151
|
Meli VS, Ghosh S, Prabha TN, Chakraborty N, Chakraborty S, Datta A. Enhancement of fruit shelf life by suppressing N-glycan processing enzymes. Proc Natl Acad Sci U S A 2010; 107:2413-8. [PMID: 20133661 PMCID: PMC2823905 DOI: 10.1073/pnas.0909329107] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In a globalized economy, the control of fruit ripening is of strategic importance because excessive softening limits shelf life. Efforts have been made to reduce fruit softening in transgenic tomato through the suppression of genes encoding cell wall-degrading proteins. However, these have met with very limited success. N-glycans are reported to play an important role during fruit ripening, although the role of any particular enzyme is yet unknown. We have identified and targeted two ripening-specific N-glycoprotein modifying enzymes, alpha-mannosidase (alpha-Man) and beta-D-N-acetylhexosaminidase (beta-Hex). We show that their suppression enhances fruit shelf life, owing to the reduced rate of softening. Analysis of transgenic tomatoes revealed approximately 2.5- and approximately 2-fold firmer fruits in the alpha-Man and beta-Hex RNAi lines, respectively, and approximately 30 days of enhanced shelf life. Overexpression of alpha-Man or beta-Hex resulted in excessive fruit softening. Expression of alpha-Man and beta-Hex is induced by the ripening hormone ethylene and is modulated by a regulator of ripening, rin (ripening inhibitor). Furthermore, transcriptomic comparative studies demonstrate the down-regulation of cell wall degradation- and ripening-related genes in RNAi fruits. It is evident from these results that N-glycan processing is involved in ripening-associated fruit softening. Genetic manipulation of N-glycan processing can be of strategic importance to enhance fruit shelf life, without any negative effect on phenotype, including yield.
Collapse
Affiliation(s)
| | | | - T. N. Prabha
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | | | - Asis Datta
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
152
|
Aboul-Soud MA. Exogenous Nitric Oxide Negatively Impacts on Ethylene Emissions from Intact and Fresh-Cut Tomato Fruit. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjbsci.2010.209.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
153
|
Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol Adv 2010; 28:94-107. [DOI: 10.1016/j.biotechadv.2009.10.002] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 01/16/2023]
|
154
|
Dal Cin V, Kevany B, Fei Z, Klee HJ. Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1183-92. [PMID: 19680624 DOI: 10.1007/s00122-009-1119-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/20/2009] [Indexed: 05/04/2023]
Abstract
The phytohormone ethylene is essential for ripening of climacteric fruits such as tomato. While many of the genes responsible for ethylene synthesis and perception have been identified, the regulatory network controlling autocatalytic climacteric ethylene synthesis is not well understood. In order to better understand the regulation of ripening-associated ethylene, we have exploited the genetic variation within Solanum Sect. Lycopersicon. In particular, we have used a near-isogenic population of S. habrochaites introgression lines to identify chromosome segments affecting ethylene emissions during ripening. S. habrochaites fruits produce much larger quantities of ethylene during ripening than do cultivated S. lycopersicum tomatoes. A total of 17 segments were identified; 3 had emissions more than twice the level of the tomato parent, 11 had less than a twofold increase and 3 had significantly reduced emissions at one or more ripening stages. While several of these segments co-segregate with known ethylene-related genes, many do not correspond to known genes. Thus, they may identify novel modes of regulation. These results illustrate the utility of wild relatives and their introgression lines to understand regulation of fruit ripening-related processes.
Collapse
Affiliation(s)
- Valeriano Dal Cin
- University of Florida, Horticultural Sciences, PO Box 110690, Gainesville, FL, 32611-0690, USA
| | | | | | | |
Collapse
|
155
|
Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, Grandillo S, Giovannoni J, Irish VF. Fleshy fruit expansion and ripening are regulated by the Tomato SHATTERPROOF gene TAGL1. THE PLANT CELL 2009; 21:3041-62. [PMID: 19880793 PMCID: PMC2782289 DOI: 10.1105/tpc.109.066936] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 05/18/2023]
Abstract
The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively.
Collapse
Affiliation(s)
- Julia Vrebalov
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Irvin L. Pan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
| | | | - Ryan McQuinn
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
| | - MiYoung Chung
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
| | - Mervin Poole
- Division of Plant Sciences, University of Nottingham, Sutton Bonnington, Loughborough, Leics LE12 5RD, United Kingdom
| | - Jocelyn Rose
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Graham Seymour
- Division of Plant Sciences, University of Nottingham, Sutton Bonnington, Loughborough, Leics LE12 5RD, United Kingdom
| | - Silvana Grandillo
- Consiglio Nationale delle Ricerche-Instituto Di Genetica Vegetale, 80055 Portici (Naples), Italy
| | - James Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York 14853
- Address correspondence to
| | - Vivian F. Irish
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520-8104
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8104
| |
Collapse
|
156
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 2009; 183:979-1003. [PMID: 19752216 DOI: 10.1534/genetics.109.107102] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Ethylene (C(2)H(4)) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of S-adenosylmethionine (AdoMet) to ACC, the precursor of ethylene. To understand the function of this important enzyme, we analyzed the entire family of nine ACS isoforms (ACS1, ACS2, ACS4-9, and ACS11) encoded in the Arabidopsis genome. Our analysis reveals that members of this protein family share an essential function, because individual ACS genes are not essential for Arabidopsis viability, whereas elimination of the entire gene family results in embryonic lethality. Phenotypic characterization of single and multiple mutants unmasks unique but overlapping functions of the various ACS members in plant developmental events, including multiple growth characteristics, flowering time, response to gravity, disease resistance, and ethylene production. Ethylene acts as a repressor of flowering by regulating the transcription of the FLOWERING LOCUS C. Each single and high order mutant has a characteristic molecular phenotype with unique and overlapping gene expression patterns. The expression of several genes involved in light perception and signaling is altered in the high order mutants. These results, together with the in planta ACS interaction map, suggest that ethylene-mediated processes are orchestrated by a combinatorial interplay among ACS isoforms that determines the relative ratio of homo- and heterodimers (active or inactive) in a spatial and temporal manner. These subunit isoforms comprise a combinatorial code that is a central regulator of ethylene production during plant development. The lethality of the null ACS mutant contrasts with the viability of null mutations in key components of the ethylene signaling apparatus, strongly supporting the view that ACC, the precursor of ethylene, is a primary regulator of plant growth and development.
Collapse
|
158
|
Zhao L, Lu L, Zhang L, Wang A, Wang N, Liang Z, Lu X, Tang K. Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J Biosci 2009; 34:71-83. [PMID: 19430120 DOI: 10.1007/s12038-009-0010-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species,and were further analysed. The results from 19 E8 promoters including three previously cloned E8 promoters (X13437,DQ317599 and AF515784) showed that the size of the E8 promoters varied from 2101 bp (LA2150) to 2256 bp (LA2192); their sequences shared 69.9% homology and the average A/T content was 74.9%. Slide-window analysis divided E8 promoters into three regions -A,B and C - and the sequence identity in these regions was 72.5%, 41.2% and 70.8%, respectively. By searching the cis -elements of E8 promoters in the PLACE database, mutant nucleotides were found in some functional elements,and deletions or insertions were also found in regions responsible for ethylene biosysnthesis (-1702 to -1274) and the negative effect region (-1253 to -936). Our results indicate that the size of the functional region for ethylene biosynthesis in the E8 promoter could be shortened from 429 bp to 113 bp (-1612 to -1500). The results of molecular evolution analysis showed that the 19 E8 promoters could be classified into four clade groups, which is basically consistent with evolution of the tomato genome. Southern blot analysis results showed that the copy number of E8 promoters in tomato and some other wild species changed from 1 to 4. Taken together, our study provides important information for further elucidating the E8 gene expression pattern in tomato, analysing functional elements in the E8 promoter and reconstructing the potent E8 promoter.
Collapse
Affiliation(s)
- Lingxia Zhao
- Plant Biotechnology Research Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Modification of plant hormone levels and signaling as a tool in plant biotechnology. Biotechnol J 2009; 4:1293-304. [DOI: 10.1002/biot.200800286] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
160
|
Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two cucumis species. PLoS One 2009; 4:e6144. [PMID: 19578542 PMCID: PMC2701604 DOI: 10.1371/journal.pone.0006144] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/18/2022] Open
Abstract
Andromonoecy is a widespread sexual system in angiosperms, characterized by plants carrying both male and bisexual flowers. Monoecy is characterized by the presence of both male and female flowers on the same plant. In cucumber, these sexual forms are controlled by the identity of the alleles at the M locus. In melon, we recently showed that the transition from monoecy to andromonoecy result from a mutation in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, CmACS-7. To isolate the andromonoecy gene in cucumber we used a candidate gene approach in combination with genetical and biochemical analysis. We demonstrated co-segregation of CsACS2, a close homolog of CmACS-7, with the M locus. Sequence analysis of CsACS2 in cucumber accessions identified four CsACS2 isoforms, three in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed the four isoforms in Escherichia coli and assayed their activity in vitro. Like in melon, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active CsACS2 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. Consistent with this, CsACS2, like CmACS-7 in melon, is expressed specifically in carpel primordia of buds determined to develop carpels. Following ACS expression, inter-organ communication is likely responsible for the inhibition of stamina development. In both melon and cucumber, flower unisexuality seems to be the ancestral situation, as the majority of Cucumis species are monoecious. Thus, the ancestor gene of CmACS-7/CsACS2 likely have controlled the stamen development before speciation of Cucumis sativus (cucumber) and Cucumis melo (melon) that have diverged over 40 My ago. The isolation of the genes for andromonoecy in Cucumis species provides a molecular basis for understanding how sexual systems arise and are maintained within and between species.
Collapse
Affiliation(s)
- Adnane Boualem
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Christelle Troadec
- INRA-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, Evry, France
| | - Irina Kovalski
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Marie-Agnes Sari
- CNRS, UMR 8601, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université René Descartes, Paris, France
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | |
Collapse
|
161
|
Zhao L, Lu L, Zhang L, Wang A, Wang N, Liang Z, Lu X, Tang K. Molecular evolution of the E8 promoter in tomato and some of its relative wild species. J Biosci 2009. [PMID: 19430120 DOI: 10.1007/s12038‐009‐0010‐x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The E8 gene is related to ethylene biosynthesis in plants. To explore the effect of the expression pattern of the E8 gene on different E8 promoters, the molecular evolution of E8 promoters was investigated. A total of 16 E8 promoters were cloned from 16 accessions of seven tomato species,and were further analysed. The results from 19 E8 promoters including three previously cloned E8 promoters (X13437,DQ317599 and AF515784) showed that the size of the E8 promoters varied from 2101 bp (LA2150) to 2256 bp (LA2192); their sequences shared 69.9% homology and the average A/T content was 74.9%. Slide-window analysis divided E8 promoters into three regions -A,B and C - and the sequence identity in these regions was 72.5%, 41.2% and 70.8%, respectively. By searching the cis -elements of E8 promoters in the PLACE database, mutant nucleotides were found in some functional elements,and deletions or insertions were also found in regions responsible for ethylene biosysnthesis (-1702 to -1274) and the negative effect region (-1253 to -936). Our results indicate that the size of the functional region for ethylene biosynthesis in the E8 promoter could be shortened from 429 bp to 113 bp (-1612 to -1500). The results of molecular evolution analysis showed that the 19 E8 promoters could be classified into four clade groups, which is basically consistent with evolution of the tomato genome. Southern blot analysis results showed that the copy number of E8 promoters in tomato and some other wild species changed from 1 to 4. Taken together, our study provides important information for further elucidating the E8 gene expression pattern in tomato, analysing functional elements in the E8 promoter and reconstructing the potent E8 promoter.
Collapse
Affiliation(s)
- Lingxia Zhao
- Plant Biotechnology Research Center, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Johnston JW, Gunaseelan K, Pidakala P, Wang M, Schaffer RJ. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2689-99. [PMID: 19429839 PMCID: PMC2692014 DOI: 10.1093/jxb/erp122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 03/22/2009] [Accepted: 03/24/2009] [Indexed: 05/19/2023]
Abstract
In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 microl l(-1)). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 microl l(-1) for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity.
Collapse
Affiliation(s)
| | | | | | | | - Robert J. Schaffer
- The New Zealand Institute For Plant & Food Research Limited, Private Bag 92169, Auckland, New Zealand
| |
Collapse
|
163
|
Zhang Z, Zhang H, Quan R, Wang XC, Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. PLANT PHYSIOLOGY 2009; 150:365-77. [PMID: 19261734 PMCID: PMC2675746 DOI: 10.1104/pp.109.135830] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Accepted: 03/01/2009] [Indexed: 05/18/2023]
Abstract
Fine-tuning of ethylene production plays an important role in developmental processes and in plant responses to stress, but very little is known about the regulation of ethylene response factor (ERF) proteins in ethylene biosynthesis genes and ethylene production. Identifying cis-acting elements and transcription factors that play a role in this process, therefore, is important. Previously, a tomato (Solanum lycopersicum [f. sp. Lycopersicon esculentum]) ERF protein, LeERF2, an allele of TERF2, was reported to confer ethylene triple response on plants. This paper reports the transcriptional modulation of LeERF2/TERF2 in ethylene biosynthesis in tomato and tobacco (Nicotiana tabacum). Using overexpressing and antisense LeERF2/TERF2 transgenic tomato, we found that LeERF2/TERF2 is an important regulator in the expression of ethylene biosynthesis genes and the production of ethylene. Expression analysis revealed that LeERF2/TERF2 is ethylene inducible, and ethylene production stimulated by ethylene was suppressed in antisense LeERF2/TERF2 transgenic tomato, indicating LeERF2/TERF2 to be a positive regulator in the feedback loop of ethylene induction. Further research showed that LeERF2/TERF2 conservatively modulates ethylene biosynthesis in tobacco and that such regulation in tobacco is associated with the elongation of the hypocotyl and insensitivity to abscisic acid and glucose during germination and seedling development. The effects on ethylene synthesis were similar to those of another ERF protein, TERF1, because TERF1 and LeERF2/TERF2 have overlapping roles in the transcriptional regulation of ethylene biosynthesis in tobacco. Biochemical analysis showed that LeERF2/TERF2 interacted with GCC box in the promoter of NtACS3 and with dehydration-responsive element in the promoter of LeACO3, resulting in transcriptional activation of the genes for ethylene biosynthesis in tomato and tobacco, which is a novel regulatory function of ERF proteins in plant ethylene biosynthesis.
Collapse
Affiliation(s)
- Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | |
Collapse
|
164
|
Qin G, Meng X, Wang Q, Tian S. Oxidative Damage of Mitochondrial Proteins Contributes to Fruit Senescence: A Redox Proteomics Analysis. J Proteome Res 2009; 8:2449-62. [DOI: 10.1021/pr801046m] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guozheng Qin
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xianghong Meng
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Wang
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
165
|
Lin Z, Zhong S, Grierson D. Recent advances in ethylene research. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3311-36. [PMID: 19567479 DOI: 10.1093/jxb/erp204] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene regulates many aspects of the plant life cycle, including seed germination, root initiation, flower development, fruit ripening, senescence, and responses to biotic and abiotic stresses. It thus plays a key role in responses to the environment that have a direct bearing on a plant's fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the molecular mechanisms regulating ethylene synthesis and action. Screening for mutants of the triple response phenotype of etiolated Arabidopsis seedlings, together with map-based cloning and candidate gene characterization of natural mutants from other plant species, has led to the identification of many new genes for ethylene biosynthesis, signal transduction, and response pathways. The simple chemical nature of ethylene contrasts with its regulatory complexity. This is illustrated by the multiplicity of genes encoding the key ethylene biosynthesis enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase, multiple ethylene receptors and signal transduction components, and the complexity of regulatory steps involving signalling relays and control of mRNA and protein synthesis and turnover. In addition, there are extensive interactions with other hormones. This review integrates knowledge from the model plant Arabidopsis and other plant species and focuses on key aspects of recent research on regulatory networks controlling ethylene synthesis and its role in flower development and fruit ripening.
Collapse
Affiliation(s)
- Zhefeng Lin
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | | | |
Collapse
|
166
|
Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 2008; 321:836-8. [PMID: 18687965 DOI: 10.1126/science.1159023] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Andromonoecy is a widespread sexual system in angiosperms characterized by plants carrying both male and bisexual flowers. In melon, this sexual form is controlled by the identity of the alleles at the andromonoecious (a) locus. Cloning of the a gene reveals that andromonoecy results from a mutation in the active site of 1-aminocyclopropane-1-carboxylic acid synthase. Expression of the active enzyme inhibits the development of the male organs and is not required for carpel development. A causal single-nucleotide polymorphism associated with andromonoecy was identified, which suggests that the a allele has been under recent positive selection and may be linked to the evolution of this sexual system.
Collapse
Affiliation(s)
- Adnane Boualem
- INRA (Institut National de la Recherche Agronomique)-CNRS, UMR1165, Unité de Recherche en Génomique Végétale, 2 rue Gaston Crémieux, F-91057 Evry, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Eum HL, Kim HB, Choi SB, Lee SK. Regulation of ethylene biosynthesis by nitric oxide in tomato (Solanum lycopersicum L.) fruit harvested at different ripening stages. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0938-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
168
|
Gao H, Zhu H, Shao Y, Chen A, Lu C, Zhu B, Luo Y. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:991-996. [PMID: 18713349 DOI: 10.1111/j.1744-7909.2008.00685.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
For elucidating the regulatory mechanism of ethylene on carotenoid-related volatiles (open chain) compounds and the relationship between lycopene and carotenoid-related volatiles, transgenic tomato fruits in which ACC synthase was suppressed were used. The transgenic tomato fruit showed a significant reduction of lycopene and aroma volatiles with low ethylene production. 6-Methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol and geranylacetone, which were suspected to be lycopene degradation products, were lower than those in wild type tomato fruits. In order to identify whether lycopene accumulation effects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato or not, the capability of both wild type and transgenic tomato fruits discs to convert lycopene into carotenoid-related volatiles was evaluated. The data showed that external lycopene could convert into 6-methyl-5-hepten-2-one and 6-methyl-5-hepten-2-ol in vivo, indicating that the strong inhibition of ethylene production had no effect on enzymes in the biosynthesis pathway of some carotenoid-related volatiles. Therefore, in ACS-suppression transgenic tomato fruits, the low levels of 6-methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol was due to decreased lycopene accumulation, not ethylene production. Ethylene only affected the accumulation of lycopene, and then indirectly influenced the level of lycopene-related volatiles.
Collapse
Affiliation(s)
- Hongyan Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
169
|
Ripening in papaya fruit is altered by ACC oxidase cosuppression. Transgenic Res 2008; 18:89-97. [PMID: 18612838 DOI: 10.1007/s11248-008-9197-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
Papaya (Carica papaya) is a very important crop in many tropical countries but it is highly susceptible to parasitic diseases, physiological disorders, mechanical damage and fruit overripening. Here we report a study on ACC oxidase cosuppression and its effects on papaya fruit ripening. Papaya ACC oxidase was isolated using PCR and embriogenic cells transformed by biolistic using the CaMV 35S promoter to drive the expression of the PCR fragment in sense orientation. Fifty transgenic lines were recovered and 20 of those were grown under field conditions. Southern analysis showed incorporation of the transgene in different copy numbers in the papaya genome. Fruits were evaluated in terms of texture (firmness), colour development, respiration and ethylene production. A sharp reduction in ethylene and CO2 production was detected, whereas softening and colour development of the peel were also altered. Overall, transgenic fruits showed a delay in ripening rate. A reduction in mRNA level for ACC oxidase in transgenic fruit was clearly detectable by northern blot. More studies are necessary before this technology can be used to extend the shelf life of papaya fruit.
Collapse
|
170
|
Lin Z, Hong Y, Yin M, Li C, Zhang K, Grierson D. A tomato HD-Zip homeobox protein, LeHB-1, plays an important role in floral organogenesis and ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:301-10. [PMID: 18397374 PMCID: PMC2607530 DOI: 10.1111/j.1365-313x.2008.03505.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/11/2008] [Accepted: 03/17/2008] [Indexed: 05/18/2023]
Abstract
Ethylene is required for climacteric fruit ripening. Inhibition of ethylene biosynthesis genes, 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase, prevents or delays ripening, but it is not known how these genes are modulated during normal development. LeHB-1, a previously uncharacterized tomato homeobox protein, was shown by gel retardation assay to interact with the promoter of LeACO1, an ACC oxidase gene expressed during ripening. Inhibition of LeHB-1 mRNA accumulation in tomato fruit, using virus-induced gene silencing, greatly reduced LeACO1 mRNA levels, and inhibited ripening. Conversely, ectopic overexpression of LeHB-1 by viral delivery to developing flowers elsewhere on injected plants triggered altered floral organ morphology, including production of multiple flowers within one sepal whorl, fusion of sepals and petals, and conversion of sepals into carpel-like structures that grew into fruits and ripened. Our findings suggest that LeHB-1 is not only involved in the control of ripening but also plays a critical role in floral organogenesis.
Collapse
Affiliation(s)
- Zhefeng Lin
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | | | | | | | | | |
Collapse
|
171
|
Bennett AB, Labavitch JM. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. PLANT SCIENCE 2008; 175:130-136. [PMID: 0 DOI: 10.1016/j.plantsci.2008.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
172
|
Kevany BM, Taylor MG, Klee HJ. Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:295-300. [PMID: 18086233 DOI: 10.1111/j.1467-7652.2007.00319.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Tomato is an economically important crop and a significant dietary source of important phytochemicals, such as carotenoids and flavonoids. Although it has been known for many years that the plant hormone ethylene is essential for the ripening of climacteric fruits, its role in fruit growth and maturation is much less well understood. In this study, data are presented which indicate that fruit-specific suppression of the ethylene receptor LeETR4 causes early ripening, whereas fruit size, yield and flavour-related chemical composition are largely unchanged. Early fruit ripening is a highly desirable and valuable trait, and the approach demonstrated here should be applicable to any fruit species requiring ethylene to ripen. These results demonstrate that ethylene receptors probably act as biological clocks regulating the onset of tomato fruit ripening.
Collapse
Affiliation(s)
- Brian M Kevany
- Plant Molecular and Cellular Biology Program, Horticultural Sciences, University of Florida, Gainesville, FL 32611-0690, USA
| | | | | |
Collapse
|
173
|
Tecson Mendoza EM, C Laurena A, Botella JR. Recent advances in the development of transgenic papaya technology. BIOTECHNOLOGY ANNUAL REVIEW 2008; 14:423-62. [PMID: 18606373 DOI: 10.1016/s1387-2656(08)00019-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Papaya with resistance to papaya ringspot virus (PRSV) is the first genetically modified tree and fruit crop and also the first transgenic crop developed by a public institution that has been commercialized. This chapter reviews the different transformation systems used for papaya and recent advances in the use of transgenic technology to introduce important quality and horticultural traits in papaya. These include the development of the following traits in papaya: resistance to PRSV, mites and Phytophthora, delayed ripening trait or long shelf life by inhibiting ethylene production or reducing loss of firmness, and tolerance or resistance to herbicide and aluminum toxicity. The use of papaya to produce vaccine against tuberculosis and cysticercosis, an infectious animal disease, has also been explored. Because of the economic importance of papaya, there are several collaborative and independent efforts to develop PRSV transgenic papaya technology in 14 countries. This chapter further reviews the strategies and constraints in the adoption of the technology and biosafety to the environment and food safety. Constraints to adoption include public perception, strict and expensive regulatory procedures and intellectual property issues.
Collapse
|
174
|
Han SE, Seo YS, Kim D, Sung SK, Kim WT. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits. PLANT CELL REPORTS 2007; 26:1321-31. [PMID: 17333023 DOI: 10.1007/s00299-007-0316-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/06/2007] [Accepted: 02/08/2007] [Indexed: 05/14/2023]
Abstract
Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.
Collapse
Affiliation(s)
- Sang Eun Han
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | |
Collapse
|
175
|
Barry CS, Giovannoni JJ. Ethylene and Fruit Ripening. JOURNAL OF PLANT GROWTH REGULATION 2007; 26:143. [PMID: 0 DOI: 10.1007/s00344-007-9002-y] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/18/2007] [Indexed: 05/19/2023]
|
176
|
Rommens CM. Intragenic crop improvement: combining the benefits of traditional breeding and genetic engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:4281-8. [PMID: 17488120 DOI: 10.1021/jf0706631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
New crop varieties are developed by applying traditional breeding methods that rely on random genome modifications. These varieties combine multiple traits that support farm efficiency and acceptable yields but also contain genes associated with the production of toxins, allergens, and/or antinutritional compounds that were not considered during the selection process. Furthermore, existing cultivars frequently lack the functional genes required for specific sensory traits and the formation of health-promoting antioxidants. One new method efficiently addresses some of these issues by either silencing undesirable genes or enhancing the expression of genes that are linked to dormant beneficial traits. Rather than incorporating foreign DNA into the plant's genome, these methods transform crops with plant-derived transfer (P-) DNAs that consist of only native genetic elements. The genetic modification can be characterized molecularly so that any inadvertent transfer of undesirable DNA, as may be the case with traditional methods, is excluded. A recently developed intragenic potato plant is silenced for the polyphenol oxidase, dikinase R1, and phosphorylase-L genes in a tuber-specific manner. French fries derived from these tubers lack discolorations, display an enhanced potato flavor, and produce greatly reduced amounts of the suspected carcinogen acrylamide. It is argued that intragenic modification is unlikely to trigger phenotypic, biochemical, or physiological variation that is new to the species. Similarly, the targeted traits are similar to those that breeders select for and often have a history of domestication and reduced fitness. For these reasons, an updated regulatory system is proposed whereby intragenic crops are considered as low risk and should be cleared for commercial release in a timely and cost-effective manner. By using modern techniques to modify the same genetic material that is used by breeders, intragenic approaches may be perceived as an acceptable extension of traditional methods in crop improvement.
Collapse
Affiliation(s)
- Caius M Rommens
- Simplot Plant Sciences, J. R. Simplot Company, Boise, Idaho 83706, USA.
| |
Collapse
|
177
|
Lin J, Fan R, Wan X, Charng YY, Wang N. Structural analysis of the promoter of tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene (Le-ACS6). ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0183-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
178
|
Abstract
Fruits constitute a commercially important and nutritionally indispensable food commodity. Being a part of a balanced diet, fruits play a vital role in human nutrition by supplying the necessary growth regulating factors essential for maintaining normal health. Fruits are widely distributed in nature. One of the limiting factors that influence their economic value is the relatively short ripening period and reduced post-harvest life. Fruit ripening is a highly coordinated, genetically programmed, and an irreversible phenomenon involving a series of physiological, biochemical, and organoleptic changes, that finally leads to the development of a soft edible ripe fruit with desirable quality attributes. Excessive textural softening during ripening leads to adverse effects/spoilage upon storage. Carbohydrates play a major role in the ripening process, by way of depolymerization leading to decreased molecular size with concomitant increase in the levels of ripening inducing specific enzymes, whose target differ from fruit to fruit. The major classes of cell wall polysaccharides that undergo modifications during ripening are starch, pectins, cellulose, and hemicelluloses. Pectins are the common and major components of primary cell wall and middle lamella, contributing to the texture and quality of fruits. Their degradation during ripening seems to be responsible for tissue softening of a number of fruits. Structurally pectins are a diverse group of heteropolysaccharides containing partially methylated D-galacturonic acid residues with side chain appendages of several neutral polysaccharides. The degree of polymerization/esterification and the proportion of neutral sugar residues/side chains are the principal factors contributing to their (micro-) heterogeneity. Pectin degrading enzymes such as polygalacturonase, pectin methyl esterase, lyase, and rhamnogalacturonase are the most implicated in fruit-tissue softening. Recent advances in molecular biology have provided a better understanding of the biochemistry of fruit ripening as well as providing a hand for genetic manipulation of the entire ripening process. It is desirable that significant breakthroughs in such related areas will come forth in the near future, leading to considerable societal benefits.
Collapse
Affiliation(s)
- V Prasanna
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute. Mysore, Karnataka, 570020. India
| | | | | |
Collapse
|
179
|
Trainotti L, Tadiello A, Casadoro G. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:3299-308. [PMID: 17925301 DOI: 10.1093/jxb/erm178] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ethylene has long been regarded as the main regulator of ripening in climacteric fruits. The characterization of a few tomato mutants, unable to produce climacteric ethylene and to ripen their fruits even following treatments with exogenous ethylene, has shown that other factors also play an important role in the control of climacteric fruit ripening. In climacteric peach and tomato fruits it has been shown that, concomitant with ethylene production, increases in the amount of auxin can also be measured. In this work a genomic approach has been used in order to understand if such an auxin increase is functional to an independent role played by the hormone during ripening of the climacteric peach fruits. Besides the already known indirect activity on ripening due to its up-regulation of climacteric ethylene synthesis, it has been possible to show that auxin plays a role of its own during ripening of peaches. In fact, the hormone has shown the ability to regulate the expression of a number of different genes. Moreover, many genes involved in biosynthesis and transport and, in particular, the signalling (receptors, Auxin Response Factors and Aux/IAA) of auxin had increased expression in the mesocarp during ripening, thus strengthening the idea that this hormone is actively involved in the ripening of peaches. This study has also demonstrated the existence of an important cross-talk between auxin and ethylene, with genes in the auxin domain regulated by ethylene and genes in the ethylene domain regulated by auxin.
Collapse
Affiliation(s)
- Livio Trainotti
- Dipartimento di Biologia, Università di Padova, Via G. Colombo 3, I-35131 Padova, Italy
| | | | | |
Collapse
|
180
|
Kitagawa M, Nakamura N, Usuda H, Shiina T, Ito H, Yasuda J, Inakuma T, Ishiguro Y, Kasumi T, Ito Y. Ethylene biosynthesis regulation in tomato fruit from the F1 hybrid of the ripening inhibitor (rin) mutant. Biosci Biotechnol Biochem 2006; 70:1769-72. [PMID: 16861812 DOI: 10.1271/bbb.50611] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown a significant decrease in the ethylene production in tomato fruit from the RIN/rin genotype. In this present study, we evaluated the amount of 1-aminocyclopropane-1-carboxylic acid (ACC) and the gene expression and enzymatic activities of ACC synthase (ACS) and ACC oxidase (ACO) to find which type of regulation influenced this low ethylene production. The results suggest that the decreased ethylene production was due to transcriptional regulation of the ACS and ACO genes by the heterozygous effect of the rin gene.
Collapse
Affiliation(s)
- Mamiko Kitagawa
- Research Institute, Kagome Co., Ltd., Nasushiobara, Tochigi 329-2762, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Ishimaru K, Takada K, Watanabe S, Kamada H, Ezura H. Stable male sterility induced by the expression of mutated melon ethylene receptor genes in Nicotiana tabacum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:355-9. [PMID: 22980204 DOI: 10.1016/j.plantsci.2006.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 04/08/2006] [Accepted: 04/13/2006] [Indexed: 05/08/2023]
Abstract
A major concern about genetically modified crops is transgene flow through pollen dispersal. We previously demonstrated that overexpression of the mutated melon ethylene receptor genes Cm-ETR1/H69A or Cm-ERS1/H70A induces pollen abortion and altered flower architecture, resulting in sterility or reduced fertility in transgenic tobacco plants. To investigate the stability of these traits, three transgenic tobacco lines in which Cm-ETR1/H69A or Cm-ERS1/H70A confer sterility or reduced fertility were grown in a greenhouse with environmental conditions that changed, depending on the outside conditions. During the growth of the plants, the temperature ranged from 31°C at the beginning of September to 17°C at the beginning of November. The light provided was natural sunlight. The first group of plants flowered in late September, and the second group flowered in late October. The wild-type plants showed the homostyly type of floral architecture, whereas, three transgenic lines showed the heterostyly type. The floral architecture was stable during the different flowering periods. Pollen production was significantly reduced in two transgenic lines and completely aborted in one transgenic line, and these traits were also stable during the different flowering periods. These results suggest that the sterility or reduced fertility induced by the expression of mutated melon ethylene receptor genes in transgenic tobacco plants is stable under varying environmental conditions.
Collapse
Affiliation(s)
- Kentaro Ishimaru
- Gene Research Center, University of Tsukuba, Ten-nodai, Tsukuba 305-8572, Japan
| | | | | | | | | |
Collapse
|
182
|
Tharanathan R, Yashoda H, Prabha T. Mango(Mangifera indica L.), “The King of Fruits”—An Overview. FOOD REVIEWS INTERNATIONAL 2006. [DOI: 10.1080/87559120600574493] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
183
|
Abstract
With the isolation and characterization of the key enzymes and proteins, and the corresponding genes, involved in ethylene biosynthesis and sensing it has become possible to manipulate plant ethylene levels and thereby alter a wide range of physiological processes. The phytohormone ethylene is an essential signaling molecule that affects a large number of physiological processes; plants deprived of ethylene do not grow and develop normally. In a search for flexible on-off ethylene control, scientists have used inducible organ- and tissue-specific promoters to drive expression of different transgenes. Here, the various strategies that have been used to genetically engineer plants with decreased ethylene biosynthesis and sensitivity are reviewed and discussed.
Collapse
Affiliation(s)
- Jennifer C Czarny
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
184
|
Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA. Volatile Signaling in Plant-Plant Interactions: "Talking Trees" in the Genomics Era. Science 2006; 311:812-5. [PMID: 16469918 DOI: 10.1126/science.1118446] [Citation(s) in RCA: 453] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
Collapse
Affiliation(s)
- Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, Jena 07745, Germany.
| | | | | | | | | |
Collapse
|
185
|
Chaves ALS, Mello-Farias PCD. Ethylene and fruit ripening: from illumination gas to the control of gene expression, more than a century of discoveries. Genet Mol Biol 2006. [DOI: 10.1590/s1415-47572006000300020] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
186
|
Hu W, Wang Y, Zhu Z. A perspective on fish gonad manipulation for biotechnical applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-005-1055-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
187
|
Paschold A, Halitschke R, Baldwin IT. Using 'mute' plants to translate volatile signals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:275-91. [PMID: 16367970 DOI: 10.1111/j.1365-313x.2005.02623.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
When attacked by herbivores, plants release volatile organic compounds (VOCs) that attract natural enemies of the herbivores and function as indirect defenses. Whether or not neighboring plants 'eavesdrop' on these VOCs remains controversial because most studies use unrealistic experimental conditions and VOC exposures. In order to manipulate exposures of wild-type (WT) Nicotiana attenuata'receiver' plants, we elicited transformed 'emitter' plants, whose production of herbivore-induced C6 green leaf volatiles (GLVs) or terpenoid volatiles was genetically silenced, and placed them up-wind of WT 'receiver' plants in open-flow experimental chambers. We compared the transcriptional and secondary metabolite defense responses of WT receiver plants exposed to VOCs from these transgenic emitter plants with those of plants exposed to VOCs from WT emitter plants. No differences in the constitutive accumulation of defense metabolites and the signal molecule jasmonic acid (JA) were found. Additional elicitation of receiver plants revealed that exposure to WT, GLV-deficient and terpenoid-deficient volatile blends did not prime induced defenses, JA accumulation, or the expression of lipoxygenase 3 (NaLOX3), a gene involved in JA biosynthesis. However, exposure to wound- and herbivore-induced VOCs significantly altered the transcriptional patterns in receiver plants. We identified GLV-dependent genes by complementing the GLV-deficient volatile blend with a mixture of synthetic GLVs. Blends deficient in GLVs or cis-alpha-bergamotene regulated numerous genes in receiver plants that did not respond to the complete VOC blends of WT emitters, indicating a suppressive effect of GLVs and terpenoids. Whether these transcriptional responses translate into changes in plant fitness in nature remains to be determined.
Collapse
Affiliation(s)
- Anja Paschold
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
188
|
Tatsuki M, Endo A. Analyses of Expression Patterns of Ethylene Receptor Genes in Apple (Malus domestica Borkh.) Fruits Treated with or without 1-Methylcyclopropene (1-MCP). ACTA ACUST UNITED AC 2006. [DOI: 10.2503/jjshs.75.481] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
189
|
Hidalgo MSP, Tecson-Mendoza EM, Laurena AC, Botella JR. Hybrid 'Sinta' papaya exhibits unique ACC synthase 1 cDNA isoforms. BMB Rep 2005; 38:320-7. [PMID: 15943908 DOI: 10.5483/bmbrep.2005.38.3.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five ripening-related ACC synthase cDNA isoforms were cloned from 80% ripe papaya cv. 'Sinta' by reverse transcription-PCR using gene-specific primers. Clone 2 had the longest transcript and contained all common exons and three alternative exons. Clones 3 and 4 contained common exons and one alternative exon each, while clone 1, the most common transcript, contained only the common exons. Clone 5 could be due to cloning artifacts and might not be a unique cDNA fragment. Thus, there are only four isoforms of ACC synthase mRNA. Southern blot analysis indicates that all five clones came from only one gene existing as a single copy in the 'Sinta' papaya genome. Multiple sequence alignment indicates that the four isoforms arise from a single gene, possibly through alternative splicing mechanisms. All the putative alternative exons were present at the 5'-end of the gene comprising the N-terminal region of the protein. 'Sinta' ACC synthase cDNAs were of the capacs 1 type and are most closely related to a 1.4 kb capacs 1-type DNA (AJ277160) from Eksotika papaya. No capacs 2-type cDNAs were cloned from 'Sinta' by RT-PCR. This is the first report of possible alternative splicing mechanism in ripening-related ACC synthase genes in hybrid papaya, possibly to modulate or fine-tune gene expression relevant to fruit ripening.
Collapse
Affiliation(s)
- Marie-Sol P Hidalgo
- Institute of Plant Breeding, College of Agriculture, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | | | | | | |
Collapse
|
190
|
Gapper NE, Coupe SA, McKenzie MJ, Scott RW, Christey MC, Lill RE, McManus MT, Jameson PE. Senescence-associated down-regulation of 1-aminocyclopropane-1-carboxylate (ACC) oxidase delays harvest-induced senescence in broccoli. FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:891-901. [PMID: 32689185 DOI: 10.1071/fp05076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 06/08/2005] [Indexed: 06/11/2023]
Abstract
To gain an in-depth understanding of the role of ethylene in post harvest senescence, we used broccoli (Brassica oleracea var. italica) as our model species. The senescence-associated asparagine synthetase (AS) promoter from asparagus was used to drive the expression of an antisense 1-aminocyclopropane-1-carboxylate oxidase (ACO) cDNA from broccoli, BoACO2, to reduce ethylene production following harvest. Physiological analyses revealed that transgenic broccoli lines harbouring the antisense BoACO2 gene construct (designated as AS-asACO) displayed delayed senescence in both detached leaves and detached heads as measured by hue angle. Harvested floret tissue from these plants also showed a delayed loss of chlorophyll, lower protease activity and higher total protein content, and changes in transcript levels of senescence marker genes when compared with wild type and transgenic lines transformed with an empty T-DNA. Genes that were down-regulated included those coding for cysteine protease (BoCP5), metallothionein-like protein (BoMT1), hexokinase (BoHK1), invertase (BoINV1) and sucrose transporters (BoSUC1 and BoSUC2). Northern analysis for BoACO1 and BoACO2, ACO assays and western analysis, revealed reduced ACO transcript, enzyme activity and protein accumulation, as well as reduced ethylene production in the transgenic AS-asACO lines when compared with controls, confirming that a key enzyme regulating ethylene biosynthesis was reduced in these plants. This, together with the changes observed in gene expression, confirm a significant role for ethylene in regulating the events leading to senescence in broccoli following harvest.
Collapse
Affiliation(s)
- Nigel E Gapper
- New Zealand Institute for Crop & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North, New Zealand
| | - Simon A Coupe
- New Zealand Institute for Crop & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North, New Zealand
| | - Marian J McKenzie
- New Zealand Institute for Crop & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North, New Zealand
| | - Richard W Scott
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Mary C Christey
- New Zealand Institute for Crop & Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Ross E Lill
- New Zealand Institute for Crop & Food Research Limited, Food Industry Science Centre, Private Bag 11600, Palmerston North, New Zealand
| | - Michael T McManus
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paula E Jameson
- Institute of Molecular BioSciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| |
Collapse
|
191
|
Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Technol 2005. [DOI: 10.1016/j.tifs.2005.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
192
|
Yoshida H, Nagata M, Saito K, Wang KLC, Ecker JR. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC PLANT BIOLOGY 2005; 5:14. [PMID: 16091151 PMCID: PMC1199607 DOI: 10.1186/1471-2229-5-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 08/10/2005] [Indexed: 05/03/2023]
Abstract
BACKGROUND In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1) is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS), in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. RESULTS Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE) did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. CONCLUSION These results suggest that ETO1 family proteins specifically interact with and negatively regulate type 2 ACC synthases. Our data also show that Arabidopsis ETO1 can regulate type 2 ACS in a heterologous plant, tomato.
Collapse
Affiliation(s)
- Hitoshi Yoshida
- Department of Rice Research, National Agricultural Research Center, Jo-etsu, Niigata 943–0193, Japan
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Masayasu Nagata
- Department of Physiology and Quality Science, National Institute of Vegetable and Tea Science, Ano, Mie 514–2392, Japan
| | - Koji Saito
- Department of Low-Temperature Sciences, National Agricultural Research Center for Hokkaido Region, Sapporo, Hokkaido 062–8555, Japan
| | - Kevin LC Wang
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
- Present address: Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Joseph R Ecker
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, U.S.A
| |
Collapse
|
193
|
Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni JJ. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. PLANT PHYSIOLOGY 2005; 138:267-75. [PMID: 15834010 PMCID: PMC1104181 DOI: 10.1104/pp.104.057745] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/19/2005] [Accepted: 02/24/2005] [Indexed: 05/21/2023]
Abstract
The ripening of a fleshy fruit represents the summation of an array of biochemical processes that are regulated by interactions between developmental programs and environmental inputs. Analysis of tomato (Solanum lycopersicum) mutants and inhibitor studies indicate that ethylene is necessary for full development of the ripening program of climacteric fruit such as tomato, yet ethylene alone is not sufficient. This suggests that an interaction between ethylene and nonethylene (or developmental) pathways mediates ripening. In this study, we have examined the physiological basis for ripening inhibition of the dominant Green-ripe (Gr) and Never-ripe 2 (Nr-2) mutants of tomato. Our data suggest that this inhibition is due to ethylene insensitivity in mutant fruit. Further investigation of ethylene responses in Gr and Nr-2 plants also revealed weak ethylene insensitivity during floral senescence and abscission and, during inhibition of root elongation, a phenotype associated with the triple response. However, ethylene-induced inhibition of hypocotyl elongation and petiole epinasty are normal in Gr and Nr-2, suggesting that these loci regulate a subset of ethylene responses. We have mapped both dominant mutations to a 2-cM overlapping region of the long arm of chromosome 1 of tomato, a region not previously linked to any known ethylene signaling loci. The phenotypic similarity and overlapping map location of these mutations suggest Gr and Nr-2 may be allelic and may possibly encode a novel component of the ethylene response pathway.
Collapse
Affiliation(s)
- Cornelius S Barry
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
194
|
Dandekari AM, Teo G, Defilippi BG, Uratsu SL, Passey AJ, Kader AA, Stow JR, Colgan RJ, James DJ. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res 2005; 13:373-84. [PMID: 15517996 DOI: 10.1023/b:trag.0000040037.90435.45] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of ethylene in regulating sugar, acid, texture and volatile components of fruit quality was investigated in transgenic apple fruit modified in their capacity to synthesize endogenous ethylene. Fruit obtained from plants silenced for either ACS (ACC synthase; ACC-1-aminocyclopropane-1-carboxylic acid) or ACO (ACC oxidase), key enzymes responsible for ethylene biosynthesis, expectedly showed reduced autocatalytic ethylene production. Ethylene suppressed fruits were significantly firmer than controls and displayed an increased shelf-life. No significant difference was observed in sugar or acid accumulation suggesting that sugar and acid composition and accumulation is not directly under ethylene control. Interestingly, a significant and dramatic suppression of the synthesis of volatile esters was observed in fruit silenced for ethylene. However, no significant suppression was observed for the aldehyde and alcohol precursors of these esters. Our results indicate that ethylene differentially regulates fruit quality components and the availability of these transgenic apple trees provides a unique resource to define the role of ethylene and other factors that regulate fruit development.
Collapse
Affiliation(s)
- Abhaya M Dandekari
- Department of Pomology, University of California, I Shields Ave., Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Karakurt Y, Huber DJ. Ethylene-induced gene expression, enzyme activities, and water soaking in immature and ripe watermelon (Citrullus lanatus) fruit. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:381-8. [PMID: 15128025 DOI: 10.1078/0176-1617-01221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Watermelon fruit exhibit acute softening and placental-tissue water soaking following short exposure to exogenous ethylene. Experiments were performed to address transcript abundance and activities of cell wall and membrane hydrolases in placental tissue in response to treatment of watermelon fruit with ethylene. Watermelon fruit were harvested at immature and full-ripe stages and exposed to 50 microL L(-1) ethylene for 6 days at 20 degrees C. Ethylene affected the abundance of transcripts for PME (EC 3.2.1.11), and alpha-(EC 3.2.1.22) and beta-GAL (EC 3.2.1.23) but these effects were dependent on fruit maturity and appeared not to be associated with the water-soaking syndrome. PG (EC 3.2.1.15) and EXP mRNAs accumulated significantly in response to ethylene exposure. Additionally, the levels of mRNA and activities of LOX (EC 1.13.11.12), PLC (EC 3.1.4.3) and PLD (EC 3.1.4.4) were elevated in fruit of both maturity classes exposed to ethylene and were temporally associated with the visible symptoms of water soaking. The activity trends and transcript abundance in ethylene- compared with air-treated fruit indicate that PG, EXP, LOX, PLC and PLD levels increase with the onset and development of the water-soaking disorder and support the view that catabolic reactions targeting the membranes and cell-walls contribute to the disorder.
Collapse
Affiliation(s)
- Yasar Karakurt
- Horticultural Sciences Department, Fifield Hall, P.O. Box 110690, University of Florida, Gainesville, FL 32611-0690, USA
| | | |
Collapse
|
196
|
Abstract
The application of modern biotechnological approaches to cut flowers has clearly become instrumental and rewarding for the floriculture industry. In recent years, several gene-transfer procedures have been developed for some of the major commercial cut flowers. Using Agrobactrium or microprojectile bombardment, several basic protocols are now available. However, despite the great progress and interest in gene transfer to these crops, their transformation is routine in only a limited number of laboratories, and its application is still considered to be an "art form". This review summarizes the reported gene-transfer procedures for the main cut-flower crops, with an emphasis on the unique factors of each method and the recent progress in introducing new traits of horticultural interest into these species.
Collapse
Affiliation(s)
- A Zuker
- The Kennedy-Leigh Centre for Horticultural Research and The Otto Warburg Center for Biotechnology in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | |
Collapse
|
197
|
Abstract
The typical crop improvement cycle takes 10-15 years to complete and includes germplasm manipulations, genotype selection and stabilization, variety testing, variety increase, proprietary protection and crop production stages. Plant tissue culture and genetic engineering procedures that form the basis of plant biotechnology can contribute to most of these crop improvement stages. This review provides an overview of the opportunities presented by the integration of plant biotechnology into plant improvement efforts and raises some of the societal issues that need to be considered in their application.
Collapse
Affiliation(s)
- K P Pauls
- Department of Crop Science, University of Guelph, Ontario, Canada
| |
Collapse
|
198
|
Yamagami T, Tsuchisaka A, Yamada K, Haddon WF, Harden LA, Theologis A. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 2003; 278:49102-12. [PMID: 12968022 DOI: 10.1074/jbc.m308297200] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-Amino-cyclopropane-1-carboxylate synthase (ACS, EC 4.4.1.14) is the key enzyme in the ethylene biosynthetic pathway in plants. The completion of the Arabidopsis genome sequence revealed the presence of twelve putative ACS genes, ACS1-12, dispersed among five chromosomes. ACS1-5 have been previously characterized. However, ACS1 is enzymatically inactive whereas ACS3 is a pseudogene. Complementation analysis with the Escherichia coli aminotransferase mutant DL39 shows that ACS10 and 12 encode aminotransferases. The remaining eight genes are authentic ACS genes and together with ACS1 constitute the Arabidopsis ACS gene family. All genes, except ACS3, are transcriptionally active and differentially expressed during Arabidopsis growth and development. IAA induces all ACS genes, except ACS7 and ACS9; CHX enhances the expression of all functional ACS genes. The ACS genes were expressed in E. coli, purified to homogeneity by affinity chromatography, and biochemically characterized. The quality of the recombinant proteins was verified by N-terminal amino acid sequence and MALDI-TOF mass spectrometry. The analysis shows that all ACS isozymes function as dimers and have an optimum pH, ranging between 7.3 and 8.2. Their Km values for AdoMet range from 8.3 to 45 microm, whereas their kcat values vary from 0.19 to 4.82 s-1 per monomer. Their Ki values for AVG and sinefungin vary from 0.019 to 0.80 microm and 0.15 to 12 microm, respectively. The results indicate that the Arabidopsis ACS isozymes are biochemically distinct. It is proposed that biochemically diverse ACS isozymes function in unique cellular environments for the biosynthesis of C2H4, permitting the signaling molecule to exert its unique effects in a tissue- or cell-specific fashion.
Collapse
Affiliation(s)
- Takeshi Yamagami
- Plant Gene Expression Center, United States Department of Agriculture, Albany, California 94710, USA
| | | | | | | | | | | |
Collapse
|
199
|
Abstract
The plant hormone ethylene is an essential signaling molecule involved in many plant processes including: germination, flower development, fruit ripening and responses to many environmental stimuli. Moreover, large increases in ethylene levels occur during plant stress responses, fruit ripening and flower wilting. Manipulation of ethylene biosynthesis or perception allows us to modulate these processes and thereby create plants with more robust and/or desirable traits, giving us a glimpse into the role of ethylene in the plant. Here, recent and landmark advances in genetic alteration of members of the ethylene pathway in plants and the physiological consequences of these alterations are examined.
Collapse
|
200
|
Itai A, Kotaki T, Tanabe K, Tamura F, Kawaguchi D, Fukuda M. Rapid identification of 1-aminocyclopropane-1-carboxylate (ACC) synthase genotypes in cultivars of Japanese pear (Pyrus pyrifolia Nakai) using CAPS markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1266-1272. [PMID: 12748778 DOI: 10.1007/s00122-002-1186-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2002] [Accepted: 09/25/2002] [Indexed: 05/24/2023]
Abstract
In Japanese pear (Pyrus pyrifolia Nakai), fruit storage potential is closely related to the amount of ethylene produced. We have developed a rapid and accurate method for analyzing genes involved in high ethylene production during fruit ripening in Japanese pear. This involves cleaved-amplified polymorphic sequences (CAPS) of two 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (PPACS1 and PPACS2). Two CAPS markers (A for PPACS1 and B for PPACS2), associated with the amount of ethylene produced, were identified. Marker A was associated with high ethylene producers and marker B with moderate ethylene producers. The absence of these two markers enabled the identification of low ethylene producers. Using these markers, we have identified ethylene genotypes for 40 Japanese pear cultivars and two Chinese pear (P. bretschneideri) cultivars that are commercially important and used in breeding programs. Furthermore, we performed linkage analysis of these two genes in the F(2) population, which revealed that the recombination frequency between the two markers was 20.8 +/- 3.6%. This information is critical to the selection of parents and in breeding strategies to improve storage ability of Japanese pears.
Collapse
Affiliation(s)
- A Itai
- Laboratory of Horticultural Science, Faculty of Agriculture, Tottori University, Koyama-cho Minami 4-101, Japan.
| | | | | | | | | | | |
Collapse
|