151
|
Abstract
BACKGROUND U19/Eaf2, an androgen-response gene, is downregulated in advanced human prostate cancer specimens and its overexpression can markedly induce apoptosis in prostate cancer cells. Eleven-nineteen Lysine-rich Leukemia (ELL) is an RNA polymerase II transcription elongation factor, initially identified as a fusion partner gene of MLL in the t(11; 19) (q23; p13.1) chromosomal translocation in acute myeloid leukemia. U19/Eaf2 was previously reported as an ELL-associated factor, a potential transcription factor binds to ELL, forming nuclear speckles in vivo. These findings suggest that ELL-U19/Eaf2 interaction is potentially important in prostate cancer progression and/or acute myeloid leukemia. However, the functional significance of U19/Eaf2 interaction with ELL remains unclear. METHODS Using co-transfection, co-immunoprecipitation, protein stability assay and transactivation assay, we characterized the consequence of ELL binding to U19/Eaf2. RESULTS We provide further evidence for U19/Eaf2 as a transcription factor and show that ELL binding is required for nuclear speckle formation of human U19/Eaf2, stabilizes U19/Eaf2 and enhances its transactivation activity. CONCLUSIONS The above observations indicate ELL may be an important factor required for U19/Eaf2 function because U19/Eaf2 nuclear localization and transactivation activity are essential for its function as a transcription factor.
Collapse
Affiliation(s)
- Wuhan Xiao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
152
|
Gerber MA, Shilatifard A, Eissenberg JC. Mutational analysis of an RNA polymerase II elongation factor in Drosophila melanogaster. Mol Cell Biol 2005; 25:7803-11. [PMID: 16107725 PMCID: PMC1190276 DOI: 10.1128/mcb.25.17.7803-7811.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ELL family of proteins function in vitro as elongation factors for RNA polymerase II. Deletion studies have defined domains in mammalian ELL required for transcription elongation activity and RNA polymerase binding in vitro, for transformation of cultured cells when overexpressed, and for leukemogenesis and cell proliferation as part of a leukemic fusion protein. The goal of this study was to identify domains required for chromosome targeting and viability in the unique Drosophila ELL (dELL) protein. Here, we show that an N-terminal domain of dELL is necessary and sufficient for targeting to transcriptionally active puff sites in chromatin, supporting a role for this domain in recruiting dELL to elongating RNA polymerase II. We demonstrate that a central domain of dELL is required for rapid mobilization of ELL during the heat shock response, suggesting a regulatory function for this domain. Unexpectedly, transgenic dELL in which the N-terminal chromosome binding domain is deleted can complement the recessive lethality of mutations in ELL, suggesting that Drosophila ELL has an essential activity in development distinct from its role as an RNA polymerase II elongation factor.
Collapse
Affiliation(s)
- Mark A Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
153
|
Jin Y, Mancuso JJ, Uzawa S, Cronembold D, Cande WZ. The fission yeast homolog of the human transcription factor EAP30 blocks meiotic spindle pole body amplification. Dev Cell 2005; 9:63-73. [PMID: 15992541 DOI: 10.1016/j.devcel.2005.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 03/22/2005] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
Centrosome aberrations caused by misregulated centrosome maturation result in defective spindle and genomic instability. Here we report that the fission yeast homolog of the human transcription factor EAP30, Dot2, negatively regulates meiotic spindle pole body (SPB, the yeast equivalent of centrosome) maturation. dot2 mutants show excess electron-dense material accumulating near SPBs, which we refer to as aberrant microtubule organization centers (AMtOCs). These AMtOCs assemble multipolar spindles, leading to chromosome missegregation. SPB aberrations were associated with elevated levels of Pcp1, the fission yeast ortholog of pericentrin/kentrin, and reducing pcp1(+) expression significantly suppressed AMtOCs in dot2-439 cells. Our findings, therefore, uncover meiosis-specific regulation of SPB maturation and provide evidence that a member of the conserved EAP30 family is required for maintenance of genome stability through regulation of SPB maturation. EAP30 is part of a transcription factor complex associated with acute myeloid leukemia, so these results may have relevance to human cancer.
Collapse
Affiliation(s)
- Ye Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
154
|
Taki T, Akiyama M, Saito S, Ono R, Taniwaki M, Kato Y, Yuza Y, Eto Y, Hayashi Y. The MYO1F, unconventional myosin type 1F, gene is fused to MLL in infant acute monocytic leukemia with a complex translocation involving chromosomes 7, 11, 19 and 22. Oncogene 2005; 24:5191-7. [PMID: 15897884 DOI: 10.1038/sj.onc.1208711] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We analysed a complex translocation involving chromosomes 7, 11, 19 and 22 in infant acute monocytic leukemia, and identified that the MLL gene on 11q23 was fused to the unconventional myosin type 1F, MYO1F, gene on 19p13.2-13.3. MYO1F consists of at least 28 exons and was predicted to encode a 1098-amino-acid with an N-terminal head domain containing both ATP-binding and actin-binding sequences, a neck domain with a single IQ motif, and a tail with TH1, TH2 and SH3 domains. Northern blot analysis of RNAs prepared from multiple tissues showed that the expression of approximately 4-kb transcripts appeared constant in most tissues examined. However, MYO1F was expressed in only three of 22 leukemic cell lines. The MLL-MYO1F fusion protein contains almost the entire MYO1F, however, C-terminal MYO1F has neither the transactivation domain nor the dimerization domain found in various MLL fusion partners. Further analysis of this novel type of MLL fusion protein would provide new insights into leukemogenesis. MYO1F is the fourth partner gene of MLL on 19p13. At the cytogenetic level, it may be difficult to distinguish MLL-ENL, MLL-ELL, MLL-EEN and MLL-MYO1F fusions created by t(11;19)(q23;p13), and it is likely that cases of t(11;19) lacking a known fusion gene may result in this gene fusion.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Cell Line, Tumor
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 22
- Chromosomes, Human, Pair 7
- DNA-Binding Proteins/genetics
- Female
- Gene Rearrangement
- Histone-Lysine N-Methyltransferase
- Humans
- Infant
- Leukemia, Monocytic, Acute/genetics
- Molecular Sequence Data
- Myeloid-Lymphoid Leukemia Protein
- Myosin Type I/genetics
- Proto-Oncogenes/genetics
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Tomohiko Taki
- Department of Molecular Laboratory Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kajii-cho Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Kong SE, Banks CAS, Shilatifard A, Conaway JW, Conaway RC. ELL-associated factors 1 and 2 are positive regulators of RNA polymerase II elongation factor ELL. Proc Natl Acad Sci U S A 2005; 102:10094-8. [PMID: 16006523 PMCID: PMC1177379 DOI: 10.1073/pnas.0503017102] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In human cells, the ELL family of transcription factors includes at least three members, which are all capable of stimulating the overall rate of elongation by RNA polymerase II by suppressing transient pausing by the enzyme at many sites along DNA. In this report, we identify the ELL-associated factors (EAF)1 and EAF2 as strong positive regulators of ELL elongation activity. Our findings provide insights into the structure and function of ELL family transcription factors, and they bring to light direct roles for the EAF proteins in regulation of RNA polymerase II transcription.
Collapse
Affiliation(s)
- Stephanie E Kong
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
156
|
Abstract
Chromosome translocations disrupting the MLL gene are associated with various hematologic malignancies but are particularly common in infant and secondary therapy-related acute leukemias. The normal MLL-encoded protein is an essential component of a supercomplex with chromatin-modulating activity conferred by histone acetylase and methyltransferase activities, and the protein plays a key role in the developmental regulation of gene expression, including Hox gene expression. In leukemia, this function is subverted by breakage, recombination, and the formation of chimeric fusion with one of many alternative partners. Such MLL translocations result in the replacement of the C-terminal functional domains of MLL with those of a fusion partner, yielding a newly formed MLL chimeric protein with an altered function that endows hematopoietic progenitors with self-renewing and leukemogenic activity. This potent impact of the MLL chimera can be attributed to one of 2 kinds of activity of the fusion partner: direct transcriptional transactivation or dimerization/oligomerization. Key unresolved issues currently being addressed include the set of target genes for MLL fusions, the stem cell of origin for the leukemias, the role of additional secondary mutations, and the origins or etiology of the MLL gene fusions themselves. Further elaboration of the biology of MLL gene-associated leukemia should lead to novel and specific therapeutic strategies.
Collapse
Affiliation(s)
- Mariko Eguchi
- Section of Haemato-Oncology, Institute of Cancer Research, London, UK.
| | | | | |
Collapse
|
157
|
Zeisig DT, Bittner CB, Zeisig BB, García-Cuéllar MP, Hess JL, Slany RK. The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24:5525-32. [PMID: 15856011 DOI: 10.1038/sj.onc.1208699] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mixed lineage leukemia (MLL) fusion proteins are derived from translocations at 11q23 that occur in aggressive subtypes of leukemia. As a consequence, MLL is joined to different unrelated proteins to form oncogenic transcription factors. Here we demonstrate a direct interaction between several nuclear MLL fusion partners and present evidence for a role of these proteins in histone binding. In two-hybrid studies, ENL interacted with AF4 and AF5q31 as well as with a fragment of AF10. A structure-function analysis revealed that the AF4/AF5q31/AF10 binding domain in ENL coincided with the C-terminus that is essential for transformation by MLL-ENL. The ENL/AF4 association was corroborated by GST-pulldown experiments and by mutual coprecipitation. Both proteins colocalized in vivo in a nuclear speckled pattern. Moreover, AF4 and ENL coeluted on sizing columns together with the known ENL binding partner Polycomb3, suggesting the presence of a multiprotein complex. The overexpression of ENL alone activated a reporter construct and a mutational screen indicated the conserved YEATS domain as essential for this function. Overlay and pulldown-assays finally showed a specific and YEATS domain-dependent association of ENL with histones H3 and H1. In summary, our studies support a common role for nuclear MLL fusion partners in chromatin biology.
Collapse
Affiliation(s)
- Deniz T Zeisig
- Department of Genetics, University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
Chromosomal aberrations that affect the MLL (Mixed Lineage Leukemia) gene at the locus 11q23 are associated with an aggressive subtype of leukemia. These alterations create MLL fusion derivatives with an active transforming potential. This review summarizes recent advances in our knowledge about normal and malignant MLL proteins with special emphasis on epigenetic processes affected by these molecules.
Collapse
|
159
|
Bitoun E, Davies KE. The robotic mouse: unravelling the function of AF4 in the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2005; 4:250-60. [PMID: 16321881 DOI: 10.1080/14734220500325897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The devastating nature and lack of effective treatments associated with neurodegenerative diseases have stimulated a world-wide search for the elucidation of their molecular basis to which mouse models have made a major contribution. In combination with transgenic and knockout technologies, large-scale mouse mutagenesis is a powerful approach for the identification of new genes and associated signalling pathways controlling neuronal cell death and survival. Here we review the characterization of the robotic mouse, a novel model of autosomal dominant cerebellar ataxia isolated from an ENU-mutagenesis programme, which develops adult-onset region-specific Purkinje cell loss and cataracts, and displays defects in early T-cell maturation and general growth retardation. The mutated protein, Af4, is a member of the AF4/LAF4/FMR2 (ALF) family of putative transcription factors previously implicated in childhood leukaemia and FRAXE mental retardation. The mutation, which lies in a highly conserved region among the ALF family members, significantly reduces the binding affinity of Af4 to the E3 ubiquitin-ligase Siah-1a, isolated with Siah-2 as interacting proteins in the brain. This leads to a markedly slower turnover of mutant Af4 by the ubiquitin-proteasome pathway and consequently to its abnormal accumulation in the robotic mouse. Importantly, the conservation of the Siah-binding domain of Af4 in all other family members reveals that Siah-mediated proteasomal degradation is a common regulatory mechanism that controls the levels, and thereby the function, of the ALF family. The robotic mouse represents a unique model in which to study the newly revealed role of Af4 in the maintenance of vital functions of Purkinje cells in the cerebellum and further the understanding of its implication in lymphopoeisis.
Collapse
Affiliation(s)
- Emmanuelle Bitoun
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
160
|
Sims RJ, Belotserkovskaya R, Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev 2004; 18:2437-68. [PMID: 15489290 DOI: 10.1101/gad.1235904] [Citation(s) in RCA: 538] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Appreciable advances into the process of transcript elongation by RNA polymerase II (RNAP II) have identified this stage as a dynamic and highly regulated step of the transcription cycle. Here, we discuss the many factors that regulate the elongation stage of transcription. Our discussion includes the classical elongation factors that modulate the activity of RNAP II, and the more recently identified factors that facilitate elongation on chromatin templates. Additionally, we discuss the factors that associate with RNAP II, but do not modulate its catalytic activity. Elongation is highlighted as a central process that coordinates multiple stages in mRNA biogenesis and maturation.
Collapse
Affiliation(s)
- Robert J Sims
- Howard Hughes Medical Institute, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
161
|
Gerber M, Eissenberg JC, Kong S, Tenney K, Conaway JW, Conaway RC, Shilatifard A. In vivo requirement of the RNA polymerase II elongation factor elongin A for proper gene expression and development. Mol Cell Biol 2004; 24:9911-9. [PMID: 15509793 PMCID: PMC525478 DOI: 10.1128/mcb.24.22.9911-9919.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B and C subunits appear to act as regulatory subunits. While much is known about the in vitro properties of elongin A and other members of this class of elongation factors, the physiological role(s) of these proteins remain largely unclear. To elucidate in vivo functions of elongin A, we have characterized its Drosophila homologue (dEloA). dEloA associates with transcriptionally active puff sites within Drosophila polytene chromosomes and exhibits many of the expected biochemical and cytological properties consistent with a Pol II-associated elongation factor. RNA interference-mediated depletion of dEloA demonstrated that elongin A is an essential factor that is required for proper metamorphosis. Consistent with this observation, dEloA expression peaks during the larval stages of development, suggesting that this factor may be important for proper regulation of developmental events during these stages. The discovery of the role of elongin A in an in vivo model system defines the novel contribution played by RNA polymerase II elongation machinery in regulation of gene expression that is required for proper development.
Collapse
Affiliation(s)
- Mark Gerber
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Health Sciences Center, 1402 South Grand Blvd., St. Louis, MO 63104, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Rearrangements of the MLL gene, which is located at chromosome 11q23, are associated with aggressive acute leukemias in both children and adults. MLL regulates Hox gene expression through direct promoter binding and histone modification. MLL rearrangements occurring in leukemia include MLL fusion genes, partial tandem duplications of MLL and MLL amplification. MLL fusions and amplification upregulate Hox expression, apparently resulting in a block of hematopoietic differentiation. Future therapies for MLL-associated leukemia might involve blocking Hox gene upregulation by using fusion proteins or inhibiting the activity of Hox proteins themselves.
Collapse
Affiliation(s)
- Jay L Hess
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 413b Stellar Chance Laboratories, Philadelphia, PA 19104, USA.
| |
Collapse
|
163
|
Sakurai K, Michiue T, Kikuchi A, Asashima M. Inhibition of the canonical Wnt signaling pathway in cytoplasm: a novel property of the carboxyl terminal domains of two Xenopus ELL genes. Zoolog Sci 2004; 21:407-16. [PMID: 15118228 DOI: 10.2108/zsj.21.407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Wnt signaling pathways are important in many developmental events. The canonical Wnt pathway is one of the three major Wnt-mediated intracellular signaling pathways and is thought to activate Dvl followed by the stabilization of beta-catenin. In Xenopus, this pathway is involved in dorsal determination, anterior-posterior patterning during gastrulation, and neural induction. Here we describe a role for the Xenopus ELL (Eleven-nineteen Lysine-rich Leukemia) gene product in canonical Wnt signaling. Translocation of ELL has been associated with acute myeloid leukemia and the protein possesses three functional domains. We identified rELL-C from a rat brain cDNA library as a binding factor for Dishevelled (Dvl); it represents a partial sequence of rat ELL lacking the pol II elongation domain and has been shown to suppress canonical Wnt signaling. Next, we isolated two Xenopus homologs of ELL, xELL1 and xELL2. No obvious phenotypes were observed with microinjection of full-length xELL1 or xELL2 mRNA, however, microinjection with their occludin homology domain inhibited Wnt signaling at the level of Dvl and upstream of beta-catenin. Intracellular localization of microinjected xELL1- and xELL2-GFP mRNAs showed localization of the full-length products in the nucleus and the occludin-homology domain products in cytoplasm. These results raise the possibility that ELL, which is thought to function as a transcription factor in nuclei, can serve other, novel roles to suppress canonical Wnt signaling in the cytoplasm.
Collapse
Affiliation(s)
- Kenji Sakurai
- Department of Biology, Graduate School of Science, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
164
|
Mitterbauer-Hohendanner G, Mannhalter C. The biological and clinical significance of MLL abnormalities in haematological malignancies. Eur J Clin Invest 2004; 34 Suppl 2:12-24. [PMID: 15291802 DOI: 10.1111/j.0960-135x.2004.01366.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The MLL (Mixed Lineage Leukaemia or Myeloid/Lymphoid Leukaemia) gene on chromosome 11q23 is frequently involved in chromosomal translocations associated with human acute leukaemias. These translocations lead to fusion genes generally resulting in novel chimeric proteins containing the amino terminus of MLL fused in-frame to one of about 30 distinct partner proteins. Abnormalities involving the MLL gene are observed in leukaemias of either lymphoid or myeloid lineage derivation, as well as in poorly differentiated or biphenotypic leukaemias. They are frequently seen in infant patients, and patients with therapy-related secondary AML following treatment with inhibitors of topoisomerase II (epipodophyllotoxins). In the majority of cases, abnormalities involving the MLL gene are associated with a very poor prognostic outcome. In this review, we will discuss some of the recent advances in MLL research resulting from biological as well as clinical studies.
Collapse
Affiliation(s)
- G Mitterbauer-Hohendanner
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Vienna, Austria.
| | | |
Collapse
|
165
|
Schilling G, Dierlamm J, Murga Penas EM, Hinz K, Seeger D, Hossfeld DK. Dicentric (19;21)(p13;p13), a novel chromosomal abnormality occurring in a case of Philadelphia chromosome–positive acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2004; 152:129-31. [PMID: 15262431 DOI: 10.1016/j.cancergencyto.2003.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2002] [Revised: 10/29/2003] [Accepted: 10/31/2003] [Indexed: 10/25/2022]
Abstract
We report on a patient with Philadelphia chromosome-positive acute lymphoblastic leukemia, who acquired a novel chromosomal abnormality, a dic(19;21)(p13;p13), during relapse of the disease. The cytogenetic result was confirmed by fluorescence in situ hybridization using alpha-satellite and library probes specific for chromosomes 19 and 21, respectively, as well as a chromosome 19q13.1-specific DNA probe. In our case, the dic(19;21) represents a secondary genetic change and was associated with disease progression and poor prognosis.
Collapse
Affiliation(s)
- Georgia Schilling
- Medizinische Klinik II, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
166
|
Li M, Wu X, Zhuang F, Jiang S, Jiang M, Liu YH. Expression of murine ELL-associated factor 2 (Eaf2) is developmentally regulated. Dev Dyn 2004; 228:273-80. [PMID: 14517999 DOI: 10.1002/dvdy.10367] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eaf2, ELL-associated factor 2, encodes a protein that is homologous to the human EAF1, which was shown to interact with the transcriptional elongation factor MEN/ELL. During mouse embryogenesis, Eaf2 is preferentially expressed in the central nervous system and in sensory and neuroendocrine organs, including the brain, spinal cord, cranial and spinal ganglia, developing otocyst, the retina, and the pituitary. Eaf2 transcripts were also found in sites where active epithelium-mesenchymal interactions are occurring. These included the invaginating tooth buds, mammary gland anlage, submandibular glands, the lung, the pancreas, and the kidney. Other sites of expression included bladder and intestine. In the developing lens, Eaf2 transcripts were absent in the proliferating anterior lens epithelial cells but were present in the terminally differentiated primary lens fiber cells and also in nonproliferating lens fiber cells in the equatorial zone where lens epithelial cells withdraw from cell cycle and terminally differentiate into secondary lens fiber cells. This spatially restricted pattern of Eaf2 expression in the developing lens suggests that Eaf2 may play an important role in regulating lens maturation.
Collapse
Affiliation(s)
- Min Li
- Center for Craniofacial Molecular Biology, Division of Craniofacial Sciences and Therapeutics, School of Dentistry, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | |
Collapse
|
167
|
Shilatifard A. Transcriptional elongation control by RNA polymerase II: a new frontier. ACTA ACUST UNITED AC 2004; 1677:79-86. [PMID: 15020049 DOI: 10.1016/j.bbaexp.2003.11.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 11/18/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
The transcription elongation complex, once thought to be composed of merely the DNA template, RNA polymerase II and the nascent RNA transcript, is now burgeoning as a unit as multifaceted and complicated as the transcription initiation complex. Studies concentrated in defining the elongation stage of transcription during the past recent years have resulted in the discovery of a diverse collection of transcription elongation factors that are either directly involved in the regulation of the rate of the elongating RNA polymerase II or can modulate messenger RNA (mRNA) processing and transport. Such studies have demonstrated that the elongation stage of transcription is highly regulated and has opened a new era of studies defining the molecular role of such transcription elongation factors in cellular development, differentiation and disease progression. Recent studies on the role of RNA polymerase II elongation factors in regulating of the overall rate of transcription both in vitro and in vivo, histone modification by methylation and organismal development will be reviewed here.
Collapse
Affiliation(s)
- Ali Shilatifard
- Department of Biochemistry and the Cancer Center, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA.
| |
Collapse
|
168
|
Kong SE, Shilatifard A, Conaway RC, Conaway JW. Preparation and assay of RNA polymerase II elongation factors elongin and ELL. Methods Enzymol 2004; 371:276-83. [PMID: 14712707 DOI: 10.1016/s0076-6879(03)71020-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Stephanie E Kong
- Stowers Institute Medical Research, 1000 E. 50th Street, Kansas City, Missouri 64110, USA
| | | | | | | |
Collapse
|
169
|
Erkeland SJ, Valkhof M, Heijmans-Antonissen C, van Hoven-Beijen A, Delwel R, Hermans MHA, Touw IP. Large-scale identification of disease genes involved in acute myeloid leukemia. J Virol 2004; 78:1971-80. [PMID: 14747562 PMCID: PMC369447 DOI: 10.1128/jvi.78.4.1971-1980.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 10/27/2003] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of diseases in which chromosomal aberrations, small insertions or deletions, or point mutations in certain genes have profound consequences for prognosis. However, the majority of AML patients present without currently known genetic defects. Retroviral insertion mutagenesis in mice has become a powerful tool for identifying new disease genes involved in the pathogenesis of leukemia and lymphoma. Here we have used the Graffi-1.4 strain of murine leukemia virus, which causes predominantly AML, in a screen to identify novel genes involved in the pathogenesis of this disease. We report 79 candidate disease genes in common integration sites (CISs) and 15 genes whose family members previously were found to be affected in other studies. The majority of the identified sequences (60%) were not found in lymphomas and monocytic leukemias in previous screens, suggesting a specific involvement in AML. Although most of the virus integrations occurred in or near the 5' or 3' ends of the genes, suggesting deregulation of gene expression as a consequence of virus integration, 18 CISs were located exclusively within the genes, conceivably causing gene disruption.
Collapse
Affiliation(s)
- Stefan J Erkeland
- Department of Hematology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
Collapse
Affiliation(s)
- Ali Shilatifard
- Edward A. Doisey Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | |
Collapse
|
171
|
Rondón AG, Jimeno S, García-Rubio M, Aguilera A. Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 2003; 278:39037-43. [PMID: 12871933 DOI: 10.1074/jbc.m305718200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
THO/TREX is a conserved eukaryotic complex formed by the core THO complex plus proteins involved in mRNA metabolism and export such as Sub2 and Yra1. Mutations in any of the THO/TREX structural genes cause pleiotropic phenotypes such as transcription impairment, increased transcription-associated recombination, and mRNA export defects. To assay the relevance of THO/TREX complex in transcription, we performed in vitro transcription elongation assays in mutant cell extracts using supercoiled DNA templates containing two G-less cassettes. With these assays, we demonstrate that hpr1delta, tho2delta, and mft1delta mutants of the THO complex and sub2 mutants show significant reductions in the efficiency of transcription elongation. The mRNA expression defect of hpr1delta mutants was not due to an increase in mRNA decay, as determined by mRNA half-life measurements and mRNA time course accumulation experiments in the absence of Rrp6p exoribonuclease. This work demonstrates that THO and Sub2 are required for efficient transcription elongation, providing further evidence for the coupling between transcription and mRNA metabolism and export.
Collapse
Affiliation(s)
- Ana G Rondón
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
172
|
Gerber M, Shilatifard A. Transcriptional elongation by RNA polymerase II and histone methylation. J Biol Chem 2003; 278:26303-6. [PMID: 12764140 DOI: 10.1074/jbc.r300014200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
mRNA synthesis in eukaryotic organisms is a key biological process that is regulated at multiple levels. From the covalent modifications of chromatin by a number of chromatin remodeling complexes during the initiation and activation steps of transcription to the processing of mRNA transcripts, a very large consortium of proteins and multiprotein complexes is critical for gene expression by RNA polymerase II. The list of proteins essential for the successful synthesis of mRNA continues to grow at a rapid pace. Recent advances in this area of research have been focused on transcription through chromatin. In this article, we will review the recent literature linking the key biochemical process of transcriptional elongation by RNA polymerase II to histone methylation by COMPASS, Dot1p, and Set2 methyltransferases.
Collapse
Affiliation(s)
- Mark Gerber
- Department of Biochemistry and the St. Louis University Cancer Center, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
173
|
Wiederschain D, Kawai H, Gu J, Shilatifard A, Yuan ZM. Molecular basis of p53 functional inactivation by the leukemic protein MLL-ELL. Mol Cell Biol 2003; 23:4230-46. [PMID: 12773566 PMCID: PMC156137 DOI: 10.1128/mcb.23.12.4230-4246.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Eleven Lysine-rich Leukemia (ELL) gene undergoes translocation and fuses in frame to the Multiple Lineage Leukemia (MLL) gene in a substantial proportion of patients suffering from acute forms of leukemia. Molecular mechanisms of cellular transformation by the MLL-ELL fusion are not well understood. Although both MLL-ELL and wild-type ELL can reduce functional activity of p53 tumor suppressor, our data reveal that MLL-ELL is a much more efficient inhibitor of p53 than is wild-type ELL. We also demonstrate for the first time that ELL extreme C terminus [ELL(eCT)] is required for the recruitment of p53 into MLL-ELL nuclear foci and is both necessary and sufficient for the MLL-ELL inhibition of p53-mediated induction of p21 and apoptosis. Finally, our results demonstrate that MLL-ELL requires the presence of intact ELL(eCT) in order to disrupt p53 interactions with p300/CBP coactivator and thus significantly reduce p53 acetylation in vivo. Since ELL(eCT) has recently been shown to be both necessary and sufficient for MLL-ELL-mediated transformation of normal blood progenitors, our data correlate ELL(eCT) contribution to MLL-ELL transformative effects with its ability to functionally inhibit p53.
Collapse
Affiliation(s)
- Dmitri Wiederschain
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
174
|
Srinivasan RS, de Erkenez AC, Hemenway CS. The mixed lineage leukemia fusion partner AF9 binds specific isoforms of the BCL-6 corepressor. Oncogene 2003; 22:3395-406. [PMID: 12776190 DOI: 10.1038/sj.onc.1206361] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mixed lineage leukemia (MLL) gene at chromosome band 11q23 is commonly involved in reciprocal translocations that are detected in acute leukemias. Evidence suggests that the resulting MLL fusion genes contribute to leukemogenesis. AF9 is a common MLL fusion partner in acute myeloid leukemia. The AF9 protein functions as a transcriptional activator in artificial reporter gene assays and a structurally related protein in yeast, ANC1/TFG3, is a component of the SWI/SNF complex. Apart from these observations, little is known about the biologic function of AF9 in mammals. We have found that a recently described transcriptional repressor, BCL-6 corepressor (BCoR), interacts with the carboxy-terminus of AF9. The interaction of AF9 with BCoR has been confirmed by independent in vitro and in vivo protein-binding studies. The BCoR gene is expressed as several alternatively spliced transcripts. AF9 only binds BCoR isoforms that contain a unique 34 aa sequence located in the mid-portion of the protein. In artificial reporter gene assays, a BCoR isoform that binds AF9 efficiently suppresses AF9 transcriptional activity, while a nonbinding isoform does not. These results indicate that different isoforms of BCoR have unique biologic properties and that cell function may be partly determined by the different isoforms that are present within the cell.
Collapse
Affiliation(s)
- R Sathish Srinivasan
- 1Program in Molecular and Cellular Biology, Tulane University, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
175
|
Polak PE, Simone F, Kaberlein JJ, Luo RT, Thirman MJ. ELL and EAF1 are Cajal body components that are disrupted in MLL-ELL leukemia. Mol Biol Cell 2003; 14:1517-28. [PMID: 12686606 PMCID: PMC153119 DOI: 10.1091/mbc.e02-07-0394] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The (11;19)(q23;p13.1) translocation in acute leukemia results in the formation of a chimeric MLL-ELL fusion protein. ELL is an RNA Polymerase II (Pol II) transcriptional elongation factor that interacts with the recently identified EAF1 protein. Here, we show that ELL and EAF1 are components of Cajal bodies (CBs). Although ELL and EAF1 colocalize with p80 coilin, the signature protein of CBs, ELL and EAF1 do not exhibit a direct physical interaction with p80 coilin. Treatment of cells with actinomycin D, DRB, or alpha-amanitin, specific inhibitors of Pol II, disperses ELL and EAF1 from CBs, indicating that localization of ELL and EAF1 in CBs is dependent on active transcription by Pol II. The concentration of ELL and EAF1 in CBs links the transcriptional elongation activity of ELL to the RNA processing functions previously identified in CBs. Strikingly, CBs are disrupted in MLL-ELL leukemia. EAF1 and p80 coilin are delocalized from CBs in murine MLL-ELL leukemia cells and in HeLa cells transiently transfected with MLL-ELL. Nuclear and cytoplasmic fractionation revealed diminished expression of p80 coilin and EAF1 in the nuclei of MLL-ELL leukemia cells [corrected]. These studies are the first demonstration of a direct role of CB components in leukemogenesis.
Collapse
MESH Headings
- Autoantigens
- Cell Line
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 19/genetics
- Coiled Bodies/metabolism
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myeloid-Lymphoid Leukemia Protein
- Neoplasm Proteins
- Nuclear Proteins/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Peptide Elongation Factors
- Phosphoproteins/metabolism
- RNA/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/metabolism
- Transcription Factors/metabolism
- Transcriptional Elongation Factors
- Transfection
- Translocation, Genetic
- snRNP Core Proteins
Collapse
Affiliation(s)
- Paul E Polak
- University of Chicago Section of Hematology/Oncology, Chicago, Illinois 60637-1470, USA
| | | | | | | | | |
Collapse
|
176
|
Simone F, Luo RT, Polak PE, Kaberlein JJ, Thirman MJ. ELL-associated factor 2 (EAF2), a functional homolog of EAF1 with alternative ELL binding properties. Blood 2003; 101:2355-62. [PMID: 12446457 DOI: 10.1182/blood-2002-06-1664] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The (11;19)(q23;p13.1) translocation in acute leukemia results in the formation of an MLL-ELL fusion protein. ELL is an RNA polymerase II elongation factor that interacts with the recently identified EAF1 protein. To characterize the normal functions of ELL and its aberrant activities when fused to MLL, we isolated a second protein that interacts with ELL named EAF2 for ELL Associated Factor 2. EAF2 is highly homologous to EAF1, with 58% identity and 74% amino acid conservation. Using specific antibodies generated to EAF2, we coimmunoprecipitated ELL and EAF2 from multiple cell lines. Confocal microscopy revealed that endogenous EAF2 and ELL colocalized in a nuclear speckled pattern. Database comparisons with EAF2 identified a region with a high content of serine, aspartic acid, and glutamic acid residues that is conserved with EAF1 and exhibited amino acid similarity with several translocation partner proteins of MLL, including AF4 and ENL. We found that EAF2 and EAF1 both contain transcriptional activation domains within this region. Using retroviral bone marrow transduction, we observed that a heterologous fusion of EAF2 to MLL immortalized hematopoietic progenitor cells. In contrast to EAF1, EAF2 does not bind to the carboxy-terminus of ELL. We identified a protein-protein interaction domain within the amino-terminus of ELL that binds to both EAF1 and EAF2. This amino-terminal interaction domain is disrupted in the formation of the MLL-ELL fusion protein. Thus, MLL-ELL retains an interaction domain for EAF1 but not for EAF2. Taken together, these data suggest that MLL-ELL may disrupt the normal protein-protein interactions of ELL.
Collapse
Affiliation(s)
- Federico Simone
- University of Chicago, Section of Hematology/Oncology, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
177
|
Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 2003; 11:721-9. [PMID: 12667454 DOI: 10.1016/s1097-2765(03)00091-1] [Citation(s) in RCA: 571] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methylation of histone proteins is one of their many modifications that affect chromatin structure and regulate gene expression. Methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively, is required for silencing of expression of genes located near chromosome telomeres in yeast. We report that the Paf1 protein complex, which is associated with the elongating RNA polymerase II, is required for methylation of lysines 4 and 79 of histone H3 and for silencing of expression of a telomere-associated gene. We show that the Paf1 complex is required for recruitment of the COMPASS methyltransferase to RNA polymerase II and that the subunits of these complexes interact physically and genetically. Collectively, our results suggest that the Paf1 complex is required for histone H3 methylation, therefore linking transcriptional elongation to chromatin methylation.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, Department of Molecular and Medical Genetics, University of Toronto, Toronto, M5G 1L6, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Rondón AG, García-Rubio M, González-Barrera S, Aguilera A. Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J 2003; 22:612-20. [PMID: 12554661 PMCID: PMC140732 DOI: 10.1093/emboj/cdg047] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have previously shown that yeast mutants of the THO complex have a defect in gene expression, observed as an impairment of lacZ transcription. Here we analyze the ability of mutants of different transcription elongation factors to transcribe lacZ. We found that spt4Delta, like THO mutants, impaired transcription of lacZ and of long and GC-rich DNA sequences fused to the GAL1 promoter. Using a newly developed in vitro transcription elongation assay, we show that Spt4 is required in elongation. There is a functional interaction between Spt4 and THO, detected by the lethality or strong gene expression defect and hyper-recombination phenotypes of double mutants in the W303 genetic background. Our results indicate that Spt4-Spt5 has a positive role in transcription elongation and suggest that Spt4-Spt5 and THO act at different steps during mRNA biogenesis.
Collapse
Affiliation(s)
| | | | | | - Andrés Aguilera
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes 6, E-41012 Sevilla, Spain
Corresponding author e-mail:
| |
Collapse
|
179
|
Nedialkov YA, Gong XQ, Yamaguchi Y, Handa H, Burton ZF. Assay of Transient State Kinetics of RNA Polymerase II Elongation. Methods Enzymol 2003; 371:252-64. [PMID: 14712705 DOI: 10.1016/s0076-6879(03)71018-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuri A Nedialkov
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
180
|
Fish RN, Kane CM. Promoting elongation with transcript cleavage stimulatory factors. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:287-307. [PMID: 12213659 DOI: 10.1016/s0167-4781(02)00459-1] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcript elongation by RNA polymerase is a dynamic process, capable of responding to a number of intrinsic and extrinsic signals. A number of elongation factors have been identified that enhance the rate or efficiency of transcription. One such class of factors facilitates RNA polymerase transcription through blocks to elongation by stimulating the polymerase to cleave the nascent RNA transcript within the elongation complex. These cleavage factors are represented by the Gre factors from prokaryotes, and TFIIS and TFIIS-like factors found in archaea and eukaryotes. High-resolution structures of RNA polymerases and the cleavage factors in conjunction with biochemical investigations and genetic analyses have provided insights into the mechanism of action of these elongation factors. However, there are yet many unanswered questions regarding the regulation of these factors and their effects on target genes.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California-Berkeley, 401 Barker Hall, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
181
|
Gnatt A. Elongation by RNA polymerase II: structure-function relationship. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:175-90. [PMID: 12213651 DOI: 10.1016/s0167-4781(02)00451-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase II is the eukaryotic enzyme that transcribes all the mRNA in the cell. Complex mechanisms of transcription and its regulation underlie basic functions including differentiation and morphogenesis. Recent evidence indicates the process of RNA chain elongation as a key step in transcription control. Elongation was therefore expected and found to be linked to human diseases. For these reasons, major efforts in determining the structures of RNA polymerases from yeast and bacteria, at rest and as active enzymes, were undertaken. These studies have revealed much information regarding the processes involved in transcription. Eukaryotic RNA polymerases and their homologous bacterial counterparts are flexible enzymes with domains that separate DNA and RNA, prevent the escape of nucleic acids during transcription, allow for extended pausing or "arrest" during elongation, allow for translocation of the DNA and more. Structural studies of RNA polymerases are described below within the context of the process of transcription elongation, its regulation and function.
Collapse
Affiliation(s)
- Averell Gnatt
- Department of Pharmacology and Experimental Therapeutics and Department of Pathology, University of Maryland Baltimore, 655 West Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
182
|
Yamaguchi Y, Deléhouzée S, Handa H. HIV and hepatitis delta virus: evolution takes different paths to relieve blocks in transcriptional elongation. Microbes Infect 2002; 4:1169-75. [PMID: 12361917 DOI: 10.1016/s1286-4579(02)01641-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The elongation step of transcription by RNA polymerase II (RNAPII) is controlled both positively and negatively by over a dozen cellular proteins. Recent findings suggest that two distinct viruses, human immunodeficiency virus type 1 and hepatitis delta virus, encode proteins that facilitate viral replication and transcription by targeting the same cellular transcription elongation machinery.
Collapse
Affiliation(s)
- Yuki Yamaguchi
- Graduate School of Bioscience and Biotechnology, 4259 Nagatsuta, Yokohama 226-8503, Japan
| | | | | |
Collapse
|
183
|
Eissenberg JC, Ma J, Gerber MA, Christensen A, Kennison JA, Shilatifard A. dELL is an essential RNA polymerase II elongation factor with a general role in development. Proc Natl Acad Sci U S A 2002; 99:9894-9. [PMID: 12096188 PMCID: PMC125055 DOI: 10.1073/pnas.152193699] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several eukaryotic proteins increase RNA polymerase II (Pol II) transcription rates in vitro. The relative contributions of these factors to gene expression in vivo is unknown. The ELL family of proteins promote Pol II elongation in vitro, and the Drosophila ELL homolog (dELL) is associated with Pol II at sites of transcription in vivo. The purpose of this study was to test whether an ELL family protein is required for gene expression in vivo. We show that dELL is encoded by the Suppressor of Triplo-lethal locus [Su(Tpl)]. We have characterized seven distinct mutant alleles of Su(Tpl) and show that a dELL transgene rescues recessive lethality of Su(Tpl). Su(Tpl) mutations cause abnormal embryonic segmentation and dominantly modify expression of diverse genes during development. These data show that an ELL family elongation factor is essential, acts broadly in development, and is not functionally redundant to other elongation factors in vivo.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|
184
|
Yamazaki K, Guo L, Sugahara K, Zhang C, Enzan H, Nakabeppu Y, Kitajima S, Aso T. Identification and biochemical characterization of a novel transcription elongation factor, Elongin A3. J Biol Chem 2002; 277:26444-51. [PMID: 11994304 DOI: 10.1074/jbc.m202859200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, the latter binding stably to each other to form a binary complex that interacts with Elongin A and strongly induces its transcriptional activity. To further understand the role of Elongin A in transcriptional regulation by RNA polymerase II, we are attempting to identify Elongin A-related proteins. Here, we report on the molecular cloning, expression, and biochemical characterization of human Elongin A3, a novel transcription elongation factor that exhibits 49 and 81% identity to Elongin A and the recently identified Elongin A2, respectively. The mRNA of Elongin A3 is ubiquitously expressed, and the protein is localized to the nucleus of cells. Mechanistic studies have demonstrated that Elongin A3 possesses similar biochemical features to Elongin A2. Both stimulate the rate of transcription elongation by RNA polymerase II and are capable of forming a stable complex with Elongin BC. In contrast to Elongin A, however, their transcriptional activities are not activated by Elongin BC. Structure-function analyses using fusion proteins composed of Elongin A3 and Elongin A revealed that the COOH-terminal region of Elongin A is important for the activation by Elongin BC.
Collapse
Affiliation(s)
- Katsuhisa Yamazaki
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Burchett SA, Flanary P, Aston C, Jiang L, Young KH, Uetz P, Fields S, Dohlman HG. Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. J Biol Chem 2002; 277:22156-67. [PMID: 11940600 DOI: 10.1074/jbc.m202254200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
All members of the regulator of G protein signaling (RGS) family contain a conserved core domain that can accelerate G protein GTPase activity. The RGS in yeast, Sst2, can inhibit a G protein signal leading to mating. In addition, some RGS proteins contain an N-terminal domain of unknown function. Here we use complementary whole genome analysis methods to investigate the function of the N-terminal Sst2 domain. To identify a signaling pathway regulated by N-Sst2, we performed genome-wide transcription profiling of cells expressing this fragment alone and found differences in 53 transcripts. Of these, 40 are induced by N-Sst2, and nearly all contain a stress response element (STRE) in the promoter region. To identify components of a signaling pathway leading from N-Sst2 to STREs, we performed a genome-wide two-hybrid analysis using N-Sst2 as bait and found 17 interacting proteins. To identify the functionally relevant interacting proteins, we analyzed all of the available gene deletion mutants and found three (vps36 Delta, pep12 Delta, and tlg2 Delta) that induce STRE and also repress pheromone-dependent transcription. We selected VPS36 for further characterization. A vps36 Delta mutation diminishes signaling by pheromone as well as by downstream components including the G protein, effector kinase (Ste11), and transcription factor (Ste12). Conversely, overexpression of Vps36 enhances the pheromone response in sst2 Delta cells but not in wild type. These findings indicate that Vps36 and Sst2 have opposite and opposing effects on the pheromone and stress response pathways, with Vps36 acting downstream of the G protein and independently of Sst2 RGS activity.
Collapse
Affiliation(s)
- Scott A Burchett
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Khattak S, Im H, Park T, Ahnn J, Spoerel NA. dELL, a drosophila homologue of transcription elongation factor ELL (Eleven-nineteen Lysine rich Leukemia), is required for early development. Cell Biochem Funct 2002; 20:119-27. [PMID: 11979508 DOI: 10.1002/cbf.960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ELL (Eleven-nineteen Lysine rich Leukemia) is known to be an elongation factor resembling elongin for RNA polymerase II transcription. A homologue of human ELL (hELL) was identified in Drosophila melanogaster (dELL) and several cDNA clones were isolated from the embryonic cDNA library. We showed that dELL is expressed mainly in the ovaries and early embryonic stages by developmental Northern blot. dELL encodes a protein of 912 amino acids which is substantially longer than the hELL (612 aa). Immunostaining revealed that dELL was localized to nuclei in early embryos and to nuclei of nurse cells and follicle cells in the ovary suggesting its important role in early development of drosophila. To elucidate the function of this gene in drosophila, P-element mobilization was performed by utilizing a P-element inserted upstream of dELL. Southern analysis showed that isolated mutants are internal P-element deletions. These P-element deletions can now be used to isolate dELL mutations by EMS mutagenesis.
Collapse
Affiliation(s)
- Shahryar Khattak
- Department of Life Science, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
187
|
Estable MC, Naghavi MH, Kato H, Xiao H, Qin J, Vahlne A, Roeder RG. MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J Biomed Sci 2002; 9:234-45. [PMID: 12065898 DOI: 10.1007/bf02256070] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Positive transcription elongation factor-b (P-TEFb) contains CDK9 and cyclin T(1). P-TEFb was affinity purified from a stably transfected cell line that expresses epitope-tagged CDK9, and proteins that appeared to be specifically bound were sequenced. In addition to CDK9, previously identified isoforms of cyclin T (including T(1), T(2A) and T(2B)), HSP90 and CDC37, this analysis identified a novel protein named MCEF. Cloning of its cognate cDNA revealed that MCEF is the newest member of the AF4 family of transcription factors involved in acute lymphoblastic leukemia. MCEF RNA was expressed in all human tissues examined, and antisera directed against recombinant MCEF specifically immunoprecipitated P-TEFb. Ectopic expression of MCEF did not activate HIV-1 replication, and tethering of MCEF to a promoter did not activate transcription.
Collapse
Affiliation(s)
- Mario Clemente Estable
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, N.Y., USA
| | | | | | | | | | | | | |
Collapse
|
188
|
Krogan NJ, Greenblatt JF. Characterization of a six-subunit holo-elongator complex required for the regulated expression of a group of genes in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:8203-12. [PMID: 11689709 PMCID: PMC99985 DOI: 10.1128/mcb.21.23.8203-8212.2001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Accepted: 08/22/2001] [Indexed: 11/20/2022] Open
Abstract
The Elongator complex associated with elongating RNA polymerase II in Saccharomyces cerevisiae was originally reported to have three subunits, Elp1, Elp2, and Elp3. Using the tandem affinity purification (TAP) procedure, we have purified a six-subunit yeast Holo-Elongator complex containing three additional polypeptides, which we have named Elp4, Elp5, and Elp6. TAP tapping and subsequent purification of any one of the six subunits result in the isolation of all six components. Purification of Elongator in higher salt concentrations served to demonstrate that the complex could be separated into two subcomplexes: one consisted of Elp1, -2, and -3, and the other consisted of Elp4, -5, and -6. Deletions of the individual genes encoding the new Elongator subunits showed that only the ELP5 gene is essential for growth. Disruption of the two nonessential new Elongator-encoding genes, ELP4 and ELP6, caused the same phenotypes observed with knockouts of the original Elongator-encoding genes. Results of microarray analyses demonstrated that the gene expression profiles of strains containing deletions of genes encoding subunits of either Elongator subcomplex, in which we detected significantly altered mRNA expression levels for 96 genes, are very similar, implying that all the Elongator subunits likely function together to regulate a group of S. cerevisiae genes in vivo.
Collapse
Affiliation(s)
- N J Krogan
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | |
Collapse
|
189
|
Muyrers-Chen I, Paro R. Epigenetics: unforeseen regulators in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1552:15-26. [PMID: 11781112 DOI: 10.1016/s0304-419x(01)00032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past several years have seen a tremendous advance in the understanding of the basic mechanisms of epigenetic regulation. A large number of studies have not only linked epigenetics with cell cycle regulation but also partially unravelled how epigenetics may regulate gene expression. The aim of this review is to provide an overview of the latest findings and current ideas on epigenetics with a focus on emphasizing the emerging influence epigenetics has on the onset and progression of cancer.
Collapse
Affiliation(s)
- I Muyrers-Chen
- ZMBH, University of Heidelberg, INF 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
190
|
Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 2001; 98:12902-7. [PMID: 11687631 PMCID: PMC60797 DOI: 10.1073/pnas.231473398] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trithorax genes encode an evolutionarily conserved family of proteins that function to maintain specific patterns of gene expression throughout cellular development. Members of this protein family contain a highly conserved 130- to 140-amino acid motif termed the SET domain. We report the purification and molecular identification of the subunits of a protein complex in the yeast Saccharomyces cerevisiae that includes the trithorax-related protein Set1. This protein complex, which we have named COMPASS (Complex Proteins Associated with Set1), consists of seven polypeptides ranging from 130 to 25 kDa. The same seven proteins were identified in COMPASS purified either by conventional biochemical chromatography or tandem-affinity tagging of the individual subunits of the complex. Null mutants missing any one of the six nonessential subunits of COMPASS grow more slowly than wild-type cells under normal conditions and demonstrate growth sensitivity to hydroxyurea. Furthermore, gene expression profiles of strains missing either of two nonessential subunits of COMPASS are altered in similar ways, suggesting these proteins have similar roles in gene expression in vivo. Molecular characterization of trithorax complexes will facilitate defining the role of this class of proteins in the regulation of gene expression and how their misregulation results in the development of human cancer.
Collapse
Affiliation(s)
- T Miller
- Department of Biochemistry, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Gerber M, Ma J, Dean K, Eissenberg JC, Shilatifard A. Drosophila ELL is associated with actively elongating RNA polymerase II on transcriptionally active sites in vivo. EMBO J 2001; 20:6104-14. [PMID: 11689450 PMCID: PMC125687 DOI: 10.1093/emboj/20.21.6104] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several factors have been biochemically characterized based on their ability to increase the overall rate of transcription elongation catalyzed by the multiprotein complex RNA polymerase II (Pol II). Among these, the ELL family of elongation factors has been shown to increase the catalytic rate of transcription elongation in vitro by suppressing transient pausing. Several fundamental biological aspects of this class of elongation factors are not known. We have cloned the Drosophila homolog (dELL) in order to test whether ELL family proteins are actually associated with the elongating Pol II in vivo. Here we report that dELL is a nuclear protein, which, like its mammalian homologs, can increase the catalytic rate of transcription elongation by Pol II in vitro. Interestingly, we find that dELL co-localizes extensively with the phosphorylated, actively elongating form of Pol II at transcriptionally active sites on Drosophila polytene chromosomes. Furthermore, dELL is relocalized from a widespread distribution pattern on polytenes under normal conditions to very few transcriptionally active puff sites upon heat shock. This observation indicates a dynamic pattern of localization of dELL in cells, which is a predicted characteristic of a Pol II general elongation factor. We also demonstrate that dELL physically interacts with Pol II. Our results strongly suggest that dELL functions with elongating RNA polymerase II in vivo.
Collapse
Affiliation(s)
| | | | | | - Joel C. Eissenberg
- The Edward Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104, USA
Corresponding authors e-mail: or
| | - Ali Shilatifard
- The Edward Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104, USA
Corresponding authors e-mail: or
| |
Collapse
|
192
|
Chávez S, García-Rubio M, Prado F, Aguilera A. Hpr1 is preferentially required for transcription of either long or G+C-rich DNA sequences in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:7054-64. [PMID: 11564888 PMCID: PMC99881 DOI: 10.1128/mcb.21.20.7054-7064.2001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hpr1 forms, together with Tho2, Mft1, and Thp2, the THO complex, which controls transcription elongation and genome stability in Saccharomyces cerevisiae. Mutations in genes encoding the THO complex confer strong transcription-impairment and hyperrecombination phenotypes in the bacterial lacZ gene. In this work we demonstrate that Hpr1 is a factor required for transcription of long as well as G+C-rich DNA sequences. Using different lacZ segments fused to the GAL1 promoter, we show that the negative effect of lacZ sequences on transcription depends on their distance from the promoter. In parallel, we show that transcription of either a long LYS2 fragment or the S. cerevisiae YAT1 G+C-rich open reading frame fused to the GAL1 promoter is severely impaired in hpr1 mutants, whereas transcription of LAC4, the Kluyveromyces lactis ortholog of lacZ but with a lower G+C content, is only slightly affected. The hyperrecombination behavior of the DNA sequences studied is consistent with the transcriptional defects observed in hpr1 cells. These results indicate that both length and G+C content are important elements influencing transcription in vivo. We discuss their relevance for the understanding of the functional role of Hpr1 and, by extension, the THO complex.
Collapse
Affiliation(s)
- S Chávez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | | | | | | |
Collapse
|
193
|
Abstract
The MLL (Mixed Lineage Leukemia) gene is a common target for chromosomal translocations associated with human acute leukemias. These translocations result in a gain of MLL function by generating novel chimeric proteins containing the amino-terminus of MLL fused in-frame with one of 30 distinct partner proteins. Structure/function studies using an in vitro myeloid progenitor immortalization assay have revealed that at least four nuclear partner proteins contribute transcriptional effector properties to MLL to produce a range of chimeric transcription factors with leukemogenic potential. Mouse models suggest that expression of an MLL fusion protein is necessary but not sufficient for leukemogenesis. Interestingly, whilst all MLL fusion proteins tested so far phenocopy each other with respect to in vitro immortalization, the latency period required for the onset of acute leukemia in vivo is variable and partner protein dependent. We discuss potential mechanisms that may account for the ability of distinct MLL fusion proteins to promote short or long latency leukemogenesis.
Collapse
Affiliation(s)
- P M Ayton
- Department of Pathology, Stanford University Medical Center, 300 Pasteur Drive, Stanford, California, CA 94305, USA
| | | |
Collapse
|
194
|
Luo RT, Lavau C, Du C, Simone F, Polak PE, Kawamata S, Thirman MJ. The elongation domain of ELL is dispensable but its ELL-associated factor 1 interaction domain is essential for MLL-ELL-induced leukemogenesis. Mol Cell Biol 2001; 21:5678-87. [PMID: 11463848 PMCID: PMC87288 DOI: 10.1128/mcb.21.16.5678-5687.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MLL-ELL chimeric gene is the product of the (11;19)(q23p13.1) translocation associated with de novo and therapy-related acute myeloid leukemias (AML). ELL is an RNA polymerase II elongation factor that interacts with the recently identified EAF1 (ELL associated factor 1) protein. EAF1 contains a limited region of homology with the transcriptional activation domains of three other genes fused to MLL in leukemias, AF4, LAF4, and AF5q31. Using an in vitro transformation assay of retrovirally transduced myeloid progenitors, we conducted a structure-function analysis of MLL-ELL. Whereas the elongation domain of ELL was dispensable, the EAF1 interaction domain of ELL was critical to the immortalizing properties of MLL-ELL in vitro. To confirm these results in vivo, we transplanted mice with bone marrow transduced with MLL fused to the minimal EAF1 interaction domain of ELL. These mice all developed AML, with a longer latency than mice transplanted with the wild-type MLL-ELL fusion. Based on these results, we generated a heterologous MLL-EAF1 fusion gene and analyzed its transforming potential. Strikingly, we found that MLL-EAF1 immortalized myeloid progenitors in the same manner as that of MLL-ELL. Furthermore, transplantation of bone marrow transduced with MLL-EAF1 induced AML with a shorter latency than mice transplanted with the MLL-ELL fusion. Taken together, these results indicate that the leukemic activity of MLL-ELL requires the EAF1 interaction domain of ELL, suggesting that the recruitment by MLL of a transactivation domain similar to that in EAF1 or the AF4/LAF4/AF5q31 family may be a critical common feature of multiple 11q23 translocations. In addition, these studies support a critical role for MLL partner genes and their protein-protein interactions in 11q23 leukemogenesis.
Collapse
Affiliation(s)
- R T Luo
- Section of Hematology/Oncology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Cheng L, Ramesh KH, Radel E, Ratech H, Wei D, Cannizzaro LA. Characterization of t(11;19)(q23;p13.3) by fluorescence in situ hybridization analysis in a pediatric patient with therapy-related acute myelogenous leukemia. CANCER GENETICS AND CYTOGENETICS 2001; 129:17-22. [PMID: 11520560 DOI: 10.1016/s0165-4608(01)00429-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This case presents a Caucasian girl diagnosed with early pre-B cell acute lymphoblastic leukemia at age 2 years. The only chromosomal anomaly detected in her bone marrow cells at this time was an add(12p). By age 4 years, she had a bone marrow and central nervous system (CNS) relapse of ALL and was treated with chemotherapy that included etoposide. She was in complete remission for 2 years following chemotherapy with etoposide, but later developed therapy-related acute myeloid leukemia (t-AML). At this time, a t(11;19)(q23;p13.3) rearrangement was detected in her bone marrow cells. The AML relapsed again 1 year after allogeneic bone marrow transplant (BMT). The presence of a chromosome 11 abnormality involving band 11q23 in this patient suggests that the transformation from ALL to t-AML was a consequence of etoposide included in her chemotherapy. Studies have shown that the 11q23 breakpoint in the t(11;19) rearrangement is consistent, and involves the MLL gene in t-AML patients. However, the breakpoint in 19p is variable in that it could be located either at 19p13.1 or 19p13.3 and thus could involve either of two genes: ELL (11-19 lysine-rich leukemia gene) on 19p13.1 or ENL (11-19 leukemia gene) on 19p13.3. In this study, the t(11;19)(q23;p13.3) was further characterized and the breakpoint regions were defined by fluorescence in situ hybridization (FISH) analysis.
Collapse
MESH Headings
- Child, Preschool
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 19
- DNA-Binding Proteins/genetics
- Female
- Histone-Lysine N-Methyltransferase
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Myeloid-Lymphoid Leukemia Protein
- Neoplasms, Second Primary/genetics
- Proto-Oncogenes
- Transcription Factors
- Translocation, Genetic
Collapse
Affiliation(s)
- L Cheng
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx, NY 10467-2490, USA
| | | | | | | | | | | |
Collapse
|
196
|
Simone F, Polak PE, Kaberlein JJ, Luo RT, Levitan DA, Thirman MJ. EAF1, a novel ELL-associated factor that is delocalized by expression of the MLL-ELL fusion protein. Blood 2001; 98:201-9. [PMID: 11418481 DOI: 10.1182/blood.v98.1.201] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The (11;19)(q23;p13.1) translocation in acute leukemia leads to the generation of a chimeric protein that fuses MLL to the transcriptional elongation factor ELL. A novel protein was isolated from a yeast 2-hybrid screen with ELL that was named EAF1 for ELL-associated factor 1. Using specific antibodies, the endogenous EAF1 and ELL proteins were coimmunoprecipitated from multiple cell lines. In addition, endogenous EAF1 also exhibited the capacity to interact with ELL2. Database comparisons with EAF1 identified a region with a high content of serine, aspartic acid, and glutamic acid residues that exhibited homology with the transcriptional activation domains of several translocation partner proteins of MLL, including AF4, LAF4, and AF5q31. A similar transcriptional activation domain has been identified in this region of EAF1. By confocal microscopy, endogenous EAF1 and ELL colocalized in a distinct nuclear speckled pattern. Transfection of the MLL-ELL fusion gene delocalized EAF1 from its nuclear speckled distribution to a diffuse nucleoplasmic pattern. In leukemic cell lines derived from mice transplanted with MLL-ELL-transduced bone marrow, EAF1 speckles were not detected. Taken together, these data suggest that expression of the MLL-ELL fusion protein may have a dominant effect on the normal protein-protein interactions of ELL.
Collapse
Affiliation(s)
- F Simone
- Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
197
|
Elmendorf BJ, Shilatifard A, Yan Q, Conaway JW, Conaway RC. Transcription factors TFIIF, ELL, and Elongin negatively regulate SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. J Biol Chem 2001; 276:23109-14. [PMID: 11259417 DOI: 10.1074/jbc.m101445200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TFIIF, ELL, and Elongin belong to a class of RNA polymerase II transcription factors that function similarly to activate the rate of elongation by suppressing transient pausing by polymerase at many sites along DNA templates. SII is a functionally distinct RNA polymerase II elongation factor that promotes elongation by reactivating arrested polymerase. Studies of the mechanism of SII action have shown (i) that arrest of RNA polymerase II results from irreversible displacement of the 3'-end of the nascent transcript from the polymerase catalytic site and (ii) that SII reactivates arrested polymerase by inducing endonucleolytic cleavage of the nascent transcript by the polymerase catalytic site thereby creating a new transcript 3'-end that is properly aligned with the catalytic site and can be extended. SII also induces nascent transcript cleavage by paused but non-arrested RNA polymerase II elongation intermediates, leading to the proposal that pausing may result from reversible displacement of the 3'-end of nascent transcripts from the polymerase catalytic site. On the basis of evidence consistent with the model that TFIIF, ELL, and Elongin suppress pausing by preventing displacement of the 3'-end of the nascent transcript from the polymerase catalytic site, we investigated the possibility of cross-talk between SII and transcription factors TFIIF, ELL, and Elongin. These studies led to the discovery that TFIIF, ELL, and Elongin are all capable of inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates. Here we present these findings, which bring to light a novel activity associated with TFIIF, ELL, and Elongin and suggest that these transcription factors may expedite elongation not only by increasing the forward rate of nucleotide addition by RNA polymerase II, but also by inhibiting SII-induced nascent transcript cleavage by non-arrested RNA polymerase II elongation intermediates.
Collapse
Affiliation(s)
- B J Elmendorf
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | |
Collapse
|
198
|
Kamura T, Burian D, Khalili H, Schmidt SL, Sato S, Liu WJ, Conrad MN, Conaway RC, Conaway JW, Shilatifard A. Cloning and characterization of ELL-associated proteins EAP45 and EAP20. a role for yeast EAP-like proteins in regulation of gene expression by glucose. J Biol Chem 2001; 276:16528-33. [PMID: 11278625 DOI: 10.1074/jbc.m010142200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II elongation factor ELL was recently purified from rat liver as a component of a multiprotein complex containing ELL and three ELL-associated proteins (EAPs) of approximately 45 (EAP45), approximately 30 (EAP30), and approximately 20 (EAP20) kDa (Shilatifard, A. (1998) J. Biol. Chem. 273, 11212-11217). Cloning of cDNA encoding the EAP30 protein revealed that it shares significant sequence similarity with the product of the Saccharomyces cerevisiae SNF8 gene (Schmidt, A. E., Miller, T., Schmidt, S. L., Shiekhattar, R., and Shilatifard, A. (1999) J. Biol. Chem. 274, 21981-21985), which is required for efficient derepression of glucose-repressed genes. Here we report the cloning of cDNAs encoding the EAP45 and EAP20 proteins. In addition, we identify the S. cerevisiae VPS36 and YJR102c genes as potential orthologs of EAP45 and EAP20 and show that they are previously uncharacterized SNF genes with properties very similar to SNF8.
Collapse
Affiliation(s)
- T Kamura
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Yung TM, Satoh MS. Functional competition between poly(ADP-ribose) polymerase and its 24-kDa apoptotic fragment in DNA repair and transcription. J Biol Chem 2001; 276:11279-86. [PMID: 11124257 DOI: 10.1074/jbc.m008044200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase is a 113-kDa nuclear enzyme that binds to both damaged DNA and to RNA associated with actively transcribed regions of chromatin. Binding of poly(ADP-ribose) polymerase to DNA lesions activates it, catalyzing the covalent addition of multiple ADP-ribose polymers to the enzyme (automodification). During apoptosis, poly(ADP-ribose) polymerase is cleaved by caspase-3, resulting in the formation of an N-terminal 24-kDa fragment, containing the DNA binding domain, and a C-terminal 89-kDa catalytic fragment. The functional relevance of this cleavage is not well understood. We therefore prepared a recombinant 24-kDa poly(ADP-ribose) polymerase fragment and investigated the role of this fragment in DNA repair and transcription. The 24-kDa fragment retained its binding affinity for both DNA breaks and RNA. In an in vitro cell-free DNA repair assay, this fragment inhibited rejoining of DNA breaks and suppressed ADP-ribose polymer formation by competing with poly(ADP-ribose) polymerase in binding to DNA breaks. With regard to transcription, it has recently been demonstrated that binding of poly(ADP-ribose) polymerase to transcribed RNA reduces the rate of transcript elongation and that automodification of poly(ADP-ribose) polymerase bound to DNA breaks results in up-regulation of transcription. We tested the 24-kDa fragment for its ability to suppress transcript elongation, and we found that it competed against the up-regulation of transcription mediated by full-length poly(ADP-ribose) polymerase. The ability of the 24-kDa fragment to inhibit DNA repair, ADP-ribose polymer formation, and damage-dependent up-regulation of transcription may contribute to the apoptotic shift from cell survival to cell death mode.
Collapse
Affiliation(s)
- T M Yung
- DNA Repair Group, Health and Environment Unit, Laval University Medical Centre, CHUQ, Faculty of Medicine, Laval University, Ste-Foy, Quebec G1V 4G2, Canada
| | | |
Collapse
|
200
|
Cheng YW, Visomirski-Robic LM, Gott JM. Non-templated addition of nucleotides to the 3' end of nascent RNA during RNA editing in Physarum. EMBO J 2001; 20:1405-14. [PMID: 11250906 PMCID: PMC145535 DOI: 10.1093/emboj/20.6.1405] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNAs in Physarum: mitochondria contain extra nucleotides that are not encoded by the mitochondrial genome, at least in the traditional sense. While it is known that insertion of non-encoded nucleotides is linked to RNA synthesis, the exact nature of this relationship remains unclear. Here we demonstrate that the efficiency of editing is sensitive not only to the concentration of the nucleotide that is inserted, but also to the concentration of the nucleotide templated just downstream of an editing site. These data strongly support a co-transcriptional mechanism of Physarum: RNA editing in which non-encoded nucleotides are added to the 3' end of nascent RNAs. These results also suggest that transcription elongation and nucleotide insertion are competing processes and that recognition of editing sites most likely involves transient pausing by the Physarum: mitochondrial RNA polymerase. In addition, the pattern of nucleotide concentration effects, the context of editing sites and the accuracy of the mitochondrial RNA polymerase argue that the mechanism of Physarum: editing is distinct from that of other co-transcriptional editing systems.
Collapse
Affiliation(s)
| | - Linda M. Visomirski-Robic
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA Corresponding author e-mail:
| | - Jonatha M. Gott
- Center for RNA Molecular Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
Present address: Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA Corresponding author e-mail:
| |
Collapse
|