151
|
Somani AK, Yuen K, Xu F, Zhang J, Branch DR, Siminovitch KA. The SH2 domain containing tyrosine phosphatase-1 down-regulates activation of Lyn and Lyn-induced tyrosine phosphorylation of the CD19 receptor in B cells. J Biol Chem 2001; 276:1938-44. [PMID: 11042209 DOI: 10.1074/jbc.m006820200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
SHP-1 is a cytosolic tyrosine phosphatase implicated in down-regulation of B cell antigen receptor signaling. SHP-1 effects on the antigen receptor reflect its capacity to dephosphorylate this receptor as well as several inhibitory comodulators. In view of our observation that antigen receptor-induced CD19 tyrosine phosphorylation is constitutively increased in B cells from SHP-l-deficient motheaten mice, we investigated the possibility that CD19, a positive modulator of antigen receptor signaling, represents another substrate for SHP-1. However, analysis of CD19 coimmunoprecipitable tyrosine phosphatase activity in CD19 immunoprecipitates from SHP-1-deficient and wild-type B cells revealed that SHP-1 accounts for only a minor portion of CD19-associated tyrosine phosphatase activity. As CD19 tyrosine phosphorylation is modulated by the Lyn protein-tyrosine kinase, Lyn activity was evaluated in wild-type and motheaten B cells. The results revealed both Lyn as well as CD19-associated Lyn kinase activity to be constitutively and inducibly increased in SHP-1-deficient compared with wild-type B cells. The data also demonstrated SHP-1 to be associated with Lyn in stimulated but not in resting B cells and indicated this interaction to be mediated via Lyn binding to the SHP-1 N-terminal SH2 domain. These findings, together with cyanogen bromide cleavage data revealing that SHP-1 dephosphorylates the Lyn autophosphorylation site, identify Lyn deactivation/dephosphorylation as a likely mechanism whereby SHP-1 exerts its influence on CD19 tyrosine phosphorylation and, by extension, its inhibitory effect on B cell antigen receptor signaling.
Collapse
Affiliation(s)
- A K Somani
- Department of Medicine, University of Toronto, the Samuel Lunenfeld Research Institute, Mount Sinai Hospital and the University Health Network Research Institute, Toronto, Ontario M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
152
|
Shahabi NA, McAllen K, Matta SG, Sharp BM. Expression of delta opioid receptors by splenocytes from SEB-treated mice and effects on phosphorylation of MAP kinase. Cell Immunol 2000; 205:84-93. [PMID: 11104580 DOI: 10.1006/cimm.2000.1717] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Delta opioid receptors (DORs) are known to modulate multiple T-cell responses. However, little is known about the expression of these receptors. These studies evaluated the expression of DOR mRNA and protein after a single in vivo exposure to staphylococcal enterotoxin B (SEB). SEB (20 microg, ip) significantly enhanced splenocyte DOR mRNA expression 8 and 24 h after injection. SEB also increased the fractions of the total splenocyte (5 to 20%) and T-cell (8 to 50%) populations expressing DOR protein. In saline-treated animals, DOR relative fluorescence intensity per cell was 11.1 +/- 0.62 units (mean +/- SEM), increasing to 16.1 +/- 1.7 after exposure to SEB. DOR fluorescence intensity significantly increased to 33.5 +/- 2.0 units in a subpopulation of T-cells. Thus, SEB significantly increased DOR expression in vivo, affecting both mRNA and protein levels primarily within the T-cell population. To determine whether T-cell DORs modulate the activity of extracellular-regulated kinases (ERKs), the phosphorylation of ERKs 1 and 2 was studied using splenocytes from SEB-treated mice. At concentrations from 10(-8) to 10(-6) M, [d-Ala(2)-d-Leu(5)]-enkephalin, a selective DOR agonist, significantly inhibited anti-CD3-epsilon-induced phosphorylation of the ERKs. Therefore, the DORs expressed by activated T-cells are capable of attenuating T-cell activation that depends on ERK phosphorylation.
Collapse
Affiliation(s)
- N A Shahabi
- Department of Pharmacology, University of Tennessee, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
153
|
Bikah G, Pogue-Caley RR, McHeyzer-Williams LJ, McHeyzer-Williams MG. Regulating T helper cell immunity through antigen responsiveness and calcium entry. Nat Immunol 2000; 1:402-12. [PMID: 11062500 DOI: 10.1038/80841] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated changes in the signaling potentials and proliferative capacity of single antigen-specific T helper (TH) cells during a primary immune response to a protein antigen. At the peak of cellular expansion in vivo all antigen-specific TH cells exhibited a profound block in CD3- and CD4-mediated mobilization of intracellular calcium together with a more global block in T cell receptor-independent capacitative calcium entry (CCE). The proliferative response of these antigen-specific TH cells to anti-CD3, anti-CD28 and IL-2 was also severely blunted. Cross-linking CD69 on a substantial fraction of CD69+ antigen-specific TH cells relieved this block in CCE and restored proliferative capacity in vitro. The CCE rescue operated through a CD69-coupled G protein and required calcium-bound calmodulin and calcineurin. These data reveal critical changes in the responsiveness of antigen-specific TH cells and provide evidence of new mechanisms for the regulation of antigen-specific TH cell development in vivo.
Collapse
Affiliation(s)
- G Bikah
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
154
|
Abstract
In this study we investigated the balance between activating and inhibitory signals during T cell activation. We have used transgenic mice in which CD8+ T cells expressed an inhibitory receptor, Ly49A, and a specific activating alphabeta TCR. This TCR recognizes an lymphocytic choriomeningitis virus peptide in combination with H-2Db. We observed a quantitative influence on cellular responses that depended upon the activating signals received through the TCR and the inhibitory signals received through Ly49A. By varying the peptide concentration given to stimulating cells or target cells, we could adjust the amount of ligand available to trigger the TCR. At low doses of peptide, Ly49A-expressing T cells were unresponsive on target cells that expressed H-2Dd, but responded against target cells without H-2Dd. However, this inhibition could be overcome by increasing the peptide concentration or by addition of anti-Ly49A F(ab')2 fragments. Thus, rather than behaving as simple "off" switches, our data indicate that Ly49 receptors modulate T cell signaling so that higher amounts of activating signals are required for effector-cell responses.
Collapse
MESH Headings
- Animals
- Antigens, Ly
- Antigens, Viral/immunology
- Crosses, Genetic
- Cytotoxicity, Immunologic
- H-2 Antigens/immunology
- Histocompatibility Antigen H-2D
- Lectins, C-Type
- Lymphocyte Activation
- Lymphocytic choriomeningitis virus/immunology
- Lymphoma, T-Cell/pathology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- NK Cell Lectin-Like Receptor Subfamily A
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, NK Cell Lectin-Like
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- L Oberg
- Umeå Center for Molecular Pathogenesis, Umeå University, Sweden
| | | | | | | |
Collapse
|
155
|
Zhang J, Somani AK, Siminovitch KA. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin Immunol 2000; 12:361-78. [PMID: 10995583 DOI: 10.1006/smim.2000.0223] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The critical role for the SH2 domain-containing SHP-1 tyrosine phosphatase in regulating haemopoietic cell behaviour was initially revealed by data linking SHP-1 deficiency to the systemic autoimmunity and severe inflammation exhibited by motheaten mice. This discovery laid the groundwork for the identification of SHP-1 as an inhibitor of activation-promoting signalling cascades and for the coincident demonstration that protein tyrosine phosphatases (PTPs) such as SHP-1 show considerable specificity with respect to the mechanisms whereby they modulate the biochemical and biological sequelae of extracellular simulation. As outlined in this review, SHP-1 has now been implicated in the regulation of a myriad of signalling cascades and cell functions. As a result, the cumulative data generated from studies of this PTP have elucidated not only the functional relevance of SHP-1, but also a number of novel paradigms as to the molecular mechanisms whereby signalling cascades are regulated so as to either augment or abrogate specific cell behaviours.
Collapse
Affiliation(s)
- J Zhang
- Department of Medicine, University of Toronto, Ontario, Canada, M5G 1X5
| | | | | |
Collapse
|
156
|
Kepley CL, Cambier JC, Morel PA, Lujan D, Ortega E, Wilson BS, Oliver JM. Negative regulation of FcepsilonRI signaling by FcgammaRII costimulation in human blood basophils. J Allergy Clin Immunol 2000; 106:337-48. [PMID: 10932079 DOI: 10.1067/mai.2000.107931] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Signaling through the antigen receptors of human B and T cells and the high-affinity IgE receptor FcepsilonRI of rodent mast cells is decreased by cross-linking these receptors to the low-affinity IgG receptor FcgammaRII. The inhibition is thought to involve the tyrosine phosphorylation of immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the FcgammaRIIB cytoplasmic tail, creating binding sites for SH2-containing protein (Src homology domain containing protein tyrosine phosphatase 1 and 2 [SHP-1, SHP-2]) and/or lipid (SH2 domain-containing polyphosphatidyl-inositol 5-phosphatase) phosphatases that oppose activating signals from the costimulated antigen receptors. OBJECTIVE In human basophils and mast cells FcepsilonRI signaling generates mediators and cytokines responsible for allergic inflammation. We proposed to determine whether FcepsilonRI signaling is inhibited by FcgammaRII costimulation in human basophils and to explore the underlying mechanism as an approach to improving the treatment of allergic inflammation. METHODS FcgammaR expression on human basophils was examined using flow cytometry and RT-PCR analysis. FcgammaRII/FcepsilonRI costimulation was typically accomplished by priming cells with anti-dinitrophenol (DNP) IgE and anti-DNP IgG and stimulating with DNP-BSA. Phosphatases were identified by Western blotting, and their partitioning between membrane and cytosol was determined by cell fractionation. Biotinylated synthetic peptides and phosphopeptides corresponding to the FcgammaRIIB ITIM sequence were used for adsorption assays. RESULTS We report that peripheral blood basophils express FcgammaRII (in both the ITIM-containing FcgammaRIIB and the immunoreceptor tyrosine-based activation motif-containing FcgammaRIIA forms) and that costimulating FcgammaRII and FcepsilonRI inhibits basophil FcepsilonRI-mediated histamine release, IL-4 production, and Ca(2+) mobilization. The inhibition of basophil FcepsilonRI signaling by FcgammaRII/FcepsilonRI costimulation is linked to a significant decrease in Syk tyrosine phosphorylation. Human basophils express all 3 SH2-containing phosphatases. CONCLUSIONS Evidence that FcgammaRII/FcepsilonRI costimulation induces SHP-1 translocation from the cytosolic to membrane fractions of basophils and that biotinylated synthetic peptides corresponding to the phosphorylated FcgammaRIIB ITIM sequence specifically recruit SHP-1 from basophil lysates particularly implicates this protein phosphatase in the negative regulation of FcepsilonRI signaling by costimulated FcgammaRII.
Collapse
Affiliation(s)
- C L Kepley
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, Ohashi PS. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. J Exp Med 2000; 192:99-104. [PMID: 10880530 PMCID: PMC1887707 DOI: 10.1084/jem.192.1.99] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Glycogen synthase kinase (GSK)-3 is a protein serine/threonine kinase that regulates differentiation and cell fate in a variety of organisms. This study examined the role of GSK-3 in antigen-specific T cell responses. Using resting T cells from P14 T cell receptor (TCR)-transgenic mice (specific for the lymphocytic choriomeningitis virus and H-2D(b)), we demonstrated that GSK-3beta was inactivated by serine phosphorylation after viral peptide-specific stimulation in vitro. To further investigate the role of GSK-3, we have generated a retroviral vector that expresses a constitutively active form of GSK-3beta that has an alanine substitution at the regulatory amino acid, serine 9 (GSK-3betaA9). Retroviral transduction of P14 TCR-transgenic bone marrow stem cells, followed by reconstitution, led to the expression of GSK-3betaA9 in bone marrow chimeric mice. T cells from chimeric mice demonstrate a reduction in proliferation and interleukin (IL)-2 production. In contrast, in vitro assays done in the presence of the GSK-3 inhibitor lithium led to dramatically prolonged T cell proliferation and increased IL-2 production. Furthermore, in the presence of lithium, we show that nuclear factor of activated T cells (NF-AT)c remains in the nucleus after antigen-specific stimulation of T cells. Together, these data demonstrate that GSK-3 negatively regulates the duration of T cell responses.
Collapse
Affiliation(s)
- Toshiaki Ohteki
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - Michael Parsons
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - Arsen Zakarian
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - Russell G. Jones
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - Linh T. Nguyen
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - James R. Woodgett
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| | - Pamela S. Ohashi
- Ontario Cancer Institute, Department of Medical Biophysics, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
158
|
Dustin ML, Cooper JA. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 2000; 1:23-9. [PMID: 10881170 DOI: 10.1038/76877] [Citation(s) in RCA: 505] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The actin cytoskeleton seems to play two critical roles in the activation of T cells. One of these roles is T cell shape development and movement, including formation of the immunological synapse. The other is the formation of a scaffold for signaling components. This review focuses on the recent convergence of cell biology and immunology studies to explain the role of the actin cytoskeleton in creating the molecular basis for immunological synapse formation and T cell signaling.
Collapse
Affiliation(s)
- M L Dustin
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis MO 63110, USA.
| | | |
Collapse
|
159
|
Abstract
Protein-tyrosine kinases (PTKs) and their associated signaling pathways are crucial for the regulation of numerous cell functions including growth, mitogenesis, motility, cell-cell interactions, metabolism, gene transcription, and the immune response. Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation states of proteins are governed by the opposing actions of PTKs and protein-tyrosine phosphatases (PTPs). In this light, both PTKs and PTPs play equally important roles in signal transduction in eukaryotic cells, and comprehension of mechanisms behind the reversible pTyr-dependent modulation of protein function and cell physiology must necessarily encompass the characterization of PTPs as well as PTKs. In spite of the large number of PTPs identified to date and the emerging role played by PTPs in disease, a detailed understanding of the role played by PTPs in signaling pathways has been hampered by the absence of PTP-specific agents. Such PTP-specific inhibitors could potentially serve as useful tools in determining the physiological significance of protein tyrosine phosphorylation in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. The goal of this review is therefore to summarize current understandings of PTP structure and mechanism of catalysis and the relationship of these to PTP inhibitor development. The review is organized such that enzyme structure is covered first, followed by mechanisms of catalysis then PTP inhibitor development. In discussing PTP inhibitor development, nonspecific inhibitors and those obtained by screening methods are initially presented with the focus then shifting to inhibitors that utilize a more structure-based rationale.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
160
|
Xu MJ, Zhao R, Zhao ZJ. Identification and characterization of leukocyte-associated Ig-like receptor-1 as a major anchor protein of tyrosine phosphatase SHP-1 in hematopoietic cells. J Biol Chem 2000; 275:17440-6. [PMID: 10764762 DOI: 10.1074/jbc.m001313200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHP-1, an SH2 domain-containing tyrosine phosphatase, has a crucial role in hematopoiesis. Here we report that SHP-1 is associated with two major tyrosine-phosphorylated proteins in hematopoietic cells treated with the tyrosine phosphatase inhibitor, pervanadate. One of the proteins corresponds to leukocyte-associated Ig-like receptor-1 (LAIR-1), a recently cloned transmembrane protein. Molecular cloning revealed four isoforms of the protein. LAIR-1 is hyper-phosphorylated on tyrosyl residues in cells overexpressing a catalytically inactive mutant form of SHP-1 as well as in pervanadate-treated cells. An antibody against the extracellular domain of the protein also induced its tyrosine phosphorylation. Tyrosine-phosphorylated LAIR-1 specifically interacts with SHP-1 but not with SHP-2, a structurally related tyrosine phosphatase. Using site-specific mutagenesis, we demonstrated that Tyr(233) and Tyr(263), each embedded in an immunoreceptor tyrosine-based inhibitory motif, are responsible for tyrosine phosphorylation of LAIR-1 and recruitment of SHP-1. Both tyrosyl residues are required for SHP-1 binding. Protein kinases responsible for tyrosine phosphorylation of LAIR-1 may belong to the Src family since PP1, a Src family kinase inhibitor, significantly inhibited its phosphorylation. As a major binding protein of SHP-1 on the plasma membrane, LAIR-1 may play an important role in hematopoietic cell signaling.
Collapse
Affiliation(s)
- M j Xu
- Hematology/Oncology Division, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232-6305, USA
| | | | | |
Collapse
|
161
|
Christensen MD, Geisler C. Recruitment of SHP-1 protein tyrosine phosphatase and signalling by a chimeric T-cell receptor-killer inhibitory receptor. Scand J Immunol 2000; 51:557-64. [PMID: 10849365 DOI: 10.1046/j.1365-3083.2000.00727.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Receptors expressing the immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail play an important role in the negative regulation of natural killer and B-cell activation. A subpopulation of T cells expresses the ITIM containing killer cell inhibitory receptor (KIR), which recognize MHC class I molecules. Following coligation of KIR with an activating receptor, the tyrosine in the ITIM is phosphorylated and the cytoplasmic protein tyrosine phosphatase SHP-1 is recruited to the ITIM via its SH2 domains. It is still not clear how SHP-1 affects T-cell receptor (TCR) signalling. In this study, we constructed a chimeric TCR-KIR receptor. We demonstrated that SHP-1 is recruited to the chimeric TCR-KIR receptor following T-cell stimulation with either anti-TCR monoclonal antibody (MoAb) or superantigen. However, in spite of this we could not detect any effect of SHP-1 on TCR signalling regarding total protein tyrosine phosphorylation, TCR down-regulation, mobilization of intracellular free calcium, or induction of the activation markers CD69 and CD25.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/biosynthesis
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- CD3 Complex/biosynthesis
- CD3 Complex/genetics
- Calcium/metabolism
- Cells, Cultured
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Killer Cells, Natural/metabolism
- Lectins, C-Type
- Ligands
- Mice
- Molecular Sequence Data
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Interleukin-2/biosynthesis
- Receptors, KIR
- Recombinant Fusion Proteins/physiology
- Signal Transduction/immunology
- Tyrosine/metabolism
- Lamin B Receptor
Collapse
Affiliation(s)
- M D Christensen
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Denmark
| | | |
Collapse
|
162
|
Tomasello E, Bléry M, Vély F, Vivier E. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin Immunol 2000; 12:139-47. [PMID: 10764622 DOI: 10.1006/smim.2000.0216] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite the absence of antigen-specific receptors at their surface, NK cells can selectively eliminate virus-infected cells, tumor cells and allogenic cells. A dynamic and precisely coordinated balance between activating and inhibitory receptors governs NK cell activation programs. Multiple activating and inhibitory NK cell surface molecules have been described, a group of them acting as receptors for MHC class I molecules. In spite of their heterogeneity, activating NK cell receptors present remarkable structural and functional homologies with T cell- and B cell-antigen receptors. Inhibitory NK cell receptors operate at early stages of activating cascades by recruiting protein tyrosine phosphatases via intra- cytoplasmic motifs (ITIM), a strategy which is widely conserved in hematopoietic and non-hematopoietic cells.
Collapse
Affiliation(s)
- E Tomasello
- Centre d'Immunologie INSERM/CNRS de Marseille-Luminy Case 906, Institut Universitaire de France, Campus de Luminy, Marseille cedex 09, 13288, France
| | | | | | | |
Collapse
|
163
|
Bouhdoud L, Villain P, Merzouki A, Arella M, Couture C. T-cell receptor-mediated anergy of a human immunodeficiency virus (HIV) gp120-specific CD4(+) cytotoxic T-cell clone, induced by a natural HIV type 1 variant peptide. J Virol 2000; 74:2121-30. [PMID: 10666241 PMCID: PMC111692 DOI: 10.1128/jvi.74.5.2121-2130.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1999] [Accepted: 12/04/1999] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection triggers a cytotoxic T-lymphocyte (CTL) response mediated by CD8(+) and perhaps CD4(+) CTLs. The mechanisms by which HIV-1 escapes from this CTL response are only beginning to be understood. However, it is already clear that the extreme genetic variability of the virus is a major contributing factor. Because of the well-known ability of altered peptide ligands (APL) to induce a T-cell receptor (TCR)-mediated anergic state in CD4(+) helper T cells, we investigated the effects of HIV-1 sequence variations on the proliferation and cytotoxic activation of a human CD4(+) CTL clone (Een217) specific for an epitope composed of amino acids 410 to 429 of HIV-1 gp120. We report that a natural variant of this epitope induced a functional anergic state rendering the T cells unable to respond to their antigenic ligand and preventing the proliferation and cytotoxic activation normally induced by the original antigenic peptide. Furthermore, the stimulation of Een217 cells with this APL generated altered TCR-proximal signaling events that have been associated with the induction of T-cell anergy in CD4(+) T cells. Importantly, the APL-induced anergic state of the Een217 T cells could be prevented by the addition of interleukin 2, which restored their ability to respond to their nominal antigen. Our data therefore suggest that HIV-1 variants can induce a state of anergy in HIV-specific CD4(+) CTLs. Such a mechanism may allow a viral variant to not only escape the CTL response but also facilitate the persistence of other viral strains that may otherwise be recognized and eliminated by HIV-specific CTLs.
Collapse
Affiliation(s)
- L Bouhdoud
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
164
|
Touw IP, De Koning JP, Ward AC, Hermans MH. Signaling mechanisms of cytokine receptors and their perturbances in disease. Mol Cell Endocrinol 2000; 160:1-9. [PMID: 10715533 DOI: 10.1016/s0303-7207(99)00206-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines regulate the proliferation and differentiation of cells through their interaction with specific receptors on the surface of target cells which are coupled to intracellular signal transduction pathways. The cytokine receptor class I superfamily, characterized by structural homology in the extracellular domain, includes receptors for many interleukins and hematopoietic growth factors, but also those of growth hormone, leptin, ciliary neurotrophic factor (CNTF), oncostatin M (OSM), leukemia inhibitory factor (LIF) and cardiotrophin-1 (CT-1). The receptors for interferons are structurally distinct and have therefore been categorized separately (class II cytokine receptors). The discovery of the JAK/STAT pathway in the early 1990s has been an important step forward in deciphering cytokine mediated signaling. This pathway connects activation of the receptor complexes directly to transcription of genes. Studies of humans and mice, deficient for one of the JAKs or STATs, have revealed crucial roles of these molecules in embryonic development, blood cell formation and immune responses. In addition, recent studies have revealed some of the mechanisms that control the activation of the JAKs and STATs, which contribute to signal intensity and specificity. In this review we will summarize these recent insights and discuss their implications for a variety of pathological conditions.
Collapse
Affiliation(s)
- I P Touw
- Institute of Hematology, Erasmus University Rotterdam (Room 1314), PO Box 1738, 3000DR, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
165
|
Miller DT, Read R, Rusconi J, Cagan RL. The Drosophila primo locus encodes two low-molecular-weight tyrosine phosphatases. Gene 2000; 243:1-9. [PMID: 10675607 DOI: 10.1016/s0378-1119(99)00553-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fine modulation of tyrosine phosphorylation by protein tyrosine phosphatases and protein tyrosine kinases is a key regulatory mechanism for many cell signaling pathways active during development. In a screen for genes with interesting expression patterns in the developing Drosophila pupal retina, we identified a novel pair of protein tyrosine phosphatases that exhibit an expression pattern suggesting a role in multiple steps of Drosophila neurogenesis. Together, these phosphatases define the primo locus. Their sequence is approx. 50% identical to each other and to low-molecular-weight protein tyrosine phosphatases (LMW-PTPs) identified in other species. Little is understood of the biological role of LMW-PTPs, and the powerful tools available in Drosophila should provide important insight into their role in signaling and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosome Mapping
- Drosophila/embryology
- Drosophila/enzymology
- Drosophila/genetics
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes, Insect/genetics
- In Situ Hybridization
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Molecular Weight
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- D T Miller
- Department of Molecular Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO, USA
| | | | | | | |
Collapse
|
166
|
Wu DW, Stark KC, Dunnington D, Dillon SB, Yi T, Jones C, Pelus LM. SH2-Containing protein tyrosine phosphatase-1 (SHP-1) association with Jak2 in UT-7/Epo cells. Blood Cells Mol Dis 2000; 26:15-24. [PMID: 10772872 DOI: 10.1006/bcmd.2000.0273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the interaction of the SH2-containing protein tyrosine phosphatase-1 (SHP-1) and Jak2 in an erythropoietin (Epo)-dependent human leukemia cell line, UT-7/Epo, using reciprocal immunoprecipitation and immunoblotting. The Epo-induced kinetics and dose response on phosphorylated Jak2 in anti-SHP-1 precipitates of UT-7/Epo cell lysates were similar to those in direct anti-Jak2 precipitates, suggesting that Jak2 coprecipitated with SHP-1. Furthermore, immunoblotting with anti-Jak2 and anti-SHP-1 antibodies indicated that SHP-1 appeared to be constitutively associated with non-tyrosine-phosphorylated Jak2 in UT-7/Epo cells in the absence of Epo and without phosphorylation of the Epo receptor (EpoR). Competition studies with C-terminal SHP-1 and Jak2 peptides decreased the amounts of SHP-1 and Jak2 detected in immunoprecipitates supporting the specific coprecipitation of SHP-1 and Jak2. In the presence of a recombinant GST-fusion protein containing both the N-terminal and C-terminal SH2 domains of SHP-1, anti-GST precipitated the fusion protein but not cellular Jak2. These studies suggest that SHP-1 and Jak2 are constitutively associated in UT-7/EPO cells. The association is not dependent upon Epo and is not mediated via SHP-1 SH2 binding. Sequential double immunoprecipitation demonstrated that only a small portion of intracellular Jak2 and SHP-1 molecules are constitutively associated. This partial association pattern may allow a more flexible and diverse regulation of Jak2 and SHP-1 activities. Whether Jak2 and SHP-1 are directly associated with each other or are part of a larger complex needs further investigation.
Collapse
Affiliation(s)
- D W Wu
- Department of Molecular Virology and Host Defense, SmithKline Beecham Pharmaceuticals, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Sharie N, Arpaia E, Roifman CM. CD8 LYMPHOCYTOPENIA CAUSED BY ZAP-70 DEFICIENCY. Radiol Clin North Am 2000. [DOI: 10.1016/s0033-8389(22)00180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
168
|
Sharfe N, Arpaia E, Roifman CM. CD8 LYMPHOCYTOPENIA CAUSED BY ZAP-70 DEFICIENCY. Immunol Allergy Clin North Am 2000. [DOI: 10.1016/s0889-8561(05)70135-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
169
|
Gary-Gouy H, Bruhns P, Schmitt C, Dalloul A, Daëron M, Bismuth G. The pseudo-immunoreceptor tyrosine-based activation motif of CD5 mediates its inhibitory action on B-cell receptor signaling. J Biol Chem 2000; 275:548-56. [PMID: 10617650 DOI: 10.1074/jbc.275.1.548] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genetic studies revealed that CD5 could be a negative regulator of the B-cell antigen receptor (BCR). We explore here the effect of human CD5 on BCR-triggered responses. B cells were obtained expressing a chimera composed of extracellular and transmembrane domains of Fcgamma type IIB receptor fused to CD5 cytoplasmic domain (CD5cyt). Coligation of the chimera with the BCR induces CD5cyt tyrosine phosphorylation. A rapid inhibition of BCR-induced calcium response is observed, as well as a partial but delayed inhibition of phospholipase Cgamma-1 phosphorylation. Activation of extracellular regulated kinase-2 is also severely impaired. Moreover, at the functional level, interleukin-2 production is abolished. Src homology 2 domain-bearing tyrosine phosphatase SHP-1 and Src homology 2 domain-bearing inositol 5'-phosphatase SHIP usually participate in negative regulation of the BCR. We show that they do not associate with the phosphorylated CD5 chimera. We finally demonstrate that the pseudo-immunoreceptor tyrosine based activation motif present in CD5cyt is involved because its deletion eliminates the inhibitory effect of the chimera, both at biochemical and functional levels. These results demonstrate the inhibitory role of CD5 pseudo-immunoreceptor tyrosine based activation motif tyrosine phosphorylation on BCR signaling. They further support the idea that CD5 uses mechanisms different from those already described to negatively regulate the BCR pathway.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- CD5 Antigens/metabolism
- Calcium Signaling
- Enzyme Activation
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Mice
- Mitogen-Activated Protein Kinase 1/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, IgG/genetics
- Receptors, IgG/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- H Gary-Gouy
- Laboratoire d'Immunologie Cellulaire, CNRS UMR 7627, Centre Hospitalier Pitié-Salpêtrière, CERVI, 83 Boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
170
|
|
171
|
Abstract
This review focuses on recent findings on the structural features of inhibitory NK cell receptors containing immunoreceptor tyrosine-based inhibition motif (ITIM) and of NK cell activating receptors, both in human and mouse. First, the study of the inhibitory killer cell immunoglobulin-like receptors (KIR) unveiled the presence of intracytoplasmic ITIM and their capacity to recruit protein tyrosine phosphatases such as SHP-1 in vivo. A brief summary of the known SHP-1 targets may help us to understand the inhibition mediated by the KIR. The characterization of ITIM thus allowed the definition of a large group of inhibitory cell surface receptors. The second part of the review describes the known NK cell activating receptors. Most of them require association with ITAM-containing polypeptides in order to mediate cell activation.
Collapse
Affiliation(s)
- M Bléry
- Centre d'immunologie INSERM-CNRS de Marseille-Luminy, France.
| | | | | |
Collapse
|
172
|
|
173
|
Peña-Rossi C, Zuckerman LA, Strong J, Kwan J, Ferris W, Chan S, Tarakhovsky A, Beyers AD, Killeen N. Negative Regulation of CD4 Lineage Development and Responses by CD5. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.12.6494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
CD5 deficiency results in a hyper-responsive phenotype to Ag receptor stimulation. Here we show that the development and responses of CD4 lineage T cells are regulated by the function of CD5. Thymocytes expressing the I-Ad-restricted DO11.10 TCR undergo abnormal selection without CD5. In H-2d mice, the absence of CD5 causes deletion of double-positive thymocytes, but allows for efficient selection of cells expressing high levels of the DO11.10 clonotype. By contrast, there is enhanced negative selection against the DO11.10 clonotype in the presence of I-Ab. T cell hybridomas and DO11.10 T cells are more responsive to TCR stimulation in the absence of CD5. Such hypersensitivity can be eliminated by expression of wild-type CD5, but not by a form of CD5 that lacks the cytoplasmic tail. Finally, CD5 deficiency partially suppresses the block of CD4 lineage development in CD4-deficient mice. Taken together, the data support a general role for CD5 as a negative regulator of Ag receptor signaling in the development and immune responses of CD4 lineage T cells.
Collapse
Affiliation(s)
- Claudia Peña-Rossi
- *Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Linda A. Zuckerman
- *Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Julie Strong
- *Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - Joanne Kwan
- *Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| | - William Ferris
- †Department of Medical Biochemistry and Medical Research Council Center for Molecular and Cellular Biology, University of Stellenbosch, Tygerberg, South Africa
| | - Susan Chan
- ‡Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, Illkirch, France; and
| | | | - Albert D. Beyers
- †Department of Medical Biochemistry and Medical Research Council Center for Molecular and Cellular Biology, University of Stellenbosch, Tygerberg, South Africa
| | - Nigel Killeen
- *Department of Microbiology and Immunology, University of California, San Francisco, CA 94143
| |
Collapse
|
174
|
Carter JD, Neel BG, Lorenz U. The tyrosine phosphatase SHP-1 influences thymocyte selection by setting TCR signaling thresholds. Int Immunol 1999; 11:1999-2014. [PMID: 10590266 DOI: 10.1093/intimm/11.12.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modulation of the strength of signals from the TCR determines the outcome of positive and negative selection in thymocyte development. Previous studies have demonstrated that SHP-1 plays a role in determining signal strength from the TCR. Here, we have taken a genetic approach to test whether SHP-1 plays a role in T cell selection in the thymus. Experiments in which a dominant negative mutant of SHP-1 was expressed in the BYDP hybridoma cell line confirmed that SHP-1 regulated TCR signaling in a cell-autonomous manner and suggested that Lck is one of its targets. To examine the role of SHP-1 in T cell development, we crossed the ovalbumin-specific DO11.10 TCR transgene onto the motheaten background, which lacks SHP-1 expression. Analysis of the progeny of these crosses provided evidence that SHP-1 regulates thymocyte selection: (i) flow cytometric analyses revealed alterations in the percentages of thymocyte subpopulations in the me/me background; (ii) ex vivo deletion experiments demonstrated that me/me:Tg thymocytes undergo negative selection at lower concentrations of OVA peptide compared to +/+:Tg thymocytes; and (iii) ex vivo proliferation analyses indicated that me/me:Tg thymocytes were hyper-sensitive to stimulation by the specific OVA peptide. Our observation that the absence of SHP-1 leads to altered selection of TCR transgenic thymocytes demonstrates that SHP-1 regulates the strength of TCR-mediated signals in vivo and, in turn, helps to set the threshold for thymocyte selection.
Collapse
Affiliation(s)
- J D Carter
- Department of Microbiology, University of Virginia, HSC, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
175
|
Kawasaki H, Nakata Y, Suzuki G, Chihara K, Tokuhisa T, Shiozawa S. Increased c-Fos/activator protein-1 confers resistance against anergy induction on antigen-specific T cell. Int Immunol 1999; 11:1873-80. [PMID: 10590252 DOI: 10.1093/intimm/11.12.1873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the contribution of c-Fos/activator protein-1 (AP-1) to antigen-specific T cell response with reference to T cell anergy by increasing c-Fos/AP-1 in vivo and in vitro. First, after injection of a high dose of staphylococcus enterotoxin B (SEB), clonal deletion of SEB-reactive V(beta)8(+) CD4 T cells occurred both in control B6 and H2-c-fos transgenic (fos) mice, whereas proliferation of T cells against SEB was profoundly depressed in B6 but not in fos mice. Second, the keyhole limpet hemocyanin-specific CD4 T(h)1 cell clone produced decreasing amounts of IL-2 in response to increasing amounts of concanavalin A (Con A) in vitro, whereas the decrease was less significant in the T(h)1 clones stably transfected with c-fos gene. Electrophoretic mobility shift assay with nuclear protein from the transformants showed that overexpression of the c-fos gene compensated the amounts of AP-1 in the nuclei of Con A-treated T(h)1 clones. Thus, increased c-Fos/AP-1 confers resistance against anergy induction on antigen-specific T cells.
Collapse
Affiliation(s)
- H Kawasaki
- Faculty of Health Science, Department of Medicine, Third Division, Kobe University School of Medicine, Kobe 654, Japan
| | | | | | | | | | | |
Collapse
|
176
|
Magistrelli G, Bosotti R, Valsasina B, Visco C, Perego R, Toma S, Acuto O, Isacchi A. Role of the Src homology 2 domains and interdomain regions in ZAP-70 phosphorylation and enzymatic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1166-73. [PMID: 10583414 DOI: 10.1046/j.1432-1327.1999.00973.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein tyrosine kinase ZAP-70, which mediates T-cell antigen receptor (TCR) signalling, contains three distinct functional modules, two tandemly arranged SH2 domains, a kinase domain and a linker region (interdomain B) that connects them. ZAP-70 enzymatic activation is strictly dependent on the binding, via its SH2 domains, to the triggered TCR and on tyrosine phosphorylation. Here we utilized recombinant ZAP-70 and carried out a mutational analysis to understand the structural requirements for its activation. We show that deletion of both SH2 domains corresponding to the first 254 residues moderately increases ZAP-70 enzymatic activity on an exogenous substrate in vitro, results in increased tyrosine phosphorylation and produces subtle conformational changes, as judged by altered SDS/PAGE migration. Mutation of Tyr292, 315 and 319 to Phe in the interdomain B region, which constitute the major phosphorylation sites both in vitro and in vivo, did not affect ZAP-70 enzymatic activity. Moreover, deletion analysis of the interdomain B region established residues 320-619 as a minimal region endowed with full kinase activity. We propose that binding of ZAP-70 to the TCR promotes, through conformational changes, its extensive phosphorylation on tyrosine. However, Tyr292, 315 and 319 do not affect ZAP-70 enzymatic activity and may influence ZAP-70 signalling only indirectly by mediating its association with intracellular transducers.
Collapse
Affiliation(s)
- G Magistrelli
- Department of Biology, Pharmacia & Upjohn, Nerviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Mary F, Moon C, Venaille T, Thomas ML, Mary D, Bernard A. Modulation of TCR signaling by beta1 integrins: role of the tyrosine phosphatase SHP-1. Eur J Immunol 1999; 29:3887-97. [PMID: 10601996 DOI: 10.1002/(sici)1521-4141(199912)29:12<3887::aid-immu3887>3.0.co;2-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
When cross-linked, beta1 integrins co-activate T cells together with a TCR-CD3 signal. Soluble anti-beta1 monoclonal antibodies, however, inhibit T cell activation. We report inhibition of early tyrosine kinases, including ZAP-70, p59(fyn), CD4-associated p56(lck) and TCR components under this condition. The tyrosine phosphatase SHP-1 is activated by engagement of beta1 integrins and is implicated in this negative regulation since no inhibition occurs in SHP-1 dominant-negative T cells. As shown by the use of Lck-deficient cells, the activation of the protein tyrosine phosphatase depends on a pool of p56(lck) that is not associated with CD4. These cross-talk events were also observed with the alpha4beta1 integrin ligand, VCAM-1. We propose that these results may be important in terms of lymphocyte circulation; while T cells migrate through the vascular endothelium, they are primed for an amplified response; as inflammation develops, a local accumulation of soluble integrin ligands may help to turn it off.
Collapse
Affiliation(s)
- F Mary
- INSERM U343 Hôpital de l'Archet, Nice, France
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
Of the past several years progress in understanding TCR signal transduction has led to the discovery of new kinases, adapter molecules and multiple signaling pathways. The study of molecules such as LAT, SLP-76, FYB, SKAP-55 and VAV have revealed multiple mechanisms with which to control the activation of downstream signaling pathways through RAS, PLC gamma-1 and ERK/MAPK. Signaling through SLP-76 can play a role in TCR-induced cytoskeleton changes through activation of effector molecules in the RAC/RHO-family of GTPases. In addition, SLP-76 through its association with FYB/FYN-T appears to play a role in IL-2 gene transcription following TCR activation. Finally, these newly identified adaptor molecules, such as LAT, may be crucial in T-cell activation by enhancing the recruitment of critical kinases to glycolipid-enriched microdomains of the activated T-cell receptor complex.
Collapse
Affiliation(s)
- J S Kennedy
- Department of Cancer Immunology and AIDS, Harvard Medical School, Boston, USA
| | | | | |
Collapse
|
179
|
Abstract
Activating and inhibitory receptors act in concert to regulate cellular activation. Inhibitory receptors are characterized by the presence of a characteristic sequence known as an immunoreceptor tyrosine-based inhibitory motif (ITIM) in their cytoplasmic tail. Phosphorylated ITIM serve as docking sites for the SH2-containing phosphatases which then inhibit signal transduction. CD33 is a member of the immunoglobulin superfamily and contains two immunoglobulin-like domains, a transmembrane region and a cytoplasmic tail that has two potential ITIM sequences. CD33 expression is restricted to cells of myelomonocytic lineage. The precise function of CD33 is unknown although it is a lectin that binds sialic acid residues in N- and O-glycans on cell surfaces. Co-immunoprecipitation studies demonstrate that CD33 associates with the SH2-containing tyrosine phosphatase SHP-1 in monocytes. The proximal ITIM is necessary and sufficient for SHP-1 binding which is mediated by the aminoterminal SH2 domain. Treatment of SHP-1 with a phosphopeptide representing the proximal CD33 ITIM results in increased SHP-1 enzymatic activity. CD33 exerts an inhibitory effect on tyrosine phosphorylation and Ca(2+) mobilization when co-engaged with the activating FcgammaRI receptor. This data indicates that CD33 is an inhibitory receptor that may regulate FcgammaRI signal transduction.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Binding Sites
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/metabolism
- Cells, Cultured
- Enzyme Activation
- HL-60 Cells
- Humans
- Intracellular Signaling Peptides and Proteins
- Mice
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Receptors, IgG/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Sialic Acid Binding Ig-like Lectin 3
- Tyrosine/metabolism
- U937 Cells
- src Homology Domains
Collapse
Affiliation(s)
- T Ulyanova
- Howard Hughes Medical Institute, Department of Pathology, Washington University School of Medicine, St. Louis, USA
| | | | | | | |
Collapse
|
180
|
Justement LB. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 1999; 245:1-51. [PMID: 10533309 DOI: 10.1007/978-3-642-57066-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
MESH Headings
- Adaptor Proteins, Signal Transducing
- Agammaglobulinaemia Tyrosine Kinase
- Animals
- Antigens/metabolism
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- CD79 Antigens
- Calcium/metabolism
- Carrier Proteins/metabolism
- Cell Adhesion Molecules
- Enzyme Activation
- Enzyme Precursors/metabolism
- Gene Expression Regulation
- Humans
- Immunoglobulin M/metabolism
- Intracellular Signaling Peptides and Proteins
- Lectins
- Oncogene Proteins/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein Tyrosine Phosphatases/physiology
- Protein-Tyrosine Kinases/metabolism
- Protein-Tyrosine Kinases/physiology
- Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Receptors, IgG/metabolism
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/immunology
- Signal Transduction/physiology
- Syk Kinase
- Type C Phospholipases/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- L B Justement
- Department of Microbiology, University of Alabama at Birmingham 35294-3300, USA
| |
Collapse
|
181
|
Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L differs from 68-kDa SHP-1 in its C-terminal structure and catalytic activity. J Biol Chem 1999; 274:28301-7. [PMID: 10497187 DOI: 10.1074/jbc.274.40.28301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tyrosine phosphatase SHP-1 functions as a negative regulator in hematopoietic cell development, proliferation, and receptor-mediated cellular activation. In Jurkat T cells, a major 68-kDa band and a minor 70-kDa band were immunoprecipitated by a monoclonal antibody against the SHP-1 protein-tyrosine phosphatase domain, while an antibody against the SHP-1 C-terminal 19 amino acids recognized only the 68-kDa SHP-1. The SDS-gel-purified 70-kDa protein was subjected to tryptic mapping and microsequencing, which was followed by molecular cloning. It revealed that the 70-kDa protein, termed SHP-1L, is a C-terminal alternatively spliced form of SHP-1. SHP-1L is 29 amino acids longer than SHP-1, and its 66 C-terminal amino acids are different from SHP-1. The C terminus of SHP-1L contains a proline-rich motif PVPGPPVLSP, a potential Src homology 3 domain-binding site. In contrast to SHP-1, tyrosine phosphorylation of SHP-1L is not detected upon stimulation in Jurkat T cells. This is apparently due to the lack of a single in vivo tyrosine phosphorylation site, which only exists in the C terminus of SHP-1 (Y564). COS cell-expressed glutathione S-transferase-SHP-1L can dephosphorylate tyrosine-phosphorylated ZAP70. At pH 7.4, SHP-1L was shown to be more active than SHP-1 in the dephosphorylation of ZAP70. At pH 5.4, SHP-1L and SHP-1 exhibited similar catalytic activity. It is likely that these two isoforms play different roles in the regulation of hematopoietic cell signal transduction.
Collapse
Affiliation(s)
- Y J Jin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
182
|
Jin YJ, Yu CL, Burakoff SJ. Human 70-kDa SHP-1L Differs from 68-kDa SHP-1 in Its C-terminal Structure and Catalytic Activity. J Biol Chem 1999. [DOI: 10.1074/jbc.274.40.99999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
183
|
Cuevas B, Lu Y, Watt S, Kumar R, Zhang J, Siminovitch KA, Mills GB. SHP-1 regulates Lck-induced phosphatidylinositol 3-kinase phosphorylation and activity. J Biol Chem 1999; 274:27583-9. [PMID: 10488096 DOI: 10.1074/jbc.274.39.27583] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ligation of the T cell antigen receptor (TCR) activates the Src family tyrosine kinase p56 Lck, which, in turn, phosphorylates a variety of intracellular substrates. The phosphatidylinositol 3-kinase (PI3K) and the tyrosine phosphatase SHP-1 are two Lck substrates that have been implicated in TCR signaling. In this study, we demonstrate that SHP-1 co-immunoprecipitates with the p85 regulatory subunit of PI3K in Jurkat T cells, and that this association is increased by ligation of the TCR complex. Co-expression of SHP-1 and PI3K with a constitutively activated form of Lck in COS7 cells demonstrated the carboxyl-terminal SH2 domain of PI3K to inducibly associate with the full-length SHP-1 protein. By contrast, a truncated SHP-1 mutant lacking the Lck phosphorylation site (Tyr(564)) failed to bind p85. Wild-type but not catalytically inactive SHP-1 induced dephosphorylation of p85. Furthermore, expression of SHP-1 decreased PI3K enzyme activity in anti-phosphotyrosine immunoprecipitates and phosphorylation of serine 473 in Akt, a process dependent on PI3K activity. These results indicate the presence of a functional interaction between PI3K and SHP-1 and suggest that PI3K signaling, which has been implicated in cell proliferation, apoptosis, cytoskeletal reorganization, and many other biological activities, can be regulated by SHP-1 in T lymphocytes.
Collapse
Affiliation(s)
- B Cuevas
- Division of Medicine, and the Cell Growth Regulation Laboratory, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Zhang J, Somani AK, Yuen D, Yang Y, Love PE, Siminovitch KA. Involvement of the SHP-1 Tyrosine Phosphatase in Regulation of T Cell Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The selection events shaping T cell development in the thymus represent the outcome of TCR-driven intracellular signaling cascades evoked by Ag receptor interaction with cognate ligand. In view of data indicating TCR-evoked thymocyte proliferation to be negatively modulated by the SHP-1 tyrosine phosphatase, a potential role for SHP-1 in regulating selection processes was investigated by analysis of T cell development in H-Y TCR transgenic mice rendered SHP-1 deficient by introduction of the viable motheaten mutation or a dominant negative SHP-1-encoding transgene. Characterization of thymocyte and peripheral T cell populations in H-Y TCR-viable motheaten mice revealed TCR-evoked proliferation as well as the positive and negative selection of H-Y-specific thymocytes to be enhanced in these mice, thus implicating SHP-1 in the negative regulation of each of these processes. T cell selection processes were also augmented in H-Y TCR mice carrying a transgene driving lymphoid-restricted expression of a catalytically inert, dominant-negative form of SHP-1. SHP-1-negative effects on thymocyte TCR signaling were not influenced by co-cross-linking of the CD28 costimulatory and/or CTLA-4 inhibitory receptors and appear, accordingly, to be realized independently of these comodulators. These observations indicate that SHP-1 raises the signaling threshold required for both positive and negative selection and reveal the inhibitory effects of SHP-1 on TCR signaling to be cell autonomous. The demonstrated capacity for SHP-1 to inhibit TCR-evoked proliferation and selection indicate SHP-1 modulatory effects on the magnitude of TCR-generated signal to be a key factor in determining the cellular consequences of TCR-ligand interaction.
Collapse
Affiliation(s)
- Jinyi Zhang
- *Departments of Immunology, Medicine, and Molecular and Medical Genetics, University of Toronto, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Ally-Khan Somani
- *Departments of Immunology, Medicine, and Molecular and Medical Genetics, University of Toronto, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Darren Yuen
- *Departments of Immunology, Medicine, and Molecular and Medical Genetics, University of Toronto, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Ye Yang
- *Departments of Immunology, Medicine, and Molecular and Medical Genetics, University of Toronto, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| | - Paul E. Love
- †Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Katherine A. Siminovitch
- *Departments of Immunology, Medicine, and Molecular and Medical Genetics, University of Toronto, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; and
| |
Collapse
|
185
|
Kim CH, Qu CK, Hangoc G, Cooper S, Anzai N, Feng GS, Broxmeyer HE. Abnormal chemokine-induced responses of immature and mature hematopoietic cells from motheaten mice implicate the protein tyrosine phosphatase SHP-1 in chemokine responses. J Exp Med 1999; 190:681-90. [PMID: 10477552 PMCID: PMC2195618 DOI: 10.1084/jem.190.5.681] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/1999] [Accepted: 07/01/1999] [Indexed: 11/04/2022] Open
Abstract
Chemokines regulate a number of biological processes, including trafficking of diverse leukocytes and proliferation of myeloid progenitor cells. SHP-1 (Src homology 2 domain tyrosine phosphatase 1), a phosphotyrosine phosphatase, is considered an important regulator of signaling for a number of cytokine receptors. Since specific tyrosine phosphorylation of proteins is important for biological activities induced by chemokines, we examined the role of SHP-1 in functions of chemokines using viable motheaten (me(v)/me(v)) mice that were deficient in SHP-1. Chemotactic responses to stromal call-derived factor 1 (SDF-1), a CXC chemokine, were enhanced with bone marrow myeloid progenitor cells as well as macrophages, T cells, and B cells from me(v)/me(v) versus wild-type (+/+) mice. SDF-1-dependent actin polymerization and activation of mitogen-activated protein kinases were also greater in me(v)/me(v) versus +/+ cells. In contrast, immature subsets of me(v)/me(v) bone marrow myeloid progenitors were resistant to effects of a number of chemokines that suppressed proliferation of +/+ progenitors. These altered chemokine responses did not appear to be due to enhanced expression of CXCR4 or lack of chemokine receptor expression. However, expression of some chemokine receptors (CCR1, CCR2, CCR3, and CXCR2) was significantly enhanced in me(v)/me(v) T cells. Our results implicate SHP-1 involvement in a number of different chemokine-induced biological activities.
Collapse
Affiliation(s)
- Chang H. Kim
- From the Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Cheng-Kui Qu
- From the Department of Biochemistry/Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Giao Hangoc
- From the Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Scott Cooper
- From the Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Naoyuki Anzai
- From the Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Gen-Sheng Feng
- From the Department of Biochemistry/Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| | - Hal E. Broxmeyer
- From the Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202
- From the Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Walther Cancer Institute, Indianapolis, Indiana 46208
| |
Collapse
|
186
|
Mustelin T, Brockdorff J, Rudbeck L, Gjörloff-Wingren A, Han S, Wang X, Tailor P, Saxena M. The next wave: protein tyrosine phosphatases enter T cell antigen receptor signalling. Cell Signal 1999; 11:637-50. [PMID: 10530872 DOI: 10.1016/s0898-6568(99)00016-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent years have seen an exponentially increasing interest in the molecular mechanisms of signal transduction. Much of the focus has been on protein tyrosine kinase-mediated signalling, while the study of protein tyrosine phosphatases has lagged behind. We predict that the phosphatases will become a "hot topic" in the field within the next few years. This review summarizes the current state-of-the-art in our understanding of the structure, regulation and role of protein tyrosine phosphatases in T lymphocyte activation.
Collapse
Affiliation(s)
- T Mustelin
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Dittel BN, Stefanova I, Germain RN, Janeway CA. Cross-antagonism of a T cell clone expressing two distinct T cell receptors. Immunity 1999; 11:289-98. [PMID: 10514007 DOI: 10.1016/s1074-7613(00)80104-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inhibition of T cell activation can be mediated by analogs of the original antigenic peptide (TCR antagonists). Here, a T cell clone expressing two distinct TCR was used to investigate whether such inhibition involves an active mechanism by examining whether an antagonist for one TCR could influence responses stimulated by the other TCR engaging its agonist. Our results demonstrate functional cross-inhibition under these conditions involving the ability of antagonist: TCR interactions to diminish Lck enzymatic activity associated with the agonist-recognizing second TCR, apparently through enhancement of SHP-1 association with these receptors. Our findings reveal that inhibition of cellular responses by antagonists arises at least in part from active negative regulation of proximal TCR signaling and identify elements of the biochemical process.
Collapse
Affiliation(s)
- B N Dittel
- Section of Immunobiology, Yale University School of Medicine and Howard Hughes Medical Institute, New Haven, Connecticut 06510, USA.
| | | | | | | |
Collapse
|
188
|
Tang J, Sawasdikosol S, Chang JH, Burakoff SJ. SLAP, a dimeric adapter protein, plays a functional role in T cell receptor signaling. Proc Natl Acad Sci U S A 1999; 96:9775-80. [PMID: 10449770 PMCID: PMC22286 DOI: 10.1073/pnas.96.17.9775] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Engagement of the T cell antigen receptor (TCR) leads to rapid activation of protein tyrosine kinases, which in turn phosphorylate downstream enzymes and adapter proteins. Some adapter proteins, such as SLP-76, Vav, and LAT, positively regulate TCR-mediated signal transduction, whereas others, such as Cbl, play an inhibitory role. SLAP (Src-like adapter protein), an adapter protein containing a Src homology 3 and a Src homology 2 domain, was isolated from a yeast interacting screen by using N-terminal Cbl as bait. N-terminal Cbl interacts with SLAP in vivo and in vitro in a tyrosine phosphorylation-independent manner. We observed that SLAP is expressed in T cells, and upon TCR activation, SLAP interacts with ZAP-70, Syk, LAT, and TCRzeta chain in Jurkat T cells. In transiently transfected COS-7 cells, SLAP forms separate complexes with ZAP-70, Syk, and LAT through its Src homology 2 domain. Overexpression of a C-terminal-truncated SLAP mutant down-regulates nuclear factor of activated T cells-AP1 activity. We have evidence that SLAP forms homodimers through its C-terminal region. Serial truncations and mutations in the C terminus of SLAP demonstrate that there is a correlation between the loss of dimerization and the inhibition of nuclear factor of activated T cells-AP1 activity. The in vivo association of SLAP with key signaling molecules and its inhibition of T cell activation suggests that SLAP plays an important role in TCR-mediated signal transduction.
Collapse
Affiliation(s)
- J Tang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Department of Pediatrics, Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
189
|
Cho HI, Park CG, Kim J. Reconstitution of killer cell inhibitory receptor-mediated signal transduction machinery in a cell-free model system. Arch Biochem Biophys 1999; 368:221-31. [PMID: 10441372 DOI: 10.1006/abbi.1999.1334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognition of class I MHC molecules on target cells by killer cell inhibitory receptors (KIRs) blocks natural cytotoxicity and antibody-dependent cell cytotoxicity of NK cells and CD3/TCR dependent cytotoxicity of T cells. The inhibitory effect of KIR ligation requires phosphorylation of the cytoplasmic tail of KIR and subsequent recruitment of an SH2-containing protein tyrosine phosphatase, SHP-1. To better understand the molecular mechanism of the KIR-mediated inhibitory signal transduction, we developed an in vitro assay system using a purified His-tag fusion protein of KIR cytoplasmic tail (His-CytKIR) and Jurkat T cell lysates. We identified a target molecule of SHP-1 by comparing the phosphorylation of major cellular substrates following in vitro phosphorylation of Jurkat cell lysates in the presence and absence of the His-CytKIR in this cell-free model system. The His-CytKIR was tyrosine phosphorylated by Lck in vitro, and the phosphorylated His-CytKIR recruited SHP-1. Interestingly, we observed that among major substrates phosphorylated in vitro, PLC-gamma exhibited a dramatic decrease in phosphorylation when the His-CytKIR was mixed with Jurkat T cell lysates. However, PLC-gamma exhibited no decrease in phosphorylation when SHP-1 or Lck was depleted or deficient in this reaction mixture, suggesting that the SHP-1 recruited by the phosphorylated His-CytKIR directly mediate the dephosphorylation of PLC-gamma. The cell-free model system could be used to reveal the detailed molecular interactions in the KIR-mediated signal transduction.
Collapse
Affiliation(s)
- H I Cho
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 120-752, Korea
| | | | | |
Collapse
|
190
|
Abstract
Extensive research has focused upon understanding how thymocytes distinguish between interactions that lead to positive or negative selection. Various intracellular pathways that are activated after TCR engagement are outlined in this review, and their contribution to thymocyte selection is discussed. Although thymocyte fate is generally governed by a quantitative/avidity model, this largely reflects the interactions that occur at the cell surface. Therefore, we outline possible models of how different intercellular interactions are translated into intracellular signals that diverge and lead to thymocyte survival or death.
Collapse
Affiliation(s)
- S Mariathasan
- Departments of Medical Biophysics and Immunology, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada
| | | | | |
Collapse
|
191
|
Abstract
Studies with motheaten mice, which lack the SHP1 protein tyrosine phosphatase, indicate that this enzyme plays an important negative role in T cell antigen receptor (TCR) signaling. The physiological substrates for SHP1 in T lymphocytes, however, have remained unclear or controversial. To define these targets for SHP1 we have compared the effects of constitutively active and inactive mutants of SHP1 on TCR signaling. Expression of wild-type SHP1 had a very small effect on the TCR-induced tyrosine phosphorylation of ZAP-70 and Syk, even when SHP1 was overexpressed 20 - 100-fold over endogenous SHP1. Inactive SHP1-D421A and wild-type SHP2 were without effects. Constitutively active SHP1-DeltaSH2 had a more pronounced effect on ZAP-70 and Syk, even when expressed at near physiological levels. SHP1-DeltaSH2 also inhibited events downstream of ZAP-70 and Syk, such as activation of the mitogen-activated protein kinase Erk2 and the transcriptional activation of the interleukin-2 gene. In contrast, a constitutively active SHP2-DeltaSH2 had no statistically significant effect (although it caused a slight augmentation in some individual experiments). None of the constructs influenced the anti-CD3-induced tyrosine phosphorylation of the TCR zeta-chain or phospholipase Cgamma1, indicating that Src family kinase function was intact. Taken together, our findings support the notion that ZAP-70 and Syk can be direct substrates for SHP1 in intact cells. However, the two SH2 domains of SHP1 did not facilitate its recognition of ZAP-70 and Syk as substrates in intact cells. Therefore, we suggest that SHP1 is not actively recruited to inhibit TCR signaling induced by ligation of this receptor alone. Instead, we propose that ligation of a distinct inhibitory receptor leads to the recruitment of SHP1 via its SH2 domains, activation of SHP1 and subsequently inhibition of TCR signals if the inhibitory receptor is juxtaposed to the TCR.
Collapse
Affiliation(s)
- J Brockdorff
- La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | | | | | | |
Collapse
|
192
|
Abstract
The developmental fate of T cells is largely controlled by the nature and success of signals mediated by the pre-T cell receptor (TCR) and TCR complexes. These intracellular signals are regulated by cascades of protein tyrosine phosphorylations initiated following ligand binding to the pre-TCR or TCR complexes. The phosphorylation cascades are primarily orchestrated by two distinct families of protein tyrosine kinases (PTKs), the Src- and the Syk/ZAP-70-families. Germline gene targeting experiments, several human immunodeficiencies, and somatic cell mutants have all contributed to our understanding of how these families of kinases coordinate their actions to promote signaling. Upon activation, the PTKs transmit their signals to a number of newly described adaptor proteins including LAT, SLP-76, and vav, among others. The following review combines results derived from different experimental strategies to examine the contributions of the PTKs and the adaptor molecules to pre-TCR and TCR signaling processes.
Collapse
Affiliation(s)
- N S van Oers
- Center for Immunology and the Department of Microbiology, UT Southwestern Medical Center, Room NA7.201, 6000 Harry Hines Blvd., Dallas, TX 75235-9093, USA
| |
Collapse
|
193
|
Lehtonen JY, Daviet L, Nahmias C, Horiuchi M, Dzau VJ. Analysis of functional domains of angiotensin II type 2 receptor involved in apoptosis. Mol Endocrinol 1999; 13:1051-60. [PMID: 10406457 DOI: 10.1210/mend.13.7.0303] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously demonstrated that the intracellular third loop (i3 loop) of angiotensin II type 2 receptor (AT2) plays a key role in mediating the biological functions of this receptor. To determine which residues are important for AT2 signaling, mutated receptors with serial deletions within the i3 loop were stably expressed in PC12 cells. Deletion of residues 240-244 within the intermediate portion of the i3 loop resulted in a complete loss of AT2-mediated apoptosis, inhibition of extracellular signal-regulated kinases (ERK), and SHP-1 activation. In contrast to well characterized heptahelical receptors, the AT2 functions were not affected by deletions of the amino- or carboxyl-terminal portions of the i3 loop. Alanine substitutions further demonstrated that lysine 240, asparagine 242, and serine 243 are key residues for AT2-induced apoptosis, ERK inhibition, and SHP-1 activation. To examine whether a functional link exists between activation of SHP-1 and apoptosis, we used a catalytically inactive SHP-1 mutant and demonstrated that preventing SHP-1 activation strongly attenuates AT2-induced ERK inhibition and apoptosis. Our data demonstrate that the intermediate portion of the i3 loop is important for AT2 function and that SHP-1 is a proximal effector of the AT2 receptor that is implicated in the inhibition of ERKs and in the apoptotic effect of this receptor.
Collapse
Affiliation(s)
- J Y Lehtonen
- Division of Cardiovascular Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
194
|
Palmieri G, Tullio V, Zingoni A, Piccoli M, Frati L, Lopez-Botet M, Santoni A. CD94/NKG2-A Inhibitory Complex Blocks CD16-Triggered Syk and Extracellular Regulated Kinase Activation, Leading to Cytotoxic Function of Human NK Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The CD94/NKG2-A complex is the inhibitory receptor for the nonclassical MHC class I molecule HLA-E on human NK cells. Here we studied the molecular mechanisms underlying the inhibitory activity of CD94/NKG2-A on NK cell functions by analyzing its interference on CD16-initiated signaling pathways involved in the control of cytolytic activity. Both tyrosine phosphorylation and activation of Syk kinase together with tyrosine phosphorylation of CD16 receptor ζ subunit are markedly inhibited by the coengagement of CD94/NKG2-A complex. As a downstream consequence, CD94/NKG2-A cross-linking impairs the CD16-induced activation of extracellular regulated kinases (ERKs), a pathway involved in NK cytotoxic function. The block of ERK activation is exerted at an early, PTK-dependent stage in the events leading to p21ras activation, as the CD16-induced tyrosine phosphorylation of Shc adaptor protein and the formation of Shc/Grb-2 complex are abrogated by CD94/NKG2-A simultaneous engagement. Our observations indicate that CD94/NKG2-A inhibits the CD16-triggered activation of two signaling pathways involved in the cytotoxic activity of NK cells. They thus provide molecular evidence to explain the inhibitory function of CD94/NKG2-A receptor on NK effector functions.
Collapse
Affiliation(s)
- Gabriella Palmieri
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
- †Biotechnology Section, Institute for the Study and Cure of Tumors, and
| | - Valentino Tullio
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
| | - Alessandra Zingoni
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
| | - Mario Piccoli
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
| | - Luigi Frati
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
- §Istituto Mediterraneo di Neuroscienze Neuromed, Pozzilli, Italy; and
| | | | - Angela Santoni
- *Department of Experimental Medicine and Pathology, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza,
- ‡Laboratory of Pathophysiology, Regina Elena Cancer Institute, Rome, Italy
| |
Collapse
|
195
|
Thien CBF, Bowtell DDL, Langdon WY. Perturbed Regulation of ZAP-70 and Sustained Tyrosine Phosphorylation of LAT and SLP-76 in c-Cbl-Deficient Thymocytes. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.12.7133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Recent studies indicate that c-Cbl and its oncogenic variants can modulate the activity of protein tyrosine kinases. This finding is supported by studies showing that c-Cbl interacts directly with a negative regulatory tyrosine in ZAP-70, and that the levels of tyrosine-phosphorylated ZAP-70 and numerous other proteins are increased in TCR-stimulated thymocytes from c-Cbl-deficient mice. Here, we demonstrate that this enhanced phosphorylation of ZAP-70 and that of two substrates, LAT and SLP-76, is not due to altered protein levels but is the consequence of two separate events. First, we find increased expression of tyrosine-phosphorylated TCRζ chain in c-Cbl-deficient thymocytes, which results in a higher level of ζ-chain-associated ZAP-70 that is initially accessible for activation. Thus, more ZAP-70 is activated and more of its substrates (LAT and SLP-76) become tyrosine-phosphorylated after TCR stimulation. However, an additional mechanism of ZAP-70 regulation is evident at a later time poststimulation. At this time, ZAP-70 from both normal and c-Cbl−/− thymocytes becomes hyperphosphorylated; however, only in normal thymocytes does this correlate with ZAP-70 down-regulation and a diminished ability to phosphorylate LAT and SLP-76. In contrast, c-Cbl-deficient thymocytes display altered phosphorylation kinetics, for which LAT phosphorylation is increased and SLP-76 phosphorylation is sustained. Thus, the ability to down-regulate the phosphorylation of two ZAP-70 substrates is impaired in c-Cbl−/− thymocytes. These findings provide evidence that c-Cbl is involved in the negative regulation of the phosphorylation of LAT and SLP-76 by ZAP-70.
Collapse
Affiliation(s)
- Christine B. F. Thien
- *Department of Pathology, University of Western Australia, Queen Elizabeth II Medical Center, Nedlands, Western Australia, Australia
| | - David D. L. Bowtell
- †Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria, Australia
| | - Wallace Y. Langdon
- *Department of Pathology, University of Western Australia, Queen Elizabeth II Medical Center, Nedlands, Western Australia, Australia
| |
Collapse
|
196
|
Affiliation(s)
- S Bolland
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
197
|
Germain RN, Stefanová I. The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 1999; 17:467-522. [PMID: 10358766 DOI: 10.1146/annurev.immunol.17.1.467] [Citation(s) in RCA: 318] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells constantly sample their environment using receptors (TCR) that possess both a germline-encoded low affinity for major histocompatibility complex (MHC) molecules and a highly diverse set of CDR3 regions contributing to a range of affinities for specific peptides bound to these MHC molecules. The decision of a T cell "to sense and to respond" with proliferation and effector activity rather than "to sense, live on, but not respond" is dependent on TCR interaction with a low number of specific foreign peptide:MHC molecule complexes recognized simultaneously with abundant self peptide-containing complexes. Interaction with self-complexes alone, on the other hand, generates a signal for survival without a full activation response. Current models for how this distinction is achieved are largely based on translating differences in receptor affinity for foreign versus self ligands into intracellular signals that differ in quality, intensity, and/or duration. A variety of rate-dependent mechanisms involving assembly of molecular oligomers and enzymatic modification of proteins underlie this differential signaling. Recent advances have been made in measuring TCR:ligand interactions, in understanding the biochemical origin of distinct proximal and distal signaling events resulting from TCR binding to various ligands, and in appreciating the role of feedback pathways. This new information can be synthesized into a model of how self and foreign ligand recognition each evoke the proper responses from T cells, how these two classes of signaling events interact, and how pathologic responses may arise as a result of the underlying properties of the system. The principles of signal spreading and stochastic resonance incorporated into this model reveal a striking similarity in mechanisms of decision-making among T cells, neurons, and bacteria.
Collapse
Affiliation(s)
- R N Germain
- Lymphocyte Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA. ,
| | | |
Collapse
|
198
|
Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol 1999; 17:829-74. [PMID: 10358775 DOI: 10.1146/annurev.immunol.17.1.829] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Advances in gene technology have allowed the manipulation of molecular interactions that shape the T cell repertoire. Although recognized as fundamental aspects of T lymphocyte development, only recently have the mechanisms governing positive and negative selection been examined at a molecular level. Positive selection refers to the active process of rescuing MHC-restricted thymocytes from programmed cell death. Negative selection refers to the deletion or inactivation of potentially autoreactive thymocytes. This review focuses on interactions during thymocyte maturation that define the T cell repertoire, with an emphasis placed on current literature within this field.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
199
|
Bubeck-Wardenburg J, Wong J, Fütterer K, Pappu R, Fu C, Waksman G, Chan AC. Regulation of antigen receptor function by protein tyrosine kinases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:373-92. [PMID: 10354705 DOI: 10.1016/s0079-6107(98)00060-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Bubeck-Wardenburg
- Departments of Internal Medicine and Pathology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Cho HI, Park CG, Kim J. The cytoplasmic tail of killer inhibitory receptor (KIR) associates with TCR zeta in a phosphorylation-dependent manner. Immunol Lett 1999; 68:339-45. [PMID: 10424441 DOI: 10.1016/s0165-2478(99)00057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Killer inhibitory receptor (KIR) inhibits cytolytic function of killer cells by specific interaction with class I MHC molecules. The inhibitory effect mediated by KIR requires co-engagement of KIR with an activating receptor, such as TCR or FcR. This implies that KIR may function in the immediate vicinity of activating molecules, and previous studies have shown that p58 KIR is associated with TCR zeta- and FcR gamma-chain in NK cells. To better understand the molecular interaction between KIR and TCR zeta-chain, we generated a His-tag fusion protein of a p70 KIR cytoplasmic tail (His-CytKIR) and used this protein to coprecipitate TCR zeta-chain from Jurkat T cells. Western blots of the resolved coprecipitates showed that the cytoplasmic tail of KIR associates with TCR zeta in vitro. Interestingly, the association between the His-CytKIR and TCR zeta was dependent on the phosphorylation of the His-CytKIR. Unlike the unphosphorylated His-CytKIR, the phosphorylated form no longer associated with TCR zeta. However, the association was not affected by the tyrosine phosphorylation of TCR zeta. These results suggest that the cytoplasmic tail of KIR may couple to TCR zeta in a phosphorylation-dependent manner, so it could fine-tune the activation signals induced via the TCR.
Collapse
Affiliation(s)
- H I Cho
- Department of Microbiology and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|