccio A, Rüegg MA, Koenig J, Eymard B, Schaeffer L, Hantaï D. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet 2009; 85:155-67. [PMID: 19631309 DOI: 10.1016/j.ajhg.2009.06.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/16/2009] [Accepted: 06/23/2009] [Indexed: 11/16/2022] Open
Abstract
We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.
Collapse
MESH Headings
- Adult
- Agrin/chemistry
- Agrin/genetics
- Agrin/metabolism
- Animals
- Biopsy
- Cell Line
- DNA Mutational Analysis
- Dystroglycans/metabolism
- Female
- Humans
- Male
- Models, Chemical
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/surgery
- Muscle, Skeletal/ultrastructure
- Mutation, Missense
- Myasthenic Syndromes, Congenital/genetics
- Neuromuscular Junction/genetics
- Neuromuscular Junction/metabolism
- Neuromuscular Junction/physiology
- Neuromuscular Junction/ultrastructure
- Pedigree
- Protein Structure, Tertiary
- Rats
- Receptors, Cholinergic/genetics
- Receptors, Cholinergic/metabolism
- Receptors, Cholinergic/physiology
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Synapses/metabolism
Collapse
Affiliation(s)
- Caroline Huzé
- Equipe Différenciation Neuromusculaire, UMR 5239, Ecole Normale Supérieure Lyon, CNRS, Université Lyon 1, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release. Neurochem Int 2009; 55:724-31. [PMID: 19631248 DOI: 10.1016/j.neuint.2009.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO ( approximately 10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[(14)C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca(2+) or Mg(2+)/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.
Collapse
|
167
|
Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaccone ST, Harper CM, Engel AG. Myasthenic syndrome due to defects in rapsyn: Clinical and molecular findings in 39 patients. Neurology 2009; 73:228-35. [PMID: 19620612 PMCID: PMC2715575 DOI: 10.1212/wnl.0b013e3181ae7cbc] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Pathogenic mutations in rapsyn result in endplate acetylcholine receptor (AChR) deficiency and are a common cause of postsynaptic congenital myasthenic syndromes. METHODS Clinical, electrophysiologic, pathologic, and molecular studies were done in 39 patients. RESULTS In all but one patient, the disease presented in the first 2 years of life. In 9 patients, the myasthenic symptoms included constant or episodic ophthalmoparesis, and 1 patient had a pure limb-girdle phenotype. More than one-half of the patients experienced intermittent exacerbations. Long-term follow-up was available in 25 patients after start of cholinergic therapy: 21 became stable or were improved and 2 of these became asymptomatic; 3 had a progressive course; and 1 died in infancy. In 7 patients who had endplate studies, the average counts of AChR per endplate and the synaptic response to ACh were less reduced than in patients harboring low AChR expressor mutations. Eight patients were homozygous and 23 heterozygous for the common p.N88K mutation. Six mutations, comprising 3 missense mutations, an in-frame deletion, a splice-site mutation, and a nonsense mutation, are novel. Homozygosity for p.N88K was associated with varying grades of severity. No genotype-phenotype correlations were observed except in 8 Near-Eastern patients homozygous for the promoter mutation (c.-38A>G), who had a mild course. CONCLUSIONS All but 1 patient presented early in life and most responded to cholinergic agonists. With early diagnosis and therapy, rapsyn deficiency has a benign course in most patients. There was no consistent phenotype-genotype correlation except for an E-box mutation associated with jaw deformities.
Collapse
Affiliation(s)
- M Milone
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Maselli RA, Ng JJ, Anderson JA, Cagney O, Arredondo J, Williams C, Wessel HB, Abdel-Hamid H, Wollmann RL. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet 2009; 46:203-8. [PMID: 19251977 PMCID: PMC2643050 DOI: 10.1136/jmg.2008.063693] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: We describe a severe form of congenital myasthenic syndrome (CMS) associated with congenital nephrosis and ocular malformations caused by two truncating mutations in the gene encoding the laminin β2 subunit (LAMB2). Methods and results: Mutational analysis in the affected patient, who has a history of a serious untoward reaction to treatment with acetylcholinesterase inhibition, revealed two frame-shifting heteroallelic mutations, a maternally inherited 1478delG and a paternally inherited 4804delC. An anconeus muscle biopsy demonstrated a profound distortion of the architecture and function of the neuromuscular junction, which was strikingly similar to that seen in mice lacking laminin β2 subunit. The findings included: pronounced reduction of the axon terminal size with encasement of the nerve endings by Schwann cells, severe widening of the primary synaptic cleft and invasion of the synaptic space by the processes of Schwann cells, and moderate simplification of postsynaptic folds and intact expression of the endplate acetylcholinesterase. The endplate potential quantal content was notably reduced, while the frequencies and amplitudes of miniature endplate potentials were only moderately diminished and the decay phases of miniature endplate potentials were normal. Western blot analysis of muscle and kidney tissue and immunohistochemistry of kidney tissue showed no laminin β2 expression. Conclusion: This case, which represents a new type of synaptic CMS, exemplifies the wide variability of phenotypes associated with LAMB2 mutations and underscores the fundamental role that laminin β2 plays in the development of the human neuromuscular junction.
Collapse
Affiliation(s)
- R A Maselli
- Department of Neurology, University of California Davis, Davis, CA, 95618, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Inoue A, Setoguchi K, Matsubara Y, Okada K, Sato N, Iwakura Y, Higuchi O, Yamanashi Y. Dok-7 activates the muscle receptor kinase MuSK and shapes synapse formation. Sci Signal 2009; 2:ra7. [PMID: 19244212 DOI: 10.1126/scisignal.2000113] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The formation of the neuromuscular junction (NMJ) is orchestrated by the muscle-specific receptor tyrosine kinase MuSK and by neural agrin, an extracellular activator of MuSK. We previously showed that the MuSK-interacting protein Dok-7 is essential for neuromuscular synaptogenesis, although the mechanisms by which Dok-7 regulates MuSK activity and promotes synapse formation have been unclear. Here, we show that Dok-7 directly interacts with the cytoplasmic portion of MuSK and activates the receptor tyrosine kinase, and that neural agrin requires Dok-7 to activate MuSK. In vivo overexpression of Dok-7 increased MuSK activation and promoted NMJ formation. Furthermore, Dok-7 was required for the localization of MuSK in the central region of muscle, which is essential for the correct formation of NMJs in this region. These observations indicate that Dok-7 positively regulates neuromuscular synaptogenesis by controlling MuSK activity, its distribution, and its responsiveness to neural agrin.
Collapse
Affiliation(s)
- Akane Inoue
- Division of Genetics and Department of Cancer Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
171
|
Court FA, Gillingwater TH, Melrose S, Sherman DL, Greenshields KN, Morton AJ, Harris JB, Willison HJ, Ribchester RR. Identity, developmental restriction and reactivity of extralaminar cells capping mammalian neuromuscular junctions. J Cell Sci 2008; 121:3901-11. [PMID: 19001504 DOI: 10.1242/jcs.031047] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025] Open
Abstract
Neuromuscular junctions (NMJs) are normally thought to comprise three major cell types: skeletal muscle fibres, motor neuron terminals and perisynaptic terminal Schwann cells. Here we studied a fourth population of junctional cells in mice and rats, revealed using a novel cytoskeletal antibody (2166). These cells lie outside the synaptic basal lamina but form caps over NMJs during postnatal development. NMJ-capping cells also bound rPH, HM-24, CD34 antibodies and cholera toxin B subunit. Bromodeoxyuridine incorporation indicated activation, proliferation and spread of NMJ-capping cells following denervation in adults, in advance of terminal Schwann cell sprouting. The NMJ-capping cell reaction coincided with expression of tenascin-C but was independent of this molecule because capping cells also dispersed after denervation in tenascin-C-null mutant mice. NMJ-capping cells also dispersed after local paralysis with botulinum toxin and in atrophic muscles of transgenic R6/2 mice. We conclude that NMJ-capping cells (proposed name 'kranocytes') represent a neglected, canonical cellular constituent of neuromuscular junctions where they could play a permissive role in synaptic regeneration.
Collapse
Affiliation(s)
- Felipe A Court
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Abstract
Congenital myasthenic syndromes (CMS) are classified in terms of the located defect: presynaptic, postsynaptic, and synaptic. They are inherited disorders caused by various genetic defects, all but the slow-channel CMS by recessive inheritance. To date, 10 different CMS are known and further CMS subtypes and their genetic cause may be disclosed by future investigations. Prognosis in CMS is variable and largely depends on the pathophysiological and genetic defect. Subtypes showing progression and life-threatening crises with apneas are generally less favorable than others. Therapeutic agents used in CMS depend on the underlying defect and include acetylcholinesterase inhibitor, 3,4-diaminopyridine, quinidine sulfate, fluoxetine, acetazolamide, and ephedrine. Although there are no double-blind, placebo-controlled clinical trials for CMS, several drugs have shown convincingly positive clinical effects. It is therefore necessary to start a rational therapy regime as early as possible. In most CMS, however, mild and severe clinical courses are reported, which makes assessment on an individual basis necessary. This review emphasizes therapeutic strategies in CMS.
Collapse
Affiliation(s)
- Ulrike Schara
- Department of Pediatric Neurology, University of Essen, Essen, Germany.
| | | |
Collapse
|
173
|
Palace J, Beeson D. The congenital myasthenic syndromes. J Neuroimmunol 2008; 201-202:2-5. [PMID: 18708269 DOI: 10.1016/j.jneuroim.2008.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/19/2022]
Abstract
The congenital myasthenic syndromes (CMS) are rare inherited disorders of neuromuscular transmission characterised by fatigable muscle weakness. Thus far, genetic analysis has identified mutations in eleven different genes but it is clear that additional phenotypic subgroups exist where the underlying genetics has not yet been defined. Although each syndrome results from defective synaptic transmission at the neuromuscular junction, the patients show a variable set of phenotypes. Here, we provide a brief clinical review.
Collapse
Affiliation(s)
- Jackie Palace
- Department of Clinical Neurology, Level 3, West Wing, John Radcliffe Hospital, Headley Way, Headington OX3 9DU, UK.
| | | |
Collapse
|
174
|
Chevessier F, Girard E, Molgo J, Bartling S, Koenig J, Hantai D, Witzemann V. A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions. Hum Mol Genet 2008; 17:3577-95. [DOI: 10.1093/hmg/ddn251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
175
|
Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A. IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis. Brain 2008; 131:1940-52. [PMID: 18515870 PMCID: PMC2442426 DOI: 10.1093/brain/awn092] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/04/2008] [Accepted: 04/21/2008] [Indexed: 11/14/2022] Open
Abstract
Only around 80% of patients with generalized myasthenia gravis (MG) have serum antibodies to acetylcholine receptor [AChR; acetylcholine receptor antibody positive myasthenia gravis (AChR-MG)] by the radioimmunoprecipitation assay used worldwide. Antibodies to muscle specific kinase [MuSK; MuSK antibody positive myasthenia gravis (MuSK-MG)] make up a variable proportion of the remaining 20%. The patients with neither AChR nor MuSK antibodies are often called seronegative (seronegative MG, SNMG). There is accumulating evidence that SNMG patients are similar to AChR-MG in clinical features and thymic pathology. We hypothesized that SNMG patients have low-affinity antibodies to AChR that cannot be detected in solution phase assays, but would be detected by binding to the AChRs on the cell membrane, particularly if they were clustered at the high density that is found at the neuromuscular junction. We expressed recombinant AChR subunits with the clustering protein, rapsyn, in human embryonic kidney cells and tested for binding of antibodies by immunofluorescence. To identify AChRs, we tagged either AChR or rapsyn with enhanced green fluorescence protein, and visualized human antibodies with Alexa Fluor-labelled secondary or tertiary antibodies, or by fluorescence-activated cell sorter (FACS). We correlated the results with the thymic pathology where available. We detected AChR antibodies to rapsyn-clustered AChR in 66% (25/38) of sera previously negative for binding to AChR in solution and confirmed the results with FACS. The antibodies were mainly IgG1 subclass and showed ability to activate complement. In addition, there was a correlation between serum binding to clustered AChR and complement deposition on myoid cells in patients' thymus tissue. A similar approach was used to demonstrate that MuSK antibodies, although mainly IgG4, were partially IgG1 subclass and capable of activating complement when bound to MuSK on the cell surface. These observations throw new light on different forms of MG paving the way for improved diagnosis and management, and the approaches used have applicability to other antibody-mediated conditions.
Collapse
Affiliation(s)
- Maria Isabel Leite
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Saiju Jacob
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Stuart Viegas
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Judy Cossins
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Linda Clover
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - B. Paul Morgan
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Nick Willcox
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| | - Angela Vincent
- Neurosciences Group, Weatherall Institute of Molecular Medicine, Department of Clinical Neurology, University of Oxford, Oxford and Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
176
|
Shen XM, Fukuda T, Ohno K, Sine SM, Engel AG. Congenital myasthenia-related AChR delta subunit mutation interferes with intersubunit communication essential for channel gating. J Clin Invest 2008; 118:1867-76. [PMID: 18398509 DOI: 10.1172/jci34527] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 02/13/2008] [Indexed: 11/17/2022] Open
Abstract
Congenital myasthenias (CMs) arise from defects in neuromuscular junction-associated proteins. Deciphering the molecular bases of the CMs is required for therapy and illuminates structure-function relationships in these proteins. Here, we analyze the effects of a mutation in 1 of 4 homologous subunits in the AChR from a CM patient, a Leu to Pro mutation at position 42 of the delta subunit. The mutation is located in a region of contact between subunits required for rapid opening of the AChR channel and impedes the rate of channel opening. Substitutions of Gly, Lys, or Asp for deltaL42, or substitutions of Pro along the local protein chain, also slowed channel opening. Substitution of Pro for Leu in the epsilon subunit slowed opening, whereas this substitution had no effect in the beta subunit and actually sped opening in the alpha subunit. Analyses of energetic coupling between residues at the subunit interface showed that deltaL42 is functionally linked to alphaT127, a key residue in the adjacent alpha subunit required for rapid channel opening. Thus, deltaL42 is part of an intersubunit network that enables ACh binding to rapidly open the AChR channel, which may be compromised in patients with CM.
Collapse
Affiliation(s)
- Xin-Ming Shen
- Muscle Research Laboratory, Department of Neurology, Receptor Biology Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
177
|
Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, Engel AG. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 2008; 64:71-87. [PMID: 18626973 PMCID: PMC2570015 DOI: 10.1002/ana.21408] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Detailed analysis of phenotypic and molecular genetic aspects of Dok-7 myasthenia in 16 patients. METHODS We assessed our patients by clinical and electromyographic studies, by intercostal muscle biopsies for in vitro microelectrode analysis of neuromuscular transmission and quantitative electron microscopy EM of 409 end plates (EPs), and by mutation analysis, and expression studies of the mutants. RESULTS The clinical spectrum varied from mild static limb-girdle weakness to severe generalized progressive disease. The synaptic contacts were single or multiple, and some, but not all, were small. In vitro microelectrode studies indicated variable decreases of the number of released quanta and of the synaptic response to acetylcholine; acetylcholine receptor (AChR) channel kinetics were normal. EM analysis demonstrated widespread and previously unrecognized destruction and remodeling of the EPs. Each patient carries 2 or more heteroallelic mutations: 11 in genomic DNA, 7 of which are novel; and 6 identifiable only in complementary DNA or cloned complementary DNA, 3 of which are novel. The pathogenicity of the mutations was confirmed by expression studies. Although the functions of Dok-7 include AChR beta-subunit phosphorylation and maintaining AChR site density, patient EPs showed normal AChR beta-subunit phosphorylation, and the AChR density on the remaining junctional folds appeared normal. INTERPRETATION First, the clinical features of Dok-7 myasthenia are highly variable. Second, some mutations are complex and identifiable only in cloned complementary DNA. Third, Dok-7 is essential for maintaining not only the size but also the structural integrity of the EP. Fourth, the profound structural alterations at the EPs likely contribute importantly to the reduced safety margin of neuromuscular transmission.
Collapse
Affiliation(s)
- Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Heuss D, Klascinski J, Schubert SW, Moriabadi T, Lochmüller H, Hashemolhosseini S. Examination of transcript amounts and activity of protein kinase CK2 in muscle lysates of different types of human muscle pathologies. Mol Cell Biochem 2008; 316:135-40. [PMID: 18553059 DOI: 10.1007/s11010-008-9819-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
Motoneurons release the heparansulfate proteoglycan agrin and thereby activate the muscle-specific receptor tyrosine kinase (MuSK), which is the main organizer of subsynaptic specializations at the neuromuscular junction. Recently, we showed that (1) the protein kinase CK2 interacts with the intracellular region of MuSK; (2) the CK2 protein is enriched and co-localized with MuSK at postsynaptic specializations; (3) CK2-mediated phosphorylation of serine residues within a specific MuSK epitope, named the kinase insert, regulates acetylcholine receptor (AChR) clustering; (4) muscle-specific CK2beta knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function (see Genes Dev 20(13):1800-1816, 2006). Here, we investigated for the first time if CK2 is modulated in biopsies from human patients. To this end, we measured transcript amounts of the subunits CK2alpha and CK2beta and determined holoenzyme CK2 activity in 34 muscle biopsies of human patients with different muscle pathologies.
Collapse
Affiliation(s)
- Dieter Heuss
- Neurologische Klinik, Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
179
|
Shigemoto K, Kubo S, Jie C, Hato N, Abe Y, Ueda N, Kobayashi N, Kameda K, Mominoki K, Miyazawa A, Ishigami A, Matsuda S, Maruyama N. Myasthenia Gravis Experimentally Induced with Muscle-specific Kinase. Ann N Y Acad Sci 2008; 1132:93-8. [DOI: 10.1196/annals.1405.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
180
|
Slater CR. Structural Factors Influencing the Efficacy of Neuromuscular Transmission. Ann N Y Acad Sci 2008; 1132:1-12. [DOI: 10.1196/annals.1405.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
181
|
Anderson JA, Ng JJ, Bowe C, Mcdonald C, Richman DP, Wollmann RL, Maselli RA. Variable phenotypes associated with mutations inDOK7. Muscle Nerve 2008; 37:448-56. [DOI: 10.1002/mus.20944] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
182
|
Hamuro J, Higuchi O, Okada K, Ueno M, Iemura SI, Natsume T, Spearman H, Beeson D, Yamanashi Y. Mutations causing DOK7 congenital myasthenia ablate functional motifs in Dok-7. J Biol Chem 2008; 283:5518-24. [PMID: 18165682 DOI: 10.1074/jbc.m708607200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025] Open
Abstract
Dok-7 is a cytoplasmic activator of muscle-specific receptor-tyrosine kinase (MuSK). Both Dok-7 and MuSK are required for neuromuscular synaptogenesis. Mutations in DOK7 underlie a congenital myasthenic syndrome (CMS) associated with small and simplified neuromuscular synapses likely due to impaired Dok-7/MuSK signaling. The overwhelming majority of patients with DOK7 CMS have at least one allele with a frameshift mutation that causes a truncation in the COOH-terminal region of Dok-7 and affects MuSK activation. Dok-7 has pleckstrin homology (PH) and phosphotyrosine binding (PTB) domains in the NH2-terminal moiety, both of which are indispensable for MuSK activation in myotubes, but little is known about additional functional elements. Here, we identify a chromosome region maintenance 1-dependent nuclear export signal (NES) in the COOH-terminal moiety and demonstrate that the NES-mediated cytoplasmic location of Dok-7 is essential for regulating the interaction with MuSK in myotubes. The NH2-terminal PH domain is responsible for the nuclear import of Dok-7. We also show that the Src homology 2 target motifs in the COOH-terminal moiety of Dok-7 are active and crucial for MuSK activation in myotubes. In addition, CMS-associated missense mutations found in the PH or PTB domain inactivate Dok-7. Together, these findings demonstrate that, in addition to the NH2-terminal PH and PTB domains, the COOH-terminal NES and Src homology 2 target motifs play key roles in Dok-7/MuSK signaling for neuromuscular synaptogenesis. Ablation or disruption of these functional elements in Dok-7 probably underlies the neuromuscular junction synaptopathy observed in DOK7 CMS.
Collapse
Affiliation(s)
- Johko Hamuro
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Yushima, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, Botta G, Naretto VG, Janetzki C, Yaqoob N, Ott CE, Seelow D, Wieczorek D, Fiebig B, Wirth B, Hoopmann M, Walther M, Körber F, Blankenburg M, Mundlos S, Heller R, Hoffmann K. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet 2008; 82:464-76. [PMID: 18252226 DOI: 10.1016/j.ajhg.2007.11.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/21/2023] Open
Abstract
Impaired fetal movement causes malformations, summarized as fetal akinesia deformation sequence (FADS), and is triggered by environmental and genetic factors. Acetylcholine receptor (AChR) components are suspects because mutations in the fetally expressed gamma subunit (CHRNG) of AChR were found in two FADS disorders, lethal multiple pterygium syndrome (LMPS) and Escobar syndrome. Other AChR subunits alpha1, beta1, and delta (CHRNA1, CHRNB1, CHRND) as well as receptor-associated protein of the synapse (RAPSN) previously revealed missense or compound nonsense-missense mutations in viable congenital myasthenic syndrome; lethality of homozygous null mutations was predicted but never shown. We provide the first report to our knowledge of homozygous nonsense mutations in CHRNA1 and CHRND and show that they were lethal, whereas novel recessive missense mutations in RAPSN caused a severe but not necessarily lethal phenotype. To elucidate disease-associated malformations such as frequent abortions, fetal edema, cystic hygroma, or cardiac defects, we studied Chrna1, Chrnb1, Chrnd, Chrng, and Rapsn in mouse embryos and found expression in skeletal muscles but also in early somite development. This indicates that early developmental defects might be due to somite expression in addition to solely muscle-specific effects. We conclude that complete or severe functional disruption of fetal AChR causes lethal multiple pterygium syndrome whereas milder alterations result in fetal hypokinesia with inborn contractures or a myasthenic syndrome later in life.
Collapse
|
184
|
Mihaylova V, Müller JS, Vilchez JJ, Salih MA, Kabiraj MM, D’Amico A, Bertini E, Wölfle J, Schreiner F, Kurlemann G, Rasic VM, Siskova D, Colomer J, Herczegfalvi A, Fabriciova K, Weschke B, Scola R, Hoellen F, Schara U, Abicht A, Lochmüller H. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 2008; 131:747-59. [DOI: 10.1093/brain/awm325] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
185
|
Vincent A. Autoantibodies in different forms of myasthenia gravis and in the Lambert-Eaton syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:213-227. [PMID: 18631844 DOI: 10.1016/s0072-9752(07)01506-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Angela Vincent
- Department of Clinical Neurology, University of Oxford, Oxford, UK.
| |
Collapse
|
186
|
Bruneau EG, Brenner DS, Kuwada JY, Akaaboune M. Acetylcholine Receptor Clustering Is Required for the Accumulation and Maintenance of Scaffolding Proteins. Curr Biol 2008; 18:109-15. [DOI: 10.1016/j.cub.2007.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/29/2022]
|
187
|
Abstract
During the past five years many patients suffering from congenital myasthenic syndromes (CMS) have been identified worldwide and novel causative genes and mutations have been discovered. The disease genes now include those encoding each subunit of the acetylcholine receptor (AChR), the ColQ part of acetylcholinesterase (AChE), choline acetyltransferase, Na(v)1.4, MuSK, and Dok-7. Moreover, emerging genotype-phenotype correlations are providing clues for targeted mutation analysis. This review focuses on the recent observations in selected CMS.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology and Muscle Research Laboratory, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
188
|
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
189
|
|
190
|
Beeson D, Webster R, Cossins J, Lashley D, Spearman H, Maxwell S, Slater CR, Newsom-Davis J, Palace J, Vincent A. Congenital myasthenic syndromes and the formation of the neuromuscular junction. Ann N Y Acad Sci 2008; 1132:99-103. [PMID: 18567858 DOI: 10.1196/annals.1405.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders affecting neuromuscular transmission. Underlying mutations have been identified in at least 11 different genes. The majority of CMS patients have disorders due to mutations in postsynaptic proteins. Initial studies focused on dysfunction of the acetylcholine receptor (AChR) itself as the major cause of CMS. However, it is becoming apparent that mutations of proteins involved in clustering the AChR and maintaining neuromuscular junction structure form important subgroups. Analysis of the mutations in the AChR-clustering protein, rapsyn, show diverse causes for defective AChR localization and suggest that the common mutation rapsyn-N88K results in AChR clusters that are less stable than those generated by wild-type rapsyn. More recently, mutations in the newly identified endplate protein Dok-7 have been shown to affect AChR clustering and the generation and maintenance of specialized structures at the endplate. Dok-7 binds MuSK and many of the mutations of DOK7 impair the MuSK signaling pathway. Components of this pathway will provide attractive gene candidates for additional forms of CMS. The phenotypic characteristics of the different CMS in which muscle groups may be differentially affected not only provide clues for targeted genetic screening, but also pose further intriguing questions about underlying molecular mechanisms.
Collapse
Affiliation(s)
- David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Vogt J, Harrison BJ, Spearman H, Cossins J, Vermeer S, ten Cate L, Morgan NV, Beeson D, Maher ER. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet 2008; 82:222-7. [PMID: 18179903 PMCID: PMC2253973 DOI: 10.1016/j.ajhg.2007.09.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 09/06/2007] [Accepted: 09/12/2007] [Indexed: 01/12/2023] Open
Abstract
Multiple pterygium syndromes (MPS) comprise a group of multiple congenital anomaly disorders characterized by webbing (pterygia) of the neck, elbows, and/or knees and joint contractures (arthrogryposis). MPS are phenotypically and genetically heterogeneous but are traditionally divided into prenatally lethal and nonlethal (Escobar) types. Previously, we and others reported that recessive mutations in the embryonal acetylcholine receptor g subunit (CHRNG) can cause both lethal and nonlethal MPS, thus demonstrating that pterygia resulted from fetal akinesia. We hypothesized that mutations in acetylcholine receptor-related genes might also result in a MPS/fetal akinesia phenotype and so we analyzed 15 cases of lethal MPS/fetal akinesia without CHRNG mutations for mutations in the CHRNA1, CHRNB1, CHRND, and rapsyn (RAPSN) genes. No CHRNA1, CHRNB1, or CHRND mutations were detected, but a homozygous RAPSN frameshift mutation, c.1177-1178delAA, was identified in a family with three children affected with lethal fetal akinesia sequence. Previously, RAPSN mutations have been reported in congenital myasthenia. Functional studies were consistent with the hypothesis that whereas incomplete loss of rapsyn function may cause congenital myasthenia, more severe loss of function can result in a lethal fetal akinesia phenotype.
Collapse
Affiliation(s)
- Julie Vogt
- Department of Medical and Molecular Genetics and WellChild Paediatric Research Centre, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK
- West Midlands Regional Clinical Genetics Service, Birmingham Women's Hospital, West Midlands B15 2TG, UK
| | - Benjamin J. Harrison
- Department of Medical and Molecular Genetics and WellChild Paediatric Research Centre, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Hayley Spearman
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Judy Cossins
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Sascha Vermeer
- Department of Human Genetics 849, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | - Neil V. Morgan
- Department of Medical and Molecular Genetics and WellChild Paediatric Research Centre, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine, The John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Eamonn R. Maher
- Department of Medical and Molecular Genetics and WellChild Paediatric Research Centre, Division of Reproductive and Child Health, University of Birmingham, Birmingham B15 2TT, UK
- West Midlands Regional Clinical Genetics Service, Birmingham Women's Hospital, West Midlands B15 2TG, UK
| |
Collapse
|
192
|
Reliability of neuromuscular transmission and how it is maintained. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:27-101. [PMID: 18631840 DOI: 10.1016/s0072-9752(07)01502-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
193
|
Friese MB, Blagden CS, Burden SJ. Synaptic differentiation is defective in mice lacking acetylcholine receptor beta-subunit tyrosine phosphorylation. Development 2007; 134:4167-76. [PMID: 17959719 DOI: 10.1242/dev.010702] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrin activates MuSK, a receptor tyrosine kinase expressed in skeletal muscle, leading to tyrosine phosphorylation of the acetylcholine receptor (AChR) beta-subunit and clustering of AChRs. The importance of AChR beta-subunit tyrosine phosphorylation in clustering AChRs and regulating synaptic differentiation is poorly understood. We generated mice with targeted mutations in the three intracellular tyrosines of the AChR beta-subunit (AChR-beta(3F/3F)). Mice lacking AChR beta-subunit tyrosine phosphorylation thrive postnatally and have no overt behavioral defects, indicating that AChR beta-subunit tyrosine phosphorylation is not essential for the formation of neuromuscular synapses. Nonetheless, the size of synapses and the density of synaptic AChRs are reduced in AChR- beta(3F/3F) mutant mice. Moreover, synapses are structurally simplified and the organization of postjunctional folds is aberrant in mice lacking tyrosine phosphorylation of the AChR beta-subunit. Furthermore, mutant AChRs cluster poorly in response to agrin and are readily extracted from the cell surface of cultured myotubes by non-ionic detergent. These data indicate that tyrosine phosphorylation of the AChR beta-subunit has an important role in organizing AChRs and regulating synaptic differentiation.
Collapse
Affiliation(s)
- Matthew B Friese
- Molecular Neurobiology Program, The Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, NYU Medical School, 540 First Avenue, New York, NY 10016, USA
| | | | | |
Collapse
|
194
|
Denning L, Anderson JA, Davis R, Gregg JP, Kuzdenyi J, Maselli RA. High throughput genetic analysis of congenital myasthenic syndromes using resequencing microarrays. PLoS One 2007; 2:e918. [PMID: 17878953 PMCID: PMC1975473 DOI: 10.1371/journal.pone.0000918] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 08/22/2007] [Indexed: 11/19/2022] Open
Abstract
Background The use of resequencing microarrays for screening multiple, candidate disease loci is a promising alternative to conventional capillary sequencing. We describe the performance of a custom resequencing microarray for mutational analysis of Congenital Myasthenic Syndromes (CMSs), a group of disorders in which the normal process of neuromuscular transmission is impaired. Methodology/Principal Findings Our microarray was designed to assay the exons and flanking intronic regions of 8 genes linked to CMSs. A total of 31 microarrays were hybridized with genomic DNA from either individuals with known CMS mutations or from healthy controls. We estimated an overall microarray call rate of 93.61%, and we found the percentage agreement between the microarray and capillary sequencing techniques to be 99.95%. In addition, our microarray exhibited 100% specificity and 99.99% reproducibility. Finally, the microarray detected 22 out of the 23 known missense mutations, but it failed to detect all 7 known insertion and deletion (indels) mutations, indicating an overall sensitivity of 73.33% and a sensitivity with respect to missense mutations of 95.65%. Conclusions/Significance Overall, our microarray prototype exhibited strong performance and proved highly efficient for screening genes associated with CMSs. Until indels can be efficiently assayed with this technology, however, we recommend using resequencing microarrays for screening CMS mutations after common indels have been first assayed by capillary sequencing.
Collapse
Affiliation(s)
- Lisa Denning
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Jennifer A. Anderson
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Ryan Davis
- Department of Pathology, Medical Investigation of Neurodevelopmental Disorders Institute, University of California at Davis, Davis, California, United States of America
| | - Jeffrey P. Gregg
- Department of Pathology, Medical Investigation of Neurodevelopmental Disorders Institute, University of California at Davis, Davis, California, United States of America
| | - Jennifer Kuzdenyi
- Department of Neurology, University of California at Davis, Davis, California, United States of America
| | - Ricardo A. Maselli
- Department of Neurology, University of California at Davis, Davis, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
195
|
Müller JS, Mihaylova V, Abicht A, Lochmüller H. Congenital myasthenic syndromes: spotlight on genetic defects of neuromuscular transmission. Expert Rev Mol Med 2007; 9:1-20. [PMID: 17686188 DOI: 10.1017/s1462399407000427] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuromuscular junction (NMJ) is a complex structure that efficiently communicates the electrical impulse from the motor neuron to the skeletal muscle to induce muscle contraction. Genetic and autoimmune disorders known to compromise neuromuscular transmission are providing further insights into the complexities of NMJ function. Congenital myasthenic syndromes (CMSs) are a genetically and phenotypically heterogeneous group of rare hereditary disorders affecting neuromuscular transmission. The understanding of the molecular basis of the different types of CMSs has evolved rapidly in recent years. Mutations were first identified in the subunits of the nicotinic acetylcholine receptor (AChR), but now mutations in ten different genes - encoding post-, pre- or synaptic proteins - are known to cause CMSs. Pathogenic mechanisms leading to an impaired neuromuscular transmission modify AChRs or endplate structure or lead to decreased acetylcholine synthesis and release. However, the genetic background of many CMS forms is still unresolved. A precise molecular classification of CMS type is of paramount importance for the diagnosis, counselling and therapy of a patient, as different drugs may be beneficial or deleterious depending on the molecular background of the particular CMS.
Collapse
Affiliation(s)
- Juliane S Müller
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | |
Collapse
|
196
|
Abstract
In recent years, understanding of the pathogenesis and clinical presentation of distinct myasthenia subtypes has increased significantly. This article reviews the clinical manifestations of autoimmune myasthenia gravis (including myasthenia associated with anti-muscle-specific kinase antibodies), ocular myasthenia, and antibody negative myasthenia. The following treatments are examined: cholinesterase inhibitors, immunosuppressants, and thymectomy. Inherited congenital myasthenic syndromes (CMS) are now increasingly recognized, and most commonly present during childhood. This article outlines the presynaptic, synaptic basal lamina-associated, and postsynaptic classification of CMS and the clinical presentation and aetiology of individual syndromes. Relevant investigations and treatment options (including the role of pyridostigmine, 3,4-diaminopyridine, fluoxetine, and ephedrine) are discussed.
Collapse
Affiliation(s)
- J R Parr
- University of Oxford Department of Paediatrics, Children's Hospital, Oxford, UK.
| | | |
Collapse
|
197
|
Jones N, Hardy WR, Friese MB, Jorgensen C, Smith MJ, Woody NM, Burden SJ, Pawson T. Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase. Mol Cell Biol 2007; 27:4759-73. [PMID: 17452444 PMCID: PMC1951494 DOI: 10.1128/mcb.00184-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/12/2007] [Accepted: 04/13/2007] [Indexed: 12/31/2022] Open
Abstract
Shc family proteins serve as phosphotyrosine adaptor molecules in various receptor-mediated signaling pathways. In mammals, three distinct Shc genes have been described that encode proteins characterized by two phosphotyrosine-interaction modules, an amino-terminal phosphotyrosine binding (PTB) domain and a carboxy-terminal Src homology 2 domain. Here, we report the analysis of an uncharacterized fourth Shc family protein, ShcD/Shc4, that is expressed in adult brain and skeletal muscle. Consistent with this expression pattern, we find that ShcD can associate via its PTB domain with the phosphorylated muscle-specific kinase (MuSK) receptor tyrosine kinase and undergo tyrosine phosphorylation downstream of activated MuSK. Interestingly, additional sites of tyrosine phosphorylation, including a novel Grb2 binding site, are present on ShcD that are not found in other Shc family proteins. Activation of MuSK upon agrin binding at the neuromuscular junction (NMJ) induces clustering and tyrosine phosphorylation of acetylcholine receptors (AChRs) required for synaptic transmission. ShcD is coexpressed with MuSK in the postsynaptic region of the NMJ, and in cultured myotubes stimulated with agrin, expression of ShcD appears to be important for early tyrosine phosphorylation of the AChR. Thus, we have characterized a new member of the Shc family of docking proteins, which may mediate a specific aspect of signaling downstream of the MuSK receptor.
Collapse
Affiliation(s)
- Nina Jones
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
Congenital myasthenic syndromes (CMSs) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more mechanisms. Specific diagnosis of a CMS is important as some medications that benefit one type of CMS can be detrimental in another type. In some CMSs, strong clinical clues point to a specific diagnosis. In other CMSs, morphologic and in vitro electrophysiologic studies of the neuromuscular junction, determination of the number of acetylcholine receptors (AchRs) per junction, and molecular genetic studies may be required for a specific diagnosis. Strategies for therapy are based on whether a given CMS decreases or increases the synaptic response to acetylcholine (ACh). Cholinesterase inhibitors that increase the synaptic response to ACh and 3,4-diaminopyridine, which increases ACh release, are useful when the synaptic response to ACh is attenuated. Long-lived open-channel blockers of the AChR, quinidine, and fluoxetine, are useful when the synaptic response is increased by abnormally prolonged opening episodes of the AChR channel. Ephedrine has beneficial effects in some CMSs but its mechanism of action is not understood.
Collapse
Affiliation(s)
- Andrew G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
199
|
Abstract
p62(dok) and Dok-3 are members of the Dok family of adaptors found in B cells, with the former cloned as a substrate of the p210(bcr/abl) oncoprotein in Ph + chronic myelogenous leukemia. A role for p62(dok) in FcgammaRIIB-mediated negative regulation of B-cell proliferation had been established previously. Here, we generated Dok-3(-/-) mice to assess the function of Dok-3 in B cells. Mice lacking Dok-3 have normal B-cell development but possess higher level of IgM antibodies in their sera. In comparison to wild-type mice, Dok-3(-/-) mice mounted significantly enhanced humoral immune responses to T cell-independent type I and II antigens. Dok-3-deficient B cells hyperproliferated, exhibited elevated level of calcium signaling as well as enhanced activation of NF-kappaB, JNK, and p38MAPK in response to B-cell receptor (BCR) engagement. In the absence of Dok-3, the localization of the inhibitory phosphatase SHIP-1 to the plasma membrane is intact while its phosphorylation is compromised, suggesting that Dok-3 could function to facilitate or sustain the activation of SHIP-1. The phenotype and responses of Dok-3(-/-) mice and B cells could be differentiated from those of the Dok-1(-/-) counterparts. Hence, we propose that Dok-3 plays a distinct and nonredundant role in the negative regulation of BCR signaling.
Collapse
Affiliation(s)
- Chee-Hoe Ng
- Laboratory of Molecular and Cellular Immunology, Biomedical Sciences Institutes, Agency for Science, Technology and Research, Proteos, Singapore
| | | | | |
Collapse
|
200
|
Talbot K. Neuromuscular disorders: therapeutic advances. Lancet Neurol 2007; 6:18-9. [PMID: 17166796 DOI: 10.1016/s1474-4422(06)70667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin Talbot
- Department of Clinical Neurology, University of Oxford, Radcliffe Infirmary, Oxford, OX2 6HE, UK.
| |
Collapse
|