151
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
152
|
Belyaeva IV, Kosova AN, Vasiliev AG. Tuberculosis and Autoimmunity. PATHOPHYSIOLOGY 2022; 29:298-318. [PMID: 35736650 PMCID: PMC9228380 DOI: 10.3390/pathophysiology29020022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis remains a common and dangerous chronic bacterial infection worldwide. It is long-established that pathogenesis of many autoimmune diseases is mainly promoted by inadequate immune responses to bacterial agents, among them Mycobacterium tuberculosis. Tuberculosis is a multifaceted process having many different outcomes and complications. Autoimmunity is one of the processes characteristic of tuberculosis; the presence of autoantibodies was documented by a large amount of evidence. The role of autoantibodies in pathogenesis of tuberculosis is not quite clear and widely disputed. They are regarded as: (1) a result of imbalanced immune response being reactive in nature, (2) a critical part of TB pathogenicity, (3) a beginning of autoimmune disease, (4) a protective mechanism helping to eliminate microbes and infected cells, and (5) playing dual role, pathogenic and protective. There is no single autoimmunity-mechanism development in tuberculosis; different pathways may be suggested. It may be excessive cell death and insufficient clearance of dead cells, impaired autophagy, enhanced activation of macrophages and dendritic cells, environmental influences such as vitamin D insufficiency, and genetic polymorphism, both of Mycobacterium tuberculosis and host.
Collapse
|
153
|
Small extracellular vesicles derived from PD-L1-modified mesenchymal stem cell promote Tregs differentiation and prolong allograft survival. Cell Tissue Res 2022; 389:465-481. [PMID: 35688948 DOI: 10.1007/s00441-022-03650-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
We aimed to explore whether programmed cell death protein-1 ligand (PD-L1) modification on small extracellular vesicles (sEVs) could promote T regulatory cells (Tregs) differentiation. In this study, it was confirmed that under physiological conditions, PD-L1 expression was minimal in the MSCs and absent in the MSC-sEVs. A vector harboring the PD-L1 gene was constructed and transfected into bone marrow mesenchymal stem cells (BM-MSCs). By extracting the sEVs of these modified BM-MSCs and monitoring the expression of the PD-L1 protein, however, PD-L1 expression was substantially increased in the MSCs and concentrated in the sEVs. Then, the rat naïve CD4 + T cells were cocultured with the sEVs derived from the PD-L1-modified MSCs (sEVsPD-L1). By flow cytometry, a higher percentage of Tregs and anti-inflammatory downstream cytokines (including IL-2, IFN-γ, TGF-β, IL-10) was detected in the sEVsPD-L1 group than that in the control group treated by either sEVs in wild type, modified by empty vector, or blank control. Suppressive effect on CD4 + T cell proliferation serves as additional evidence to support the immunoregulation capacity of sEVsPD-L1. The animal model of vascularized composite allograft further confirmed that PD-L1-modified sEVs induce an immune tolerance, by clinically observation, histopathology, T cell fate and cell product. In conclusion, sEVsPD-L1 efficiently promotes Treg cell differentiation in vitro and in vivo, which suggests their therapeutic potential in the treatment of allograft rejection.
Collapse
|
154
|
Yoshimatsu Y, Sujino T, Miyamoto K, Harada Y, Tanemoto S, Ono K, Umeda S, Yoshida K, Teratani T, Suzuki T, Mikami Y, Nakamoto N, Sasaki N, Takabayashi K, Hosoe N, Ogata H, Sawada K, Imamura T, Yoshimura A, Kanai T. Aryl hydrocarbon receptor signals in epithelial cells govern the recruitment and location of Helios + Tregs in the gut. Cell Rep 2022; 39:110773. [PMID: 35545035 DOI: 10.1016/j.celrep.2022.110773] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/30/2021] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
CD4+Foxp3+ regulatory T cells (Tregs) are essential for homeostasis in the colon, but the mechanism by which local environmental cues determine the localization of colonic Tregs is unclear. Here, we administer indigo naturalis (IN), a nontoxic phytochemical aryl hydrocarbon receptor (AhR) agonist used for treating patients with ulcerative colitis (UC) in Asia, and we show that IN increases Helios+ Tregs and MHC class II+ epithelial cells (ECs) in the colon. Interactions between Tregs and MHC class II+ ECs occur mainly near the crypt bottom in the steady state, whereas Tregs dramatically increase and shift toward the crypt top following IN treatment. Moreover, the number of CD25+ T cells is increased near the surface of ECs in IN-treated UC patients compared with that in patients treated with other therapies. We also highlight additional AhR-signaling mechanisms in intestinal ECs that determine the accumulation and localization of Helios+ Tregs in the colon.
Collapse
Affiliation(s)
- Yusuke Yoshimatsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan.
| | - Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yosuke Harada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shun Tanemoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ono
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoko Umeda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kosuke Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Miyarisan Pharmaceutical Co., Ltd., Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuo Sasaki
- Institute of Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Sawada
- Department of Molecular Medicine for Pathogenesis, Ehime University, Toon, Japan
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis, Ehime University, Toon, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
155
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
156
|
Mateus D, Sebastião AI, Carrascal MA, do Carmo A, Matos AM, Cruz MT. Crosstalk between estrogen, dendritic cells, and SARS-CoV-2 infection. Rev Med Virol 2022; 32:e2290. [PMID: 34534372 PMCID: PMC8646421 DOI: 10.1002/rmv.2290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
The novel coronavirus disease 2019 (Covid-19) first appeared in Wuhan and has so far killed more than four million people worldwide. Men are more affected than women by Covid-19, but the cellular and molecular mechanisms behind these differences are largely unknown. One plausible explanation is that differences in sex hormones could partially account for this distinct prevalence in both sexes. Accordingly, several papers have reported a protective role of 17β-estradiol during Covid-19, which might help explain why women appear less likely to die from Covid-19 than men. 17β-estradiol is the predominant and most biologically active endogenous estrogen, which signals through estrogen receptor α, estrogen receptor β, and G protein-coupled estrogen receptor 1. These receptors are expressed in mature cells from the innate and the adaptive immune system, particularly on dendritic cells (DCs), suggesting that estrogens could modulate their effector functions. DCs are the most specialized and proficient antigen-presenting cells, acting at the interface of innate and adaptive immunity with a powerful capacity to prime antigen-specific naive CD8+ T cells. DCs are richly abundant in the lung where they respond to viral infection. A relative increase of mature DCs in broncho-alveolar lavage fluids from Covid-19 patients has already been reported. Here we will describe how SARS-CoV-2 acts on DCs, the role of estrogen on DC immunobiology, summarise the impact of sex hormones on the immune response against Covid-19, and explore clinical trials regarding Covid-19.
Collapse
Affiliation(s)
- Daniela Mateus
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
| | | | - Mylène A. Carrascal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
- UpCellsTecnimed GroupSintraPortugal
| | - Anália do Carmo
- Clinical Pathology DepartmentCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
| | - Ana Miguel Matos
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Chemical Engineering Processes and Forest Products Research Center, CIEPQPFFaculty of Sciences and Technology, University of CoimbraCoimbraPortugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy—FFUCUniversity of CoimbraCoimbraPortugal
- Center for Neuroscience and Cell Biology—CNCUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
157
|
Gürbüz M, Aktaç Ş. Understanding the role of vitamin A and its precursors in the immune system. NUTR CLIN METAB 2022. [DOI: 10.1016/j.nupar.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
158
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022; 44:309-324. [PMID: 35355124 PMCID: PMC9064999 DOI: 10.1007/s00281-022-00922-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
159
|
Oliveira CB, Kaplan MJ. Cardiovascular disease risk and pathogenesis in systemic lupus erythematosus. Semin Immunopathol 2022. [PMID: 35355124 DOI: 10.1007/s00281-02200922-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Systemic lupus erythematosus (SLE) often features extensive cardiovascular (CV) comorbidity and patients with SLE are at significantly increased risk of CV event occurrence and CV-related mortality. While the specific mechanisms leading to this increased cardiovascular disease (CVD) risk remain to be fully characterized, this heightened risk cannot be fully explained by traditional CV risk factors and is likely driven by immunologic and inflammatory features of SLE. Widespread innate and adaptive immune dysregulation characterize SLE, and factors including excessive type I interferon burden, inappropriate formation and ineffective clearance of neutrophil extracellular traps, and autoantibody formation have been linked to clinical and metabolic features impacting CV risk in SLE and may represent pathogenic drivers of SLE-related CVD. Indeed, functional and phenotypic aberrations in almost every immune cell type are present in SLE and may impact CVD progression. As understanding of the contribution of SLE-specific factors to CVD in SLE improves, improved screening and monitoring of CV risk alongside development of therapeutic treatments aimed at prevention of CVD in SLE patients are required and remain the focus of several ongoing studies and lines of inquiry.
Collapse
Affiliation(s)
- Christopher B Oliveira
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD, 20892, USA.
| |
Collapse
|
160
|
Voelkle M, Gregoriano C, Neyer P, Koch D, Kutz A, Bernasconi L, Conen A, Mueller B, Schuetz P. Prevalence of Micronutrient Deficiencies in Patients Hospitalized with COVID-19: An Observational Cohort Study. Nutrients 2022; 14:1862. [PMID: 35565831 PMCID: PMC9101904 DOI: 10.3390/nu14091862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND A higher risk for severe clinical courses of coronavirus disease 2019 (COVID-19) has been linked to deficiencies of several micronutrients. We therefore studied the prevalence of deficiencies of eight different micronutrients in a cohort of hospitalized COVID-19-patients. METHODS We measured admission serum/plasma levels of vitamins A, B12, D, and E, as well as folic acid, zinc, selenium, and copper in 57 consecutively admitted adult patients with confirmed COVID-19 and analyzed prevalence of micronutrient deficiencies and correlations among micronutrient levels. Further, we studied associations of micronutrient levels with severe disease progression, a composite endpoint consisting of in-hospital mortality and/or need for intensive care unit (ICU) treatment with logistic regression. RESULTS Median age was 67.0 years (IQR 60.0, 74.2) and 60% (n = 34) were male. Overall, 79% (n = 45) of patients had at least one deficient micronutrient level and 33% (n = 19) had ≥3 deficiencies. Most prevalent deficiencies were found for selenium, vitamin D, vitamin A, and zinc (51%, 40%, 39%, and 39%, respectively). We found several correlations among micronutrients with correlation coefficients ranging from r = 0.27 to r = 0.42. The strongest associations with lower risk for severe COVID-19 disease progression (adjusted odds ratios) were found for higher levels of vitamin A (0.18, 95% CI 0.05-0.69, p = 0.01), zinc (0.73, 95% CI 0.55-0.98, p = 0.03), and folic acid (0.88, 95% CI 0.78-0.98, p = 0.02). CONCLUSIONS We found a high prevalence of micronutrient deficiencies in mostly older patients hospitalized for COVID-19, particularly regarding selenium, vitamin D, vitamin A, and zinc. Several deficiencies were associated with a higher risk for more severe COVID-19 courses. Whether supplementation of micronutrients is useful for prevention of severe clinical courses or treatment of COVID-19 warrants further research.
Collapse
Affiliation(s)
- Manyola Voelkle
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| | - Claudia Gregoriano
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (P.N.); (L.B.)
| | - Daniel Koch
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Alexander Kutz
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (P.N.); (L.B.)
| | - Anna Conen
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
- Department of Infectious Diseases and Infection Prevention, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Beat Mueller
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| | - Philipp Schuetz
- Medical University Department of Medicine, Kantonsspital Aarau, 5001 Aarau, Switzerland; (M.V.); (C.G.); (D.K.); (A.K.); (B.M.)
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland;
| |
Collapse
|
161
|
Gill PA, Inniss S, Kumagai T, Rahman FZ, Smith AM. The Role of Diet and Gut Microbiota in Regulating Gastrointestinal and Inflammatory Disease. Front Immunol 2022; 13:866059. [PMID: 35450067 PMCID: PMC9016115 DOI: 10.3389/fimmu.2022.866059] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/14/2022] [Indexed: 12/20/2022] Open
Abstract
Diet is an important lifestyle factor that is known to contribute in the development of human disease. It is well established that poor diet plays an active role in exacerbating metabolic diseases, such as obesity, diabetes and hypertension. Our understanding of how the immune system drives chronic inflammation and disease pathogenesis has evolved in recent years. However, the contribution of dietary factors to inflammatory conditions such as inflammatory bowel disease, multiple sclerosis and arthritis remain poorly defined. A western diet has been associated as pro-inflammatory, in contrast to traditional dietary patterns that are associated as being anti-inflammatory. This may be due to direct effects of nutrients on immune cell function. Diet may also affect the composition and function of gut microbiota, which consequently affects immunity. In animal models of inflammatory disease, diet may modulate inflammation in the gastrointestinal tract and in other peripheral sites. Despite limitations of animal models, there is now emerging evidence to show that anti-inflammatory effects of diet may translate to human gastrointestinal and inflammatory diseases. However, appropriately designed, larger clinical studies must be conducted to confirm the therapeutic benefit of dietary therapy.
Collapse
Affiliation(s)
- Paul A Gill
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Saskia Inniss
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Tomoko Kumagai
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| | - Farooq Z Rahman
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom.,Department of Gastroenterology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Andrew M Smith
- Department of Microbial Diseases, UCL Eastman Dental Institute, University College London, London, United Kingdom
| |
Collapse
|
162
|
Sidell N, Kane MA. Actions of Retinoic Acid in the Pathophysiology of HIV Infection. Nutrients 2022; 14:nu14081611. [PMID: 35458172 PMCID: PMC9029687 DOI: 10.3390/nu14081611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 02/05/2023] Open
Abstract
The vitamin A metabolite all-trans retinoic acid (RA) plays a key role in tissue homeostasis and mucosal immunity. RA is produced by gut-associated dendritic cells, which are among the first cells encountered by HIV. Acute HIV infection results in rapid reduction of RA levels and dysregulation of immune cell populations whose identities and function are largely controlled by RA. Here, we discuss the potential link between the roles played by RA in shaping intestinal immune responses and the manifestations and pathogenesis of HIV-associated enteropathy and similar conditions observed in SIV-infected non-human primate models. We also present data demonstrating the ability of RA to enhance the activation of replication-competent viral reservoirs from subjects on suppressive anti-retroviral therapy. The data suggest that retinoid supplementation may be a useful adjuvant for countering the pathologic condition of the gastro-intestinal tract associated with HIV infection and as part of a strategy for reactivating viral reservoirs as a means of depleting latent viral infection.
Collapse
Affiliation(s)
- Neil Sidell
- Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (N.S.); (M.A.K.)
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Correspondence: (N.S.); (M.A.K.)
| |
Collapse
|
163
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
164
|
Zeiser R, Warnatz K, Rosshart S, Sagar, Tanriver Y. GVHD, IBD and primary immunodeficiencies: The gut as a target of immunopathology resulting from impaired immunity. Eur J Immunol 2022; 52:1406-1418. [PMID: 35339113 DOI: 10.1002/eji.202149530] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/10/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The intestinal tract is the largest immunological organ in the body and has a central function of regulating local immune responses, as the intestinal epithelial barrier is a location where the immune system interacts with the gut microbiome including bacteria, fungi and viruses. Impaired immunity in the intestinal tract can lead to immunopathology, which manifests in different diseases such as inflammatory bowel disease (IBD) or intestinal graft-versus-host disease (GVHD). A disturbed communication between epithelial cells, immune cells and microbiome will shape pathogenic immune responses to antigens, which need to be counterbalanced by tolerogenic mechanisms and repair mechanisms. Here, we review how impaired intestinal immune function leads to immunopathology with a specific focus on innate immune cells, the role of the microbiome and the resulting clinical manifestations including intestinal GVHD, IBD and enteropathy in primary immunodeficiency. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Robert Zeiser
- Department of Medicine I (Hematology, Oncology and Stem Cell Transplantation), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center- University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Signalling Research Centres BIOSS and CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology - Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Rosshart
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV (Nephrology and Primary Care), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Microbiology and Hygiene, Institute for Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
165
|
Inal-Gultekin G, Gormez Z, Mangir N. Defining Molecular Treatment Targets for Bladder Pain Syndrome/Interstitial Cystitis: Uncovering Adhesion Molecules. Front Pharmacol 2022; 13:780855. [PMID: 35401223 PMCID: PMC8990855 DOI: 10.3389/fphar.2022.780855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/26/2022] [Indexed: 01/02/2023] Open
Abstract
Bladder pain syndrome/interstitial cystitis (BPS/IC) is a debilitating pain syndrome of unknown etiology that predominantly affects females. Clinically, BPS/IC presents in a wide spectrum where all patients report severe bladder pain together with one or more urinary tract symptoms. On bladder examination, some have normal-appearing bladders on cystoscopy, whereas others may have severely inflamed bladder walls with easily bleeding areas (glomerulations) and ulcerations (Hunner’s lesion). Thus, the reported prevalence of BPS/IC is also highly variable, between 0.06% and 30%. Nevertheless, it is rightly defined as a rare disease (ORPHA:37202). The aetiopathogenesis of BPS/IC remains largely unknown. Current treatment is mainly symptomatic and palliative, which certainly adds to the suffering of patients. BPS/IC is known to have a genetic component. However, the genes responsible are not defined yet. In addition to traditional genetic approaches, novel research methodologies involving bioinformatics are evaluated to elucidate the genetic basis of BPS/IC. This article aims to review the current evidence on the genetic basis of BPS/IC to determine the most promising targets for possible novel treatments.
Collapse
Affiliation(s)
- Guldal Inal-Gultekin
- Department of Physiology, Faculty of Medicine, Istanbul Okan University, Tuzla, Turkey
- *Correspondence: Guldal Inal-Gultekin,
| | - Zeliha Gormez
- Department of Applied Bioinformatics, Bingen Technical University of Applied Sciences, Bingen am Rhein, Germany
| | - Naside Mangir
- Department of Urology, Hacettepe University Hospital, Ankara, Turkey
| |
Collapse
|
166
|
Gao R, Shi GP, Wang J. Functional Diversities of Regulatory T Cells in the Context of Cancer Immunotherapy. Front Immunol 2022; 13:833667. [PMID: 35371055 PMCID: PMC8969660 DOI: 10.3389/fimmu.2022.833667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) are a subset of CD4+ T cells with their immunosuppressive activities to block abnormal or excessive immune responses to self and non-autoantigens. Tregs express the transcription factor Foxp3, maintain the immune homeostasis, and prevent the initiation of anti-tumor immune effects in various ways as their mechanisms to modulate tumor development. Recognition of different phenotypes and functions of intratumoral Tregs has offered the possibilities to develop therapeutic strategies by selectively targeting Tregs in cancers with the aim of alleviating their immunosuppressive activities from anti-tumor immune responses. Several Treg-based immunotherapeutic approaches have emerged to target cytotoxic T lymphocyte antigen-4, glucocorticoid-induced tumor necrosis factor receptor, CD25, indoleamine-2, 3-dioxygenase-1, and cytokines. These immunotherapies have yielded encouraging outcomes from preclinical studies and early-phase clinical trials. Further, dual therapy or combined therapy has been approved to be better choices than single immunotherapy, radiotherapy, or chemotherapy. In this short review article, we discuss our current understanding of the immunologic characteristics of Tregs, including Treg differentiation, development, therapeutic efficacy, and future potential of Treg-related therapies among the general cancer therapy.
Collapse
Affiliation(s)
- Ran Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, China
| |
Collapse
|
167
|
Pisoschi AM, Pop A, Iordache F, Stanca L, Geicu OI, Bilteanu L, Serban AI. Antioxidant, anti-inflammatory and immunomodulatory roles of vitamins in COVID-19 therapy. Eur J Med Chem 2022; 232:114175. [PMID: 35151223 PMCID: PMC8813210 DOI: 10.1016/j.ejmech.2022.114175] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
oxidative stress is caused by an abundant generation of reactive oxygen species, associated to a diminished capacity of the endogenous systems of the organism to counteract them. Activation of pro-oxidative pathways and boosting of inflammatory cytokines are always encountered in viral infections, including SARS-CoV-2. So, the importance of counteracting cytokine storm in COVID-19 pathology is highly important, to hamper the immunogenic damage of the endothelium and alveolar membranes. Antioxidants prevent oxidative processes, by impeding radical species generation. It has been proved that vitamin intake lowers oxidative stress markers, alleviates cytokine storm and has a potential role in reducing disease severity, by lowering pro-inflammatory cytokines, hampering hyperinflammation and organ failure. For the approached compounds, direct antiviral roles are also discussed in this review, as these activities encompass secretion of antiviral peptides, modulation of angiotensin-converting enzyme 2 receptor expression and interaction with spike protein, inactivation of furin protease, or inhibition of pathogen replication by nucleic acid impairment induction. Vitamin administration results in beneficial effects. Nevertheless, timing, dosage and mutual influences of these micronutrients should be carefullly regarded.
Collapse
Affiliation(s)
- Aurelia Magdalena Pisoschi
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania.
| | - Aneta Pop
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Loredana Stanca
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania
| | - Liviu Bilteanu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| | - Andreea Iren Serban
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Veterinary Medicine, Department Preclinical Sciences, 105 Splaiul Independentei, 050097, Bucharest, Romania; University of Bucharest, Faculty of Biology, Department Biochemistry and Molecular Biology, 91-95 Blvd, Splaiul Independentei, 050095, Bucharest, Romania
| |
Collapse
|
168
|
Choobdar FA, Ghassemzadeh M, Aslanbeigi F, Attarian M, Robatmeili L, Rahimian H, Aski BH, Anari AM. Association of lower vitamin a levels in neonates and their mothers with increased risk of neonatal late-onset sepsis: A case-control study. JOURNAL OF MOTHER AND CHILD 2022; 26:78-86. [PMID: 36803946 PMCID: PMC10032317 DOI: 10.34763/jmotherandchild.20222601.d-22-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 02/23/2023]
Abstract
BACKGROUND In developing countries, neonatal sepsis is one of the major causes of mortality and morbidity. Vitamin A deficiency also affects the immune system severely and is associated with various neonatal infections. We aimed to compare maternal and neonatal vitamin A levels among neonates with and without late-onset sepsis. MATERIAL AND METHODS 40 eligible infants were entered into this case-control study according to inclusion criteria. The case group included 20 term or near-term infants who had late-onset neonatal sepsis from three to seven days of life. The control group consisted of 20 term or near-term infants who were icteric hospitalized neonates without sepsis. Demographic, clinical and paraclinical features, as well as neonatal and maternal vitamin A levels, were compared between the two groups. RESULTS The average gestational age of the neonates was 37.1 ± 1.2, ranging from 35 to 39 days. There was a significant difference between the septic and non-septic groups in terms of white blood cell and neutrophil count, C-reactive protein, and neonatal and maternal vitamin A levels. A Spearman correlation analysis showed a significant direct correlation among maternal and neonatal vitamin A levels (correlation coefficient = 0.507; P-value = 0.001). Multivariate regression analysis showed that neonates' vitamin A level had a significant direct association with sepsis (OR: 0.541; P-value=0.017). CONCLUSION Our findings demonstrated the association of lower vitamin A levels in neonates and their mothers with an increased risk of late-onset sepsis, which emphasizes the importance of the consideration of vitamin A level evaluation and its appropriate neonatal and maternal supplementation.
Collapse
Affiliation(s)
- Farhad Abolhasan Choobdar
- Department of Pediatrics, School of Medicine, Hazrat e Ali Asghar Pediatric Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ghassemzadeh
- Dr.Shariati general Hospital, Tehran University of Medical Sciences, Jalal Al-Ahmad Ave, Tehran, Iran
| | | | - Mohammad Attarian
- Firoozgar General Hospital related to Iran University of Medical SciencesKashan, Iran
| | - Leila Robatmeili
- Firoozgar General Hospital related to Iran University of Medical SciencesKashan, Iran
| | - Hanie Rahimian
- Firoozgar General Hospital related to Iran University of Medical SciencesKashan, Iran
| | - Behzad Haghighi Aski
- Department of Pediatrics, School of Medicine, Hazrat e Ali Asghar Pediatric Hospital, Iran University of Medical Sciences, Kashan, Iran
| | - Ali Manafi Anari
- Department of Pediatrics, School of Medicine, Hazrat e Ali Asghar Pediatric Hospital, Iran University of Medical Sciences, Kashan, Iran
| |
Collapse
|
169
|
Sahoyama Y, Hamazato F, Shiozawa M, Nakagawa T, Suda W, Ogata Y, Hachiya T, Kawakami E, Hattori M. Multiple nutritional and gut microbial factors associated with allergic rhinitis: the Hitachi Health Study. Sci Rep 2022; 12:3359. [PMID: 35233003 PMCID: PMC8888718 DOI: 10.1038/s41598-022-07398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022] Open
Abstract
Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 participants with symptoms of AR and 106 control subjects without symptoms of AR at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.
Collapse
Affiliation(s)
- Yukari Sahoyama
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan.
| | - Fumiaki Hamazato
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Manabu Shiozawa
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Tohru Nakagawa
- Hitachi Health Care Center, Hitachi Ltd., Ibaraki, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Ogata
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
170
|
Traxinger BR, Richert-Spuhler LE, Lund JM. Mucosal tissue regulatory T cells are integral in balancing immunity and tolerance at portals of antigen entry. Mucosal Immunol 2022; 15:398-407. [PMID: 34845322 PMCID: PMC8628059 DOI: 10.1038/s41385-021-00471-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 02/04/2023]
Abstract
Foxp3+ regulatory T cells (Tregs) are a subset of CD4+ T cells that exert suppressive control over other immune cells. Tregs are critical for preventing systemic autoimmunity and maintaining peripheral tolerance, and yet they also assist in orchestration of immunity to pathogenic insult, wherein they limit collateral immunopathology and assist in facilitating a fine balance between immune tolerance and effector activity. Tregs have been extensively studied in lymphoid tissues, and a growing body of work has characterized phenotypically distinct Tregs localized in various nonlymphoid tissue compartments. These tissue Tregs can perform location-specific, alternative functions, highlighting their dynamic, context-dependent roles. Tregs have also been identified in mucosal tissues where specialized physiological functions are paramount, including helping the host to respond appropriately to pathogenic versus innocuous antigens that are abundant at mucosal portals of antigen entry. As in other tissue Treg compartments, mucosal Tregs in the respiratory, gastrointestinal, and genitourinary tracts are distinct from circulating counterparts and can carry out mucosa-specific functions as well as classic suppressive functions that are the hallmark of Tregs. In this review, we summarize current knowledge regarding mucosal Tregs in both health and disease.
Collapse
Affiliation(s)
- Brianna R Traxinger
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura E Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
171
|
Collins N, Belkaid Y. Control of immunity via nutritional interventions. Immunity 2022; 55:210-223. [PMID: 35139351 DOI: 10.1016/j.immuni.2022.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022]
Abstract
Nutrition affects all physiological processes including those linked to the development and function of our immune system. Here, we discuss recent evidence and emerging concepts supporting the idea that our newfound relationship with nutrition in industrialized countries has fundamentally altered the way in which our immune system is wired. This will be examined through the lens of studies showing that mild or transient reductions in dietary intake can enhance protective immunity while also limiting aberrant inflammatory responses. We will further discuss how trade-offs and priorities begin to emerge in the context of severe nutritional stress. In those settings, specific immunological functions are heightened to re-enforce processes and tissue sites most critical to survival. Altogether, these examples will emphasize the profound influence nutrition has over the immune system and highlight how a mechanistic exploration of this cross talk could ultimately lead to the design of novel therapeutic approaches that prevent and treat disease.
Collapse
Affiliation(s)
- Nicholas Collins
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; NIAID Microbiome Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
172
|
The Immune Underpinnings of Barrett's-Associated Adenocarcinogenesis: a Retrial of Nefarious Immunologic Co-Conspirators. Cell Mol Gastroenterol Hepatol 2022; 13:1297-1315. [PMID: 35123116 PMCID: PMC8933845 DOI: 10.1016/j.jcmgh.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022]
Abstract
There is no doubt that chronic gastroesophageal reflux disease increases the risk of esophageal adenocarcinoma (EAC) by several fold (odds ratio, 6.4; 95% CI, 4.6-9.1), and some relationships between reflux disease-mediated inflammation and oncogenic processes have been explored; however, the precise interconnections between the immune response and genomic instabilities underlying these pathologic processes only now are emerging. Furthermore, the precise cell of origin of the precancerous stages associated with EAC development, Barrett's esophagus, be it cardia resident or embryonic remnant, may shape our interpretation of the likely immune drivers. This review integrates the current collective knowledge of the immunology underlying EAC development and outlines a framework connecting proinflammatory pathways, such as those mediated by interleukin 1β, tumor necrosis factor α, leukemia inhibitory factor, interleukin 6, signal transduction and activator of transcription 3, nuclear factor-κB, cyclooxygenase-2, and transforming growth factor β, with oncogenic pathways in the gastroesophageal reflux disease-Barrett's esophagus-EAC cancer sequence. Further defining these immune and molecular railroads may show a map of the routes taken by gastroesophageal cells on their journey toward EAC tumor phylogeny. The selective pressures applied by this immune-induced journey likely impact the phenotype and genotype of the resulting oncogenic destination and further exploration of lesser-defined immune drivers may be useful in future individualized therapies or enhanced selective application of recent immune-driven therapeutics.
Collapse
|
173
|
Bourque J, Hawiger D. Variegated Outcomes of T Cell Activation by Dendritic Cells in the Steady State. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:539-547. [PMID: 35042789 DOI: 10.4049/jimmunol.2100932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
Conventional dendritic cells (cDC) control adaptive immunity by sensing damage- and pathogen-associated molecular patterns and then inducing defined differentiation programs in T cells. Nevertheless, in the absence of specific proimmunogenic innate signals, generally referred to as the steady state, cDC also activate T cells to induce specific functional fates. Consistent with the maintenance of homeostasis, such specific outcomes of T cell activation in the steady state include T cell clonal anergy, deletion, and conversion of peripheral regulatory T cells (pTregs). However, the robust induction of protolerogenic mechanisms must be reconciled with the initiation of autoimmune responses and cancer immunosurveillance that are also observed under homeostatic conditions. Here we review the diversity of fates and functions of T cells involved in the opposing immunogenic and tolerogenic processes induced in the steady state by the relevant mechanisms of systemic cDC present in murine peripheral lymphoid organs.
Collapse
Affiliation(s)
- Jessica Bourque
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO
| |
Collapse
|
174
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
175
|
Maier I, Ruegger PM, Deutschmann J, Helbich TH, Pietschmann P, Schiestl RH, Borneman J. Particle Radiation Side-Effects: Intestinal Microbiota Composition Shapes Interferon-γ-Induced Osteo-Immunogenicity. Radiat Res 2022; 197:184-192. [PMID: 35130347 DOI: 10.1667/rade-21-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/09/2021] [Indexed: 07/25/2024]
Abstract
Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (-15%) vs. irradiated RM mice (-9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.
Collapse
Affiliation(s)
- Irene Maier
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Paul M Ruegger
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| | - Julia Deutschmann
- Department for Radiologic Technology, University of Applied Sciences Wiener Neustadt for Business and Engineering Ltd., Lower Austria, Austria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Robert H Schiestl
- Departments of Pathology and Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, California
| |
Collapse
|
176
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
177
|
Bourque J, Hawiger D. Applications of Antibody-Based Antigen Delivery Targeted to Dendritic Cells In Vivo. Antibodies (Basel) 2022; 11:antib11010008. [PMID: 35225867 PMCID: PMC8884005 DOI: 10.3390/antib11010008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Recombinant immunoglobulins, derived from monoclonal antibodies recognizing the defined surface epitopes expressed on dendritic cells, have been employed for the past two decades to deliver antigens to dendritic cells in vivo, serving as critical tools for the investigation of the corresponding T cell responses. These approaches originated with the development of the recombinant chimeric antibody against a multilectin receptor, DEC-205, which is present on subsets of murine and human conventional dendritic cells. Following the widespread application of antigen targeting through DEC-205, similar approaches then utilized other epitopes as entry points for antigens delivered by specific antibodies to multiple types of dendritic cells. Overall, these antigen-delivery methodologies helped to reveal the mechanisms underlying tolerogenic and immunogenic T cell responses orchestrated by dendritic cells. Here, we discuss the relevant experimental strategies as well as their future perspectives, including their translational relevance.
Collapse
Affiliation(s)
| | - Daniel Hawiger
- Correspondence: ; Tel.: +1-314-977-8875; Fax: +1-314-977-8717
| |
Collapse
|
178
|
Periodontal ligament cells under mechanical force regulate local immune homeostasis by modulating Th17/Treg cell differentiation. Clin Oral Investig 2022; 26:3747-3764. [PMID: 35029749 DOI: 10.1007/s00784-021-04346-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/11/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVES Improper orthodontic force often causes root resorption or destructive bone resorption. There is evidence that T helper 17 (Th17) cells and regulatory T (Treg) cells may be actively involved in bone remodeling during tooth movement. In a combination of in vitro and in vivo studies, we investigated the effect of human periodontal ligament cells (hPDLCs) on Th17/Treg cells under different orthodontic forces and corticotomy. MATERIAL AND METHODS hPDLCs were cultured in vitro and subjected to different mechanical forces. The expression of interleukin (IL)-6 and transforming growth factor (TGF)-β in the supernatant and the mRNA levels of hypoxia inducible factor (HIF)-1α, Notch1, and TGF-β in hPDLCs were investigated. Supernatants were collected and co-cultured with activated CD4+T cells, and the differentiation of Th17/Treg cells was analyzed by flow cytometry. We also established an animal model of tooth movement with or without corticotomy. The tooth movement distance, alveolar bone height, and root resorption were analyzed using micro-computed tomography. Expression of interleukin (IL)-17A, forkhead Box P3 (Foxp3), and IL-6 were analyzed using immunohistochemistry, while osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of IL-17A, IL-6, Foxp3, IL-10, HIF-1α, notch1, and C-X-C motif chemokine ligand 12 (CXCL12) in alveolar bone and gingiva were investigated. RESULTS Heavy force repressed cell viability and increased the mortality rate of hPDLCs; it also improved the expression of IL-6, declined the expression of TGF-β, and promoted the mRNA expression level of HIF-1α. The expression of TGF-β and Notch1 mRNA decreased and then increased. The supernatant of hPDLCs under heavy force promotes the polarization of Th17 cells. The heavy force caused root resorption and decreased alveolar bone height and increased the positive area of IL-17A immunohistochemical staining and the expression of IL-17A, IL-6, HIF-1α, and Notch1 mRNA. Corticotomy accelerated tooth movement, increased the proportion of Foxp3-positive cells, and up-regulated the expression of Foxp3, IL-10, and CXCL12 mRNA. CONCLUSIONS During orthodontic tooth movement, the heavy force causes root resorption and inflammatory bone destruction, which could be associated with increased expression of Th17 cells and IL-6. Corticotomy can accelerate tooth movement without causing root resorption and periodontal bone loss, which may be related to the increased expression of Treg cells. CLINICAL RELEVANCE Altogether, this report provides a new perspective on the prevention of inflammatory injury via the regulation of Th17/Treg cells in orthodontics.
Collapse
|
179
|
Wu L, Li S, Li C, He B, Lv L, Wang J, Wang J, Wang W, Zhang Y. The role of regulatory T cells on the activation of astrocytes in the brain of high-fat diet mice following lead exposure. Chem Biol Interact 2022; 351:109740. [PMID: 34742682 DOI: 10.1016/j.cbi.2021.109740] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 01/02/2023]
Abstract
Lead (Pb) exposure can cause damage to the central nervous system (CNS)*. Pb can accumulate in the hippocampus, leading to learning and memory impairments. Recent studies have shown that high-fat diet (HFD) is also associated with cognitive impairment. However, there are few reports on CNS damage due to HFD and Pb exposure. We aimed to investigate the effect of Pb on cognitive functions of HFD-fed mice, focusing on the role of regulatory T (Treg) cells in astrocyte activation. C57BL/6J mice were randomly divided into control, HFD, Pb, and HFD + Pb groups. TGF-β and IL-10 secreted by Treg cells and the intracellular transcription factor Foxp3 were evaluated as a measure of Treg cell function; astrocyte activation was assessed by evaluating glial fibrillary acidic protein (GFAP) expression. The learning and memory ability was significantly lower in the HFD + Pb group than in other groups. The brain Treg cell ratio was significantly decreased and the protein levels of TGF-β, IL-10, and Foxp3 were significantly lower, whereas the protein level of GFAP was higher in the HFD + Pb group. The hippocampus of the HFD + Pb group mice showed significantly higher levels of neurotoxic reactive astrocyte markers and astrogliosis was also much higher compared to HFD and Pb groups. Furthermore, all-trans retinoic acid treatment increased the brain Treg cell ratio, reversed cognitive decline, and suppressed astrocyte activation in the HFD + Pb group mice. We concluded that HFD along with Pb exposure could aggravate the activation of astrocytes in the brain, and the brain Treg cells may be involved in inhibiting astrocyte activation in HFD-fed mice exposed to Pb.
Collapse
Affiliation(s)
- Lei Wu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuang Li
- Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Chao Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Bin He
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Linyi Lv
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jia Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Jierui Wang
- Rheumatology Department, Kailuan General Hospital, Tangshan, 063000, Hebei, China
| | - Weixuan Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yanshu Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, Hebei, China; Experiment Animal Center, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
180
|
Ju YJ, Lee KM, Kim G, Kye YC, Kim HW, Chu H, Park BC, Cho JH, Chang PS, Han SH, Yun CH. Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice. Immune Netw 2022; 22:e16. [PMID: 35573152 PMCID: PMC9066004 DOI: 10.4110/in.2022.22.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 12/01/2022] Open
Abstract
The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b− DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may induce the increase of IFN-γ–producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.
Collapse
Affiliation(s)
- Young-Jun Ju
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyung-Min Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Girak Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoon-Chul Kye
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Han Wool Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Byung-Chul Park
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
181
|
Assadiasl S, Toosi MN, Mohebbi B, Ansaripour B, Soleimanifar N, Sadr M, Mojtahedi H, Mosharmovahed B, Fazeli F, Nicknam MH. Th17/Treg cell balance in stable liver transplant recipients. Transpl Immunol 2022; 71:101540. [DOI: 10.1016/j.trim.2022.101540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022]
|
182
|
Jensen SK, Pærregaard SI, Brandum EP, Jørgensen AS, Hjortø GM, Jensen BAH. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac008. [PMID: 35291443 PMCID: PMC8915887 DOI: 10.1093/gastro/goac008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/07/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Organismal survival depends on a well-balanced immune system and maintenance of host–microbe mutualism. The fine-tuned relationship between the gut microbiota and host immunity is constantly challenged by opportunistic bacteria testing the integrity of gastrointestinal (GI) barrier defenses. Barrier dysfunction reduces immunological tolerance towards otherwise innocuous microbes; it is a process that may instigate chronic inflammation. Paradoxically, sustained inflammation further diminishes barrier function, enabling bacterial translocation to extra-intestinal tissues. Once translocated, these bacteria stimulate systemic inflammation, thereby compromising organ function. While genetic risk alleles associate with barrier dysfunction, environmental stressors are key triggers of GI inflammation and associated breakdown in immune tolerance towards resident gut microbes. As dietary components dictate substrate availability, they also orchestrate microbiota composition and function, including migratory and pro-inflammatory potential, thus holding the capacity to fuel both GI and extra-intestinal inflammation. Additionally, Western diet consumption may weaken barrier defenses via curbed Paneth cell function and diminished host-defense peptide secretion. This review focuses on intervenable niches of host–microbe interactions and mucosal immunity with the ambition to provide a framework of plausible strategies to improve barrier function and regain tolerance in the inflamed mucosa via nutritional intervention.
Collapse
Affiliation(s)
- Sune K Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emma P Brandum
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid S Jørgensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud M Hjortø
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin A H Jensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Corresponding author. Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Build. 22.5.39, Copenhagen N 2200, Denmark. Tel: +45-35330188;
| |
Collapse
|
183
|
Bielka W, Przezak A, Pawlik A. The Role of the Gut Microbiota in the Pathogenesis of Diabetes. Int J Mol Sci 2022; 23:ijms23010480. [PMID: 35008906 PMCID: PMC8745411 DOI: 10.3390/ijms23010480] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a significant clinical and therapeutic problem because it can lead to serious long-term complications. Its pathogenesis is not fully understood, but there are indications that dysbiosis can play a role in the development of diabetes, or that it appears during the course of the disease. Changes in microbiota composition are observed in both type 1 diabetes (T1D) and type 2 diabetes (T2D) patients. These modifications are associated with pro-inflammation, increased intestinal permeability, endotoxemia, impaired β-cell function and development of insulin resistance. This review summarizes the role of the gut microbiota in healthy individuals and the changes in bacterial composition that can be associated with T1D or T2D. It also presents new developments in diabetes therapy based on influencing the gut microbiota as a promising method to alter the course of diabetes. Moreover, it highlights the lacking data and suggests future directions needed to prove the causal relationship between dysbiosis and diabetes, both T1D and T2D.
Collapse
|
184
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
185
|
Matsubara Y, Kiyohara H, Teratani T, Mikami Y, Kanai T. Organ and brain crosstalk: The liver-brain axis in gastrointestinal, liver, and pancreatic diseases. Neuropharmacology 2021; 205:108915. [PMID: 34919906 DOI: 10.1016/j.neuropharm.2021.108915] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.
Collapse
Affiliation(s)
- Yuta Matsubara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
186
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
187
|
Brown H, Esterházy D. Intestinal immune compartmentalization: implications of tissue specific determinants in health and disease. Mucosal Immunol 2021; 14:1259-1270. [PMID: 34211125 DOI: 10.1038/s41385-021-00420-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023]
Abstract
The emerging concept of tissue specific immunity has opened the gates to new inquiries into what factors drive immune cell niche adaptation and the implications on immune homeostasis, organ specific immune diseases, and therapeutic efficacy. These issues are particularly complicated at barrier sites, which are directly exposed to an ever-changing environment. In particular, the gastrointestinal (GI) tract faces even further challenges given the profound functional and structural differences along its length, raising the possibility that it may even have to be treated as multiple organs when seeking to answer these questions. In this review, we evaluate what is known about the tissue intrinsic and extrinsic factors shaping immune compartments in the intestine. We then discuss the physiological and pathological consequences of a regionally distinct immune system in a single organ, but also discuss where our insight into the role of the compartment for disease development is still very limited. Finally, we discuss the technological and therapeutic implications this compartmentalization has. While the gut is perhaps one of the most intensely studied systems, many of these aspects apply to understanding tissue specific immunity of other organs, most notably other barrier sites such as skin, lung, and the urogenital tract.
Collapse
Affiliation(s)
- Hailey Brown
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Daria Esterházy
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
188
|
Woo V, Eshleman EM, Hashimoto-Hill S, Whitt J, Wu SE, Engleman L, Rice T, Karns R, Qualls JE, Haslam DB, Vallance BA, Alenghat T. Commensal segmented filamentous bacteria-derived retinoic acid primes host defense to intestinal infection. Cell Host Microbe 2021; 29:1744-1756.e5. [PMID: 34678170 DOI: 10.1016/j.chom.2021.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/14/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.
Collapse
Affiliation(s)
- Vivienne Woo
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Emily M Eshleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Seika Hashimoto-Hill
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Shu-En Wu
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Laura Engleman
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Taylor Rice
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Joseph E Qualls
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Bruce A Vallance
- Department of Pediatrics, BC Children's Hospital Research Institute and the University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
189
|
Cho K, Lee SM, Heo J, Kwon YM, Chung D, Yu WJ, Bae SS, Choi G, Lee DS, Kim Y. Retinaldehyde Dehydrogenase Inhibition-Related Adverse Outcome Pathway: Potential Risk of Retinoic Acid Synthesis Inhibition during Embryogenesis. Toxins (Basel) 2021; 13:toxins13110739. [PMID: 34822523 PMCID: PMC8623920 DOI: 10.3390/toxins13110739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoic acid (RA) is one of the factors crucial for cell growth, differentiation, and embryogenesis; it interacts with the retinoic acid receptor and retinoic acid X receptor to eventually regulate target gene expression in chordates. RA is transformed from retinaldehyde via oxidization by retinaldehyde dehydrogenase (RALDH), which belongs to the family of oxidoreductases. Several chemicals, including disulphiram, diethylaminobenzaldehyde, and SB-210661, can effectively inhibit RALDH activity, potentially causing reproductive and developmental toxicity. The modes of action can be sequentially explained based on the molecular initiating event toward key events, and finally the adverse outcomes. Adverse outcome pathway (AOP) is a conceptual and theoretical framework that describes the sequential chain of casually liked events at different biological levels from molecular events to adverse effects. In the present review, we discussed a recently registered AOP (AOP297; inhibition of retinaldehyde dehydrogenase leads to population decline) to explain and support the weight of evidence for RALDH inhibition-related developmental toxicity using the existing knowledge.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Sang-Moo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea;
| | - Jina Heo
- Department of Growth Engine Research, Chungbuk Research Institute (CRI), Chungju 28517, Korea;
| | - Yong Min Kwon
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dawoon Chung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Woon-Jong Yu
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Seung Seob Bae
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Grace Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
| | - Dae-Sung Lee
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea; (K.C.); (Y.M.K.); (D.C.); (W.-J.Y.); (S.S.B.); (G.C.)
- Correspondence: (D.-S.L.); (Y.K.)
| | - Youngjun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, 66123 Saarbrücken, Germany
- Correspondence: (D.-S.L.); (Y.K.)
| |
Collapse
|
190
|
Yuan X, Tang H, Wu R, Li X, Jiang H, Liu Z, Zhang Z. Short-Chain Fatty Acids Calibrate RARα Activity Regulating Food Sensitization. Front Immunol 2021; 12:737658. [PMID: 34721398 PMCID: PMC8551578 DOI: 10.3389/fimmu.2021.737658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Gut-microbiota dysbiosis links to allergic diseases. The mechanism of the exacerbation of food allergy caused by gut-microbiota dysbiosis remains unknown. Regulation of retinoic acid receptor alpha (RARα) signaling is critical for gut immune homeostasis. Here we clarified that RARα in dendritic cells (DCs) promotes Th2 cell differentiation. Antibiotics treatment stimulates retinoic acid signaling in mucosal DCs. We found microbiota metabolites short-chain fatty acids (SCFAs) maintain IGF-1 levels in serum and mesenteric lymph nodes. The IGF-1/Akt pathway is essential for regulating the transcription of genes targeted by RARα. And RARα in DCs affects type I interferon (IFN-I) responses through regulating transcription of IFN-α. Our study identifies SCFAs crosstalk with RARα in dendritic cells as a critical modulator that plays a core role in promoting Th2 cells differentiation at a state of modified/disturbed microbiome.
Collapse
Affiliation(s)
- Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Renlan Wu
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xingjie Li
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Hongyu Jiang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zhigang Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen University School of Medicine, Shenzhen, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
191
|
Moon S, Park Y, Hyeon S, Kim YM, Kim JH, Kim H, Park S, Lee KJ, Koo BK, Ha SJ, Lee SW. Niche-specific MHC II and PD-L1 regulate CD4+CD8αα+ intraepithelial lymphocyte differentiation. J Exp Med 2021; 218:211737. [PMID: 33533917 PMCID: PMC7849820 DOI: 10.1084/jem.20201665] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/12/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Conventional CD4+ T cells are differentiated into CD4+CD8αα+ intraepithelial lymphocytes (IELs) in the intestine; however, the roles of intestinal epithelial cells (IECs) are poorly understood. Here, we showed that IECs expressed MHC class II (MHC II) and programmed death–ligand 1 (PD-L1) induced by the microbiota and IFN-γ in the distal part of the small intestine, where CD4+ T cells were transformed into CD4+CD8αα+ IELs. Therefore, IEC-specific deletion of MHC II and PD-L1 hindered the development of CD4+CD8αα+ IELs. Intracellularly, PD-1 signals supported the acquisition of CD8αα by down-regulating the CD4-lineage transcription factor, T helper–inducing POZ/Krüppel-like factor (ThPOK), via the Src homology 2 domain–containing tyrosine phosphatase (SHP) pathway. Our results demonstrate that noncanonical antigen presentation with cosignals from IECs constitutes niche adaptation signals to develop tissue-resident CD4+CD8αα+ IELs.
Collapse
Affiliation(s)
- Sookjin Moon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yunji Park
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sumin Hyeon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Young-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ji-Hae Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Subin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Kun-Joo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter, Vienna, Austria
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
192
|
van Daal MT, Folkerts G, Garssen J, Braber S. Pharmacological Modulation of Immune Responses by Nutritional Components. Pharmacol Rev 2021; 73:198-232. [PMID: 34663688 DOI: 10.1124/pharmrev.120.000063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The incidence of noncommunicable diseases (NCDs) has increased over the last few decades, and one of the major contributors to this is lifestyle, especially diet. High intake of saturated fatty acids and low intake of dietary fiber is linked to an increase in NCDs. Conversely, a low intake of saturated fatty acids and a high intake of dietary fiber seem to have a protective effect on general health. Several mechanisms have been identified that underlie this phenomenon. In this review, we focus on pharmacological receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors, which can be activated by nutritional components and their metabolites. Depending on the nutritional component and the receptors involved, both proinflammatory and anti-inflammatory effects occur, leading to an altered immune response. These insights may provide opportunities for the prevention and treatment of NCDs and their inherent (sub)chronic inflammation. SIGNIFICANCE STATEMENT: This review summarizes the reported effects of nutritional components and their metabolites on the immune system through manipulation of specific (pharmacological) receptors, including the aryl hydrocarbon receptor, binding partners of the retinoid X receptor, G-coupled protein receptors, and toll-like receptors. Nutritional components, such as vitamins, fibers, and unsaturated fatty acids are able to resolve inflammation, whereas saturated fatty acids tend to exhibit proinflammatory effects. This may aid decision makers and scientists in developing strategies to decrease the incidence of noncommunicable diseases.
Collapse
Affiliation(s)
- Marthe T van Daal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG, Utrecht, The Netherlands (M.T.v.D., G.F., J.G., S.B.); and Danone Nutricia Research, 3584 CT, Utrecht, The Netherlands (J.G.)
| |
Collapse
|
193
|
Vyas SP, Goswami R. Calcitriol and Retinoic acid antagonize each other to suppress the production of IL-9 by Th9 cells. J Nutr Biochem 2021; 96:108788. [PMID: 34087410 DOI: 10.1016/j.jnutbio.2021.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/29/2022]
Abstract
Distinct T helper cells, including Th9 cells help maintain homeostasis in the immune system. Vitamins play pivotal role in the immune system through many mechanisms, including regulating the differentiation of T helper cells. Calcitriol (1,25-dihydroxyvitamin D3) and retinoic acid possess hormone-like properties and are the bioactive metabolites of vitamin D and A, respectively, that signal through heterodimers containing the common retinoid X receptor. In contrast to individual treatment with the vitamins that significantly attenuates IL-9 production from Th9 cells, Th9 cells treated with both vitamins demonstrated IL-9 production similar to untreated Th9 cells. This is associated with reciprocal expression of PU.1 and Foxp3. While the recruitment of PU.1 was significantly impaired to the Il9 gene in the presence of calcitriol or retinoic acid in Th9 cells, addition of both vitamins together increased the recruitment of PU.1 to the Il9 gene. Calcitriol and retinoic acid together impaired the recruitment of HDAC1 to the Il9 gene without impacting Gcn5 recruitment. Importantly, retinoic acid negated the effect of calcitriol and impaired the binding of VDR on the Il9 gene by dampened VDR-RXR formation. Collectively, our data show that calcitriol and retinoic acid antagonize each other to regulate the differentiation of Th9 cells.
Collapse
|
194
|
Harriman R, Lewis JS. Bioderived materials that disarm the gut mucosal immune system: Potential lessons from commensal microbiota. Acta Biomater 2021; 133:187-207. [PMID: 34098091 DOI: 10.1016/j.actbio.2021.05.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Over the course of evolution, mammals and gut commensal microbes have adapted to coexist with each other. This homeostatic coexistence is dependent on an intricate balance between tolerogenic and inflammatory responses directed towards beneficial, commensal microbes and pathogenic intruders, respectively. Immune tolerance towards the gut microflora is largely sustained by immunomodulatory molecules produced by the commensals, which protect the bacteria from immune advances and maintain the gut's unique tolerogenic microenvironment, as well as systemic homeostasis. The identification and characterization of commensal-derived, tolerogenic molecules could lead to their utilization in biomaterials-inspired delivery schemes involving nano/microparticles or hydrogels, and potentially lead to the next generation of commensal-derived therapeutics. Moreover, gut-on-chip technologies could augment the discovery and characterization of influential commensals by providing realistic in vitro models conducive to finicky microbes. In this review, we provide an overview of the gut immune system, describe its intricate relationships with the microflora and identify major genera involved in maintaining tolerogenic responses and peripheral homeostasis. More relevant to biomaterials, we discuss commensal-derived molecules that are known to interface with immune cells and discuss potential strategies for their incorporation into biomaterial-based strategies aimed at culling inflammatory diseases. We hope this review will bridge the current findings in gut immunology, microbiology and biomaterials and spark further investigation into this emerging field. STATEMENT OF SIGNIFICANCE: Despite its tremendous potential to culminate into revolutionary therapeutics, the synergy between immunology, microbiology, and biomaterials has only been explored at a superficial level. Strategic incorporation of biomaterial-based technologies may be necessary to fully characterize and capitalize on the rapidly growing repertoire of immunomodulatory molecules derived from commensal microbes. Bioengineers may be able to combine state-of-the-art delivery platforms with immunomodulatory cues from commensals to provide a more holistic approach to combating inflammatory disease. This interdisciplinary approach could potentiate a neoteric field of research - "commensal-inspired" therapeutics with the promise of revolutionizing the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Rian Harriman
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA
| | - Jamal S Lewis
- University of California Davis, Department of Biomedical Engineering, Davis, CA 95616, USA.
| |
Collapse
|
195
|
Hwang SH, Woo JS, Moon J, Yang S, Park JS, Lee J, Choi J, Lee KH, Kwok SK, Park SH, Cho ML. IL-17 and CCR9 +α4β7 - Th17 Cells Promote Salivary Gland Inflammation, Dysfunction, and Cell Death in Sjögren's Syndrome. Front Immunol 2021; 12:721453. [PMID: 34539657 PMCID: PMC8440850 DOI: 10.3389/fimmu.2021.721453] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/04/2021] [Indexed: 12/26/2022] Open
Abstract
Previous studies have evaluated the roles of T and B cells in the pathogenesis of Sjögren's syndrome (SS); however, their relationships with age-dependent and metabolic abnormalities remain unclear. We examined the impacts of changes associated with aging or metabolic abnormalities on populations of T and B cells and SS disease severity. We detected increased populations of IL-17-producing T and B cells, which regulate inflammation, in the salivary glands of NOD/ShiLtJ mice. Inflammation-induced human submandibular gland cell death, determined based on p-MLKL and RIPK3 expression levels, was significantly increased by IL-17 treatment. Among IL-17-expressing cells in the salivary gland, peripheral blood, and spleen, the α4β7 (gut-homing integrin)-negative population was significantly increased in aged NOD/ShiLtJ mice. The α4β7-positive population markedly increased in the intestines of aged NOD/ShiLtJ mice following retinoic acid (RA) treatment. A significant increase in α4β7-negative IL-17-expressing cells in salivary glands may be involved in the onset and progression of SS. These results suggest the potential therapeutic utility of RA in SS treatment.
Collapse
Affiliation(s)
- Sun-Hee Hwang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Seok Woo
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeonghyeon Moon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - SeungCheon Yang
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Sil Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JaeSeon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - JeongWon Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kun Hee Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung-Ki Kwok
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Hwan Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
196
|
Bang YJ, Hu Z, Li Y, Gattu S, Ruhn KA, Raj P, Herz J, Hooper LV. Serum amyloid A delivers retinol to intestinal myeloid cells to promote adaptive immunity. Science 2021; 373:eabf9232. [PMID: 34529485 DOI: 10.1126/science.abf9232] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ye-Ji Bang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zehan Hu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yun Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sureka Gattu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kelly A Ruhn
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lora V Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
197
|
Carstens MR, Wasserfall CH, Acharya AP, Lewis J, Agrawal N, Koenders K, Bracho-Sanchez E, Keselowsky BG. GRAS-microparticle microarrays identify dendritic cell tolerogenic marker-inducing formulations. LAB ON A CHIP 2021; 21:3598-3613. [PMID: 34346460 PMCID: PMC8725777 DOI: 10.1039/d1lc00096a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays, miniaturized platforms used for high-content studies, provide potential advantages over traditional in vitro investigation in terms of time, cost, and parallel analyses. Recently, microarrays have been leveraged to investigate immune cell biology by providing a platform with which to systematically investigate the effects of various agents on a wide variety of cellular processes, including those giving rise to immune regulation for application toward curtailing autoimmunity. A specific embodiment incorporates dendritic cells cultured on microarrays containing biodegradable microparticles. Such an approach allows immune cell and microparticle co-localization and release of compounds on small, isolated populations of cells, enabling a quick, convenient method to quantify a variety of cellular responses in parallel. In this study, the microparticle microarray platform was utilized to investigate a small library of sixteen generally regarded as safe (GRAS) compounds (ascorbic acid, aspirin, capsaicin, celastrol, curcumin, epigallocatechin-3-gallate, ergosterol, hemin, hydrocortisone, indomethacin, menadione, naproxen, resveratrol, retinoic acid, α-tocopherol, vitamin D3) for their ability to induce suppressive phenotypes in murine dendritic cells. Two complementary tolerogenic index ranking systems were proposed to summarize dendritic cell responses and suggested several lead compounds (celastrol, ergosterol, vitamin D3) and two secondary compounds (hemin, capsaicin), which warrant further investigation for applications toward suppression and tolerance.
Collapse
Affiliation(s)
- Matthew R Carstens
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Clive H Wasserfall
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, USA
| | - Jamal Lewis
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Nikunj Agrawal
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Kevin Koenders
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Evelyn Bracho-Sanchez
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| | - Benjamin G Keselowsky
- J. Crayton Pruitt Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Biomedical Sciences Building J291, Gainesville, FL 32611, USA.
| |
Collapse
|
198
|
Hefazi M, Bolivar-Wagers S, Blazar BR. Regulatory T Cell Therapy of Graft-versus-Host Disease: Advances and Challenges. Int J Mol Sci 2021; 22:9676. [PMID: 34575843 PMCID: PMC8469916 DOI: 10.3390/ijms22189676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Graft-versus-host disease (GVHD) is the leading cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation using regulatory T cells (Tregs) offers an exciting option to prevent and/or treat GVHD as these cells naturally function to maintain immune homeostasis, can induce tolerance following HSCT, and have a tissue reparative function. Studies to date have established a clinical safety profile for polyclonal Tregs. Functional enhancement through genetic engineering offers the possibility of improved potency, specificity, and persistence. In this review, we provide the most up to date preclinical and clinical data on Treg cell therapy with a particular focus on GVHD. We discuss the different Treg subtypes and highlight the pharmacological and genetic approaches under investigation to enhance the application of Tregs in allo-HSCT. Lastly, we discuss the remaining challenges for optimal clinical translation and provide insights as to future directions of the field.
Collapse
Affiliation(s)
- Mehrdad Hefazi
- Division of Hematology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA;
| |
Collapse
|
199
|
Lécuyer E, Le Roy T, Gestin A, Lacombe A, Philippe C, Ponnaiah M, Huré JB, Fradet M, Ichou F, Boudebbouze S, Huby T, Gautier E, Rhimi M, Maguin E, Kapel N, Gérard P, Venteclef N, Garlatti M, Chassaing B, Lesnik P. Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic Diseases. Diabetes 2021; 70:2067-2080. [PMID: 34078628 PMCID: PMC8576430 DOI: 10.2337/db20-1177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
Excess chronic contact between microbial motifs and intestinal immune cells is known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes. The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described, but how dendritic cells (DCs) participate in these changes is still poorly documented. To address this question, we challenged transgenic mice with enhanced DC life span and immunogenicity (DChBcl-2 mice) with a high-fat diet. Those mice display resistance to DIO and metabolic alterations. The DIO-resistant phenotype is associated with healthier parameters of intestinal barrier function and lower intestinal inflammation. DChBcl-2 DIO-resistant mice demonstrate a particular increase in tolerogenic DC numbers and function, which is associated with strong intestinal IgA, T helper 17, and regulatory T-cell immune responses. Microbiota composition and function analyses reveal that the DChBcl-2 mice microbiota is characterized by lower immunogenicity and an enhanced butyrate production. Cohousing experiments and fecal microbial transplantations are sufficient to transfer the DIO resistance status to wild-type mice, demonstrating that maintenance of DCs' tolerogenic ability sustains a microbiota able to drive DIO resistance. The tolerogenic function of DCs is revealed as a new potent target in metabolic disease management.
Collapse
Affiliation(s)
- Emelyne Lécuyer
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Tiphaine Le Roy
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne/INSERM, Nutrition et obésités: approches systémiques (nutriOmics), Hôpital Pitié- Salpêtrière, Paris, France
| | - Aurélie Gestin
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Amélie Lacombe
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Catherine Philippe
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maharajah Ponnaiah
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Baptiste Huré
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Magali Fradet
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Farid Ichou
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Samira Boudebbouze
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thierry Huby
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuel Gautier
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Moez Rhimi
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM UMRS 1139, Université de Paris, Paris, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris, Paris, France
| | - Michèle Garlatti
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Benoit Chassaing
- Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
- INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases," Paris, France
| | - Philippe Lesnik
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
200
|
Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin A1 as a Regulator of Immune Response in Cancer. Cells 2021; 10:2245. [PMID: 34571894 PMCID: PMC8464935 DOI: 10.3390/cells10092245] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 01/01/2023] Open
Abstract
Annexin A1 is a 37 kDa phospholipid-binding protein that is expressed in many tissues and cell types, including leukocytes, lymphocytes and epithelial cells. Although Annexin A1 has been extensively studied for its anti-inflammatory activity, it has been shown that, in the cancer context, its activity switches from anti-inflammatory to pro-inflammatory. Remarkably, Annexin A1 shows pro-invasive and pro-tumoral properties in several cancers either by eliciting autocrine signaling in cancer cells or by inducing a favorable tumor microenvironment. Indeed, the signaling of the N-terminal peptide of AnxA1 has been described to promote the switching of macrophages to the pro-tumoral M2 phenotype. Moreover, AnxA1 has been described to prevent the induction of antigen-specific cytotoxic T cell response and to play an essential role in the induction of regulatory T lymphocytes. In this way, Annexin A1 inhibits the anti-tumor immunity and supports the formation of an immunosuppressed tumor microenvironment that promotes tumor growth and metastasis. For these reasons, in this review we aim to describe the role of Annexin A1 in the establishment of the tumor microenvironment, focusing on the immunosuppressive and immunomodulatory activities of Annexin A1 and on its interaction with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Sara Teixeira Soares Mota
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Matheus Alves Ribeiro
- Laboratory of Genetics and Biotechnology, Federal University of Uberlandia, Patos de Minas 387400-128, MG, Brazil; (T.G.A.); (S.T.S.M.); (H.S.V.F.); (M.A.R.)
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Federal University of Uberlandia, Uberlandia 38400-902, MG, Brazil;
| |
Collapse
|