151
|
Nguyen TT, Torrini C, Shang E, Shu C, Mun JY, Gao Q, Humala N, Akman HO, Zhang G, Westhoff MA, Karpel-Massler G, Bruce JN, Canoll P, Siegelin MD. OGDH and Bcl-xL loss causes synthetic lethality in glioblastoma. JCI Insight 2024; 9:e172565. [PMID: 38483541 PMCID: PMC11141877 DOI: 10.1172/jci.insight.172565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.
Collapse
Affiliation(s)
- Trang Tt Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Consuelo Torrini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, New York, USA
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Jeong-Yeon Mun
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Qiuqiang Gao
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | | | - Hasan O Akman
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, New York, USA
| | | | | | | | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
152
|
Russo M, Gualdrini F, Vallelonga V, Prosperini E, Noberini R, Pedretti S, Borriero C, Di Chiaro P, Polletti S, Imperato G, Marenda M, Ghirardi C, Bedin F, Cuomo A, Rodighiero S, Bonaldi T, Mitro N, Ghisletti S, Natoli G. Acetyl-CoA production by Mediator-bound 2-ketoacid dehydrogenases boosts de novo histone acetylation and is regulated by nitric oxide. Mol Cell 2024; 84:967-980.e10. [PMID: 38242130 PMCID: PMC7615796 DOI: 10.1016/j.molcel.2023.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Histone-modifying enzymes depend on the availability of cofactors, with acetyl-coenzyme A (CoA) being required for histone acetyltransferase (HAT) activity. The discovery that mitochondrial acyl-CoA-producing enzymes translocate to the nucleus suggests that high concentrations of locally synthesized metabolites may impact acylation of histones and other nuclear substrates, thereby controlling gene expression. Here, we show that 2-ketoacid dehydrogenases are stably associated with the Mediator complex, thus providing a local supply of acetyl-CoA and increasing the generation of hyper-acetylated histone tails. Nitric oxide (NO), which is produced in large amounts in lipopolysaccharide-stimulated macrophages, inhibited the activity of Mediator-associated 2-ketoacid dehydrogenases. Elevation of NO levels and the disruption of Mediator complex integrity both affected de novo histone acetylation within a shared set of genomic regions. Our findings indicate that the local supply of acetyl-CoA generated by 2-ketoacid dehydrogenases bound to Mediator is required to maximize acetylation of histone tails at sites of elevated HAT activity.
Collapse
Affiliation(s)
- Marta Russo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Francesco Gualdrini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Veronica Vallelonga
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Elena Prosperini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Roberta Noberini
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Carolina Borriero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Sara Polletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Gabriele Imperato
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Mattia Marenda
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Chiara Ghirardi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Fabio Bedin
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Simona Rodighiero
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; Department of Hematology and Hematology-Oncology (DIPO), Università degli Studi di Milano, Milano 20122, Italy
| | - Nico Mitro
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy; DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano 20133, Italy
| | - Serena Ghisletti
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology (IEO) IRCCS, Milan 20139, Italy.
| |
Collapse
|
153
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, de Lara JPZ, Magalhães AC, Bosqueiro JR, Buzalaf MAR. Adaptive responses of the ileum of NOD mice to low-dose fluoride: A proteomic exploratory study. Cell Biochem Funct 2024; 42:e3976. [PMID: 38489223 DOI: 10.1002/cbf.3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.
Collapse
Affiliation(s)
- Juliana S Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Nathalia R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aislan Q Delgado
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - João P Z de Lara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana C Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - José R Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
154
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel JP, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. Nature 2024; 627:865-872. [PMID: 38509377 PMCID: PMC11016191 DOI: 10.1038/s41586-024-07187-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024]
Abstract
Disease-associated astrocyte subsets contribute to the pathology of neurologic diseases, including multiple sclerosis and experimental autoimmune encephalomyelitis1-8 (EAE), an experimental model for multiple sclerosis. However, little is known about the stability of these astrocyte subsets and their ability to integrate past stimulation events. Here we report the identification of an epigenetically controlled memory astrocyte subset that exhibits exacerbated pro-inflammatory responses upon rechallenge. Specifically, using a combination of single-cell RNA sequencing, assay for transposase-accessible chromatin with sequencing, chromatin immunoprecipitation with sequencing, focused interrogation of cells by nucleic acid detection and sequencing, and cell-specific in vivo CRISPR-Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP-citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) that is used by histone acetyltransferase p300 to control chromatin accessibility. The number of ACLY+p300+ memory astrocytes is increased in acute and chronic EAE models, and their genetic inactivation ameliorated EAE. We also detected the pro-inflammatory memory phenotype in human astrocytes in vitro; single-cell RNA sequencing and immunohistochemistry studies detected increased numbers of ACLY+p300+ astrocytes in chronic multiple sclerosis lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, multiple sclerosis. These findings may guide novel therapeutic approaches for multiple sclerosis and other neurologic diseases.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph M Rone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Camilo Faust Akl
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seung Won Shin
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Florian Pernin
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chun-Cheih Chao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Lena Srun
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomer Illouz
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Federico Giovannoni
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc Charabati
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Liliana M Sanmarco
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gavin Piester
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephanie E J Zandee
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jack P Antel
- Neuroimmunology Unit, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Veit Rothhammer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, University Hospital, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandre Prat
- Neuroimmunology Research Lab, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences, QB3, University of California Berkeley, Berkeley, CA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Boston, MA, USA.
| |
Collapse
|
155
|
Hurst R, Brewer DS, Gihawi A, Wain J, Cooper CS. Cancer invasion and anaerobic bacteria: new insights into mechanisms. J Med Microbiol 2024; 73:001817. [PMID: 38535967 PMCID: PMC10995961 DOI: 10.1099/jmm.0.001817] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 04/07/2024] Open
Abstract
There is growing evidence that altered microbiota abundance of a range of specific anaerobic bacteria are associated with cancer, including Peptoniphilus spp., Porphyromonas spp., Fusobacterium spp., Fenollaria spp., Prevotella spp., Sneathia spp., Veillonella spp. and Anaerococcus spp. linked to multiple cancer types. In this review we explore these pathogenic associations. The mechanisms by which bacteria are known or predicted to interact with human cells are reviewed and we present an overview of the interlinked mechanisms and hypotheses of how multiple intracellular anaerobic bacterial pathogens may act together to cause host cell and tissue microenvironment changes associated with carcinogenesis and cancer cell invasion. These include combined effects on changes in cell signalling, DNA damage, cellular metabolism and immune evasion. Strategies for early detection and eradication of anaerobic cancer-associated bacterial pathogens that may prevent cancer progression are proposed.
Collapse
Affiliation(s)
- Rachel Hurst
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Daniel S. Brewer
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Earlham Institute, Norwich Research Park Innovation Centre, Colney Lane, Norwich NR4 7UZ, UK
| | - Abraham Gihawi
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - John Wain
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
- Quadram Institute Biosciences, Colney Lane, Norwich, Norfolk, NR4 7UQ, UK
| | - Colin S. Cooper
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
156
|
Yu Y, Zhao F, Yue Y, Zhao Y, Zhou DX. Lysine acetylation of histone acetyltransferase adaptor protein ADA2 is a mechanism of metabolic control of chromatin modification in plants. NATURE PLANTS 2024; 10:439-452. [PMID: 38326652 DOI: 10.1038/s41477-024-01623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
Histone acetylation is a predominant active chromatin mark deposited by histone acetyltransferases (HATs) that transfer the acetyl group from acetyl coenzyme A (acetyl-CoA) to lysine ε-amino groups in histones. GENERAL CONTROL NON-REPRESSED PROTEIN 5 (GCN5) is one of the best-characterized HATs and functions in association with several adaptor proteins such as ADA2 within multiprotein HAT complexes. ADA2-GCN5 interaction increases GCN5 binding to acetyl-CoA and stimulates its HAT activity. It remains unclear whether the HAT activity of GCN5 (which acetylates not only histones but also cellular proteins) is regulated by acetyl-CoA levels, which vary greatly in cells under different metabolic and nutrition conditions. Here we show that the ADA2 protein itself is acetylated by GCN5 in rice cells. Lysine acetylation exposes ADA2 to a specific E3 ubiquitin ligase and reduces its protein stability. In rice plants, ADA2 protein accumulation reversely parallels its lysine acetylation and acetyl-CoA levels, both of which are dynamically regulated under varying growth conditions. Stress-induced ADA2 accumulation could stimulate GCN5 HAT activity to compensate for the reduced acetyl-CoA levels for histone acetylation. These results indicate that ADA2 lysine acetylation that senses cellular acetyl-CoA variations is a mechanism to regulate HAT activity and histone acetylation homeostasis in plants under changing environments.
Collapse
Affiliation(s)
- Yue Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Feng Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, France.
| |
Collapse
|
157
|
McPhedran SJ, Carleton GA, Lum JJ. Metabolic engineering for optimized CAR-T cell therapy. Nat Metab 2024; 6:396-408. [PMID: 38388705 DOI: 10.1038/s42255-024-00976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/04/2024] [Indexed: 02/24/2024]
Abstract
The broad effectiveness of T cell-based therapy for treating solid tumour cancers remains limited. This is partly due to the growing appreciation that immune cells must inhabit and traverse a metabolically demanding tumour environment. Accordingly, recent efforts have centred on using genome-editing technologies to augment T cell-mediated cytotoxicity by manipulating specific metabolic genes. However, solid tumours exhibit numerous characteristics restricting immune cell-mediated cytotoxicity, implying a need for metabolic engineering at the pathway level rather than single gene targets. This emerging concept has yet to be put into clinical practice as many questions concerning the complex interplay between metabolic networks and T cell function remain unsolved. This Perspective will highlight key foundational studies that examine the relevant metabolic pathways required for effective T cell cytotoxicity and persistence in the human tumour microenvironment, feasible strategies for metabolic engineering to increase the efficiency of chimeric antigen receptor T cell-based approaches, and the challenges lying ahead for clinical implementation.
Collapse
Affiliation(s)
- Sarah J McPhedran
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Gillian A Carleton
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, BC Cancer, Victoria, British Columbia, Canada.
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
158
|
García-Giménez JL, Cánovas-Cervera I, Pallardó FV. Oxidative stress and metabolism meet epigenetic modulation in physical exercise. Free Radic Biol Med 2024; 213:123-137. [PMID: 38199289 DOI: 10.1016/j.freeradbiomed.2024.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Physical exercise is established as an important factor of health and generally is recommended for its positive effects on several tissues, organs, and systems. These positive effects come from metabolic adaptations that also include oxidative eustress, in which physical activity increases ROS production and antioxidant mechanisms, although this depends on the intensity of the exercise. Muscle metabolism through mechanisms such as aerobic and anaerobic glycolysis, tricarboxylic acid cycle, and oxidative lipid metabolism can produce metabolites and co-factors which directly impact the epigenetic machinery. In this review, we clearly reinforce the evidence that exercise regulates several epigenetic mechanisms and explain how these mechanisms can be regulated by metabolic products and co-factors produced during exercise. In fact, recent evidence has demonstrated the importance of epigenetics in the gene expression changes implicated in metabolic adaptation after exercise. Importantly, intermediates of the metabolism generated by continuous, acute, moderate, or strenuous exercise control the activity of epigenetic enzymes, therefore turning on or turning off the gene expression of specific programs which can lead to physiological adaptations after exercise.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain.
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15, Valencia, 46010, Spain; Biomedical Research Institute INCLIVA, Av/Menéndez Pelayo. 4acc, Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
159
|
Kim YK, Kim YR, Wells KL, Sarbaugh D, Guney M, Tsai CF, Zee T, Karsenty G, Nakayasu ES, Sussel L. PTPN2 Regulates Metabolic Flux to Affect β-Cell Susceptibility to Inflammatory Stress. Diabetes 2024; 73:434-447. [PMID: 38015772 PMCID: PMC10882156 DOI: 10.2337/db23-0355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Abstract
Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for β-cell survival in the context of T1D. To test whether PTPN2 contributed to β-cell dysfunction in an inflammatory environment, we generated a β-cell-specific deletion of Ptpn2 in mice (PTPN2-β knockout [βKO]). Whereas unstressed animals exhibited normal metabolic profiles, low- and high-dose streptozotocin-treated PTPN2-βKO mice displayed hyperglycemia and accelerated death, respectively. Furthermore, cytokine-treated Ptpn2-KO islets resulted in impaired glucose-stimulated insulin secretion, mitochondrial defects, and reduced glucose-induced metabolic flux, suggesting β-cells lacking Ptpn2 are more susceptible to inflammatory stress associated with T1D due to maladaptive metabolic fitness. Consistent with the phenotype, proteomic analysis identified an important metabolic enzyme, ATP-citrate lyase, as a novel PTPN2 substrate. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yong Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Youngjung Rachel Kim
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Dylan Sarbaugh
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Michelle Guney
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Tiffany Zee
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
- Department of Genetics and Development, Columbia University Irving Medical Campus, New York, NY
| |
Collapse
|
160
|
Mourokh L, Friedman J. Mitochondria at the Nanoscale: Physics Meets Biology-What Does It Mean for Medicine? Int J Mol Sci 2024; 25:2835. [PMID: 38474079 DOI: 10.3390/ijms25052835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondria are commonly perceived as "cellular power plants". Intriguingly, power conversion is not their only function. In the first part of this paper, we review the role of mitochondria in the evolution of eukaryotic organisms and in the regulation of the human body, specifically focusing on cancer and autism in relation to mitochondrial dysfunction. In the second part, we overview our previous works, revealing the physical principles of operation for proton-pumping complexes in the inner mitochondrial membrane. Our proposed simple models reveal the physical mechanisms of energy exchange. They can be further expanded to answer open questions about mitochondrial functions and the medical treatment of diseases associated with mitochondrial disorders.
Collapse
Affiliation(s)
- Lev Mourokh
- Physics Department, Queens College, The City University of New York, 65-30 Kissena Blvd. Flushing, New York, NY 11367, USA
| | - Jonathan Friedman
- Physics Department, Queens College, The City University of New York, 65-30 Kissena Blvd. Flushing, New York, NY 11367, USA
| |
Collapse
|
161
|
Shi W, Cassmann TJ, Bhagwate AV, Hitosugi T, Ip WKE. Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep 2024; 43:113746. [PMID: 38329873 PMCID: PMC10957222 DOI: 10.1016/j.celrep.2024.113746] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/09/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Lactic acid has emerged as an important modulator of immune cell function. It can be produced by both gut microbiota and the host metabolism at homeostasis and during disease states. The production of lactic acid in the gut microenvironment is vital for tissue homeostasis. In the present study, we examined how lactic acid integrates cellular metabolism to shape the epigenome of macrophages during pro-inflammatory response. We found that lactic acid serves as a primary fuel source to promote histone H3K27 acetylation, which allows the expression of immunosuppressive gene program including Nr4a1. Consequently, macrophage pro-inflammatory function was transcriptionally repressed. Furthermore, the histone acetylation induced by lactic acid promotes a form of long-term immunosuppression ("trained immunosuppression"). Pre-exposure to lactic acid induces lipopolysaccharide tolerance. These findings thus indicate that lactic acid sensing and its effect on chromatin remodeling in macrophages represent a key homeostatic mechanism that can provide a tolerogenic tissue microenvironment.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Tiffany J Cassmann
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Aditya Vijay Bhagwate
- Departments of Health Science Research, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - Taro Hitosugi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | - W K Eddie Ip
- Department of Immunology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA; Division of Gastroenterology and Hepatology, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
162
|
Hofford RS, Kiraly DD. Clinical and Preclinical Evidence for Gut Microbiome Mechanisms in Substance Use Disorders. Biol Psychiatry 2024; 95:329-338. [PMID: 37573004 PMCID: PMC10884738 DOI: 10.1016/j.biopsych.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Substance use disorders are a set of recalcitrant neuropsychiatric conditions that cause tremendous morbidity and mortality and are among the leading causes of loss of disability-adjusted life years worldwide. While each specific substance use disorder is driven by problematic use of a different substance, they all share a similar pattern of escalating and out-of-control substance use, continued use despite negative consequences, and a remitting/relapsing pattern over time. Despite significant advances in our understanding of the neurobiology of these conditions, current treatment options remain few and are ineffective for too many individuals. In recent years, there has been a rapidly growing body of literature demonstrating that the resident population of microbes in the gastrointestinal tract, collectively called the gut microbiome, plays an important role in modulating brain and behavior in preclinical and clinical studies of psychiatric disease. While these findings have not yet been translated into clinical practice, this remains an important and exciting avenue for translational research. In this review, we highlight the current state of microbiome-brain research within the substance use field with a focus on both clinical and preclinical studies. We also discuss potential neurobiological mechanisms underlying microbiome effects on models of substance use disorder and propose future directions to bring these findings from bench to bedside.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina.
| |
Collapse
|
163
|
Smith JJ, Valentino TR, Ablicki AH, Banerjee R, Colligan AR, Eckert DM, Desjardins GA, Diehl KL. A genetically-encoded fluorescent biosensor for visualization of acetyl-CoA in live cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573774. [PMID: 38260544 PMCID: PMC10802309 DOI: 10.1101/2023.12.31.573774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetyl-coenzyme A is a central metabolite that participates in many cellular pathways. Evidence suggests that acetyl-CoA production and consumption are highly compartmentalized in mammalian cells. Yet methods to measure acetyl-CoA in living cells are lacking. In this work, we engineer an acetyl-CoA biosensor from the bacterial protein PanZ and circularly permuted green fluorescent protein (cpGFP). We biochemically characterize the sensor and demonstrate its selectivity for acetyl-CoA over other CoA species. We then deploy the biosensor in E. coli and HeLa cells to demonstrate its utility in living cells. In E. coli, we show that the biosensor enables detection of rapid changes in acetyl-CoA levels. In human cells, we show that the biosensor enables subcellular detection and reveals the compartmentalization of acetyl-CoA metabolism.
Collapse
|
164
|
Da W, Jiang W, Tao L. ROS/MMP-9 mediated CS degradation in BMSC inhibits citric acid metabolism participating in the dual regulation of bone remodelling. Cell Death Discov 2024; 10:77. [PMID: 38355572 PMCID: PMC10866869 DOI: 10.1038/s41420-024-01835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
It is necessary to figure out the abnormal energy metabolites at the cellular level of postmenopausal osteoporosis (PMOP) bone microenvironment. In this study, we constructed PMOP model by ovariectomy and identified 9 differential metabolites compared with control femur by energy metabolomic. The enrichment analysis of differential metabolites revealed that tricarboxylic acid cycle, glucagon pathway and purinergic signaling pathway were the main abnormal metabolic processes. Citric acid was identified as the key metabolite by constructing compound reaction-enzyme-gene network. The functional annotation of citric acid targets identified by network pharmacological tools indicated that matrix metalloproteinase 9 (MMP-9) may be involved in regulating citric acid metabolism in the osteogenic differentiation of bone marrow mesenchymal stem cell (BMSC). Molecular docking shows that the interaction forces between MMP-9 and citric acid synthase (CS) is -638, and there are multiple groups of residues used to form hydrogen bonds. Exogenous H2O2 promotes the expression of MMP-9 in BMSC to further degrade CS resulting in a decrease in mitochondrial citric acid synthesis, which leads to the disorder of bone remodeling by two underlying mechanisms ((1) the decreased histone acetylation inhibits the osteogenic differentiation potential of BMSC; (2) the decreased bone mineralization by citric acid deposition). MMP-9-specific inhibitor (MMP-9-IN-1) could significantly improve the amount of CS in BMSC to promote cellular citric acid synthesis, and further enhance bone remodeling. These findings suggest inhibiting the degradation of CS by MMP-9 to promote the net production of citric acid in osteogenic differentiation of BMSC may be a new direction of PMOP research.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedics Surgery, Orthopedic Research Institute, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan Province, China
| | - Wen Jiang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
165
|
Nascimento Júnior JXD, Sola-Penna M, Zancan P. Clotrimazole reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway. Biochem Biophys Res Commun 2024; 696:149455. [PMID: 38176247 DOI: 10.1016/j.bbrc.2023.149455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Macrophages switch among different activation phenotypes according to distinct environmental stimuli, varying from pro-inflammatory (M1) to alternative (also named resolutive; M2) activation forms. M1-and M2-activated macrophages represent the two extremes of the activation spectrum involving multiple species, which vary in terms of function and the cytokines secreted. The consensus is that molecular characterization of the distinct macrophage population and the signals driving their activation will help in explaining disease etiology and formulating therapies. For instance, myeloid cells residing in the tumor microenvironment are key players in tumor progression and usually display an M2-like phenotype, which help tumor cells to evade local inflammatory processes. Therefore, these specific cells have been proposed as targets for tumor therapies by changing their activation profile. Furthermore, M2 polarized macrophages are phagocytic cells promoting tissue repair and wound healing and are therefore potential targets to treat different diseases. We have already shown that clotrimazole (CTZ) decreases tumor cell viability and thus tumor growth. The mechanism by which CTZ exerts its effects remains to be determined, but this drug is an inhibitor of the PI3K/AKT/mTOR pathway. In this study, we show that CTZ downregulated M2-activation markers in macrophages polarized to the M2 profile. This effect occurred without interfering with the expression of M1-polarized markers or pro-inflammatory cytokines and signaling. Moreover, CTZ suppressed NFkB pathway intermediates and disrupted PI3K/AKT/mTOR signaling. We concluded that CTZ reverses macrophage M2 polarization by disrupting the PI3K/AKT/mTOR pathway, which results in the suppression of NFkB induction of M2 polarization. In addition, we find that CTZ represents a promising therapeutic tool as an antitumor agent.
Collapse
Affiliation(s)
- José Xavier do Nascimento Júnior
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mauro Sola-Penna
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Patricia Zancan
- The MetaboliZSm GrouP, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
166
|
Liu T, You Z, Shen F, Yang P, Chen J, Meng S, Wang C, Xiong D, You C, Wang Z, Shi Y, Ye L. Tricarboxylic Acid Cycle Metabolite-Coordinated Biohydrogels Augment Cranial Bone Regeneration Through Neutrophil-Stimulated Mesenchymal Stem Cell Recruitment and Histone Acetylation-Mediated Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5486-5503. [PMID: 38284176 DOI: 10.1021/acsami.3c15473] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.
Collapse
Affiliation(s)
- Tingjun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
167
|
Zhang F, Lv T, Li J, Lian J, Wu H, Jin Y, Jia F, Zhang X. Citrate synthase lysine K215 hypoacetylation contributes to microglial citrate accumulation and pro-inflammatory functions after traumatic brain injury. CNS Neurosci Ther 2024; 30:e14567. [PMID: 38421106 PMCID: PMC10851320 DOI: 10.1111/cns.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS This study aimed to investigate the relationship between microglial metabolism and neuroinflammation by examining the impact of citrate accumulation in microglia and its potential regulation through Cs K215 hypoacetylation. METHODS Experimental approaches included assessing Cs enzyme activity through Cs K215Q mutation and investigating the inhibitory effects of hesperidin, a natural flavanone glycoside, on citrate synthase. Microglial phagocytosis and expression of pro-inflammatory cytokines were also examined in relation to Cs K215Q mutation and hesperidin treatment. RESULTS Cs K215Q mutation and hesperidin exhibited significant inhibitory effects on Cs enzyme activity, microglial citrate accumulation, phagocytosis, and pro-inflammatory cytokine expression. Interestingly, Sirt3 knockdown aggravated microglial pro-inflammatory functions during neuroinflammation, despite its proven role in Cs deacetylation. CONCLUSION Cs K215Q mutation and hesperidin effectively inhibited microglial pro-inflammatory functions without reversing the metabolic reprogramming. These findings suggest that targeting Cs K215 hypoacetylation and utilizing hesperidin may hold promise for modulating neuroinflammation in microglia.
Collapse
Affiliation(s)
- Fengchen Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tao Lv
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Li
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Lian
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hui Wu
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yichao Jin
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Jia
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Department of NeurosurgeryNantong First People's Hospital, Affiliated Hospital 2 of Nantong UniversityNantongChina
| | - Xiaohua Zhang
- Department of NeurosurgeryRen Ji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
168
|
Wilfahrt D, Delgoffe GM. Metabolic waypoints during T cell differentiation. Nat Immunol 2024; 25:206-217. [PMID: 38238609 DOI: 10.1038/s41590-023-01733-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/03/2024]
Abstract
This Review explores the interplay between T cell activation and cell metabolism and highlights how metabolites serve two pivotal functions in shaping the immune response. Traditionally, T cell activation has been characterized by T cell antigen receptor-major histocompatibility complex interaction (signal 1), co-stimulation (signal 2) and cytokine signaling (signal 3). However, recent research has unveiled the critical role of metabolites in this process. Firstly, metabolites act as signal propagators that aid in the transmission of core activation signals, such as specific lipid species that are crucial at the immune synapse. Secondly, metabolites also function as unique signals that influence immune differentiation pathways, such as amino acid-induced mTORC1 signaling. Metabolites also play a substantial role in epigenetic remodeling, by directly modifying histones, altering gene expression and influencing T cell behavior. This Review discusses how T cells integrate nutrient sensing with activating stimuli to shape their differentiation and sensitivity to metabolites. We underscore the integration of immunological and metabolic inputs in T cell function and suggest that metabolite availability is a fundamental determinant of adaptive immune responses.
Collapse
Affiliation(s)
- Drew Wilfahrt
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center and Department of Immunology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
169
|
Krause N, Wegner A. N-acetyl-aspartate metabolism at the interface of cancer, immunity, and neurodegeneration. Curr Opin Biotechnol 2024; 85:103051. [PMID: 38103520 DOI: 10.1016/j.copbio.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
N-acetyl-L-aspartic acid (NAA) is a prominent amino acid derivative primarily associated with vertebrate brain metabolism. This review delineates the critical role of NAA across various cell types and its significance in pathophysiological contexts, including Canavan disease and cancer metabolism. Although traditionally linked with myelination and aspartoacylase-driven carbon donation, its significance as a carbon source for myelination remains debated. Evidence suggests that intact NAA might substantially impact cellular signaling, particularly processes such as histone acetylation. Beyond the brain, NAA metabolism's relevance is evident in diverse tissues, such as adipocytes, immune cells, and notably, cancer cells. In several cancer types, there is an observed upregulation of NAA synthesis accompanied by a simultaneous downregulation of its degradation. This pattern highlights the potential signaling role of intact NAA in disease.
Collapse
Affiliation(s)
- Nils Krause
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Andre Wegner
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
170
|
Jackson BT, Finley LWS. Metabolic regulation of the hallmarks of stem cell biology. Cell Stem Cell 2024; 31:161-180. [PMID: 38306993 PMCID: PMC10842269 DOI: 10.1016/j.stem.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Stem cells perform many different functions, each of which requires specific metabolic adaptations. Over the past decades, studies of pluripotent and tissue stem cells have uncovered a range of metabolic preferences and strategies that correlate with or exert control over specific cell states. This review aims to describe the common themes that emerge from the study of stem cell metabolism: (1) metabolic pathways supporting stem cell proliferation, (2) metabolic pathways maintaining stem cell quiescence, (3) metabolic control of cellular stress responses and cell death, (4) metabolic regulation of stem cell identity, and (5) metabolic requirements of the stem cell niche.
Collapse
Affiliation(s)
- Benjamin T Jackson
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
171
|
Wu J, Singh K, Shing V, Gupta AK, Huffstutler RD, Lee DY, Sack MN. The mitochondrial thiolase ACAT1 regulates monocyte/macrophage type I interferon via epigenetic control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577773. [PMID: 38410425 PMCID: PMC10896343 DOI: 10.1101/2024.01.29.577773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Lipid-derived acetyl-CoA is shown to be the major carbon source for histone acetylation. However, there is no direct evidence demonstrating lipid metabolic pathway contribututions to this process. Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes the final step of ß-oxidation, the aerobic process catabolizing fatty acids (FA) into acetyl-CoA. To investigate this in the context of immunometabolism, we generated macrophage cell line lacking ACAT1. 13C-carbon tracing combined with mass spectrometry confirmed incorporation of FA-derived carbons into histone H3 and this incorporation was reduced in ACAT1 KO macrophage cells. RNA-seq identified a subset of genes downregulated in ACAT1 KO cells including STAT1/2 and interferon stimulated genes (ISGs). CHIP analysis demonstrated reduced acetyl-H3 binding to STAT1 promoter/enhancer regions. Increasing histone acetylation rescued STAT1/2 expression in ACAT1 KO cells. Concomitantly, ligand triggered IFNβ release was blunted in ACAT1 KO cells and rescued by reconstitution of ACAT1. Furthermore, ACAT1 promotes FA-mediated histone acetylation in an acetylcarnitine shuttle-dependent manner. In patients with obesity, levels of ACAT1 and histone acetylation are abnormally elevated. Thus, our study identified a novel link between ACAT1 mediated FA metabolism and epigenetic modification on STAT1/2 that uncovers a regulatory role of lipid metabolism in innate immune signaling and opens novel avenues for interventions in human diseases such as obesity.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Shing
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand K Gupta
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
172
|
Neja S, Dashwood WM, Dashwood RH, Rajendran P. Histone Acyl Code in Precision Oncology: Mechanistic Insights from Dietary and Metabolic Factors. Nutrients 2024; 16:396. [PMID: 38337680 PMCID: PMC10857208 DOI: 10.3390/nu16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Cancer etiology involves complex interactions between genetic and non-genetic factors, with epigenetic mechanisms serving as key regulators at multiple stages of pathogenesis. Poor dietary habits contribute to cancer predisposition by impacting DNA methylation patterns, non-coding RNA expression, and histone epigenetic landscapes. Histone post-translational modifications (PTMs), including acyl marks, act as a molecular code and play a crucial role in translating changes in cellular metabolism into enduring patterns of gene expression. As cancer cells undergo metabolic reprogramming to support rapid growth and proliferation, nuanced roles have emerged for dietary- and metabolism-derived histone acylation changes in cancer progression. Specific types and mechanisms of histone acylation, beyond the standard acetylation marks, shed light on how dietary metabolites reshape the gut microbiome, influencing the dynamics of histone acyl repertoires. Given the reversible nature of histone PTMs, the corresponding acyl readers, writers, and erasers are discussed in this review in the context of cancer prevention and treatment. The evolving 'acyl code' provides for improved biomarker assessment and clinical validation in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Sultan Neja
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Wan Mohaiza Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
| | - Roderick H. Dashwood
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Praveen Rajendran
- Center for Epigenetics & Disease Prevention, Texas A&M Health, Houston, TX 77030, USA; (S.N.); (W.M.D.)
- Department of Translational Medical Sciences, Texas A&M College of Medicine, Houston, TX 77030, USA
- Antibody & Biopharmaceuticals Core, Texas A&M Health, Houston, TX 77030, USA
| |
Collapse
|
173
|
Yu D, Huang W, Sheng M, Zhang S, Pan H, Ren F, Luo L, Zhou J, Huang D, Tang L. Angiotensin-(1-7) Modulates the Warburg Effect to Alleviate Inflammation in LPS-Induced Macrophages and Septic Mice. J Inflamm Res 2024; 17:469-485. [PMID: 38282712 PMCID: PMC10822192 DOI: 10.2147/jir.s446013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/13/2024] [Indexed: 01/30/2024] Open
Abstract
Purpose Inflammation triggers a metabolic shift in macrophages from oxidative phosphorylation to glycolysis, a phenomenon known as the Warburg effect. This metabolic reprogramming worsens inflammation and cascades into organ damage. Angiotensin-(1-7) [Ang-(1-7)], a small molecule, has demonstrated anti-inflammatory properties. This study investigates whether Ang-(1-7) mitigates inflammation in LPS-induced macrophages and septic mice by regulating the Warburg effect in immune metabolism. Methods The study induced macrophages with LPS in vitro and measured inflammatory factors using ELISA and Western blot. Key enzymes in glycolysis, mitochondrial respiratory complexes, and citrate pathway key molecules were assessed using Western blot and qRT-PCR. Mitochondrial membrane potential (MMP), lactate, and ATP were measured using assay kits. In vivo, a mouse model of sepsis induced by LPS was used. Kidney tissues were examined for pathological and mitochondrial ultrastructural alterations. The levels of inflammatory factors in mouse serum, glycolysis and citrate pathway-related molecules in the kidney were assessed using qRT-PCR, Western blot, and immunofluorescence techniques. Additionally, MMP, lactate, and ATP in the kidney were measured using assay kits. Results In vitro experiments demonstrated that Ang-(1-7) inhibited the levels of inflammatory factors in LPS-treated RAW264.7 cells. It also reduced the expression of key glycolytic enzymes HK2, PFKFB3, and PKM2, as well as lactate levels. Additionally, it decreased intracellular citrate accumulation, enhanced mitochondrial respiratory complexes I and III, and ATP levels. Ang-(1-7) alleviated MMP damage, modulated citrate pathway-related molecules, including SLC25A1, ACLY, and HIF-1α. In vivo experiments showed that Ang-(1-7) lowered glycolysis levels in septic mice, improved mitochondrial ultrastructure and function, mitigated inflammation and renal tissues damage in septic mice, and suppressed the expression of key molecules in the citrate pathway. Conclusion In conclusion, Ang-(1-7) can regulate the Warburg effect through the citrate pathway, thereby alleviating inflammation in LPS-induced macrophages and septic mice.
Collapse
Affiliation(s)
- Dan Yu
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wenhan Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Min Sheng
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shan Zhang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Hang Pan
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feifeng Ren
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lei Luo
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jun Zhou
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Dongmei Huang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Lin Tang
- Department of Rheumatology and Immunology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
174
|
Adejor J, Tumukunde E, Li G, Lin H, Xie R, Wang S. Impact of Lysine Succinylation on the Biology of Fungi. Curr Issues Mol Biol 2024; 46:1020-1046. [PMID: 38392183 PMCID: PMC10888112 DOI: 10.3390/cimb46020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 02/24/2024] Open
Abstract
Post-translational modifications (PTMs) play a crucial role in protein functionality and the control of various cellular processes and secondary metabolites (SMs) in fungi. Lysine succinylation (Ksuc) is an emerging protein PTM characterized by the addition of a succinyl group to a lysine residue, which induces substantial alteration in the chemical and structural properties of the affected protein. This chemical alteration is reversible, dynamic in nature, and evolutionarily conserved. Recent investigations of numerous proteins that undergo significant succinylation have underscored the potential significance of Ksuc in various biological processes, encompassing normal physiological functions and the development of certain pathological processes and metabolites. This review aims to elucidate the molecular mechanisms underlying Ksuc and its diverse functions in fungi. Both conventional investigation techniques and predictive tools for identifying Ksuc sites were also considered. A more profound comprehension of Ksuc and its impact on the biology of fungi have the potential to unveil new insights into post-translational modification and may pave the way for innovative approaches that can be applied across various clinical contexts in the management of mycotoxins.
Collapse
Affiliation(s)
- John Adejor
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Elisabeth Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guoqi Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Lin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui Xie
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
175
|
Cheng Z, Huang H, Li M, Chen Y. Proteomic analysis identifies PFKP lactylation in SW480 colon cancer cells. iScience 2024; 27:108645. [PMID: 38155775 PMCID: PMC10753066 DOI: 10.1016/j.isci.2023.108645] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/23/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Aerobic glycolysis is a pivotal hallmark of cancers, including colorectal cancer. Evidence shows glycolytic enzymes are regulated by post-translational modifications (PTMs), thereby affecting the Warburg effect and reprograming cancer metabolism. Lysine lactylation is a PTM reported in 2019 in histones. In this study, we identified protein lactylation in FHC cells and SW480 colon cancer cells through mass spectrometry. Totally, 637 lysine lactylation sites in 444 proteins were identified in FHC and SW480 cells. Lactylated proteins were enriched in the glycolysis pathway, and we identified lactylation sites in phosphofructokinase, platelet (PFKP) lysine 688 and aldolase A (ALDOA) lysine 147. We also showed that PFKP lactylation directly attenuated enzyme activity. Collectively, our study presented a resource to investigate proteome-wide lactylation in SW480 cells and found PFKP lactylation led to activity inhibition, indicating that lactic acid and lactylated PFKP may form a negative feedback pathway in glycolysis and lactic acid production.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huichao Huang
- Department of Infectious Disease, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
176
|
Falco JA, Wynia-Smith SL, McCoy J, Smith BC, Weerapana E. Identification of Protein Targets of S-Nitroso-Coenzyme A-Mediated S-Nitrosation Using Chemoproteomics. ACS Chem Biol 2024; 19:193-207. [PMID: 38159293 PMCID: PMC11154738 DOI: 10.1021/acschembio.3c00654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.
Collapse
Affiliation(s)
- Julia A. Falco
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Sarah L. Wynia-Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - James McCoy
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Brian C. Smith
- Department of Biochemistry, Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
177
|
Wang Z, Liu N, Yang Y, Tu Z. The novel mechanism facilitating chronic hepatitis B infection: immunometabolism and epigenetic modification reprogramming. Front Immunol 2024; 15:1349867. [PMID: 38288308 PMCID: PMC10822934 DOI: 10.3389/fimmu.2024.1349867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Hepatitis B Virus (HBV) infections pose a global public health challenge. Despite extensive research on this disease, the intricate mechanisms underlying persistent HBV infection require further in-depth elucidation. Recent studies have revealed the pivotal roles of immunometabolism and epigenetic reprogramming in chronic HBV infection. Immunometabolism have identified as the process, which link cell metabolic status with innate immunity functions in response to HBV infection, ultimately contributing to the immune system's inability to resolve Chronic Hepatitis B (CHB). Within hepatocytes, HBV replication leads to a stable viral covalently closed circular DNA (cccDNA) minichromosome located in the nucleus, and epigenetic modifications in cccDNA enable persistence of infection. Additionally, the accumulation or depletion of metabolites not only directly affects the function and homeostasis of immune cells but also serves as a substrate for regulating epigenetic modifications, subsequently influencing the expression of antiviral immune genes and facilitating the occurrence of sustained HBV infection. The interaction between immunometabolism and epigenetic modifications has led to a new research field, known as metabolic epigenomics, which may form a mutually reinforcing relationship with CHB. Herein, we review the recent studies on immunometabolism and epigenetic reprogramming in CHB infection and discuss the potential mechanisms of persistent HBV infection. A deeper understanding of these mechanisms will offer novel insights and targets for intervention strategies against chronic HBV infection, thereby providing new hope for the treatment of related diseases.
Collapse
Affiliation(s)
- Zhengmin Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Nan Liu
- Institute of Epigenetic Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Yang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengkun Tu
- Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
178
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
179
|
Lee HG, Rone JM, Li Z, Akl CF, Shin SW, Lee JH, Flausino LE, Pernin F, Chao CC, Kleemann KL, Srun L, Illouz T, Giovannoni F, Charabati M, Sanmarco LM, Kenison JE, Piester G, Zandee SEJ, Antel J, Rothhammer V, Wheeler MA, Prat A, Clark IC, Quintana FJ. Disease-associated astrocyte epigenetic memory promotes CNS pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574196. [PMID: 38260616 PMCID: PMC10802318 DOI: 10.1101/2024.01.04.574196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Astrocytes play important roles in the central nervous system (CNS) physiology and pathology. Indeed, astrocyte subsets defined by specific transcriptional activation states contribute to the pathology of neurologic diseases, including multiple sclerosis (MS) and its pre-clinical model experimental autoimmune encephalomyelitis (EAE) 1-8 . However, little is known about the stability of these disease-associated astrocyte subsets, their regulation, and whether they integrate past stimulation events to respond to subsequent challenges. Here, we describe the identification of an epigenetically controlled memory astrocyte subset which exhibits exacerbated pro-inflammatory responses upon re-challenge. Specifically, using a combination of single-cell RNA sequencing (scRNA-seq), assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), focused interrogation of cells by nucleic acid detection and sequencing (FIND-seq), and cell-specific in vivo CRISPR/Cas9-based genetic perturbation studies we established that astrocyte memory is controlled by the metabolic enzyme ATP citrate lyase (ACLY), which produces acetyl coenzyme A (acetyl-CoA) used by the histone acetyltransferase p300 to control chromatin accessibility. ACLY + p300 + memory astrocytes are increased in acute and chronic EAE models; the genetic targeting of ACLY + p300 + astrocytes using CRISPR/Cas9 ameliorated EAE. We also detected responses consistent with a pro-inflammatory memory phenotype in human astrocytes in vitro ; scRNA-seq and immunohistochemistry studies detected increased ACLY + p300 + astrocytes in chronic MS lesions. In summary, these studies define an epigenetically controlled memory astrocyte subset that promotes CNS pathology in EAE and, potentially, MS. These findings may guide novel therapeutic approaches for MS and other neurologic diseases.
Collapse
|
180
|
Si X, Shao M, Teng X, Huang Y, Meng Y, Wu L, Wei J, Liu L, Gu T, Song J, Jing R, Zhai X, Guo X, Kong D, Wang X, Cai B, Shen Y, Zhang Z, Wang D, Hu Y, Qian P, Xiao G, Huang H. Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metab 2024; 36:176-192.e10. [PMID: 38171332 DOI: 10.1016/j.cmet.2023.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
The efficacy of chimeric antigen receptor (CAR) T cell therapy is hampered by relapse in hematologic malignancies and by hyporesponsiveness in solid tumors. Long-lived memory CAR T cells are critical for improving tumor clearance and long-term protection. However, during rapid ex vivo expansion or in vivo tumor eradication, metabolic shifts and inhibitory signals lead to terminal differentiation and exhaustion of CAR T cells. Through a mitochondria-related compound screening, we find that the FDA-approved isocitrate dehydrogenase 2 (IDH2) inhibitor enasidenib enhances memory CAR T cell formation and sustains anti-leukemic cytotoxicity in vivo. Mechanistically, IDH2 impedes metabolic fitness of CAR T cells by restraining glucose utilization via the pentose phosphate pathway, which alleviates oxidative stress, particularly in nutrient-restricted conditions. In addition, IDH2 limits cytosolic acetyl-CoA levels to prevent histone acetylation that promotes memory cell formation. In combination with pharmacological IDH2 inhibition, CAR T cell therapy is demonstrated to have superior efficacy in a pre-clinical model.
Collapse
Affiliation(s)
- Xiaohui Si
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yue Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Ye Meng
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Jieping Wei
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Lianxuan Liu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junzhe Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruirui Jing
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xingyuan Zhai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xin Guo
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Delin Kong
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiujian Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Bohan Cai
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Shen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhaoru Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Center for Stem Cell and Regenerative Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gang Xiao
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Liangzhu Laboratory, Zhejiang University, Hangzhou, China; Institute of Hematology, Zhejiang University, Hangzhou, China; Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
181
|
Eames A, Chandrasekaran S. Leveraging metabolic modeling and machine learning to uncover modulators of quiescence depth. PNAS NEXUS 2024; 3:pgae013. [PMID: 38292544 PMCID: PMC10825626 DOI: 10.1093/pnasnexus/pgae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Quiescence, a temporary withdrawal from the cell cycle, plays a key role in tissue homeostasis and regeneration. Quiescence is increasingly viewed as a continuum between shallow and deep quiescence, reflecting different potentials to proliferate. The depth of quiescence is altered in a range of diseases and during aging. Here, we leveraged genome-scale metabolic modeling (GEM) to define the metabolic and epigenetic changes that take place with quiescence deepening. We discovered contrasting changes in lipid catabolism and anabolism and diverging trends in histone methylation and acetylation. We then built a multi-cell type machine learning model that accurately predicts quiescence depth in diverse biological contexts. Using both machine learning and genome-scale flux simulations, we performed high-throughput screening of chemical and genetic modulators of quiescence and identified novel small molecule and genetic modulators with relevance to cancer and aging.
Collapse
Affiliation(s)
- Alec Eames
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
182
|
Sharma S, Sarkar O, Ghosh R. Exploring the Role of Unconventional Post-Translational Modifications in Cancer Diagnostics and Therapy. Curr Protein Pept Sci 2024; 25:780-796. [PMID: 38910429 DOI: 10.2174/0113892037274615240528113148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 06/25/2024]
Abstract
Unconventional Post-Translational Modifications (PTMs) have gained increasing attention as crucial players in cancer development and progression. Understanding the role of unconventional PTMs in cancer has the potential to revolutionize cancer diagnosis, prognosis, and therapeutic interventions. These modifications, which include O-GlcNAcylation, glutathionylation, crotonylation, including hundreds of others, have been implicated in the dysregulation of critical cellular processes and signaling pathways in cancer cells. This review paper aims to provide a comprehensive analysis of unconventional PTMs in cancer as diagnostic markers and therapeutic targets. The paper includes reviewing the current knowledge on the functional significance of various conventional and unconventional PTMs in cancer biology. Furthermore, the paper highlights the advancements in analytical techniques, such as biochemical analyses, mass spectrometry and bioinformatic tools etc., that have enabled the detection and characterization of unconventional PTMs in cancer. These techniques have contributed to the identification of specific PTMs associated with cancer subtypes. The potential use of Unconventional PTMs as biomarkers will further help in better diagnosis and aid in discovering potent therapeutics. The knowledge about the role of Unconventional PTMs in a vast and rapidly expanding field will help in detection and targeted therapy of cancer.
Collapse
Affiliation(s)
- Sayan Sharma
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Oindrila Sarkar
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| | - Rajgourab Ghosh
- Department of Biotechnology, Amity University Kolkata, AIBNK, Kolkata, West Bengal, India
| |
Collapse
|
183
|
Liang JJ, Zhou XF, Long H, Li CY, Wei J, Yu XQ, Guo ZY, Zhou YQ, Deng ZS. Recent advance of ATP citrate lyase inhibitors for the treatment of cancer and related diseases. Bioorg Chem 2024; 142:106933. [PMID: 37890210 DOI: 10.1016/j.bioorg.2023.106933] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
ATP citrate lyase (ACLY), a strategic metabolic enzyme that catalyzes the glycolytic to lipidic metabolism, has gained increasing attention as an attractive therapeutic target for hyperlipidemia, cancers and other human diseases. Despite of continual research efforts, targeting ACLY has been very challenging. In this field, most reported ACLY inhibitors are "substrate-like" analogues, which occupied with the same active pockets. Besides, some ACLY inhibitors have been disclosed through biochemical screening or high throughput virtual screening. In this review, we briefly summarized the cancer-related functions and the recent advance of ACLY inhibitors with a particular focus on the SAR studies and their modes of action. We hope to provide a timely and updated overview of ACLY and the discovery of new ACLY inhibitors.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiang-Feng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Hui Long
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chun-Yun Li
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jing Wei
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiao-Qin Yu
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Zhi-Yong Guo
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yi-Qing Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China; CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhang-Shuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
184
|
Townsel A, Jaffe M, Wu Y, Henry CJ, Haynes KA. The Epigenetic Landscape of Breast Cancer, Metabolism, and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1465:37-53. [PMID: 39586992 DOI: 10.1007/978-3-031-66686-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity is a risk factor for developing breast cancer, and significantly increases mortality rates in patients diagnosed with this disease. Drivers of this unfortunate relationships are multifactorial, with obesity-induced changes in the epigenetic state of breast cancer cells being identified as a critical mechanism that impact survival, metastasis, and therapeutic responses. Recent studies have investigated the epigenetic landscape of breast cancer to elucidate the molecular interplay between the breast tissue epigenome and its cellular microenvironment. This chapter highlights studies that demonstrates the impact of obesity on the epigenome and metabolome of breast cancer cells. Furthermore, we discuss how obesity impacts the efficacy of chemotherapy and epigenetic targeting drugs, including the emergence of drug-resistance clonal populations. Delineating the relationships between the obesity and epigenetic changes in breast cancer cells will help identify therapeutic strategies which could improve survival outcomes in the rapidly growing number of patients with obesity and cancer.
Collapse
Affiliation(s)
- Ashley Townsel
- Department of Cancer Biology, Emory School of Medicine, Atlanta, GA, USA
| | - Maya Jaffe
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Yifei Wu
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA
| | - Curtis J Henry
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
185
|
O’Connor RS. Checkmate: Metabolic flexibility with a STING in its tail. SCIENCE ADVANCES 2023; 9:eadm6816. [PMID: 38055812 PMCID: PMC10699789 DOI: 10.1126/sciadv.adm6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inhibiting a key metabolic enzyme, ACLY, in cancer cells impacts T cell function in immunotherapy-resistant tumors and may offer a target for therapeutic treatment.
Collapse
Affiliation(s)
- Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
186
|
Chae SY, Kim Y, Park CW. Oxidative Stress Induced by Lipotoxicity and Renal Hypoxia in Diabetic Kidney Disease and Possible Therapeutic Interventions: Targeting the Lipid Metabolism and Hypoxia. Antioxidants (Basel) 2023; 12:2083. [PMID: 38136203 PMCID: PMC10740440 DOI: 10.3390/antiox12122083] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Oxidative stress, a hallmark pathophysiological feature in diabetic kidney disease (DKD), arises from the intricate interplay between pro-oxidants and anti-oxidants. While hyperglycemia has been well established as a key contributor, lipotoxicity emerges as a significant instigator of oxidative stress. Lipotoxicity encompasses the accumulation of lipid intermediates, culminating in cellular dysfunction and cell death. However, the mechanisms underlying lipotoxic kidney injury in DKD still require further investigation. The key role of cell metabolism in the maintenance of cell viability and integrity in the kidney is of paramount importance to maintain proper renal function. Recently, dysfunction in energy metabolism, resulting from an imbalance in oxygen levels in the diabetic condition, may be the primary pathophysiologic pathway driving DKD. Therefore, we aim to shed light on the pivotal role of oxidative stress related to lipotoxicity and renal hypoxia in the initiation and progression of DKD. Multifaceted mechanisms underlying lipotoxicity, including oxidative stress with mitochondrial dysfunction, endoplasmic reticulum stress activated by the unfolded protein response pathway, pro-inflammation, and impaired autophagy, are delineated here. Also, we explore potential therapeutic interventions for DKD, targeting lipotoxicity- and hypoxia-induced oxidative stress. These interventions focus on ameliorating the molecular pathways of lipid accumulation within the kidney and enhancing renal metabolism in the face of lipid overload or ameliorating subsequent oxidative stress. This review highlights the significance of lipotoxicity, renal hypoxia-induced oxidative stress, and its potential for therapeutic intervention in DKD.
Collapse
Affiliation(s)
- Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea; (S.Y.C.); (Y.K.)
- Institute for Aging and Metabolic Disease, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| |
Collapse
|
187
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
188
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
189
|
Zhu Z, Zhang X, Pan Q, Zhang L, Chai J. In-depth analysis of de novo lipogenesis in non-alcoholic fatty liver disease: Mechanism and pharmacological interventions. LIVER RESEARCH (BEIJING, CHINA) 2023; 7:285-295. [PMID: 39958779 PMCID: PMC11791917 DOI: 10.1016/j.livres.2023.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 02/18/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the abnormal buildup of lipids in the liver tissue. Non-alcoholic fatty liver (NAFL) may progress to non-alcoholic steatohepatitis. Triglycerides in the liver can originate from various sources, including de novo lipogenesis (DNL). Research indicates that DNL significantly escalates in NAFLD, worsening steatosis. However, the precise regulatory mechanism of DNL in the development of this disease is not fully understood. Therefore, the targeted reduction of DNL could be a crucial therapeutic strategy. Currently, numerous pharmaceutical agents targeting DNL have been developed, attracting significant attention. This review examines the mechanism of DNL upregulation in NAFLD, assessing its potential as a therapeutic target for hepatic steatosis. Furthermore, we thoroughly examine hepatocellular lipotoxicity and provide an extensive review of the application and limitations of relevant therapeutic drugs, with a focus on key enzymes involved in DNL. The implementation of these pharmacological strategies is expected to significantly improve the management and overall outcomes for patients with NAFLD.
Collapse
Affiliation(s)
- Zhixian Zhu
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease and Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoxun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease and Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiong Pan
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease and Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangjun Zhang
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease and Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin Chai
- Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
- Institute of Digestive Diseases of PLA, Third Military Medical University (Army Medical University), Chongqing, China
- Center for Metabolic Associated Fatty Liver Disease and Cholestatic Liver Diseases Center, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
190
|
Chen Y, Xu J, Liu X, Guo L, Yi P, Cheng C. Potential therapies targeting nuclear metabolic regulation in cancer. MedComm (Beijing) 2023; 4:e421. [PMID: 38034101 PMCID: PMC10685089 DOI: 10.1002/mco2.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
The interplay between genetic alterations and metabolic dysregulation is increasingly recognized as a pivotal axis in cancer pathogenesis. Both elements are mutually reinforcing, thereby expediting the ontogeny and progression of malignant neoplasms. Intriguingly, recent findings have highlighted the translocation of metabolites and metabolic enzymes from the cytoplasm into the nuclear compartment, where they appear to be intimately associated with tumor cell proliferation. Despite these advancements, significant gaps persist in our understanding of their specific roles within the nuclear milieu, their modulatory effects on gene transcription and cellular proliferation, and the intricacies of their coordination with the genomic landscape. In this comprehensive review, we endeavor to elucidate the regulatory landscape of metabolic signaling within the nuclear domain, namely nuclear metabolic signaling involving metabolites and metabolic enzymes. We explore the roles and molecular mechanisms through which metabolic flux and enzymatic activity impact critical nuclear processes, including epigenetic modulation, DNA damage repair, and gene expression regulation. In conclusion, we underscore the paramount significance of nuclear metabolic signaling in cancer biology and enumerate potential therapeutic targets, associated pharmacological interventions, and implications for clinical applications. Importantly, these emergent findings not only augment our conceptual understanding of tumoral metabolism but also herald the potential for innovative therapeutic paradigms targeting the metabolism-genome transcriptional axis.
Collapse
Affiliation(s)
- Yanjie Chen
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Xu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoyi Liu
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linlin Guo
- Department of Microbiology and ImmunologyThe Indiana University School of MedicineIndianapolisIndianaUSA
| | - Ping Yi
- Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chunming Cheng
- Department of Radiation OncologyJames Comprehensive Cancer Center and College of Medicine at The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
191
|
Cooke JP, Lai L. Transflammation in tissue regeneration and response to injury: How cell-autonomous inflammatory signaling mediates cell plasticity. Adv Drug Deliv Rev 2023; 203:115118. [PMID: 37884127 PMCID: PMC10842620 DOI: 10.1016/j.addr.2023.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Inflammation is a first responder against injury and infection and is also critical for the regeneration and repair of tissue after injury. The role of professional immune cells in tissue healing is well characterized. Professional immune cells respond to pathogens with humoral and cytotoxic responses; remove cellular debris through efferocytosis; secrete angiogenic cytokines and growth factors to repair the microvasculature and parenchyma. However, non-immune cells are also capable of responding to damage or pathogens. Non-immune somatic cells express pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The PRRs activation leads to the release of inflammatory cytokines required for tissue defense and repair. Notably, the activation of PRRs also triggers epigenetic changes that promote DNA accessibility and cellular plasticity. Thus, non-immune cells directly respond to the local inflammatory cues and can undergo phenotypic modifications or even cell lineage transitions to facilitate tissue regeneration. This review will focus on the novel role of cell-autonomous inflammatory signaling in mediating cell plasticity, a process which is termed transflammation. We will discuss the regulation of this process by changes in the functions and expression levels of epigenetic modifiers, as well as metabolic and ROS/RNS-mediated epigenetic modulation of DNA accessibility during cell fate transition. We will highlight the recent technological developments in detecting cell plasticity and potential therapeutic applications of transflammation in tissue regeneration.
Collapse
Affiliation(s)
- John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Li Lai
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States.
| |
Collapse
|
192
|
Bantug GR, Hess C. The immunometabolic ecosystem in cancer. Nat Immunol 2023; 24:2008-2020. [PMID: 38012409 DOI: 10.1038/s41590-023-01675-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Our increased understanding of how key metabolic pathways are activated and regulated in malignant cells has identified metabolic vulnerabilities of cancers. Translating this insight to the clinics, however, has proved challenging. Roadblocks limiting efficacy of drugs targeting cancer metabolism may lie in the nature of the metabolic ecosystem of tumors. The exchange of metabolites and growth factors between cancer cells and nonmalignant tumor-resident cells is essential for tumor growth and evolution, as well as the development of an immunosuppressive microenvironment. In this Review, we will examine the metabolic interplay between tumor-resident cells and how targeted inhibition of specific metabolic enzymes in malignant cells could elicit pro-tumorigenic effects in non-transformed tumor-resident cells and inhibit the function of tumor-specific T cells. To improve the efficacy of metabolism-targeted anticancer strategies, a holistic approach that considers the effect of metabolic inhibitors on major tumor-resident cell populations is needed.
Collapse
Affiliation(s)
- Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, Basel, Switzerland.
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| |
Collapse
|
193
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
194
|
Suganuma T, Workman JL. Chromatin balances cell redox and energy homeostasis. Epigenetics Chromatin 2023; 16:46. [PMID: 38017471 PMCID: PMC10683155 DOI: 10.1186/s13072-023-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Chromatin plays a central role in the conversion of energy in cells: alteration of chromatin structure to make DNA accessible consumes energy, and compaction of chromatin preserves energy. Alteration of chromatin structure uses energy sources derived from carbon metabolism such as ATP and acetyl-CoA; conversely, chromatin compaction and epigenetic modification feedback to metabolism and energy homeostasis by controlling gene expression and storing metabolites. Coordination of these dual chromatin events must be flexibly modulated in response to environmental changes such as during development and exposure to stress. Aging also alters chromatin structure and the coordination of metabolism, chromatin dynamics, and other cell processes. Noncoding RNAs and other RNA species that associate directly with chromatin or with chromatin modifiers contribute to spatiotemporal control of transcription and energy conversion. The time required for generating the large amounts of RNAs and chromatin modifiers observed in super-enhancers may be critical for regulation of transcription and may be impacted by aging. Here, taking into account these factors, we review alterations of chromatin that are fundamental to cell responses to metabolic changes due to stress and aging to maintain redox and energy homeostasis. We discuss the relationship between spatiotemporal control of energy and chromatin function, as this emerging concept must be considered to understand how cell homeostasis is maintained.
Collapse
Affiliation(s)
- Tamaki Suganuma
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA.
| | - Jerry L Workman
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| |
Collapse
|
195
|
de Araujo ACVSC, Mambelli F, Sanches RO, Marinho FV, Oliveira SC. Current Understanding of Bacillus Calmette-Guérin-Mediated Trained Immunity and Its Perspectives for Controlling Intracellular Infections. Pathogens 2023; 12:1386. [PMID: 38133271 PMCID: PMC10745672 DOI: 10.3390/pathogens12121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated bacterium derived from virulent Mycobacterium bovis. It is the only licensed vaccine used for preventing severe forms of tuberculosis in children. Besides its specific effects against tuberculosis, BCG administration is also associated with beneficial non-specific effects (NSEs) following heterologous stimuli in humans and mice. The NSEs from BCG could be related to both adaptive and innate immune responses. The latter is also known as trained immunity (TI), a recently described biological feature of innate cells that enables functional improvement based on metabolic and epigenetic reprogramming. Currently, the mechanisms related to BCG-mediated TI are the focus of intense research, but many gaps are still in need of elucidation. This review discusses the present understanding of TI induced by BCG, exploring signaling pathways that are crucial to a trained phenotype in hematopoietic stem cells and monocytes/macrophages lineage. It focuses on BCG-mediated TI mechanisms, including the metabolic-epigenetic axis and the inflammasome pathway in these cells against intracellular pathogens. Moreover, this study explores the TI in different immune cell types, its ability to protect against various intracellular infections, and the integration of trained innate memory with adaptive memory to shape next-generation vaccines.
Collapse
Affiliation(s)
- Ana Carolina V. S. C. de Araujo
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Fábio Mambelli
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
| | - Rodrigo O. Sanches
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Fábio V. Marinho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| | - Sergio C. Oliveira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, SP, Brazil;
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (R.O.S.); (F.V.M.)
| |
Collapse
|
196
|
Li X, Karpac J. A distinct Acyl-CoA binding protein (ACBP6) shapes tissue plasticity during nutrient adaptation in Drosophila. Nat Commun 2023; 14:7599. [PMID: 37989752 PMCID: PMC10663470 DOI: 10.1038/s41467-023-43362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant 'switching' of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, USA.
| |
Collapse
|
197
|
Shastry A, Dunham-Snary K. Metabolomics and mitochondrial dysfunction in cardiometabolic disease. Life Sci 2023; 333:122137. [PMID: 37788764 DOI: 10.1016/j.lfs.2023.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Circulating metabolites are indicators of systemic metabolic dysfunction and can be detected through contemporary techniques in metabolomics. These metabolites are involved in numerous mitochondrial metabolic processes including glycolysis, fatty acid β-oxidation, and amino acid catabolism, and changes in the abundance of these metabolites is implicated in the pathogenesis of cardiometabolic diseases (CMDs). Epigenetic regulation and direct metabolite-protein interactions modulate metabolism, both within cells and in the circulation. Dysfunction of multiple mitochondrial components stemming from mitochondrial DNA mutations are implicated in disease pathogenesis. This review will summarize the current state of knowledge regarding: i) the interactions between metabolites found within the mitochondrial environment during CMDs, ii) various metabolites' effects on cellular and systemic function, iii) how harnessing the power of metabolomic analyses represents the next frontier of precision medicine, and iv) how these concepts integrate to expand the clinical potential for translational cardiometabolic medicine.
Collapse
Affiliation(s)
- Abhishek Shastry
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical & Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
198
|
Sun B, Reynolds KS, Garland MA, McMahon M, Saha SK, Zhou CJ. Epigenetic implications in maternal diabetes and metabolic syndrome-associated risk of orofacial clefts. Birth Defects Res 2023; 115:1835-1850. [PMID: 37497595 PMCID: PMC11526419 DOI: 10.1002/bdr2.2226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
Orofacial clefts (OFCs) are one of the most common types of structural birth defects. The etiologies are complicated, involving with genetic, epigenetic, and environmental factors. Studies have found that maternal diabetes and metabolic syndrome are associated with a higher risk of OFCs in offspring. Metabolic syndrome is a clustering of several disease risk factors, including hyperglycemia, dyslipidemia, obesity, and hypertension. Metabolic disease during pregnancy can increase risk of adverse outcomes and significantly influence fetal development, including orofacial formation and fusion. An altered metabolic state may contribute to developmental disorders or congenital defects including OFCs, potentially through epigenetic modulations, such as histone modification, DNA methylation, and noncoding RNA expression to alter activities of critical morphogenetic signaling or related developmental genes. This review summarizes the currently available evidence and underlying mechanisms of how the maternal metabolic syndrome is associated with OFCs in mostly human and some animal studies. It may provide a better understanding of the interactions between intrauterine metabolic status and fetal orofacial development which might be applied toward prevention and treatments of OFCs.
Collapse
Affiliation(s)
- Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Kurt S. Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael A. Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Moira McMahon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Subbroto K. Saha
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| |
Collapse
|
199
|
Scarpellini E, Rinninella E. Gut Microbiota According to the Metabolome. Nutrients 2023; 15:4768. [PMID: 38004160 PMCID: PMC10674210 DOI: 10.3390/nu15224768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The human gut microbiota is an ecosystem harboring trillions of microorganisms, encompassing bacteria, viruses, archaea, fungi, and protozoa [...].
Collapse
Affiliation(s)
- Emidio Scarpellini
- Translationeel Onderzoek van Gastro-Enterologische Aandoeningen (T.A.R.G.I.D.), Gasthuisberg University 11 Hospital, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Emanuele Rinninella
- Research and Training Center in Human Nutrition, Catholic University of Sacred Heart, 00168 Rome, Italy;
| |
Collapse
|
200
|
Yao Y, Shi J, Zhang C, Gao W, Huang N, Liu Y, Yan W, Han Y, Zhou W, Kong L. Pyruvate dehydrogenase kinase 1 protects against neuronal injury and memory loss in mouse models of diabetes. Cell Death Dis 2023; 14:722. [PMID: 37935660 PMCID: PMC10630521 DOI: 10.1038/s41419-023-06249-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Hyperglycemia-induced aberrant glucose metabolism is a causative factor of neurodegeneration and cognitive impairment in diabetes mellitus (DM) patients. The pyruvate dehydrogenase kinase (PDK)-lactic acid axis is regarded as a critical link between metabolic reprogramming and the pathogenic process of neurological disorders. However, its role in diabetic neuropathy remains unclear. Here, we found that PDK1 and phosphorylation of pyruvate dehydrogenase (PDH) were obviously increased in high glucose (HG)-stimulated primary neurons and Neuro-2a cell line. Acetyl-coA, a central metabolic intermediate, might enhance PDK1 expression via histone H3K9 acetylation modification in HG condition. The epigenetic regulation of PDK1 expression provided an available negative feedback pattern in response to HG environment-triggered mitochondrial metabolic overload. However, neuronal PDK1 was decreased in the hippocampus of streptozotocin (STZ)-induced diabetic mice. Our data showed that the expression of PDK1 also depended on the hypoxia-inducible factor-1 (HIF-1) transcriptional activation under the HG condition. However, HIF-1 was significantly reduced in the hippocampus of diabetic mice, which might explain the opposite expression of PDK1 in vivo. Importantly, overexpression of PDK1 reduced HG-induced reactive oxygen species (ROS) generation and neuronal apoptosis. Enhancing PDK1 expression in the hippocampus ameliorated STZ-induced cognitive impairment and neuronal degeneration in mice. Together, our study demonstrated that both acetyl-coA-induced histone acetylation and HIF-1 are necessary to direct PDK1 expression, and enhancing PDK1 may have a protective effect on cognitive recovery in diabetic mice. Schematic representation of the protective effect of PDK1 on hyperglycemia-induced neuronal injury and memory loss. High glucose enhanced the expression of PDK1 in an acetyl-coA-dependent histone acetylation modification to avoid mitochondrial metabolic overload and ROS release. However, the decrease of HIF-1 may impair the upregulation of PDK1 under hyperglycemia condition. Overexpression of PDK1 prevented hyperglycemia-induced hippocampal neuronal injury and memory loss in diabetic mice.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaming Shi
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunlai Zhang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Gao
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ning Huang
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yaobei Liu
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Weiwen Yan
- Department of Clinical Laboratory, Zibo Hospital of Traditional Chinese Medicine, Zibo, Shandong, China
| | - Yingguang Han
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenjuan Zhou
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liang Kong
- Department of Clinical Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|