151
|
Koreski KP, Rieder LE, McLain LM, Chaubal A, Marzluff WF, Duronio RJ. Drosophila histone locus body assembly and function involves multiple interactions. Mol Biol Cell 2020; 31:1525-1537. [PMID: 32401666 PMCID: PMC7359574 DOI: 10.1091/mbc.e20-03-0176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent (RD) histone loci and concentrates factors required for RD histone mRNA biosynthesis. The Drosophila melanogaster genome has a single locus comprised of ∼100 copies of a tandemly arrayed 5-kB repeat unit containing one copy of each of the 5 RD histone genes. To determine sequence elements required for D. melanogaster HLB formation and histone gene expression, we used transgenic gene arrays containing 12 copies of the histone repeat unit that functionally complement loss of the ∼200 endogenous RD histone genes. A 12x histone gene array in which all H3-H4 promoters were replaced with H2a-H2b promoters (12xPR) does not form an HLB or express high levels of RD histone mRNA in the presence of the endogenous histone genes. In contrast, this same transgenic array is active in HLB assembly and RD histone gene expression in the absence of the endogenous RD histone genes and rescues the lethality caused by homozygous deletion of the RD histone locus. The HLB formed in the absence of endogenous RD histone genes on the mutant 12x array contains all known factors present in the wild-type HLB including CLAMP, which normally binds to GAGA repeats in the H3-H4 promoter. These data suggest that multiple protein–protein and/or protein–DNA interactions contribute to HLB formation, and that the large number of endogenous RD histone gene copies sequester available factor(s) from attenuated transgenic arrays, thereby preventing HLB formation and gene expression on these arrays.
Collapse
Affiliation(s)
- Kaitlin P Koreski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Leila E Rieder
- Department of Biology, Emory University, Atlanta, GA 30322
| | - Lyndsey M McLain
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ashlesha Chaubal
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
152
|
Shittu M, Steenwinkel T, Koshikawa S, Werner T. The Making of Transgenic Drosophila guttifera. Methods Protoc 2020; 3:E31. [PMID: 32349368 PMCID: PMC7359701 DOI: 10.3390/mps3020031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
The complex color patterns on the wings and body of Drosophila guttifera (D. guttifera) are emerging as model systems for studying evolutionary and developmental processes. Studies regarding these processes depend on overexpression and downregulation of developmental genes, which ultimately rely upon an effective transgenic system. Methods describing transgenesis in Drosophila melanogaster (D. melanogaster) have been reported in several studies, but they cannot be applied to D. guttifera due to the low egg production rate and the delicacy of the eggs. In this protocol, we describe extensively a comprehensive method used for generating transgenic D. guttifera. Using the protocol described here, we are able to establish transgenic lines, identifiable by the expression of enhanced green fluorescent protein (EGFP) in the eye disks of D. guttifera larvae. The entire procedure, from injection to screening for transgenic larvae, can be completed in approximately 30 days and should be relatively easy to adapt to other non-model Drosophila species, for which no white-eyed mutants exist.
Collapse
Affiliation(s)
- Mujeeb Shittu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.S.); (T.S.)
| | - Tessa Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.S.); (T.S.)
| | - Shigeyuki Koshikawa
- Faculty of Environmental Earth Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Graduate School of Environmental Science, Hokkaido University, N10W5, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (M.S.); (T.S.)
| |
Collapse
|
153
|
Yokoshi M, Segawa K, Fukaya T. Visualizing the Role of Boundary Elements in Enhancer-Promoter Communication. Mol Cell 2020; 78:224-235.e5. [DOI: 10.1016/j.molcel.2020.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
|
154
|
Angelova MT, Dimitrova DG, Da Silva B, Marchand V, Jacquier C, Achour C, Brazane M, Goyenvalle C, Bourguignon-Igel V, Shehzada S, Khouider S, Lence T, Guerineau V, Roignant JY, Antoniewski C, Teysset L, Bregeon D, Motorin Y, Schaefer MR, Carré C. tRNA 2'-O-methylation by a duo of TRM7/FTSJ1 proteins modulates small RNA silencing in Drosophila. Nucleic Acids Res 2020; 48:2050-2072. [PMID: 31943105 PMCID: PMC7038984 DOI: 10.1093/nar/gkaa002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.
Collapse
Affiliation(s)
- Margarita T Angelova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Virginie Marchand
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Caroline Jacquier
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Cyrinne Achour
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Mira Brazane
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Catherine Goyenvalle
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Valérie Bourguignon-Igel
- Next-Generation Sequencing Core Facility, UMS2008 IBSLor CNRS-Université de Lorraine-INSERM, BioPôle, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France.,Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Salman Shehzada
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Souraya Khouider
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Tina Lence
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Guerineau
- Institut de Chimie de Substances Naturelles, Centre de Recherche de Gif CNRS, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Jean-Yves Roignant
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| | - Damien Bregeon
- Eucaryiotic Translation, Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, 9 Quai Saint bernard, 75005 Paris, France
| | - Yuri Motorin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR7365, CNRS - Université de Lorraine, 9 avenue de la Forêt de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Matthias R Schaefer
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstrasse 17, A-1090 Vienna, Austria
| | - Clément Carré
- Transgenerational Epigenetics & small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, 9 Quai Saint Bernard, 75005 Paris, France
| |
Collapse
|
155
|
Hegde S, Soory A, Kaduskar B, Ratnaparkhi GS. SUMO conjugation regulates immune signalling. Fly (Austin) 2020; 14:62-79. [PMID: 32777975 PMCID: PMC7714519 DOI: 10.1080/19336934.2020.1808402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) are critical drivers and attenuators for proteins that regulate immune signalling cascades in host defence. In this review, we explore functional roles for one such PTM, the small ubiquitin-like modifier (SUMO). Very few of the SUMO conjugation targets identified by proteomic studies have been validated in terms of their roles in host defence. Here, we compare and contrast potential SUMO substrate proteins in immune signalling for flies and mammals, with an emphasis on NFκB pathways. We discuss, using the few mechanistic studies that exist for validated targets, the effect of SUMO conjugation on signalling and also explore current molecular models that explain regulation by SUMO. We also discuss in detail roles of evolutionary conservation of mechanisms, SUMO interaction motifs, crosstalk of SUMO with other PTMs, emerging concepts such as group SUMOylation and finally, the potentially transforming roles for genome-editing technologies in studying the effect of PTMs.
Collapse
Affiliation(s)
- Sushmitha Hegde
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | - Amarendranath Soory
- Biology, Indian Institute of Science Education & Research (IISER), Pune, India
| | | | | |
Collapse
|
156
|
Nyberg KG, Nguyen JQ, Kwon YJ, Blythe S, Beitel GJ, Carthew R. A pipeline for precise and efficient genome editing by sgRNA-Cas9 RNPs in Drosophila. Fly (Austin) 2020; 14:34-48. [PMID: 33016195 PMCID: PMC7746241 DOI: 10.1080/19336934.2020.1832416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing via homology-directed repair (HDR) has made possible precise and deliberate modifications to gene sequences. CRISPR/Cas9-mediated HDR is the simplest means to carry this out. However, technical challenges remain to improve efficiency and broaden applicability to any genetic background of Drosophila melanogaster as well as to other Drosophila species. To address these issues, we developed a two-stage marker-assisted strategy in which embryos are injected with RNPs and pre-screened using T7EI. Using sgRNA in complex with recombinant Cas9 protein, we assayed each sgRNA for genome-cutting efficiency. We then conducted HDR using sgRNAs that efficiently cut target genes and the application of a transformation marker that generates RNAi against eyes absent. This allows for screening based on eye morphology rather than colour. These new tools can be used to make a single change or a series of allelic substitutions in a region of interest, or to create additional genetic tools such as balancer chromosomes.
Collapse
Affiliation(s)
- Kevin G. Nyberg
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Joseph Q. Nguyen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yong-Jae Kwon
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Shelby Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Greg J. Beitel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Richard Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
157
|
POGLUT1 biallelic mutations cause myopathy with reduced satellite cells, α-dystroglycan hypoglycosylation and a distinctive radiological pattern. Acta Neuropathol 2020; 139:565-582. [PMID: 31897643 DOI: 10.1007/s00401-019-02117-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/17/2023]
Abstract
Protein O-glucosyltransferase 1 (POGLUT1) activity is critical for the Notch signaling pathway, being one of the main enzymes responsible for the glycosylation of the extracellular domain of Notch receptors. A biallelic mutation in the POGLUT1 gene has been reported in one family as the cause of an adult-onset limb-girdle muscular dystrophy (LGMD R21; OMIM# 617232). As the result of a collaborative international effort, we have identified the first cohort of 15 patients with LGMD R21, from nine unrelated families coming from different countries, providing a reliable phenotype-genotype and mechanistic insight. Patients carrying novel mutations in POGLUT1 all displayed a clinical picture of limb-girdle muscle weakness. However, the age at onset was broadened from adult to congenital and infantile onset. Moreover, we now report that the unique muscle imaging pattern of "inside-to-outside" fatty degeneration observed in the original cases is indeed a defining feature of POGLUT1 muscular dystrophy. Experiments on muscle biopsies from patients revealed a remarkable and consistent decrease in the level of the NOTCH1 intracellular domain, reduction of the pool of satellite cells (SC), and evidence of α-dystroglycan hypoglycosylation. In vitro biochemical and cell-based assays suggested a pathogenic role of the novel POGLUT1 mutations, leading to reduced enzymatic activity and/or protein stability. The association between the POGLUT1 variants and the muscular phenotype was established by in vivo experiments analyzing the indirect flight muscle development in transgenic Drosophila, showing that the human POGLUT1 mutations reduced its myogenic activity. In line with the well-known role of the Notch pathway in the homeostasis of SC and muscle regeneration, SC-derived myoblasts from patients' muscle samples showed decreased proliferation and facilitated differentiation. Together, these observations suggest that alterations in SC biology caused by reduced Notch1 signaling result in muscular dystrophy in LGMD R21 patients, likely with additional contribution from α-dystroglycan hypoglycosylation. This study settles the muscular clinical phenotype linked to POGLUT1 mutations and establishes the pathogenic mechanism underlying this muscle disorder. The description of a specific imaging pattern of fatty degeneration and muscle pathology with a decrease of α-dystroglycan glycosylation provides excellent tools which will help diagnose and follow up LGMD R21 patients.
Collapse
|
158
|
Giri R, Papadopoulos DK, Posadas DM, Potluri HK, Tomancak P, Mani M, Carthew RW. Ordered patterning of the sensory system is susceptible to stochastic features of gene expression. eLife 2020; 9:e53638. [PMID: 32101167 PMCID: PMC7064346 DOI: 10.7554/elife.53638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/25/2020] [Indexed: 01/23/2023] Open
Abstract
Sensory neuron numbers and positions are precisely organized to accurately map environmental signals in the brain. This precision emerges from biochemical processes within and between cells that are inherently stochastic. We investigated impact of stochastic gene expression on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila. Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures. Noise was greatly enhanced when both sens alleles were present in homologous loci such that each allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss of microRNA repression of sens increased protein abundance but not sensory pattern disorder. This suggests that gene expression stochasticity is a critical feature that must be constrained during development to allow rapid yet accurate cell fate resolution.
Collapse
Affiliation(s)
- Ritika Giri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | | | - Diana M Posadas
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hemanth K Potluri
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Pavel Tomancak
- Max Planck Institute of Cell Biology and GeneticsDresdenGermany
| | - Madhav Mani
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
159
|
Paul S, Yang L, Mattingly H, Goyal Y, Shvartsman SY, Veraksa A. Activation-induced substrate engagement in ERK signaling. Mol Biol Cell 2020; 31:235-243. [PMID: 31913744 PMCID: PMC7183763 DOI: 10.1091/mbc.e19-07-0355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is an essential component of developmental signaling in metazoans. Previous models of pathway activation suggested that dissociation of activated dually phosphorylated ERK (dpERK) from MAPK/ERK kinase (MEK), a kinase that phosphorylates ERK, and other cytoplasmic anchors, is sufficient for allowing ERK interactions with its substrates. Here, we provide evidence for an additional step controlling ERK’s access to substrates. Specifically, we demonstrate that interaction of ERK with its substrate Capicua (Cic) is controlled at the level of ERK phosphorylation, whereby Cic binds to dpERK much stronger than to unphosphorylated ERK, both in vitro and in vivo. Mathematical modeling suggests that the differential affinity of Cic for dpERK versus ERK is required for both down-regulation of Cic and stabilizing phosphorylated ERK. Preferential association of Cic with dpERK serves two functions: it prevents unproductive competition of Cic with unphosphorylated ERK and contributes to efficient signal propagation. We propose that high-affinity substrate binding increases the specificity and efficiency of signal transduction through the ERK pathway.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125.,Lewis-Sigler Institute for Integrative Genomics
| | - Henry Mattingly
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125
| |
Collapse
|
160
|
Brumos J, Zhao C, Gong Y, Soriano D, Patel AP, Perez-Amador MA, Stepanova AN, Alonso JM. An Improved Recombineering Toolset for Plants. THE PLANT CELL 2020; 32:100-122. [PMID: 31666295 PMCID: PMC6961616 DOI: 10.1105/tpc.19.00431] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
Gene functional studies often rely on the expression of a gene of interest as transcriptional and translational fusions with specialized tags. Ideally, this is done in the native chromosomal contexts to avoid potential misexpression artifacts. Although recent improvements in genome editing have made it possible to directly modify the target genes in their native chromosomal locations, classical transgenesis is still the preferred experimental approach chosen in most gene tagging studies because of its time efficiency and accessibility. We have developed a recombineering-based tagging system that brings together the convenience of the classical transgenic approaches and the high degree of confidence in the results obtained by direct chromosomal tagging using genome-editing strategies. These simple, scalable, customizable recombineering toolsets and protocols allow a variety of genetic modifications to be generated. In addition, we developed a highly efficient recombinase-mediated cassette exchange system to facilitate the transfer of the desired sequences from a bacterial artificial chromosome clone to a transformation-compatible binary vector, expanding the use of the recombineering approaches beyond Arabidopsis (Arabidopsis thaliana). We demonstrated the utility of this system by generating more than 250 whole-gene translational fusions and 123 Arabidopsis transgenic lines corresponding to 62 auxin-related genes and characterizing the translational reporter expression patterns for 14 auxin biosynthesis genes.
Collapse
Affiliation(s)
- Javier Brumos
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Chengsong Zhao
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Yan Gong
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- Department of Biology, Stanford University, Stanford, California 94305
| | - David Soriano
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Arjun P Patel
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Miguel A Perez-Amador
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), 46022 Valencia, Spain
| | - Anna N Stepanova
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Jose M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
161
|
Link N, Chung H, Jolly A, Withers M, Tepe B, Arenkiel BR, Shah PS, Krogan NJ, Aydin H, Geckinli BB, Tos T, Isikay S, Tuysuz B, Mochida GH, Thomas AX, Clark RD, Mirzaa GM, Lupski JR, Bellen HJ. Mutations in ANKLE2, a ZIKA Virus Target, Disrupt an Asymmetric Cell Division Pathway in Drosophila Neuroblasts to Cause Microcephaly. Dev Cell 2019; 51:713-729.e6. [PMID: 31735666 PMCID: PMC6917859 DOI: 10.1016/j.devcel.2019.10.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/19/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022]
Abstract
The apical Par complex, which contains atypical protein kinase C (aPKC), Bazooka (Par-3), and Par-6, is required for establishing polarity during asymmetric division of neuroblasts in Drosophila, and its activity depends on L(2)gl. We show that loss of Ankle2, a protein associated with microcephaly in humans and known to interact with Zika protein NS4A, reduces brain volume in flies and impacts the function of the Par complex. Reducing Ankle2 levels disrupts endoplasmic reticulum (ER) and nuclear envelope morphology, releasing the kinase Ballchen-VRK1 into the cytosol. These defects are associated with reduced phosphorylation of aPKC, disruption of Par-complex localization, and spindle alignment defects. Importantly, removal of one copy of ballchen or l(2)gl suppresses Ankle2 mutant phenotypes and restores viability and brain size. Human mutational studies implicate the above-mentioned genes in microcephaly and motor neuron disease. We suggest that NS4A, ANKLE2, VRK1, and LLGL1 define a pathway impinging on asymmetric determinants of neural stem cell division.
Collapse
Affiliation(s)
- Nichole Link
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Hyunglok Chung
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA
| | - Marjorie Withers
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Burak Tepe
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA
| | - Priya S Shah
- Department of Chemical Engineering and Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hatip Aydin
- Center of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey
| | - Bilgen B Geckinli
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Tulay Tos
- Department of Medical Genetics, Dr. Sami Ulus Research and Training Hospital of Women's and Children's Health and Diseases, Ankara, Turkey
| | - Sedat Isikay
- Department of Physiotherapy and Rehabilitation, Hasan Kalyoncu University, School of Health Sciences, Gaziantep, Turkey
| | - Beyhan Tuysuz
- Department of Pediatrics, Istanbul University-Cerrahpasa, Medical Faculty, Istanbul, Turkey
| | - Ganesh H Mochida
- Division of Genetics and Genomics, Department of Pediatrics and Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ajay X Thomas
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, BCM, Houston, TX 77030, USA; Section of Child Neurology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Robin D Clark
- Division of Medical Genetics, Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Ghayda M Mirzaa
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Department of Pediatrics, BCM, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Howard Hughes Medical Institute, BCM, Houston, TX 77030, USA; Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA; Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; MD/PhD Medical Scientist Training Program and MHG Graduate program, BCM, Houston, TX 77030, USA; Program in Developmental Biology, BCM, Houston, TX 77030, USA.
| |
Collapse
|
162
|
Walcott KCE, Mauthner SE, Tsubouchi A, Robertson J, Tracey WD. The Drosophila Small Conductance Calcium-Activated Potassium Channel Negatively Regulates Nociception. Cell Rep 2019; 24:3125-3132.e3. [PMID: 30231996 PMCID: PMC6454897 DOI: 10.1016/j.celrep.2018.08.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/11/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibition of nociceptor activity is important for the prevention of spontaneous pain and hyperalgesia. To identify the critical K+ channels that regulate nociceptor excitability, we performed a forward genetic screen using a Drosophila larval nociception paradigm. Knockdown of three K+ channel loci, the small conductance calcium-activated potassium channel (SK), seizure, and tiwaz, causes marked hypersensitive nociception behaviors. In more detailed studies of SK, we found that hypersensitive phenotypes can be recapitulated with a genetically null allele. Optical recordings from nociceptive neurons showed a significant increase in mechanically activated Ca2+ signals in SK mutant nociceptors. SK is expressed in peripheral neurons, including nociceptive neurons. Interestingly, SK proteins localize to axons of these neurons but are not detected in dendrites. Our findings suggest a major role for SK channels in the regulation of nociceptor excitation and are inconsistent with the hypothesis that the important site of action is within dendrites. Walcott et al. performed a forward genetic screen and identify three potassium channel subunits that negatively regulate nociception in Drosophila larvae. In a more detailed investigation of the SK channel, null mutants, rescue experiments, optical recordings, and protein localization studies indicate a functional role for SK in nociceptor excitability.
Collapse
Affiliation(s)
- Kia C E Walcott
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie E Mauthner
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN, USA; Department of Biology, Indiana University, Bloomington, IN, USA
| | - Asako Tsubouchi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jessica Robertson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - W Daniel Tracey
- Gill Center for Biomolecular Research, Indiana University, Bloomington, IN, USA; Department of Biology, Indiana University, Bloomington, IN, USA; Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
163
|
Ansar M, Chung H, Waryah YM, Makrythanasis P, Falconnet E, Rao AR, Guipponi M, Narsani AK, Fingerhut R, Santoni FA, Ranza E, Waryah AM, Bellen HJ, Antonarakis SE. Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3. Hum Mol Genet 2019; 27:2703-2711. [PMID: 29771303 DOI: 10.1093/hmg/ddy180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022] Open
Abstract
Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.
Collapse
Affiliation(s)
- Muhammad Ansar
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Hyunglok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Yar M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Periklis Makrythanasis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emilie Falconnet
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ali Raza Rao
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Michel Guipponi
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ashok K Narsani
- Institute of Ophthalmology, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Ralph Fingerhut
- Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Federico A Santoni
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Emmanuelle Ranza
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland
| | - Ali M Waryah
- Molecular Biology and Genetics Department, Medical Research Center, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.,Service of Genetic Medicine, University Hospitals of Geneva, Geneva, Switzerland.,iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| |
Collapse
|
164
|
Veling MW, Li Y, Veling MT, Litts C, Michki SN, Liu H, Ye B, Cai D. Identification of Neuronal Lineages in the Drosophila Peripheral Nervous System with a "Digital" Multi-spectral Lineage Tracing System. Cell Rep 2019; 29:3303-3312.e3. [PMID: 31801091 PMCID: PMC6913890 DOI: 10.1016/j.celrep.2019.10.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022] Open
Abstract
Elucidating cell lineages provides crucial understanding of development. Recently developed sequencing-based techniques enhance the scale of lineage tracing but eliminate the spatial information offered by conventional approaches. Multi-spectral labeling techniques, such as Brainbow, have the potential to identify lineage-related cells in situ. Here, we report nuclear Bitbow (nBitbow), a "digital" version of Brainbow that greatly expands the color diversity for scoring cells, and a suite of statistical methods for quantifying the lineage relationship of any two cells. Applying these tools to the Drosophila peripheral nervous system (PNS), we determined lineage relationship between all neuronal pairs. This study demonstrates nBitbow as an efficient tool for in situ lineage mapping, and the complete lineage relationship among larval PNS neurons opens new possibilities for studying how neurons gain specific features and circuit connectivity.
Collapse
Affiliation(s)
- Macy W Veling
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mike T Veling
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher Litts
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sylvia N Michki
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
165
|
Bellen HJ, Wangler MF, Yamamoto S. The fruit fly at the interface of diagnosis and pathogenic mechanisms of rare and common human diseases. Hum Mol Genet 2019; 28:R207-R214. [PMID: 31227826 PMCID: PMC6872428 DOI: 10.1093/hmg/ddz135] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Drosophila melanogaster is a unique, powerful genetic model organism for studying a broad range of biological questions. Human studies that probe the genetic causes of rare and undiagnosed diseases using massive-parallel sequencing often require complementary gene function studies to determine if and how rare variants affect gene function. These studies also provide inroads to disease mechanisms and therapeutic targets. In this review we discuss strategies for functional studies of rare human variants in Drosophila. We focus on our experience in establishing a Drosophila core of the Model Organisms Screening Center for the Undiagnosed Diseases Network (UDN) and concurrent fly studies with other large genomic rare disease research efforts such as the Centers for Mendelian Genomics. We outline four major strategies that use the latest technology in fly genetics to understand the impact of human variants on gene function. We also mention general concepts in probing disease mechanisms, therapeutics and using rare disease to understand common diseases. Drosophila is and will continue to be a fundamental genetic model to identify new disease-causing variants, pathogenic mechanisms and drugs that will impact medicine.
Collapse
Affiliation(s)
- Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX , USA
- Howard Hughes Medical Institute, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX , USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine (BCM), Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX , USA
| |
Collapse
|
166
|
Gospodaryov DV, Strilbytska OM, Semaniuk UV, Perkhulyn NV, Rovenko BM, Yurkevych IS, Barata AG, Dick TP, Lushchak OV, Jacobs HT. Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila. Biogerontology 2019; 21:155-171. [PMID: 31749111 PMCID: PMC7056681 DOI: 10.1007/s10522-019-09849-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17–71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.
Collapse
Affiliation(s)
- Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine.
- Department of Biochemistry and Biotechnology, Faculty of Natural Sciences, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - Olha M Strilbytska
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Uliana V Semaniuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Natalia V Perkhulyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Bohdana M Rovenko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Faculty of Biological and Environmental Sciences, and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ihor S Yurkevych
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Ana G Barata
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oleh V Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
167
|
Ansar M, Chung HL, Al-Otaibi A, Elagabani MN, Ravenscroft TA, Paracha SA, Scholz R, Abdel Magid T, Sarwar MT, Shah SF, Qaisar AA, Makrythanasis P, Marcogliese PC, Kamsteeg EJ, Falconnet E, Ranza E, Santoni FA, Aldhalaan H, Al-Asmari A, Faqeih EA, Ahmed J, Kornau HC, Bellen HJ, Antonarakis SE. Bi-allelic Variants in IQSEC1 Cause Intellectual Disability, Developmental Delay, and Short Stature. Am J Hum Genet 2019; 105:907-920. [PMID: 31607425 DOI: 10.1016/j.ajhg.2019.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
We report two consanguineous families with probands that exhibit intellectual disability, developmental delay, short stature, aphasia, and hypotonia in which homozygous non-synonymous variants were identified in IQSEC1 (GenBank: NM_001134382.3). In a Pakistani family, the IQSEC1 segregating variant is c.1028C>T (p.Thr343Met), while in a Saudi Arabian family the variant is c.962G>A (p.Arg321Gln). IQSEC1-3 encode guanine nucleotide exchange factors for the small GTPase ARF6 and their loss affects a variety of actin-dependent cellular processes, including AMPA receptor trafficking at synapses. The ortholog of IQSECs in the fly is schizo and its loss affects growth cone guidance at the midline in the CNS, also an actin-dependent process. Overexpression of the reference IQSEC1 cDNA in wild-type flies is lethal, but overexpression of the two variant IQSEC1 cDNAs did not affect viability. Loss of schizo caused embryonic lethality that could be rescued to 2nd instar larvae by moderate expression of the human reference cDNA. However, the p.Arg321Gln and p.Thr343Met variants failed to rescue embryonic lethality. These data indicate that the variants behave as loss-of-function mutations. We also show that schizo in photoreceptors is required for phototransduction. Finally, mice with a conditional Iqsec1 deletion in cortical neurons exhibited an increased density of dendritic spines with an immature morphology. The phenotypic similarity of the affecteds and the functional experiments in flies and mice indicate that IQSEC1 variants are the cause of a recessive disease with intellectual disability, developmental delay, and short stature, and that axonal guidance and dendritic projection defects as well as dendritic spine dysgenesis may underlie disease pathogenesis.
Collapse
|
168
|
Garcia-Marques J, Yang CP, Espinosa-Medina I, Mok K, Koyama M, Lee T. Unlimited Genetic Switches for Cell-Type-Specific Manipulation. Neuron 2019; 104:227-238.e7. [PMID: 31395429 DOI: 10.1016/j.neuron.2019.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/11/2019] [Accepted: 07/03/2019] [Indexed: 01/23/2023]
Abstract
Gaining independent genetic access to discrete cell types is critical to interrogate their biological functions as well as to deliver precise gene therapy. Transcriptomics has allowed us to profile cell populations with extraordinary precision, revealing that cell types are typically defined by a unique combination of genetic markers. Given the lack of adequate tools to target cell types based on multiple markers, most cell types remain inaccessible to genetic manipulation. Here we present CaSSA, a platform to create unlimited genetic switches based on CRISPR/Cas9 (Ca) and the DNA repair mechanism known as single-strand annealing (SSA). CaSSA allows engineering of independent genetic switches, each responding to a specific gRNA. Expressing multiple gRNAs in specific patterns enables multiplex cell-type-specific manipulations and combinatorial genetic targeting. CaSSA is a new genetic tool that conceptually works as an unlimited number of recombinases and will facilitate genetic access to cell types in diverse organisms.
Collapse
Affiliation(s)
- Jorge Garcia-Marques
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ching-Po Yang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Kent Mok
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
169
|
Positive Selection and Functional Divergence at Meiosis Genes That Mediate Crossing Over Across the Drosophila Phylogeny. G3-GENES GENOMES GENETICS 2019; 9:3201-3211. [PMID: 31362974 PMCID: PMC6778797 DOI: 10.1534/g3.119.400280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Meiotic crossing over ensures proper segregation of homologous chromosomes and generates genotypic diversity. Despite these functions, little is known about the genetic factors and population genetic forces involved in the evolution of recombination rate differences among species. The dicistronic meiosis gene, mei-217/mei-218, mediates most of the species differences in crossover rate and patterning during female meiosis between the closely related fruitfly species, Drosophila melanogaster and D. mauritiana The MEI-218 protein is one of several meiosis-specific mini-chromosome maintenance (mei-MCM) proteins that form a multi-protein complex essential to crossover formation, whereas the BLM helicase acts as an anti-crossover protein. Here we study the molecular evolution of five genes- mei-218, the other three known members of the mei-MCM complex, and Blm- over the phylogenies of three Drosophila species groups- melanogaster, obscura, and virilis We then use transgenic assays in D. melanogaster to test if molecular evolution at mei-218 has functional consequences for crossing over using alleles from the distantly related species D. pseudoobscura and D. virilis Our molecular evolutionary analyses reveal recurrent positive selection at two mei-MCM genes. Our transgenic assays show that sequence divergence among mei-218 alleles from D. melanogaster, D. pseudoobscura, and D. virilis has functional consequences for crossing over. In a D. melanogaster genetic background, the D. pseudoobscura mei-218 allele nearly rescues wildtype crossover rates but alters crossover patterning, whereas the D. virilis mei-218 allele conversely rescues wildtype crossover patterning but not crossover rates. These experiments demonstrate functional divergence at mei-218 and suggest that crossover rate and patterning are separable functions.
Collapse
|
170
|
Haussmann IU, Ustaoglu P, Brauer U, Hemani Y, Dix TC, Soller M. Plasmid-based gap-repair recombineered transgenes reveal a central role for introns in mutually exclusive alternative splicing in Down Syndrome Cell Adhesion Molecule exon 4. Nucleic Acids Res 2019; 47:1389-1403. [PMID: 30541104 PMCID: PMC6379703 DOI: 10.1093/nar/gky1254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022] Open
Abstract
Alternative splicing is a key feature of human genes, yet studying its regulation is often complicated by large introns. The Down Syndrome Cell Adhesion Molecule (Dscam) gene from Drosophila is one of the most complex genes generating vast molecular diversity by mutually exclusive alternative splicing. To resolve how alternative splicing in Dscam is regulated, we first developed plasmid-based UAS reporter genes for the Dscam variable exon 4 cluster and show that its alternative splicing is recapitulated by GAL4-mediated expression in neurons. We then developed gap-repair recombineering to very efficiently manipulate these large reporter plasmids in Escherichia coli using restriction enzymes or sgRNA/Cas9 DNA scission to capitalize on the many benefits of plasmids in phiC31 integrase-mediated transgenesis. Using these novel tools, we show that inclusion of Dscam exon 4 variables differs little in development and individual flies, and is robustly determined by sequences harbored in variable exons. We further show that introns drive selection of both proximal and distal variable exons. Since exon 4 cluster introns lack conserved sequences that could mediate robust long-range base-pairing to bring exons into proximity for splicing, our data argue for a central role of introns in mutually exclusive alternative splicing of Dscam exon 4 cluster.
Collapse
Affiliation(s)
- Irmgard U Haussmann
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.,School of Life Science, CSELS, Coventry University, Coventry CV1 5FB, UK
| | - Pinar Ustaoglu
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ulrike Brauer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yash Hemani
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Thomas C Dix
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
171
|
Harnish JM, Deal SL, Chao HT, Wangler MF, Yamamoto S. In Vivo Functional Study of Disease-associated Rare Human Variants Using Drosophila. J Vis Exp 2019:10.3791/59658. [PMID: 31498321 PMCID: PMC7418855 DOI: 10.3791/59658] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advances in sequencing technology have made whole-genome and whole-exome datasets more accessible for both clinical diagnosis and cutting-edge human genetics research. Although a number of in silico algorithms have been developed to predict the pathogenicity of variants identified in these datasets, functional studies are critical to determining how specific genomic variants affect protein function, especially for missense variants. In the Undiagnosed Diseases Network (UDN) and other rare disease research consortia, model organisms (MO) including Drosophila, C. elegans, zebrafish, and mice are actively used to assess the function of putative human disease-causing variants. This protocol describes a method for the functional assessment of rare human variants used in the Model Organisms Screening Center Drosophila Core of the UDN. The workflow begins with gathering human and MO information from multiple public databases, using the MARRVEL web resource to assess whether the variant is likely to contribute to a patient's condition as well as design effective experiments based on available knowledge and resources. Next, genetic tools (e.g., T2A-GAL4 and UAS-human cDNA lines) are generated to assess the functions of variants of interest in Drosophila. Upon development of these reagents, two-pronged functional assays based on rescue and overexpression experiments can be performed to assess variant function. In the rescue branch, the endogenous fly genes are "humanized" by replacing the orthologous Drosophila gene with reference or variant human transgenes. In the overexpression branch, the reference and variant human proteins are exogenously driven in a variety of tissues. In both cases, any scorable phenotype (e.g., lethality, eye morphology, electrophysiology) can be used as a read-out, irrespective of the disease of interest. Differences observed between reference and variant alleles suggest a variant-specific effect, and thus likely pathogenicity. This protocol allows rapid, in vivo assessments of putative human disease-causing variants of genes with known and unknown functions.
Collapse
Affiliation(s)
- J Michael Harnish
- Department of Molecular and Human Genetics, Baylor College of Medicine
| | - Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine; Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital; Department of Neuroscience, Baylor College of Medicine
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine; Program in Developmental Biology, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine; Program in Developmental Biology, Baylor College of Medicine; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital; Department of Neuroscience, Baylor College of Medicine;
| |
Collapse
|
172
|
Weber T, Stephan R, Moreno E, Pielage J. The Ankyrin Repeat Domain Controls Presynaptic Localization of Drosophila Ankyrin2 and Is Essential for Synaptic Stability. Front Cell Dev Biol 2019; 7:148. [PMID: 31475145 PMCID: PMC6703079 DOI: 10.3389/fcell.2019.00148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 01/24/2023] Open
Abstract
The structural integrity of synaptic connections critically depends on the interaction between synaptic cell adhesion molecules (CAMs) and the underlying actin and microtubule cytoskeleton. This interaction is mediated by giant Ankyrins, that act as specialized adaptors to establish and maintain axonal and synaptic compartments. In Drosophila, two giant isoforms of Ankyrin2 (Ank2) control synapse stability and organization at the larval neuromuscular junction (NMJ). Both Ank2-L and Ank2-XL are highly abundant in motoneuron axons and within the presynaptic terminal, where they control synaptic CAMs distribution and organization of microtubules. Here, we address the role of the conserved N-terminal ankyrin repeat domain (ARD) for subcellular localization and function of these giant Ankyrins in vivo. We used a P[acman] based rescue approach to generate deletions of ARD subdomains, that contain putative binding sites of interacting transmembrane proteins. We show that specific subdomains control synaptic but not axonal localization of Ank2-L. These domains contain binding sites to L1-family member CAMs, and we demonstrate that these regions are necessary for the organization of synaptic CAMs and for the control of synaptic stability. In contrast, presynaptic Ank2-XL localization only partially depends on the ARD but strictly requires the presynaptic presence of Ank2-L demonstrating a critical co-dependence of the two isoforms at the NMJ. Ank2-XL dependent control of microtubule organization correlates with presynaptic abundance of the protein and is thus only partially affected by ARD deletions. Together, our data provides novel insights into the synaptic targeting of giant Ankyrins with relevance for the control of synaptic plasticity and maintenance.
Collapse
Affiliation(s)
- Tobias Weber
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Raiko Stephan
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Eliza Moreno
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jan Pielage
- Department of Zoology and Neurobiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
173
|
Suzuki TK, Koshikawa S, Kobayashi I, Uchino K, Sezutsu H. Modular cis-regulatory logic of yellow gene expression in silkmoth larvae. INSECT MOLECULAR BIOLOGY 2019; 28:568-577. [PMID: 30737958 PMCID: PMC6849593 DOI: 10.1111/imb.12574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colour patterns in butterflies and moths are crucial traits for adaptation. Previous investigations have highlighted genes responsible for pigmentation (ie yellow and ebony). However, the mechanisms by which these genes are regulated in lepidopteran insects remain poorly understood. To elucidate this, molecular studies involving dipterans have largely analysed the cis-regulatory regions of pigmentation genes and have revealed cis-regulatory modularity. Here, we used well-developed transgenic techniques in Bombyx mori and demonstrated that cis-regulatory modularity controls tissue-specific expression of the yellow gene. We first identified which body parts are regulated by the yellow gene via black pigmentation. We then isolated three discrete regulatory elements driving tissue-specific gene expression in three regions of B. mori larvae. Finally, we found that there is no apparent sequence conservation of cis-regulatory regions between B. mori and Drosophila melanogaster, and no expression driven by the regulatory regions of one species when introduced into the other species. Therefore, the trans-regulatory landscapes of the yellow gene differ significantly between the two taxa. The results of this study confirm that lepidopteran species use cis-regulatory modules to control gene expression related to pigmentation, and represent a powerful cadre of transgenic tools for studying evolutionary developmental mechanisms.
Collapse
Affiliation(s)
- T. K. Suzuki
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - S. Koshikawa
- Faculty of Environmental Earth ScienceHokkaido UniversitySapporo060‐0810Japan
| | - I. Kobayashi
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - K. Uchino
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| | - H. Sezutsu
- Transgenic Silkworm Research Unit, Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)TsukubaIbarakiJapan
| |
Collapse
|
174
|
Repressive Gene Regulation Synchronizes Development with Cellular Metabolism. Cell 2019; 178:980-992.e17. [PMID: 31353220 DOI: 10.1016/j.cell.2019.06.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/06/2019] [Accepted: 06/12/2019] [Indexed: 01/06/2023]
Abstract
Metabolic conditions affect the developmental tempo of animals. Developmental gene regulatory networks (GRNs) must therefore synchronize their dynamics with a variable timescale. We find that layered repression of genes couples GRN output with variable metabolism. When repressors of transcription or mRNA and protein stability are lost, fewer errors in Drosophila development occur when metabolism is lowered. We demonstrate the universality of this phenomenon by eliminating the entire microRNA family of repressors and find that development to maturity can be largely rescued when metabolism is reduced. Using a mathematical model that replicates GRN dynamics, we find that lowering metabolism suppresses the emergence of developmental errors by curtailing the influence of auxiliary repressors on GRN output. We experimentally show that gene expression dynamics are less affected by loss of repressors when metabolism is reduced. Thus, layered repression provides robustness through error suppression and may provide an evolutionary route to a shorter reproductive cycle.
Collapse
|
175
|
Rice GR, Barmina O, Luecke D, Hu K, Arbeitman M, Kopp A. Modular tissue-specific regulation of doublesex underpins sexually dimorphic development in Drosophila. Development 2019; 146:dev178285. [PMID: 31285355 PMCID: PMC6679366 DOI: 10.1242/dev.178285] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/28/2019] [Indexed: 11/20/2022]
Abstract
The ability of a single genome to produce distinct and often dramatically different male and female forms is one of the wonders of animal development. In Drosophila melanogaster, most sexually dimorphic traits are controlled by sex-specific isoforms of the doublesex (dsx) transcription factor, and dsx expression is mostly limited to cells that give rise to sexually dimorphic traits. However, it is unknown how this mosaic of sexually dimorphic and monomorphic organs arises. Here, we characterize the cis-regulatory sequences that control dsx expression in the foreleg, which contains multiple types of sex-specific sensory organs. We find that separate modular enhancers are responsible for dsx expression in each sexually dimorphic organ. Expression of dsx in the sex comb is co-regulated by two enhancers with distinct spatial and temporal specificities that are separated by a genitalia-specific enhancer. The sex comb-specific enhancer from D. willistoni, a species that primitively lacks sex combs, is not active in the foreleg. Thus, the mosaic of sexually dimorphic and monomorphic organs depends on modular regulation of dsx transcription by dedicated cell type-specific enhancers.
Collapse
Affiliation(s)
- Gavin R Rice
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Olga Barmina
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - David Luecke
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Kevin Hu
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| | - Michelle Arbeitman
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
176
|
Chi X, Zheng Q, Jiang R, Chen-Tsai RY, Kong LJ. A system for site-specific integration of transgenes in mammalian cells. PLoS One 2019; 14:e0219842. [PMID: 31344144 PMCID: PMC6657834 DOI: 10.1371/journal.pone.0219842] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mammalian cell expression systems are the most commonly used platforms for producing biotherapeutic proteins. However, development of recombinant mammalian cell lines is often hindered by the unstable and variable transgene expression associated with random integration. We have developed an efficient strategy for site-specific integration of genes of interest (GOIs). This method enables rapid and precise insertion of a gene expression cassette at defined loci in mammalian cells, resulting in homogeneous transgene expression. We identified the Hipp11 (H11) gene as a "safe harbor" locus for gene knock-in in CHO-S cells. Using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 mediated homologous recombination, we knocked in a DNA cassette (the landing pad) that includes a pair of PhiC31 bacteriophage attP sites and genes facilitating integrase-based GOI integration. A master cell line, with the landing pad inserted correctly in the H11 locus, was established. This master cell line was used for site-specific, irreversible recombination, catalyzed by PhiC31 integrase. Using this system, an integration efficiency of 97.7% was achieved with green fluorescent protein (GFP) after selection. The system was then further validated in HEK293T cells, using an analogous protocol to insert the GFP gene at the ROSA26 locus, resulting in 90.7% GFP-positive cells after selection. In comparison, random insertion yielded 0.68% and 1.32% GFP-positive cells in the CHO-S and HEK293T cells, respectively. Taken together, these findings demonstrated an accurate and effective protocol for generating recombinant cell lines to provide consistent protein production. Its likely broad applicability was illustrated here in two cell lines, CHO-S and HEK293T, using two different genomic loci as integration sites. Thus, the system is potentially valuable for biomanufacturing therapeutic proteins.
Collapse
Affiliation(s)
- Xiuling Chi
- Applied StemCell, Inc., Milpitas, California, United States of America
| | - Qi Zheng
- Applied StemCell, Inc., Milpitas, California, United States of America
| | - Ruhong Jiang
- Applied StemCell, Inc., Milpitas, California, United States of America
| | - Ruby Yanru Chen-Tsai
- Applied StemCell, Inc., Milpitas, California, United States of America
- * E-mail: (RT); (LK)
| | - Ling-Jie Kong
- Applied StemCell, Inc., Milpitas, California, United States of America
- * E-mail: (RT); (LK)
| |
Collapse
|
177
|
Yeung K, Wang F, Li Y, Wang K, Mardon G, Chen R. Integrative genomic analysis reveals novel regulatory mechanisms of eyeless during Drosophila eye development. Nucleic Acids Res 2019; 46:11743-11758. [PMID: 30295802 PMCID: PMC6294497 DOI: 10.1093/nar/gky892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 01/22/2023] Open
Abstract
Eyeless (ey) is one of the most critical transcription factors for initiating the entire eye development in Drosophila. However, the molecular mechanisms through which Ey regulates target genes and pathways have not been characterized at the genomic level. Using ChIP-Seq, we generated an endogenous Ey-binding profile in Drosophila developing eyes. We found that Ey binding occurred more frequently at promoter compared to non-promoter regions. Ey promoter binding was correlated with the active transcription of genes involved in development and transcription regulation. An integrative analysis revealed that Ey directly regulated a broad and highly connected genetic network, including many essential patterning pathways, and known and novel eye genes. Interestingly, we observed that Ey could target multiple components of the same pathway, which might enhance its control of these pathways during eye development. In addition to protein-coding genes, we discovered Ey also targeted non-coding RNAs, which represents a new regulatory mechanism employed by Ey. These findings suggest that Ey could use multiple molecular mechanisms to regulate target gene expression and pathway function, which might enable Ey to exhibit a greater flexibility in controlling different processes during eye development.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Rui Chen
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.,Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
178
|
Nitta Y, Matsui S, Kato Y, Kaga Y, Sugimoto K, Sugie A. Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock. Sci Rep 2019; 9:8857. [PMID: 31222139 PMCID: PMC6586792 DOI: 10.1038/s41598-019-45410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/06/2019] [Indexed: 12/02/2022] Open
Abstract
Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.
Collapse
Affiliation(s)
- Yohei Nitta
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Sayaka Matsui
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yukine Kato
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Yosuke Kaga
- School of Medicine, Niigata University, Niigata, Japan
| | - Kenkichi Sugimoto
- Department of Cell Science, Faculty of Graduate School of Science and Technology, Niigata University, Niigata, Japan.
| | - Atsushi Sugie
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- Brain Research Institute, Niigata University, Niigata, Japan.
| |
Collapse
|
179
|
Piwko P, Vitsaki I, Livadaras I, Delidakis C. The Role of Insulators in Transgene Transvection in Drosophila. Genetics 2019; 212:489-508. [PMID: 30948430 PMCID: PMC6553826 DOI: 10.1534/genetics.119.302165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Transvection is the phenomenon where a transcriptional enhancer activates a promoter located on the homologous chromosome. It has been amply documented in Drosophila where homologs are closely paired in most, if not all, somatic nuclei, but it has been known to rarely occur in mammals as well. We have taken advantage of site-directed transgenesis to insert reporter constructs into the same genetic locus in Drosophila and have evaluated their ability to engage in transvection by testing many heterozygous combinations. We find that transvection requires the presence of an insulator element on both homologs. Homotypic trans-interactions between four different insulators can support transvection: the gypsy insulator (GI), Wari, Fab-8 and 1A2; GI and Fab-8 are more effective than Wari or 1A2 We show that, in the presence of insulators, transvection displays the characteristics that have been previously described: it requires homolog pairing, but can happen at any of several loci in the genome; a solitary enhancer confronted with an enhancerless reporter is sufficient to drive transcription; it is weaker than the action of the same enhancer-promoter pair in cis, and it is further suppressed by cis-promoter competition. Though necessary, the presence of homotypic insulators is not sufficient for transvection; their position, number and orientation matters. A single GI adjacent to both enhancer and promoter is the optimal configuration. The identity of enhancers and promoters in the vicinity of a trans-interacting insulator pair is also important, indicative of complex insulator-enhancer-promoter interactions.
Collapse
Affiliation(s)
- Pawel Piwko
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ilektra Vitsaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| | - Ioannis Livadaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, Heraklion 70013, Crete, Greece
| |
Collapse
|
180
|
Assia Batzir N, Bhagwat PK, Eble TN, Liu P, Eng CM, Elsea SH, Robak LA, Scaglia F, Goldman AM, Dhar SU, Wangler MF. De novo missense variant in the GTPase effector domain (GED) of DNM1L leads to static encephalopathy and seizures. Cold Spring Harb Mol Case Stud 2019; 5:a003673. [PMID: 30850373 PMCID: PMC6549558 DOI: 10.1101/mcs.a003673] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/12/2019] [Indexed: 02/06/2023] Open
Abstract
DNM1L encodes a GTPase of the dynamin superfamily, which plays a crucial role in mitochondrial and peroxisomal fission. Pathogenic variants affecting the middle domain and the GTPase domain of DNM1L have been implicated in encephalopathy because of defective mitochondrial and peroxisomal fission 1 (EMPF1, MIM #614388). Patients show variable phenotypes ranging from severe hypotonia leading to death in the neonatal period to developmental delay/regression, with or without seizures. Familial pathogenic variants in the GTPase domain have also been associated with isolated optic atrophy. We present a 27-yr-old woman with static encephalopathy, a history of seizures, and nystagmus, in whom a novel de novo heterozygous variant was detected in the GTPase effector domain (GED) of DNM1L (c.2072A>G, p.Tyr691Cys). Functional studies in Drosophila demonstrate large, abnormally distributed peroxisomes and mitochondria, an effect very similar to that of middle domain missense alleles observed in pediatric subjects with EMPF1. To our knowledge, not only is this the first report of a disease-causing variant in the GED domain in humans, but this is also the oldest living individual reported with EMPF1. Longitudinal data of this kind helps to expand our knowledge of the natural history of a growing list of DNM1L-related disorders.
Collapse
Affiliation(s)
- Nurit Assia Batzir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pranjali K Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Tanya N Eble
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics, Houston, Texas 77021, USA
| | - Laurie A Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
- BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, New Territories, Hong Kong, SAR
| | - Alica M Goldman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Shweta U Dhar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
181
|
Abstract
Teneurins were first discovered and published in 1993 and 1994, in Drosophila melanogaster as Ten-a and Ten-m. They were initially described as cell surface proteins, and as pair-rule genes. Later, they proved to be type II transmembrane proteins, and not to be pair-rule genes. Ten-m might nonetheless have had an ancestral function in clock-based segmentation as a Ten-m oscillator. The turn of the millennium saw a watershed of vertebrate Teneurin discovery, which was soon complemented by Teneurin protein annotations from whole genome sequence publications. Teneurins encode proteins with essentially invariant domain order and size. The first years of Teneurin studies in many experimental systems led to key insights, and a unified picture, of Teneurin proteins.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ron Wides
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
182
|
Driller JH, Lützkendorf J, Depner H, Siebert M, Kuropka B, Weise C, Piao C, Petzoldt AG, Lehmann M, Stelzl U, Zahedi R, Sickmann A, Freund C, Sigrist SJ, Wahl MC. Phosphorylation of the Bruchpilot N-terminus in Drosophila unlocks axonal transport of active zone building blocks. J Cell Sci 2019; 132:jcs.225151. [PMID: 30745339 DOI: 10.1242/jcs.225151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/24/2019] [Indexed: 01/31/2023] Open
Abstract
Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.
Collapse
Affiliation(s)
- Jan H Driller
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Janine Lützkendorf
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Harald Depner
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Matthias Siebert
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Benno Kuropka
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Christoph Weise
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Chengji Piao
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany
| | - Astrid G Petzoldt
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany.,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martin Lehmann
- Cellular Imaging, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Roessle-Straße 10, D-13125 Berlin, Germany
| | - Ulrich Stelzl
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 1/I, A-8010 Graz, Austria
| | - René Zahedi
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Stephan J Sigrist
- Laboratory of Genetics, Institute of Biology, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany .,NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, D-14195 Berlin, Germany .,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| |
Collapse
|
183
|
Imaging Flies by Fluorescence Microscopy: Principles, Technologies, and Applications. Genetics 2019; 211:15-34. [PMID: 30626639 PMCID: PMC6325693 DOI: 10.1534/genetics.118.300227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The development of fluorescent labels and powerful imaging technologies in the last two decades has revolutionized the field of fluorescence microscopy, which is now widely used in diverse scientific fields from biology to biomedical and materials science. Fluorescence microscopy has also become a standard technique in research laboratories working on Drosophila melanogaster as a model organism. Here, we review the principles of fluorescence microscopy technologies from wide-field to Super-resolution microscopy and its application in the Drosophila research field.
Collapse
|
184
|
Mao D, Lin G, Tepe B, Zuo Z, Tan KL, Senturk M, Zhang S, Arenkiel BR, Sardiello M, Bellen HJ. VAMP associated proteins are required for autophagic and lysosomal degradation by promoting a PtdIns4P-mediated endosomal pathway. Autophagy 2019; 15:1214-1233. [PMID: 30741620 DOI: 10.1080/15548627.2019.1580103] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations in the ER-associated VAPB/ALS8 protein cause amyotrophic lateral sclerosis and spinal muscular atrophy. Previous studies have argued that ER stress may underlie the demise of neurons. We find that loss of VAP proteins (VAPs) leads to an accumulation of aberrant lysosomes and impairs lysosomal degradation. VAPs mediate ER to Golgi tethering and their loss may affect phosphatidylinositol-4-phosphate (PtdIns4P) transfer between these organelles. We found that loss of VAPs elevates PtdIns4P levels in the Golgi, leading to an expansion of the endosomal pool derived from the Golgi. Fusion of these endosomes with lysosomes leads to an increase in lysosomes with aberrant acidity, contents, and shape. Importantly, reducing PtdIns4P levels with a PtdIns4-kinase (PtdIns4K) inhibitor, or removing a single copy of Rab7, suppress macroautophagic/autophagic degradation defects as well as behavioral defects observed in Drosophila Vap33 mutant larvae. We propose that a failure to tether the ER to the Golgi when VAPs are lost leads to an increase in Golgi PtdIns4P levels, and an expansion of endosomes resulting in an accumulation of dysfunctional lysosomes and a failure in proper autophagic lysosomal degradation. Abbreviations: ALS: amyotrophic lateral sclerosis; CSF: cerebrospinal fluid; CERT: ceramide transfer protein; FFAT: two phenylalanines in an acidic tract; MSP: major sperm proteins; OSBP: oxysterol binding protein; PH: pleckstrin homology; PtdIns4P: phosphatidylinositol-4-phosphate; PtdIns4K: phosphatidylinositol 4-kinase; UPR: unfolded protein response; VAMP: vesicle-associated membrane protein; VAPA/B: mammalian VAPA and VAPB proteins; VAPs: VAMP-associated proteins (referring to Drosophila Vap33, and human VAPA and VAPB).
Collapse
Affiliation(s)
- Dongxue Mao
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Guang Lin
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Burak Tepe
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Zhongyuan Zuo
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Kai Li Tan
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Mumine Senturk
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA
| | - Sheng Zhang
- c The Brown Foundation Institute of Molecular Medicine , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,d Department of Neurobiology and Anatomy , University of Texas McGovern Medical School at Houston , Houston , TX , USA.,e Programs in Genetics & Epigenetics and Neuroscience , University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS) , Houston , TX , USA
| | - Benjamin R Arenkiel
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA
| | - Marco Sardiello
- b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA
| | - Hugo J Bellen
- a Program in Developmental Biology , Baylor College of Medicine , Houston , TX , USA.,b Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,f Texas Children's Hospital , Jan and Dan Duncan Neurological Research Institute , Houston , TX , USA.,g Department of Neuroscience , Baylor College of Medicine , Houston , TX , USA.,h Baylor College of Medicine , Howard Hughes Medical Institute , Houston , TX , USA
| |
Collapse
|
185
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
186
|
Fan H, Liu X, Shen Y, Chen S, Huan Y, Shan J, Zhou C, Wu S, Zhang Z, Wang Y. In Vivo Genetic Strategies for the Specific Lineage Tracing of Stem Cells. Curr Stem Cell Res Ther 2019; 14:230-238. [PMID: 30047336 DOI: 10.2174/1574888x13666180726110138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/04/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Characterization of the fate changes of stem cells is essential to understand the roles of certain stem cells both during development and in diseases, such as cancer. In the past two decades, more and more importance has been paid to the studies of in vivo lineage tracing, because they could authentically reveal the differentiation, migration and even proliferation of stem cells. However, specific genetic tools have only been developed until recently. OBJECTIVE To summarize the progresses of genetic tools for specific lineage tracing with emphasis on their applications in investigating the stem cell niche signals. RESULTS Three major genetic strategies have been reviewed according to the development of technique, particularly the advantages and disadvantages of individual methods. CONCLUSION In vivo specific lineage tracing of stem cells could be achieved by comprehensive application of multiple genetic tools.
Collapse
Affiliation(s)
- Hong Fan
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - Xinyu Liu
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yahui Shen
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Siwei Chen
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Yu Huan
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Junjia Shan
- Cadet team of undergraduate, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China
| | - Chengji Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine, University of California-Davis, 2425 Stockton Blvd, Sacramento, CA 95817, United States
| | - Shengxi Wu
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| | - Zifeng Zhang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yazhou Wang
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an 710032, China
| |
Collapse
|
187
|
Schnaitmann C, Haikala V, Abraham E, Oberhauser V, Thestrup T, Griesbeck O, Reiff DF. Color Processing in the Early Visual System of Drosophila. Cell 2018; 172:318-330.e18. [PMID: 29328919 DOI: 10.1016/j.cell.2017.12.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/03/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Color vision extracts spectral information by comparing signals from photoreceptors with different visual pigments. Such comparisons are encoded by color-opponent neurons that are excited at one wavelength and inhibited at another. Here, we examine the circuit implementation of color-opponent processing in the Drosophila visual system by combining two-photon calcium imaging with genetic dissection of visual circuits. We report that color-opponent processing of UVshort/blue and UVlong/green is already implemented in R7/R8 inner photoreceptor terminals of "pale" and "yellow" ommatidia, respectively. R7 and R8 photoreceptors of the same type of ommatidia mutually inhibit each other directly via HisCl1 histamine receptors and receive additional feedback inhibition that requires the second histamine receptor Ort. Color-opponent processing at the first visual synapse represents an unexpected commonality between Drosophila and vertebrates; however, the differences in the molecular and cellular implementation suggest that the same principles evolved independently.
Collapse
Affiliation(s)
- Christopher Schnaitmann
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Väinö Haikala
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Abraham
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Vitus Oberhauser
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thomas Thestrup
- Tools for Bio-Imaging, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Dierk F Reiff
- Department for Animal Physiology and Neurobiology, Institute of Biology I, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
188
|
Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, Johnson JR, Von Dollen J, Ramage HR, Satkamp L, Newton B, Hüttenhain R, Petit MJ, Baum T, Everitt A, Laufman O, Tassetto M, Shales M, Stevenson E, Iglesias GN, Shokat L, Tripathi S, Balasubramaniam V, Webb LG, Aguirre S, Willsey AJ, Garcia-Sastre A, Pollard KS, Cherry S, Gamarnik AV, Marazzi I, Taunton J, Fernandez-Sesma A, Bellen HJ, Andino R, Krogan NJ. Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell 2018; 175:1931-1945.e18. [PMID: 30550790 PMCID: PMC6474419 DOI: 10.1016/j.cell.2018.11.028] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/10/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
Abstract
Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.
Collapse
Affiliation(s)
- Priya S Shah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Holly R Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Satkamp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Billy Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Marine J Petit
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Tierney Baum
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Orly Laufman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | | | - Leila Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Laurence G Webb
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sebastian Aguirre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Jeremy Willsey
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine S Pollard
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ivan Marazzi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
189
|
Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat Commun 2018; 9:5194. [PMID: 30518940 PMCID: PMC6281682 DOI: 10.1038/s41467-018-07613-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos. We demonstrate that increasing the number of Zelda binding sites accelerates the kinetics of nuclei transcriptional activation regardless of their transcriptional past. Despite its known pioneering activities, we show that Zelda does not remain detectably associated with mitotic chromosomes and is neither necessary nor sufficient to foster memory. We further reveal that Zelda forms sub-nuclear dynamic hubs where Zelda binding events are transient. We propose that Zelda facilitates transcriptional activation by accumulating in microenvironments where it could accelerate the duration of multiple pre-initiation steps.
Collapse
|
190
|
Yamamoto Y, Gerbi SA. Making ends meet: targeted integration of DNA fragments by genome editing. Chromosoma 2018; 127:405-420. [PMID: 30003320 PMCID: PMC6330168 DOI: 10.1007/s00412-018-0677-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022]
Abstract
Targeted insertion of large pieces of DNA is an important goal of genetic engineering. However, this goal has been elusive since classical methods for homology-directed repair are inefficient and often not feasible in many systems. Recent advances are described here that enable site-specific genomic insertion of relatively large DNA with much improved efficiency. Using the preferred repair pathway in the cell of nonhomologous end-joining, DNA of up to several kb could be introduced with remarkably good precision by the methods of HITI and ObLiGaRe with an efficiency up to 30-40%. Recent advances utilizing homology-directed repair (methods of PITCh; short homology arms including ssODN; 2H2OP) have significantly increased the efficiency for DNA insertion, often to 40-50% or even more depending on the method and length of DNA. The remaining challenges of integration precision and off-target site insertions are summarized. Overall, current advances provide major steps forward for site-specific insertion of large DNA into genomes from a broad range of cells and organisms.
Collapse
Affiliation(s)
- Yutaka Yamamoto
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Sidney Frank Hall room 260, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
191
|
Samstag CL, Hoekstra JG, Huang CH, Chaisson MJ, Youle RJ, Kennedy SR, Pallanck LJ. Deleterious mitochondrial DNA point mutations are overrepresented in Drosophila expressing a proofreading-defective DNA polymerase γ. PLoS Genet 2018; 14:e1007805. [PMID: 30452458 PMCID: PMC6289449 DOI: 10.1371/journal.pgen.1007805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/11/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations cause severe maternally inherited syndromes and the accumulation of somatic mtDNA mutations is implicated in aging and common diseases. However, the mechanisms that influence the frequency and pathogenicity of mtDNA mutations are poorly understood. To address this matter, we created a Drosophila mtDNA mutator strain expressing a proofreading-deficient form of the mitochondrial DNA polymerase. Mutator flies have a dramatically increased somatic mtDNA mutation frequency that correlates with the dosage of the proofreading-deficient polymerase. Mutator flies also exhibit mitochondrial dysfunction, shortened lifespan, a progressive locomotor deficit, and loss of dopaminergic neurons. Surprisingly, the frequency of nonsynonymous, pathogenic, and conserved-site mutations in mutator flies exceeded predictions of a neutral mutational model, indicating the existence of a positive selection mechanism that favors deleterious mtDNA variants. We propose from these findings that deleterious mtDNA mutations are overrepresented because they selectively evade quality control surveillance or because they are amplified through compensatory mitochondrial biogenesis. The energy needs of an animal cell are supplied by tiny organelles known as mitochondria. Each of the many mitochondria in a cell has a set of blueprints for making more mitochondria, known as mitochondrial DNA (mtDNA). As animals age, their mtDNA acquires irreversible defects called mutations, which accumulate and may cause aging. Cells can selectively destroy malfunctioning mitochondria, so we hypothesized that mitochondria with harmful mutations would be selectively destroyed. To test our theory, we created a fruit fly strain with a high mtDNA mutation rate. Our hypothesis predicts that, because mitochondria bearing harmful mtDNA mutations would be destroyed, we should detect primarily less harmful mutations in our strain. However, the mtDNA mutations we detected were more harmful than expected by chance. We suggest two possible explanations: First, mitochondria with harmful mtDNA mutations may be degraded less often because they generate little energy and are not damaged by toxic byproducts of energy production. Second, cells may compensate for harmful mtDNA mutations by stimulating mitochondria to multiply, creating more healthy mitochondria but also more mitochondria with harmful mtDNA mutations. Future studies will distinguish between these models and further advance our understanding of aging and aging related disease.
Collapse
Affiliation(s)
- Colby L. Samstag
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Jake G. Hoekstra
- Department of Pathology, University of Washington, Seattle, WA, United States of America
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Mark J. Chaisson
- Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA, United States of America
| | - Richard J. Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Scott R. Kennedy
- Department of Pathology, University of Washington, Seattle, WA, United States of America
- * E-mail: (SRK); (LJP)
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail: (SRK); (LJP)
| |
Collapse
|
192
|
Snoeck N, De Mol ML, Van Herpe D, Goormans A, Maryns I, Coussement P, Peters G, Beauprez J, De Maeseneire SL, Soetaert W. Serine integrase recombinational engineering (SIRE): A versatile toolbox for genome editing. Biotechnol Bioeng 2018; 116:364-374. [PMID: 30345503 DOI: 10.1002/bit.26854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/24/2018] [Accepted: 10/18/2018] [Indexed: 12/20/2022]
Abstract
Chromosomal integration of biosynthetic pathways for the biotechnological production of high-value chemicals is a necessity to develop industrial strains with a high long-term stability and a low production variability. However, the introduction of multiple transcription units into the microbial genome remains a difficult task. Despite recent advances, current methodologies are either laborious or efficiencies highly fluctuate depending on the length and the type of the construct. Here we present serine integrase recombinational engineering (SIRE), a novel methodology which combines the ease of recombinase-mediated cassette exchange (RMCE) with the selectivity of orthogonal att sites of the PhiC31 integrase. As a proof of concept, this toolbox is developed for Escherichia coli. Using SIRE we were able to introduce a 10.3 kb biosynthetic gene cluster on different locations throughout the genome with an efficiency of 100% for the integrating step and without the need for selection markers on the knock-in cassette. Next to integrating large fragments, the option for multitargeting, for deleting operons, as well as for performing in vivo assemblies further expand and proof the versatility of the SIRE toolbox for E. coli. Finally, the serine integrase PhiC31 was also applied in the yeast Saccharomyces cerevisiae as a marker recovery tool, indicating the potential and portability of this toolbox.
Collapse
Affiliation(s)
- Nico Snoeck
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maarten L De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Dries Van Herpe
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anke Goormans
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Isabelle Maryns
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | | | | | - Sofie L De Maeseneire
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Wim Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
193
|
Andriatsilavo M, Stefanutti M, Siudeja K, Perdigoto CN, Boumard B, Gervais L, Gillet-Markowska A, Al Zouabi L, Schweisguth F, Bardin AJ. Spen limits intestinal stem cell self-renewal. PLoS Genet 2018; 14:e1007773. [PMID: 30452449 PMCID: PMC6277126 DOI: 10.1371/journal.pgen.1007773] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/03/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Precise regulation of stem cell self-renewal and differentiation properties is essential for tissue homeostasis. Using the adult Drosophila intestine to study molecular mechanisms controlling stem cell properties, we identify the gene split-ends (spen) in a genetic screen as a novel regulator of intestinal stem cell fate (ISC). Spen family genes encode conserved RNA recognition motif-containing proteins that are reported to have roles in RNA splicing and transcriptional regulation. We demonstrate that spen acts at multiple points in the ISC lineage with an ISC-intrinsic function in controlling early commitment events of the stem cells and functions in terminally differentiated cells to further limit the proliferation of ISCs. Using two-color cell sorting of stem cells and their daughters, we characterize spen-dependent changes in RNA abundance and exon usage and find potential key regulators downstream of spen. Our work identifies spen as an important regulator of adult stem cells in the Drosophila intestine, provides new insight to Spen-family protein functions, and may also shed light on Spen's mode of action in other developmental contexts.
Collapse
Affiliation(s)
- Maheva Andriatsilavo
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Marine Stefanutti
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Katarzyna Siudeja
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Carolina N. Perdigoto
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Benjamin Boumard
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - Louis Gervais
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | | | - Lara Al Zouabi
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| | - François Schweisguth
- Institut Pasteur, Dept of Developmental and Stem Cell Biology, Paris, France
- CNRS, UMR3738, Paris, France
| | - Allison J. Bardin
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group, Sorbonne Université, UPMC Univ Paris 6, Paris, France
| |
Collapse
|
194
|
Pandey A, Li-Kroeger D, Sethi MK, Lee TV, Buettner FF, Bakker H, Jafar-Nejad H. Sensitized genetic backgrounds reveal differential roles for EGF repeat xylosyltransferases in Drosophila Notch signaling. Glycobiology 2018; 28:849-859. [PMID: 30169771 PMCID: PMC6454539 DOI: 10.1093/glycob/cwy080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022] Open
Abstract
In multicellular organisms, glycosylation regulates various developmental signaling pathways including the Notch pathway. One of the O-linked glycans added to epidermal growth factor-like (EGF) repeats in animal proteins including the Notch receptors is the xylose-xylose-glucose-O oligosaccharide. Drosophila glucoside xylosyltransferase (Gxylt) Shams negatively regulates Notch signaling in specific contexts. Since Shams adds the first xylose residue to O-glucose, its loss-of-function phenotype could be due to the loss of the first xylose, the second xylose or both. To examine the contribution of the second xylose residues to Drosophila Notch signaling, we have performed biochemical and genetic analysis on CG11388, which is the Drosophila homolog of human xyloside xylosyltransferase 1 (XXYLT1). Experiments in S2 cells indicated that similar to human XXYLT1, CG11388 can add the second xylose to xylose-glucose-O glycans. Flies lacking both copies of CG11388 (Xxylt) are viable and fertile and do not show gross phenotypes indicative of altered Notch signaling. However, genetic interaction experiments show that in sensitized genetic backgrounds with decreased or increased Notch pathway components, loss of Xxylt promotes Delta-mediated activation of Notch. Unexpectedly, we find that in such sensitized backgrounds, even loss of one copy of the fly Gxylt shams enhances Delta-mediated Notch activation. Taken together, these data indicate that while the first xylose plays a key role in tuning the Delta-mediated Notch signaling in Drosophila, the second xylose has a fine-tuning role only revealed in sensitized genetic backgrounds.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Li-Kroeger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Maya K Sethi
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Tom V Lee
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Falk Fr Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hans Bakker
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Hamed Jafar-Nejad
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
195
|
Maharjan M, Maeda RK, Karch F, Hart CM. Using a phiC31 "Disintegrase" to make new attP sites in the Drosophila genome at locations showing chromosomal position effects. PLoS One 2018; 13:e0205538. [PMID: 30296303 PMCID: PMC6175522 DOI: 10.1371/journal.pone.0205538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
An engineered phiC31 “Disintegrase” able to make an attP site in Drosophila out of an attR-attL pair is described. This was used to generate attP sites at genomic locations where a mini-white (mini-w) transgene was subject to chromosomal position effects (CPE). The first step was random genomic integration of a P-element-based transposon with an insulated mini-w transgene. We then removed the upstream insulator using FLP recombinase to detect CPE. Next mini-w and the downstream insulator were “dis-integrated” leaving behind an attP site. The location is marked by a yellow+ transgene that is flanked by loxP sites, so it can also be removed. Using this system, we generated 10 new attP landing platforms. Three of these showing strong activating CPE were selected for further analysis. We show that the attP sites are functional by integrating in plasmids with attB sites. The CPE is recapitulated and can be blocked by insulators. We show that a dimerized 215 bp fragment of the 500 bp BEAF-dependent scs’ insulator containing a high affinity BEAF binding site blocks the CPE, while a monomer of the sequence is less effective. This indicates that two BEAF binding sites make a stronger insulator than a single site. This system could be useful for generating attP sites at prescreened sites for other purposes, such as studying CPE in embryos or other tissues or for use with “trapped” enhancers of interest.
Collapse
Affiliation(s)
- Mukesh Maharjan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Robert K. Maeda
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - François Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Craig M. Hart
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
196
|
Beck S, Yu-Strzelczyk J, Pauls D, Constantin OM, Gee CE, Ehmann N, Kittel RJ, Nagel G, Gao S. Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition. Front Neurosci 2018; 12:643. [PMID: 30333716 PMCID: PMC6176052 DOI: 10.3389/fnins.2018.00643] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/29/2018] [Indexed: 01/21/2023] Open
Abstract
Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons.
Collapse
Affiliation(s)
- Sebastian Beck
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | | | - Dennis Pauls
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oana M Constantin
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Ehmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Robert J Kittel
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany.,Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig, Germany.,Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Georg Nagel
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| | - Shiqiang Gao
- Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
197
|
Romé P, Ohkura H. A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes. J Cell Biol 2018; 217:3431-3445. [PMID: 30087124 PMCID: PMC6168254 DOI: 10.1083/jcb.201803172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/10/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
The meiotic spindle in oocytes is assembled in the absence of centrosomes, the major microtubule nucleation sites in mitotic and male meiotic cells. A crucial, yet unresolved question in meiosis is how spindle microtubules are generated without centrosomes and only around chromosomes in the exceptionally large volume of oocytes. Here we report a novel oocyte-specific microtubule nucleation pathway that is essential for assembling most spindle microtubules complementarily with the Augmin pathway. This pathway is mediated by the kinesin-6 Subito/MKlp2, which recruits the γ-tubulin complex to the spindle equator to nucleate microtubules in Drosophila oocytes. Away from chromosomes, Subito interaction with the γ-tubulin complex is suppressed by its N-terminal region to prevent ectopic microtubule assembly in oocytes. We further demonstrate in vitro that the Subito complex from ovaries can nucleate microtubules from pure tubulin dimers. Collectively, microtubule nucleation regulated by Subito drives spatially restricted spindle assembly in oocytes.
Collapse
Affiliation(s)
- Pierre Romé
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Scotland, UK
| |
Collapse
|
198
|
Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK. Defective cortex glia plasma membrane structure underlies light-induced epilepsy in cpes mutants. Proc Natl Acad Sci U S A 2018; 115:E8919-E8928. [PMID: 30185559 PMCID: PMC6156639 DOI: 10.1073/pnas.1808463115] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in Drosophila, owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase (cpes)-null mutants and fail to encapsulate the neuronal cell bodies in the Drosophila neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in cpes mutants and leads to the PSE phenotype.
Collapse
Affiliation(s)
- Govind Kunduri
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702
| | | | - Yutaka Konya
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunio Nagashima
- Electron Microscopy Laboratory, National Cancer Institute, Frederick, MD 21702
| | - Stephen Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Joost Holthuis
- Molecular Cell Biology Division, University of Osnabrück, 49074 Osnabrück, Germany
| | - Takeshi Bamba
- Department of Metabolomics, Kyushu University, Fukuoka 812-8582, Japan
| | - Usha Acharya
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jairaj K Acharya
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702;
| |
Collapse
|
199
|
Facultative dosage compensation of developmental genes on autosomes in Drosophila and mouse embryonic stem cells. Nat Commun 2018; 9:3626. [PMID: 30194291 PMCID: PMC6128902 DOI: 10.1038/s41467-018-05642-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/04/2018] [Indexed: 12/25/2022] Open
Abstract
Haploinsufficiency and aneuploidy are two phenomena, where gene dosage alterations cause severe defects ultimately resulting in developmental failures and disease. One remarkable exception is the X chromosome, where copy number differences between sexes are buffered by dosage compensation systems. In Drosophila, the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. The evolutionary origin and conservation of this process orchestrated by MSL2, the only male-specific protein within the fly MSLc, have remained unclear. Here, we report that MSL2, in addition to regulating the X chromosome, targets autosomal genes involved in patterning and morphogenesis. Precise regulation of these genes by MSL2 is required for proper development. This set of dosage-sensitive genes maintains such regulation during evolution, as MSL2 binds and similarly regulates mouse orthologues via Histone H4 lysine 16 acetylation. We propose that this gene-by-gene dosage compensation mechanism was co-opted during evolution for chromosome-wide regulation of the Drosophila male X. In Drosophila the Male-Specific Lethal complex (MSLc) mediates upregulation of the single male X chromosome. Here the authors provide evidence that MSL2 also targets autosomal genes required for proper development and that MSL2 binds and similarly regulates mouse orthologues.
Collapse
|
200
|
Franconville R, Beron C, Jayaraman V. Building a functional connectome of the Drosophila central complex. eLife 2018; 7:e37017. [PMID: 30124430 PMCID: PMC6150698 DOI: 10.7554/elife.37017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/14/2018] [Indexed: 01/27/2023] Open
Abstract
The central complex is a highly conserved insect brain region composed of morphologically stereotyped neurons that arborize in distinctively shaped substructures. The region is implicated in a wide range of behaviors and several modeling studies have explored its circuit computations. Most studies have relied on assumptions about connectivity between neurons based on their overlap in light microscopy images. Here, we present an extensive functional connectome of Drosophila melanogaster's central complex at cell-type resolution. Using simultaneous optogenetic stimulation, calcium imaging and pharmacology, we tested the connectivity between 70 presynaptic-to-postsynaptic cell-type pairs. We identified numerous inputs to the central complex, but only a small number of output channels. Additionally, the connectivity of this highly recurrent circuit appears to be sparser than anticipated from light microscopy images. Finally, the connectivity matrix highlights the potentially critical role of a class of bottleneck interneurons. All data are provided for interactive exploration on a website.
Collapse
Affiliation(s)
| | - Celia Beron
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Vivek Jayaraman
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| |
Collapse
|