151
|
Abstract
Fragrances are increasingly used in private and public domains. Over recent years the olfactory sense has been paid more and more scientific and economic attention. While on the one hand bad smells are counteracted by fragrances, marketing experts are now trying to introduce this sense into multimedia-based experiences. Technical means are used to address positively and directly the sense of smell. The aim is to make the smell a unique feature for a certain brand or location. When it comes to "style of living" or "special shopping experience" nowadays the olfactory design plays an important role. Although fragrances are applied very frequently, there is still a lack of knowledge about the potential consequences for health and the environment. Certain substances (musk compounds) have been proven persistent and accumulative, and others belong to the most common causes of contact eczema. Some people also report special sensitivities towards certain smells for unknown reasons. Unlike audiovisual attractions it is very difficult for humans to avoid olfactory stimuli. The question arises whether fragrance materials constitute a group of substances that should receive more attention concerning their risk for health and the environment.
Collapse
Affiliation(s)
- W Straff
- Umwelthygiene und Umweltmedizin gesundheitliche Bewertung, Umweltbundesamt, Berlin, Germany.
| |
Collapse
|
152
|
Organization of the Olfactory and Respiratory Skeleton in the Nose of the Gray Short-Tailed Opossum Monodelphis domestica. J MAMM EVOL 2005. [DOI: 10.1007/s10914-005-5731-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
153
|
Chandra SBC, Singh S. Chemosensory processing in the fruit fly,Drosophila melanogaster: generalization of a feeding response reveals overlapping odour representations. J Biosci 2005; 30:679-88. [PMID: 16388142 DOI: 10.1007/bf02703568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects are capable of detecting, and discriminating between, a very large number of odours. The biological relevance of many of those odours, particularly those related to food, must first be learned. Given that the number of sensory receptors and antennal lobe (AL) glomeruli is limited relative to the number of odours that must be detectable, this ability implies that the olfactory system makes use of a combinatorial coding scheme whereby each sensory cell or AL projection neuron can participate in coding for several different odours. An important step in understanding this coding scheme is to behaviourally quantify the degree to which sets of odours are discriminable. Here we evaluate odour discriminability in the fruit fly, Drosophila melanogaster, by first conditioning individual flies to not respond to any of several odorants using a nonassociative conditioning protocol (habituation). We show that flies habituate unconditioned leg movement responses to both mechanosensory and olfactory stimulation over 25 unreinforced trials. Habituation is retained for at least 2 h and is subject to dishabituation. Finally, we test the degree to which the conditioned response generalizes to other odorants based on molecular features of the odorants (e.g. carbon chain length and the presence of a target functional group). These tests reveal predictable generalization gradients across these molecular features. These data substantiate the claim that these features are relevant coding dimensions in the fruit fly olfactory system, as has been shown for other insect and vertebrate species.
Collapse
Affiliation(s)
- Sathees B C Chandra
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL 60605, USA.
| | | |
Collapse
|
154
|
Tajima T, Takiguchi N, Kato J, Ikeda T, Kuroda A, Ohtake H. Mutants of the nematode Caenorhabditis elegans that are defective specifically in their attraction to cycloheximide. J Biosci Bioeng 2005; 96:149-53. [PMID: 16233500 DOI: 10.1016/s1389-1723(03)90117-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/23/2003] [Indexed: 11/20/2022]
Abstract
The nematode Caenorhabditis elegans exhibits chemotaxis toward a wide variety of chemicals including water-soluble molecules and volatile organic compounds. We have previously discovered that C. elegans wild-type strain N2 is strongly attracted by cycloheximide which has long been known as a bitter tastant for humans and other mammals. We describe here the isolation and initial characterization of the first mutants which were defective specifically in their attraction to cycloheximide. In our screenings, we selected two mutants that were defective in chemotaxis to cycloheximide but normal in their attraction to NH4Cl and histidine. These mutants also avoided quinine hydrochloride, CuSO4 and high concentrations of NaCl similar to the wild-type strain N2. Furthermore, no observable defect was detected in their attraction to volatile odorants such as isoamyl alcohol and diacetyl. Dye-filling experiments suggested that they have no morphological defect in the sensory endings of the amphid neurons.
Collapse
Affiliation(s)
- Takahisa Tajima
- Department of Molecular Biotechnolog, Graduate School ofAdvanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | | | | | | | | | | |
Collapse
|
155
|
Di Schiavi E, Riano E, Heye B, Bazzicalupo P, Rugarli EI. UMODL1/Olfactorin is an extracellular membrane-bound molecule with a restricted spatial expression in olfactory and vomeronasal neurons. Eur J Neurosci 2005; 21:3291-300. [PMID: 16026467 DOI: 10.1111/j.1460-9568.2005.04164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The olfactory system provides a unique model for developmental neurobiology. Precise targeting of axonal projections from sensory neurons located in the olfactory epithelium to specific neurons in the olfactory bulb establishes a highly refined spatial sensory map. Distinctively, this process is not restricted to embryonic stages, but continues during the entire life of mammals. A number of secreted and membrane molecules have been implicated in guidance and targeting of olfactory sensory neurons. Here we describe olfactorin, the protein product of the mouse Umodl1 gene, as a potential new element in this process. Olfactorin is a secreted modular protein containing several domains typically present in extracellular matrix proteins (EMI, WAP, FNIII, Ca2+ -binding EGF-like, SEA and ZP domains). By in situ hybridization we find that during embryonic development expression of the Umodl1 gene is detectable only in the olfactory epithelium and vomeronasal organ starting at embryonic day 16.5. At this stage, Umodl1 expression within the olfactory epithelium is punctate, and is restricted to only some of the sensory neurons. At birth and postnatally, expression in these organs continues and involves more neurons. Kallmann syndrome is a genetic disease in which olfactory axons fail to connect to target neurons in the bulb. We tested whether olfactorin might be responsible for an autosomal form of this disease and show that this is not the case. However, based on its domain composition and on the expression in olfactory neurons we suggest that olfactorin may play a role in correct olfactory axon navigation to the brain.
Collapse
Affiliation(s)
- Elia Di Schiavi
- Institute of Genetics and Biophysics-A. Buzzati Traverso, IGB-ABT, via P. Castellino 111, CNR, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
156
|
Sbarbati A, Osculati F. The taste cell-related diffuse chemosensory system. Prog Neurobiol 2005; 75:295-307. [PMID: 15882778 DOI: 10.1016/j.pneurobio.2005.03.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 02/24/2005] [Accepted: 03/08/2005] [Indexed: 11/26/2022]
Abstract
Elements expressing the molecular mechanisms of gustatory transduction have been described in several organs in the digestive and respiratory apparatuses. These taste cell-related elements are isolated cells, which are not grouped in buds, and they have been interpreted as chemoreceptors. Their presence in epithelia of endodermal origin suggests the existence of a diffuse chemosensory system (DCS) sharing common signaling mechanisms with the "classic" taste organs. The elements of this taste cell-related DCS display a site-related morphologic polymorphism, and in the past they have been indicated with various names (e.g., brush, tuft, caveolated, fibrillo-vesicular or solitary chemosensory cells). It may be that the taste cell-related DCS is like an iceberg: the taste buds are probably only the most visible portion, with most of the iceberg more caudally located in the form of solitary chemosensory cells or chemosensory clusters. Comparative anatomical studies in lower vertebrates suggest that this 'submerged' portion may represent the most phylogenetically ancient component of the system, which is probably involved in defensive or digestive mechanisms. In the taste buds, the presence of several cell subtypes and of a wide range of molecular mechanisms permits precise food analysis. The larger, 'submerged' portion of the iceberg is composed of a polymorphic population of isolated elements or cell clusters in which the molecular cascade of cell signaling needs to be explored in detail. The little data we have strongly suggests a close relationship with taste cells. Morphological and biochemical considerations suggest that the DCS is a potential new drug target. Modulation of the respiratory and digestive apparatuses through substances, which act on the molecular receptors of this chemoreceptive system, could be a new frontier in drug discovery.
Collapse
Affiliation(s)
- A Sbarbati
- Department of Morphological-Biomedical Sciences, Section of Anatomy and Histology, University of Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | |
Collapse
|
157
|
Satoh G. A trajectory of increasing activity and the elaboration of chemosensory modality: a new perspective on vertebrate origins. Zoolog Sci 2005; 22:613-26. [PMID: 15988155 DOI: 10.2108/zsj.22.613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article reviews recent advances in comparative biological studies of vertebrate origins, with the aim of revisiting the long-standing controversy concerning these origins. Since early vertebrate evolution is paralleled by an evolutionary trend towards increasing activity, I focus on the evolution of respiratory and circulatory systems and discuss their potential roles in early vertebrate evolution. I give particular attention to the nasohypophyseal duct, an orifice characteristically found in agnathan vertebrates, and hypothesize that this duct originally functioned to convey oxygen dissolved in seawater to the respiratory gills. The chemosensory cell population that originated from the wall of the duct became the incipient olfactory organ and played a role in the organization of feeding behavior. An increase in chemosensory receptor genes via large-scale genomic evolution in the vertebrate lineage caused the repertoire of chemosensory cells to diversify and led to the appearance of the integrative center, including telencephalic structures typically lacking in protochordates.
Collapse
Affiliation(s)
- Gouki Satoh
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, Wakayama, Japan.
| |
Collapse
|
158
|
Satoh G. Characterization of novel GPCR gene coding locus in amphioxus genome: gene structure, expression, and phylogenetic analysis with implications for its involvement in chemoreception. Genesis 2005; 41:47-57. [PMID: 15682401 DOI: 10.1002/gene.20082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemosensation is the primary sensory modality in almost all metazoans. The vertebrate olfactory receptor genes exist as tandem clusters in the genome, so that identifying their evolutionary origin would be useful for understanding the expansion of the sensory world in relation to a large-scale genomic duplication event in a lineage leading to the vertebrates. In this study, I characterized a novel GPCR (G-protein-coupled receptor) gene-coding locus from the amphioxus genome. The genomic DNA contains an intronless ORF whose deduced amino acid sequence encodes a seven-transmembrane protein with some amino acid residues characteristic of vertebrate olfactory receptors (ORs). Surveying counterparts in the Ciona intestinalis (Asidiacea, Urochordata) genome by querying BLAST programs against the Ciona genomic DNA sequence database resulted in the identification of a remotely related gene. In situ hybridization analysis labeled primary sensory neurons in the rostral epithelium of amphioxus adults. Based on these findings, together with comparison of the developmental gene expression between amphioxus and vertebrates, I postulate that chemoreceptive primary sensory neurons in the rostrum are an ancient cell population traceable at least as far back in phylogeny as the common ancestor of amphioxus and vertebrates.
Collapse
Affiliation(s)
- Gouki Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
159
|
Hummel P, Vaidehi N, Floriano WB, Hall SE, Goddard WA. Test of the Binding Threshold Hypothesis for olfactory receptors: explanation of the differential binding of ketones to the mouse and human orthologs of olfactory receptor 912-93. Protein Sci 2005; 14:703-10. [PMID: 15722446 PMCID: PMC2279295 DOI: 10.1110/ps.041119705] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We tested the Binding Threshold Hypothesis (BTH) for activation of olfactory receptors (ORs): To activate an OR, the odorant must bind to the OR with binding energy above some threshold value. The olfactory receptor (OR) 912-93 is known experimentally to be activated by ketones in mouse, but is inactive to ketones in human, despite an amino acid sequence identity of approximately 66%. To investigate the origins of this difference, we used the MembStruk first-principles method to predict the tertiary structure of the mouse OR 912-93 (mOR912-93), and the HierDock first-principles method to predict the binding site for ketones to this receptor. We found that the strong binding of ketones to mOR912-93 is dominated by a hydrogen bond of the ketone carbonyl group to Ser105. All ketones predicted to have a binding energy stronger than EBindThresh = 26 kcal/mol were observed experimentally to activate this OR, while the two ketones predicted to bind more weakly do not. In addition, we predict that 2-undecanone and 2-dodecanone both bind sufficiently strongly to activate mOR912-93. A similar binding site for ketones was predicted in hOR912-93, but the binding is much weaker because the human ortholog has a Gly at the position of Ser105. We predict that mutating this Gly to Ser in human should lead to activation of hOR912-93 by these ketones. Experimental substantiations of the above predictions would provide further tests of the validity of the BTH, our predicted 3D structures, and our predicted binding sites for these ORs.
Collapse
Affiliation(s)
- Patrick Hummel
- Materials and Process Simulation Center (MC 139-74), California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
160
|
Røstelien T, Stranden M, Borg-Karlson AK, Mustaparta H. Olfactory Receptor Neurons in Two Heliothine Moth Species Responding Selectively to Aliphatic Green Leaf Volatiles, Aromatic Compounds, Monoterpenes and Sesquiterpenes of Plant Origin. Chem Senses 2005; 30:443-61. [PMID: 15917371 DOI: 10.1093/chemse/bji039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Moths of the subfamily Heliothinae are suitable models for comparative studies of plant odour information encoded by the olfactory system. Here we identify and functionally classify types of olfactory receptor neurons by means of electrophysiological recordings from single receptor neurons linked to gas chromatography and to mass spectrometry. The molecular receptive ranges of 14 types in the two polyphagous species Heliothis virescens and Helicoverpa armigera are presented. The receptor neurons are characterized by a narrow tuning, showing the best response to one primary odorant and weak responses to a few chemically related compounds. The most frequently occurring of the 14 types constituted the receptor neurons tuned to (+)-linalool, the enantioselectivity of which was shown by testing two samples with opposite enantiomeric ratios. These neurons, also responding to dihydrolinalool, were found to be functionally similar in the two related species. The primary odorants for 10 other receptor neuron types were identified as (3Z)-hexenyl acetate, (+)-3-carene, trans-pinocarveol, trans-verbenol, vinylbenzaldehyde, 2-phenylethanol, methyl benzoate, alpha-caryophyllene and caryophyllene oxide, respectively. Most odorants were present in several host and non-host plant species, often in trace amounts. The specificity as well as the co-localization of particular neuron types so far recorded in both species showed similarities of the olfactory systems receiving plant odour information in these two species of heliothine moths.
Collapse
Affiliation(s)
- T Røstelien
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway.
| | | | | | | |
Collapse
|
161
|
Tabor R, Yaksi E, Weislogel JM, Friedrich RW. Processing of odor mixtures in the zebrafish olfactory bulb. J Neurosci 2005; 24:6611-20. [PMID: 15269273 PMCID: PMC6729877 DOI: 10.1523/jneurosci.1834-04.2004] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Components of odor mixtures often are not perceived individually, suggesting that neural representations of mixtures are not simple combinations of the representations of the components. We studied odor responses to binary mixtures of amino acids and food extracts at different processing stages in the olfactory bulb (OB) of zebrafish. Odor-evoked input to the OB was measured by imaging Ca2+ signals in afferents to olfactory glomeruli. Activity patterns evoked by mixtures were predictable within narrow limits from the component patterns, indicating that mixture interactions in the peripheral olfactory system are weak. OB output neurons, the mitral cells (MCs), were recorded extra- and intracellularly and responded to odors with stimulus-dependent temporal firing rate modulations. Responses to mixtures of amino acids often were dominated by one of the component responses. Responses to mixtures of food extracts, in contrast, were more distinct from both component responses. These results show that mixture interactions can result from processing in the OB. Moreover, our data indicate that mixture interactions in the OB become more pronounced with increasing overlap of input activity patterns evoked by the components. Emerging from these results are rules of mixture interactions that may explain behavioral data and provide a basis for understanding the processing of natural odor stimuli in the OB.
Collapse
Affiliation(s)
- Rico Tabor
- Department of Biomedical Optics, Max Planck Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
162
|
Abstract
Recently, modern neuroscience has made considerable progress in understanding how the brain perceives, discriminates, and recognizes odorant molecules. This growing knowledge took over when the sense of smell was no longer considered only as a matter for poetry or the perfume industry. Over the last decades, chemical senses captured the attention of scientists who started to investigate the different stages of olfactory pathways. Distinct fields such as genetic, biochemistry, cellular biology, neurophysiology, and behavior have contributed to provide a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. So far, the combination of these approaches has been most effective at the cellular level, but there are already signs, and even greater hope, that the same is gradually happening at the systems level. This review summarizes the current ideas concerning the cellular mechanisms and organizational strategies used by the olfactory system to process olfactory information. We present findings that exemplified the high degree of olfactory plasticity, with special emphasis on the first central relay of the olfactory system. Recent observations supporting the necessity of such plasticity for adult brain functions are also discussed. Due to space constraints, this review focuses mainly on the olfactory systems of vertebrates, and primarily those of mammals.
Collapse
|
163
|
Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R. Pheromone reception in mammals. Rev Physiol Biochem Pharmacol 2005; 154:1-35. [PMID: 15800771 DOI: 10.1007/s10254-004-0038-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pheromonal communication is the most convenient way to transfer information regarding gender and social status in animals of the same species with the holistic goal of sustaining reproduction. This type of information exchange is based on pheromones, molecules often chemically unrelated, that are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. So profound is the relevance of pheromones over the evolutionary process that a specific peripheral organ devoted to their recognition, namely the vomeronasal organ of Jacobson, and a related central pathway arose in most vertebrate species. Although the vomeronasal system is well developed in reptiles and amphibians, most mammals strongly rely on pheromonal communication. Humans use pheromones too; evidence on the existence of a specialized organ for their detection, however, is very elusive indeed. In the present review, we will focus our attention on the behavioral, physiological, and molecular aspects of pheromone detection in mammals. We will discuss the responses to pheromonal stimulation in different animal species, emphasizing the complicacy of this type of communication. In the light of the most recent results, we will also discuss the complex organization of the transduction molecules that underlie pheromone detection and signal transmission from vomeronasal neurons to the higher centers of the brain. Communication is a primary feature of living organisms, allowing the coordination of different behavioral paradigms among individuals. Communication has evolved through a variety of different strategies, and each species refined its own preferred communication medium. From a phylogenetic point of view, the most widespread and ancient way of communication is through chemical signals named pheromones: it occurs in all taxa, from prokaryotes to eukaryotes. The release of specific pheromones into the environment is a sensitive and definite way to send messages to other members of the same species. Therefore, the action of an organism can alter the behavior of another organism, thereby increasing the fitness of either or both. Albeit slow in transmission and not easily modulated, pheromones can travel around objects in the dark and over long distances. In addition, they are emitted when necessary and their biosynthesis is usually economic. In essence, they represent the most efficient tool to refine the pattern of social behaviors and reproductive strategies.
Collapse
Affiliation(s)
- A Bigiani
- Università di Modena, Dipartimento di Scienze Biomediche, Modena, Italy
| | | | | | | |
Collapse
|
164
|
Chen N, Pai S, Zhao Z, Mah A, Newbury R, Johnsen RC, Altun Z, Moerman DG, Baillie DL, Stein LD. Identification of a nematode chemosensory gene family. Proc Natl Acad Sci U S A 2004; 102:146-51. [PMID: 15618405 PMCID: PMC539308 DOI: 10.1073/pnas.0408307102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Taking advantage of the recent availability of the whole genome sequence of Caenorhabditis briggsae, a closely related nematode to Caenorhabditis elegans, we have examined the chemosensory gene superfamily by using comparative genomic methods. We have identified a chemosensory gene family, serpentine receptor class ab (srab), which exists in both species with 25 members in C. elegans and 14 members in C. briggsae. More than 20% of these gene models are reannotated. The srab family is similar to, but distinct from, the previously described serpentine receptor class a (sra) family and shows a differential expansion in C. elegans similar to that previously described for sra. The cellular expression patterns for multiple members of the srab family in both phasmid neurons in the tail and amphid neurons in the head supports the conclusion that they are chemosensory genes and suggests that they may play a role in integrating chemosensory inputs from both ends of the organism. The expansion of both the srab and sra gene families in C. elegans relative to C. briggsae is due to multiple rounds of tandem duplication and translocation of individual genes.
Collapse
Affiliation(s)
- Nansheng Chen
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Störtkuhl K, Hatt H. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci 2004; 8:15-7. [PMID: 15592462 DOI: 10.1038/nn1371] [Citation(s) in RCA: 224] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 10/29/2004] [Indexed: 11/09/2022]
Abstract
Despite increasing knowledge about dimerization of G-protein-coupled receptors, nothing is known about dimerization in the largest subfamily, odorant receptors. Using a combination of biochemical and electrophysiological approaches, we demonstrate here that odorant receptors can dimerize. DOR83b, an odorant receptor that is ubiquitously expressed in olfactory neurons from Drosophila melanogaster and highly conserved among insect species, forms heterodimeric complexes with other odorant-receptor proteins, which strongly increases their functionality.
Collapse
|
166
|
Fukuda N, Yomogida K, Okabe M, Touhara K. Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci 2004; 117:5835-45. [PMID: 15522887 DOI: 10.1242/jcs.01507] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although a subset of the olfactory receptor (OR) gene family is expressed in testis, neither their developmental profile nor their physiological functions have been fully characterized. Here, we show that MOR23 (a mouse OR expressed in the olfactory epithelium and testis) functions as a chemosensing receptor in mouse germ cells. In situ hybridization showed that MOR23 was expressed in round spermatids during stages VI-VIII of spermatogenesis. Lyral, a cognate ligand of MOR23, caused an increase in intracellular Ca2+ in a fraction of spermatogenic cells and spermatozoa. We also generated transgenic mice that express high levels of MOR23 in the testis and examined the response of their germ cells to lyral. The results provided evidence that lyral-induced Ca2+ increases were indeed mediated by MOR23. In a sperm accumulation assay, spermatozoa migrated towards an increasing gradient of lyral. Tracking and sperm flagellar analyses suggest that Ca2+ increases caused by MOR23 activation lead to modulation of flagellar configuration, resulting in chemotaxis. By contrast, a gradient of a cAMP analog or K8.6 solution, which elicit Ca2+ influx in spermatozoa, did not cause sperm accumulation, indicating that chemosensing and regulation of sperm motility was due to an OR-mediated local Ca2+ increase. The present studies indicate that mouse testicular ORs might play a role in chemoreception during sperm-egg communication and thereby regulate fertilization.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | | | | |
Collapse
|
167
|
Dukes JP, Deaville R, Bruford MW, Youngson AF, Jordan WC. Odorant receptor gene expression changes during the parr-smolt transformation in Atlantic salmon. Mol Ecol 2004; 13:2851-7. [PMID: 15315695 DOI: 10.1111/j.1365-294x.2004.02252.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of salmon to home accurately to their natal stream to spawn has long intrigued biologists and has important consequences for the maintenance of population structure in these species. It is known that olfaction is crucial to homing, and that the transition from the freshwater to the marine environment (the parr-smolt transformation; PST) is a period of increased olfactory sensitivity and learning, resulting in a permanent memory of natal site odours that is retained, at least in part, in peripheral sensory neurones. These odours are then used as cues by sexually maturing fish on their homeward migration. We used quantitative polymerase chain reaction techniques to demonstrate transient increases in expression of odorant receptor transcripts (of up to fifty-fold over pre-PST levels) coincident with PST. Both olfactory (SORB) and vomeronasal receptors (SVRA and SVRC) are involved, which suggests that the fish learn both environmental odours and semiochemicals (pheromones). Receptor expression varies between families and changes over time indicating both genetic differences in odour stimuli and multiple periods of olfactory sensitivity. We suggest that changes in OR gene expression may have a role in homing behaviour and thus the maintenance of population structure in Atlantic salmon.
Collapse
Affiliation(s)
- J P Dukes
- Institute of Zoology, Zoological Society of London, Regent's Park, NW1 4RY, UK
| | | | | | | | | |
Collapse
|
168
|
Zhang X, Rodriguez I, Mombaerts P, Firestein S. Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 2004; 83:802-11. [PMID: 15081110 DOI: 10.1016/j.ygeno.2003.10.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
Odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) are large superfamilies of chemosensory receptors. As an extension of previous research using the 2001 Celera mouse genome assembly, we analyzed OR and V1R genes in the 2002 public mouse genome assembly. We identified 1403 OR genes (1068 potentially intact) and 332 V1R genes (164 potentially intact) in this C57BL/6J mouse genome. This expands the mouse OR and V1R superfamilies by adding approximately 100 OR and approximately 40 V1R potentially intact genes. The description of the genomic distribution of OR genes is more complete and accurate, and two major errors in OR gene distribution in the 2001 Celera assembly were corrected. For the first time, the complete genomic distribution of V1R genes was investigated in detail and placed in context with that of OR genes. V1R genes, like OR genes, tend to form clusters of similar genes in the genome. Comparison between the two genome assemblies revealed a high rate of single-nucleotide polymorphisms (SNPs) in both OR and V1R genes. The high ratio of nonsynonymous SNPs over synonymous SNPs in V1R genes suggests positive selection for these genes, possibly favoring species-specific and strain-specific pheromone detection. In addition, detailed analysis of the SNP rate aided in the identification of key residues in ORs.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Biological Sciences, Columbia University, 923 Fairchild, MC2438, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
169
|
Boon WM, Beissbarth T, Hyde L, Smyth G, Gunnersen J, Denton DA, Scott H, Tan SS. A comparative analysis of transcribed genes in the mouse hypothalamus and neocortex reveals chromosomal clustering. Proc Natl Acad Sci U S A 2004; 101:14972-7. [PMID: 15466702 PMCID: PMC522044 DOI: 10.1073/pnas.0406296101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hypothalamus and neocortex are subdivisions of the mammalian forebrain, and yet, they have vastly different evolutionary histories, cytoarchitecture, and biological functions. In an attempt to define these attributes in terms of their genetic activity, we have compared their genetic repertoires by using the Serial Analysis of Gene Expression database. From a comparison of 78,784 hypothalamus tags with 125,296 neocortical tags, we demonstrate that each structure possesses a different transcriptional profile in terms of gene ontological characteristics and expression levels. Despite its more recent evolutionary history, the neocortex has a more complex pattern of gene activity. Gene identities and levels of gene expression were mapped to their chromosomal positions by using in silico definition of GC-rich and GC-poor genome bands. This analysis shows contrasting views of gene activity on a genome scale that is unique to each brain substructure. We show that genes that are more highly expressed in one tissue tend to be clustered together on a chromosomal scale, further defining the genetic identity of either the hypothalamus or neocortex. We propose that physical proximity of coregulated genes may facilitate transcriptional access to the genetic substrates of evolutionary selection that ultimately shape the functional subdivisions of the mammalian brain.
Collapse
Affiliation(s)
- Wee-Ming Boon
- Howard Florey Institute, University of Melbourne, Parkville 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Hamilton AT, Huntley S, Kim J, Branscomb E, Stubbs L. Lineage-specific expansion of KRAB zinc-finger transcription factor genes: implications for the evolution of vertebrate regulatory networks. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:131-40. [PMID: 15338611 DOI: 10.1101/sqb.2003.68.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A T Hamilton
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | |
Collapse
|
171
|
Dalton P, Gelperin A, Preti G. Volatile metabolic monitoring of glycemic status in diabetes using electronic olfaction. Diabetes Technol Ther 2004; 6:534-44. [PMID: 15321012 DOI: 10.1089/1520915041705992] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The increased incidence of Type I and Type II diabetes among adults and adolescents is a growing public health concern worldwide. The primary objective of diabetes mellitus management involves keeping glycemia levels within the euglycemic range to prevent a variety of serious health complications. Unfortunately, daily self-monitoring is both a requirement and a problem for many patients with diabetes, particularly children and adolescents. Studies have shown that as many as 43% of adolescents and 30% of children (<14 years old) regularly forget to use glycemic tests and are significantly poorer at recognizing and reporting symptoms and signs of hypoglycemia/hyperglycemia. For this reason, methods for noninvasive, continuous monitoring that can signal glycemic status to a parent, teacher, or other caregiver would improve the care and management of symptoms of diabetes among these individuals. The goal of this review is to describe and evaluate electronic olfaction technology ("electronic nose") for monitoring the presence and levels of volatile chemicals from human body and breath that can be used to evaluate status of diabetes. The review is organized in four sections. The first section reviews the chemistry of the volatile signals that are produced by the body that are indicative of metabolic status. The second section provides an overview of novel sensor technology, e.g., "electronic olfaction," that mimics the biological olfactory system and can be used to monitor and identify complex plumes of volatiles that are signatures of metabolic states. The third section reviews studies that have employed electronic "nose" technology for diagnosis and monitoring of diabetes via urine and breath, and the final section discusses needed future directions for the development of olfactory-based metabolic monitoring, particularly among noncompliant populations.
Collapse
Affiliation(s)
- Pamela Dalton
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA.
| | | | | |
Collapse
|
172
|
Sadler K, Tam JP. Shape-mimetics of G-protein-coupled receptors in therapeutic drug design and screening. Drug Dev Res 2004. [DOI: 10.1002/ddr.10391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
173
|
Menini A, Lagostena L, Boccaccio A. Olfaction: from odorant molecules to the olfactory cortex. Physiology (Bethesda) 2004; 19:101-4. [PMID: 15143202 DOI: 10.1152/nips.1507.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How do we smell? Our knowledge of how odor information from the environment is perceived has greatly advanced since the discovery of approximately 1,000 genes for odorant receptors in the mammalian genome. From the combination of molecular-genetic, electrophysiological, and optical imaging studies a better understanding of how we smell is emerging.
Collapse
Affiliation(s)
- Anna Menini
- Sector of Neurobiology, International School for Advanced Studies, Scuola Internazionale di Studi Superiori Avanzati, 34014 Trieste, Italy
| | | | | |
Collapse
|
174
|
Hamlin JA, Fang H, Schwob JE. Differential expression of the mammalian homologue of fasciclin II during olfactory development in vivo and in vitro. J Comp Neurol 2004; 474:438-52. [PMID: 15174086 DOI: 10.1002/cne.20133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Developing olfactory sensory neurons are guided to the glomeruli of the olfactory bulb by an increasingly stringent process that is influenced by expression of odorant receptors, cell adhesion molecules (CAMs), and other kinds of signaling cascades. A fundamental feature of the projection is the connecting of broad zones in the epithelium to broad zones in the bulb, also termed rhinotopy. One molecule that parallels and may aid neurons in establishing rhinotopy is the mammalian homologue of fasciclin II (OCAM/mamFas II; also known as RNCAM and NCAM-2), an immunoglobulin superfamily CAM that is differentially expressed in the developing and mature olfactory epithelium (OE): Axons elaborated by ventral and lateral epithelium express the protein at high levels, whereas dorsomedial axons express little or no OCAM/mamFas II. Our investigation has demonstrated that OCAM/mamFas II is detectable early in the development of the rat OE. mRNA is evident on RT-PCR and in situ hybridization by E12.5, and protein is apparent by immunohistochemistry by E13.5. By using a tissue culture system that separates ventral septal epithelium (OCAM/mamFas II-positive) from dorsal (OCAM/mamFas II-negative), we find that explants maintain protein expression levels in vitro that are characteristic of the phenotype at the original location in vivo. At least some neurons are born in culture, suggesting that any cues that direct differential expression are also maintained in vitro. Finally, high OCAM/mamFas II expression correlates with increased growth and fasciculation of olfactory axons in vitro. These data and the similarity between OCAM/mamFas II, on the one hand, and fasciclin II and NCAM, on the other, suggest that OCAM/mamFas II might play a role in growth and fasciculation of primary olfactory axons during development of the projection.
Collapse
Affiliation(s)
- John A Hamlin
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
175
|
Daly KC, Wright GA, Smith BH. Molecular Features of Odorants Systematically Influence Slow Temporal Responses Across Clusters of Coordinated Antennal Lobe Units in the MothManduca sexta. J Neurophysiol 2004; 92:236-54. [PMID: 14985411 DOI: 10.1152/jn.01132.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies of olfactory discrimination and stimulus generalization in many species indicate that the molecular features of monomolecular odorants are important for odor discrimination. Here we evaluate how features, such as carbon chain length and functional group, are represented in the first level of synaptic processing. We recorded antennal lobe ensemble responses in the moth Manduca sexta to repeated 100-ms pulses of monomolecular alcohols and ketones. Most units exhibited a significant change in spike rate in response to most odorants that outlasted the duration of the stimulus. Peristimulus data were then sampled over 780 ms for each pulse of all odorants. Factor analysis was used to assess whether there were groups of units with common response patterns. We found that factors identified and represented activity for clusters of units with common temporal response characteristics. These temporally patterned responses typically spanned 780 ms and were often dependent on carbon chain length and functional group. Furthermore, cross-correlation analysis frequently indicated significant coincident spiking even during spontaneous activity. However, this synchrony occurred mainly between units recorded on the same tetrode. In a final analysis, the Euclidean distance between odor responses was calculated for each pair of odorants using factors as dimensions. The distance between responses for any two odorants was maximized by ∼240 ms. This time course corresponded to the brief sequence of coordinated bursts across the recorded population. The distance during this period was also a function of systematic differences in molecular features. Results of this Euclidian analysis thus directly correlate to previous behavioral studies of stimulus generalization in M. sexta.
Collapse
Affiliation(s)
- Kevin C Daly
- Department of Entomology, The Ohio State University, 400 Aronoff Laboratory, 318 W. 12th Ave., Columbus, OH 43210, USA.
| | | | | |
Collapse
|
176
|
Wachowiak M, Denk W, Friedrich RW. Functional organization of sensory input to the olfactory bulb glomerulus analyzed by two-photon calcium imaging. Proc Natl Acad Sci U S A 2004; 101:9097-102. [PMID: 15184670 PMCID: PMC428479 DOI: 10.1073/pnas.0400438101] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glomeruli in the olfactory bulb are anatomically discrete modules receiving input from idiotypic olfactory sensory neurons. To examine the functional organization of sensory inputs to individual glomeruli, we loaded olfactory sensory neurons with a Ca(2+) indicator and measured odorant-evoked presynaptic Ca(2+) signals within single glomeruli by using two-photon microscopy in anaesthetized mice. Odorants evoked patterns of discrete Ca(2+) signals throughout the neuropil of a glomerulus. Across glomeruli, Ca(2+) signals occurred with equal probability in all glomerular regions. Within single glomeruli, the pattern of intraglomerular Ca(2+) signals was indistinguishable for stimuli of different duration, identity, and concentration. Moreover, the response time course of the signals was similar throughout the glomerulus. Hence, sensory inputs to individual glomeruli are spatially heterogeneous but seem to be functionally indiscriminate. These results support the view of olfactory glomeruli as functional units in representing sensory information.
Collapse
Affiliation(s)
- Matt Wachowiak
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | |
Collapse
|
177
|
Chyb S. Drosophila gustatory receptors: from gene identification to functional expression. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:469-477. [PMID: 15183276 DOI: 10.1016/j.jinsphys.2004.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 03/22/2004] [Indexed: 05/24/2023]
Abstract
Recent years have seen long-awaited progress in understanding of the molecular mechanisms of taste perception in insects. The breakthrough came in the early 2000 with the identification of a novel family of candidate gustatory receptor (Gr) genes in the first release of the Drosophila melanogaster genome sequence. The 60 Gr genes are expressed in the subsets of gustatory neurons in the fly's taste organs and, without exception, encode heptahelical G protein-coupled receptors (GPCRs). Here I review our current knowledge about Gr genes and their products focusing on the newly emerging information regarding the function of the Gr-encoded proteins.
Collapse
Affiliation(s)
- Sylwester Chyb
- Laboratory of Molecular Physiology, Imperial College London, Wye Campus, Kent TN25 5AH, UK.
| |
Collapse
|
178
|
Nagayama S, Takahashi YK, Yoshihara Y, Mori K. Mitral and Tufted Cells Differ in the Decoding Manner of Odor Maps in the Rat Olfactory Bulb. J Neurophysiol 2004; 91:2532-40. [PMID: 14960563 DOI: 10.1152/jn.01266.2003] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitral and tufted cells in the mammalian olfactory bulb are principal neurons, each type having distinct projection pattern of their dendrites and axons. The morphological difference suggests that mitral and tufted cells are functionally distinct and may process different aspects of olfactory information. To examine this possibility, we recorded odorant-evoked spike responses from mitral and middle tufted cells in the aliphatic acid- and aldehyde-responsive cluster at the dorsomedial part of the rat olfactory bulb. Homologous series of aliphatic acids and aldehydes were used for odorant stimulation. In response to adequate odorants, mitral cells showed spike responses with relatively low firing rates, whereas middle tufted cells responded with higher firing rates. Examination of the molecular receptive range (MRR) indicated that most mitral cells exhibited a robust inhibitory MRR, whereas a majority of middle tufted cells showed no or only a weak inhibitory MRR. In addition, structurally different odorants that activated neighboring clusters inhibited the spike activity of mitral cells, whereas they caused no or only a weak inhibition in the middle tufted cells. Furthermore, responses of mitral cells to an adequate excitatory odorant were greatly inhibited by mixing the odorant with other odorants that activated neighboring glomeruli. In contrast, odorants that activated neighboring glomeruli did not significantly inhibit the responses of middle tufted cells to the adequate excitatory odorant. These results indicate a clear difference between mitral and middle tufted cells in the manner of decoding the glomerular odor maps.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Physiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
179
|
Bozza T, McGann JP, Mombaerts P, Wachowiak M. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 2004; 42:9-21. [PMID: 15066261 DOI: 10.1016/s0896-6273(04)00144-8] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 01/23/2004] [Accepted: 02/25/2004] [Indexed: 11/21/2022]
Abstract
Genetically encoded probes show great promise in permitting functional imaging of specified neuronal populations in the intact nervous system, yet their in vivo application has been limited. Here, we have targeted expression of synapto-pHluorin, a pH-sensitive protein that reports synaptic vesicle fusion, to olfactory sensory neurons in mouse. Synapto-pHluorin selectively labeled presynaptic terminals of sensory neurons in glomeruli of the olfactory bulb. Odorant stimulation evoked large-amplitude fluorescence increases that were localized to individual glomeruli in vivo, correlated with presynaptic calcium influx, graded with stimulus intensity, and stable over a period of days. Spatial patterns of odorant-activated glomeruli were distributed and did not change systematically with increasing carbon chain length, in contrast to the finely organized chemotopy that has been reported using other imaging methods. Targeted expression of synapto-pHluorin in mouse will permit the analysis of previously inaccessible neuronal populations and chronic imaging from genetically identified neurons in vivo.
Collapse
Affiliation(s)
- Thomas Bozza
- The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
180
|
Mombaerts P. Odorant receptor gene choice in olfactory sensory neurons: the one receptor-one neuron hypothesis revisited. Curr Opin Neurobiol 2004; 14:31-6. [PMID: 15018935 DOI: 10.1016/j.conb.2004.01.014] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Designed for general chemical recognition, the mammalian olfactory system shares many similarities with the immune system. Among these is the popular notion that a single olfactory sensory neuron expresses a single odorant receptor gene, while all other approximately 1000 genes of this type remain silent. Here, I examine the evidence supporting the one receptor-one neuron hypothesis. I conclude that, contrary to widespread belief, it is far from being proven. I propose an hypothesis of a developmental phase of oligogenic expression that is followed by positive and negative selection resulting usually in cells with one expressed receptor. Curiously, selective processes are well established and widely accepted for lymphocytes, but these concepts are essentially ignored for olfactory sensory neurons, despite the analogies that are frequently made between these two systems. More attention must be paid to odorant receptor gene choice and expression during development and neuronal differentiation.
Collapse
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
181
|
Abstract
Humans perceive an immense variety of chemicals as having distinct odors. Odor perception initiates in the nose, where odorants are detected by a large family of olfactory receptors (ORs). ORs have diverse protein sequences but can be assigned to subfamilies on the basis of sequence relationships. Members of the same subfamily have related sequences and are likely to recognize structurally related odorants. To gain insight into the mechanisms underlying odor perception, we analyzed the human OR gene family. By searching the human genome database, we identified 339 intact OR genes and 297 OR pseudogenes. Determination of their genomic locations showed that OR genes are unevenly distributed among 51 different loci on 21 human chromosomes. Sequence comparisons showed that the human OR family is composed of 172 subfamilies. Types of odorant structures that may be recognized by some subfamilies were predicted by identifying subfamilies that contain ORs with known odor ligands or human homologs of such ORs. Analysis of the chromosomal locations of members of each OR subfamily revealed that most subfamilies are encoded by a single chromosomal locus. Moreover, many loci encode only one or a few subfamilies, suggesting that different parts of the genome may, to some extent, be involved in the detection of different types of odorant structural motifs.
Collapse
Affiliation(s)
- Bettina Malnic
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | |
Collapse
|
182
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
183
|
Chen X, Fang H, Schwob JE. Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 2004; 469:457-74. [PMID: 14755529 DOI: 10.1002/cne.11031] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
By comparison with the rest of the nervous system, the olfactory epithelium has an unparalleled ability to renew and repair itself throughout life. However, the identity and capacity of the various types of progenitor cells that underlie that ability are not well established. We used selective isolation, transplantation, and engraftment of various types of marker-labeled cells into the epithelium of methyl bromide-lesioned, unmarked host mice to dissect progenitor cell capacity. Globose basal cells were purified from other potential progenitors using the monoclonal antibody GBC-2 (GBC, globose basal cell) and fluorescence activated cell sorting. Transplanted globose basal cells engraft and, in aggregate, give rise to globose basal cells, neurons, sustentacular cells, and several other kinds of non-neuronal cells. Individual clones, derived from single engrafted globose basal cells, can consist of a mixture of neurons and non-neuronal cells, only neurons, or only non-neuronal cells. Neurons that arise after transplantation mature to the point of expressing odorant receptors and olfactory marker protein and of projecting axons to the olfactory bulb. In contrast, other kinds of epithelial cells are neither neurogenic nor multipotent. For example, sustentacular and duct cells give rise only to themselves after transplantation. Furthermore, horizontal basal cells do not engraft in mice, in which the endogenous population is spared after lesion. Thus, some subtype(s) of GBC is a multipotent progenitor cell, whose multipotency is activated after destruction of both neurons and non-neuronal cells. The results suggest that progenitor cell transplantation may prove useful as a therapeutic modality as well as an analytical tool.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
184
|
Molyneaux KA, Wang Y, Schaible K, Wylie C. Transcriptional profiling identifies genes differentially expressed during and after migration in murine primordial germ cells. Gene Expr Patterns 2004; 4:167-81. [PMID: 15161097 DOI: 10.1016/j.modgep.2003.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 09/03/2003] [Accepted: 09/04/2003] [Indexed: 12/25/2022]
Abstract
Mouse primordial germ cells (PGCs) are migratory until they colonize the genital ridges, assemble with the somatic tissue, and start to differentiate into oocytes or spermatogonia. Using cell transplantation experiments, we show here that germ cells isolated during migration (at E10.5) will migrate actively to the genital ridges, whereas post-migratory PGCs isolated from E12.5 embryos are non-motile even when transferred into a permissive environment (e.g. E10.5 host tissue). Major transcriptional changes must take place between E10.5 and E12.5 that convert germ cells from a migratory to a non-migratory state. To identify the genes involved, we have performed transcriptional profiling of motile and non-motile populations of PGCs. We have identified 55 transcripts that are expressed in E10.5 PGCs at levels at least 3 x their expression at E12.5, and 48 transcripts with the reciprocal expression levels. Additionally, 309 transcripts were found to be expressed in both populations. Many of the E10.5 transcripts encode proteins involved in controlling cytoskeletal and adhesive interactions implicated in cell motility. Many of the E12.5 transcripts encode proteins implicated in germ cell differentiation.
Collapse
Affiliation(s)
- Kathleen A Molyneaux
- Division of Developmental Biology, Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
185
|
Friedrich RW, Laurent G. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. J Neurophysiol 2004; 91:2658-69. [PMID: 14960561 DOI: 10.1152/jn.01143.2003] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The processing of odor-evoked activity in the olfactory bulb (OB) of zebrafish was studied by extracellular single unit recordings from the input and output neurons, i.e., olfactory receptor neurons (ORNs) and mitral cells (MCs), respectively. A panel of 16 natural amino acid odors was used as stimuli. Responses of MCs, but not ORNs, changed profoundly during the first few hundred milliseconds after response onset. In MCs, but not ORNs, the total evoked excitatory activity in the population was initially odor-dependent but subsequently converged to a common level. Hence, the overall population activity is regulated by network interactions in the OB. The tuning widths of both ORN and MC response profiles were similar and, on average, stable over time. However, when analyzed for individual neurons, MC response profiles could sharpen (excitatory response to fewer odors) or broaden (excitatory response to more odors), whereas ORN response profiles remained nearly unchanged. Several observations indicate that dynamic inhibition plays an important role in this remodeling. Finally, the reliability of odor identification based on MC population activity patterns improved over time, whereas odor identification based on ORN activity patterns was most reliable early in the odor response. These results demonstrate that several properties of MC, but not ORN, activity change during the initial phase of the odor response with important consequences for odor-encoding activity patterns. Furthermore, our data indicate that inhibitory interactions in the OB are important in dynamically shaping the activity of OB output neurons.
Collapse
Affiliation(s)
- Rainer W Friedrich
- Department of Biomedical Optics, Max-Planck-Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
186
|
Hoppe R, Frank H, Breer H, Strotmann J. The clustered olfactory receptor gene family 262: genomic organization, promotor elements, and interacting transcription factors. Genome Res 2004; 13:2674-85. [PMID: 14656972 PMCID: PMC403809 DOI: 10.1101/gr.1372203] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For six mouse olfactory receptor genes from family 262 which are expressed in clustered populations of olfactory sensory neurons, the genomic as well as cDNA structures were deciphered. All genes contained several exons which in some cases were alternatively spliced. Immediately upstream of the transcription start sites, sequence motif blocks were identified that are highly conserved among olfactory receptor (OR) genes which are expressed in clustered neuronal populations. By means of electrophoretic mobility shift assays, it was demonstrated that segments of the motif block region interact with proteins extracted from nuclear fractions of the olfactory epithelium. Yeast one-hybrid screenings of an olfactory cDNA library led to the identification of a set of transcription factors that specifically bind to particular elements of the motif block region. The identified factors can be categorized into two types: One group is known to be involved in transcriptional initiation, and the second group represents factors involved in pattern formations. The identified components may contribute to govern the precise topographic expression pattern of olfactory receptor genes.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
187
|
Meijerink J, Carlsson MA, Hansson BS. Spatial representation of odorant structure in the moth antennal lobe: a study of structure-response relationships at low doses. J Comp Neurol 2004; 467:11-21. [PMID: 14574676 DOI: 10.1002/cne.10914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How odorant structure and concentration are spatially represented within the primary olfactory integration center, the antennal lobe (AL) or olfactory bulb (OB) in invertebrates and vertebrates, respectively, is currently a topic of high interest. Here, we show the spatial representation of odorant structure in the antennal lobe of the moth Spodoptera littoralis by imaging calcium activity evoked by straight chain aliphatic alcohols and aldehydes at low doses. Activity patterns of a given odor were most similar to compounds with the same functional group, differing in chain length by only one carbon atom. A chain length dependency was present as the most activated glomerulus in the lobe shifted from a medial to a lateral position with increasing chain length of the molecule. Statistical analysis revealed that in both classes of chemicals the chain length of the molecule was represented in a similar way. No topographically fixed domains were observed for any of the classes. However, activity patterns evoked by lower chain length molecules were spatially more distinct than patterns evoked by higher chain length molecules. The number of activated glomeruli for both classes of chemicals increased with increasing chain length to reach a maximum at eight or nine C atoms followed by a decrease as the chain length further increased.
Collapse
Affiliation(s)
- Jocelijn Meijerink
- Department of Crop Sciences, Chemical Ecology, Swedish Agricultural University, 230 53 Alnarp, Sweden.
| | | | | |
Collapse
|
188
|
Araneda RC, Peterlin Z, Zhang X, Chesler A, Firestein S. A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium. J Physiol 2004; 555:743-56. [PMID: 14724183 PMCID: PMC1664868 DOI: 10.1113/jphysiol.2003.058040] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Several lines of evidence suggest that odorants are recognized through a combinatorial process in the olfactory system; a single odorant is recognized by multiple receptors and multiple odorants are recognized by the same receptor. However few details of how this might actually function for any particular odour set or receptor family are available. Approaching the problem from the ligands rather than the receptors, we used the response to a common odorant, octanal, as the basis for defining multiple receptor profiles. Octanal and other aldehydes induce large EOG responses in the rodent olfactory epithelium, suggesting that these compounds activate a large number of odour receptors (ORs). Here, we have determined and compared the pharmacological profile of different octanal receptors using Ca(2+) imaging in isolated olfactory sensory neurones (OSNs). It is believed that each OSN expresses only one receptor, thus the response profile of each cell corresponds to the pharmacological profile of one particular receptor. We stimulated the cells with a panel of nine odorants, which included octanal, octanoic acid, octanol and cinnamaldehyde among others (all at 30microM). Cluster analysis revealed several distinct pharmacological profiles for cells that were all sensitive to octanal. Some receptors had a broad molecular range, while others were activated only by octanal. Comparison of the profiles with that of the one identified octanal receptor, OR-I7, indicated several differences. While OR-I7 is activated by low concentrations of octanal and blocked by citral, other receptors were less sensitive to octanal and not blocked by citral. A lower estimate for the maximal number of octanal receptors is between 33 and 55. This large number of receptors for octanal suggests that, although the peripheral olfactory system is endowed with high sensitivity, discrimination among different compounds probably requires further central processing.
Collapse
Affiliation(s)
- Ricardo C Araneda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | | | | | | | | |
Collapse
|
189
|
Otaki JM, Yamamoto H, Firestein S. Odorant receptor expression in the mouse cerebral cortex. ACTA ACUST UNITED AC 2004; 58:315-27. [PMID: 14750145 DOI: 10.1002/neu.10272] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian odorant receptors have been known to be involved not only in odorant detection but also in neuronal development of olfactory sensory neurons. We have examined a possibility of odorant receptor expression in nonolfactory neurons in the mouse. Mouse odorant receptors (M71, C6, and OR3), two of which were already shown to be functionally activated by odorants in heterologous systems, were detected by polymerase chain reactions (PCRs) from the cerebral cortex but not from other brain tissues. Degenerate PCR further suggested that other odorant receptors were also expressed in the mouse cerebral cortex. One of these receptors showed high sequence-match with a putative chick odorant receptor OR7 transiently expressed in the notochord during development. In situ hybridization detected signals for M71 and C6 receptors in the layer II cortical pyramidal neurons located in the occipital pole. In the M71-IRES-tauLacZ mouse, in which M71 expression was genetically marked with tauLacZ, X-gal staining signals were mostly localized in the layer II neurons in the occipital pole, being consistent with the in situ hybridization result. Fluorescent immunohistochemistry using anti-beta-galactosidase antibody further detected the tauLacZ signals in the same cells. X-gal staining began at P3, peaked at P8, and continued to adults, although signals gradually decreased. These data showed that at least a few odorant receptors are expressed not only in olfactory sensory neurons but also in pyramidal neurons in the cerebral cortex, possibly playing an important role either in chemical detection of exogenous or endogenous ligands or in a developmental process such as axon guidance and target recognition.
Collapse
Affiliation(s)
- Joji M Otaki
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | |
Collapse
|
190
|
Kay RF, Campbell VM, Rossie JB, Colbert MW, Rowe TB. Olfactory fossa ofTremacebus harringtoni (platyrrhini, early Miocene, Sacanana, Argentina): Implications for activity pattern. ACTA ACUST UNITED AC 2004; 281:1157-72. [PMID: 15481092 DOI: 10.1002/ar.a.20121] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
CT imaging was undertaken on the skull of approximately 20-Myr-old Miocene Tremacebus harringtoni. Here we report our observations on the relative size of the olfactory fossa and its implications for the behavior of Tremacebus. The endocranial surface of Tremacebus is incomplete, making precise estimate of brain size and olfactory fossa size imprecise. However, olfactory fossa breadth and maximum endocranial breadth measured from CT images of one catarrhine species and eight platyrrhine species for which volumes of the olfactory bulb and brain are known show that the osteological proxies give a reasonably accurate indication of relative olfactory bulb size. Nocturnal Aotus has the largest relative olfactory fossa breadth and the largest olfactory bulb volume compared to brain volume among extant anthropoids. Tremacebus had a much smaller olfactory fossa breadth and, by inference, bulb volume--within the range of our sample of diurnal anthropoids. Variations in the relative size of the olfactory bulbs in platyrrhines appear to relate to the importance of olfaction in daily behaviors. Aotus has the largest olfactory bulbs among platyrrhines and relies more on olfactory cues when foraging than Cebus, Callicebus, or Saguinus. As in other examples of nocturnal versus diurnal primates, nocturnality may have been the environmental factor that selected for this difference in Aotus, although communication and other behaviors are also likely to select for olfactory variation in diurnal anthropoids. Considering the olfactory fossa size of Tremacebus, olfactory ability of this Miocene monkey was probably not as sensitive as in Aotus and counts against the hypothesis that Tremacebus was nocturnal. This finding accords well with previous observations that the orbits of Tremacebus are not as large as nocturnal Aotus.
Collapse
Affiliation(s)
- Richard F Kay
- Department of Biological Anthropology and Anatomy, Duke University, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
191
|
Oka Y, Omura M, Kataoka H, Touhara K. Olfactory receptor antagonism between odorants. EMBO J 2003; 23:120-6. [PMID: 14685265 PMCID: PMC1271670 DOI: 10.1038/sj.emboj.7600032] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2003] [Accepted: 11/24/2003] [Indexed: 01/31/2023] Open
Abstract
The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist-OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality.
Collapse
Affiliation(s)
- Yuki Oka
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
| | - Masayo Omura
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
| | - Kazushige Touhara
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan. Tel.: +81 471 36 3624; Fax: +81 471 36 3626; E-mail:
| |
Collapse
|
192
|
Nandi N. Role of Secondary Level Chiral Structure in the Process of Molecular Recognition of Ligand: Study of Model Helical Peptide. J Phys Chem B 2003. [DOI: 10.1021/jp035296k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nilashis Nandi
- Chemistry Department, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| |
Collapse
|
193
|
Knöll B, Schmidt H, Andrews W, Guthrie S, Pini A, Sundaresan V, Drescher U. On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development 2003; 130:5073-82. [PMID: 12954717 DOI: 10.1242/dev.00726] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.
Collapse
Affiliation(s)
- Bernd Knöll
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
194
|
Kuang D, Yao Y, Wang M, Pattabiraman N, Kotra LP, Hampson DR. Molecular similarities in the ligand binding pockets of an odorant receptor and the metabotropic glutamate receptors. J Biol Chem 2003; 278:42551-9. [PMID: 12912984 DOI: 10.1074/jbc.m307120200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5.24 odorant receptor is an amino acid sensing receptor that is expressed in the olfactory epithelium of fish. The 5.24 receptor is a G-protein-coupled receptor that shares amino acid sequence identity to mammalian pheromone receptors, the calcium-sensing receptor, the T1R taste receptors, and the metabotropic glutamate receptors (mGluRs). It is most potently activated by the basic amino acids L-lysine and L-arginine. In this study we generated a homology model of the ligand binding domain of the 5.24 receptor based on the crystal structure of mGluR1 and examined the proposed lysine binding pocket using site-directed mutagenesis. Mutants of truncated glycosylated versions of the receptor containing only the extracellular domain were analyzed in a radioligand binding assay, whereas the analogous full-length membrane-bound mutants were studied using a fluorescence-based functional assay. In silico analysis predicted that aspartate 388 interacts with the terminal amino group on the side chain of the docked lysine molecule. This prediction was supported by experimental observations demonstrating that mutation of this residue caused a 26-fold reduction in the affinity for L-lysine but virtually no change in the affinity for the polar amino acid L-glutamine. In addition, mutations in four highly conserved residues (threonine 175, tyrosine 223, and aspartates 195 and 309) predicted to establish interactions with the alpha amino group of the bound lysine ligand greatly reduced or eliminated binding and receptor activation. These results define the essential features of amino acid selectivity within the 5.24 receptor binding pocket and highlight an evolutionarily conserved motif required for ligand recognition in amino acid activated receptors in the G-protein-coupled receptor superfamily.
Collapse
Affiliation(s)
- Donghui Kuang
- Department of Pharmaceutical Sciences and Institute for Drug Research, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada
| | | | | | | | | | | |
Collapse
|
195
|
Frontini A, Zaidi AU, Hua H, Wolak TP, Greer CA, Kafitz KW, Li W, Zielinski BS. Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus. J Comp Neurol 2003; 465:27-37. [PMID: 12926014 DOI: 10.1002/cne.10811] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The goal of this study was to investigate the spatial organization of olfactory glomeruli and of substances relevant to olfactory sensory neuron activity in the developing agnathan, the sea lamprey Petromyzon marinus. A 45-kD protein immunoreactive to G(olf), a cAMP-dependent olfactory G protein, was present in the ciliary fraction of sea lamprey olfactory epithelium and in olfactory sensory neurons of larval and adult sea lampreys. This result implies that G(olf) expression was present during early vertebrate evolution or evolved in parallel in gnathostome and agnathostome vertebrates. Serial sectioning of the olfactory bulb revealed a consistent pattern of olfactory glomeruli stained by GS1B(4) lectin and by anterograde labeling with fluorescent dextran. These glomerular territories included the dorsal cluster, dorsal ring, anterior plexus, lateral chain, medial glomeruli, ventral ring, and ventral cluster. The dorsal, anterior, lateral, and ventral glomeruli contained olfactory sensory axon terminals that were G(olf)-immunoreactive. However, a specific subset, the medial glomeruli, did not display this immunoreactivity. Olfactory glomeruli in the dorsal hemisphere of the olfactory bulb, the dorsal cluster, dorsal ring, anterior plexus, lateral chain, and medial glomeruli, were seen adjacent to 5HT-immunoreactive fibers. However, glomeruli in the ventral hemisphere, the ventral ring, and ventral cluster did not display this association. The presence of specific glomerular territories and discrete glomerular subsets with substances relevant to olfactory sensory neuron activity suggest a spatial organization of information flow in the lamprey olfactory pathway.
Collapse
Affiliation(s)
- Andrea Frontini
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Rosenkranz HS, Cunningham AR. Environmental odors and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2003; 313:15-24. [PMID: 12922057 DOI: 10.1016/s0048-9697(03)00330-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using the recently developed and validated 'chemical diversity approach', the potential of chemicals, to be detected by the human olfactory system and to cause adverse health effects, was investigated. The analyses found no significant association between odor perceptibility and potential for inducing health effects.
Collapse
Affiliation(s)
- Herbert S Rosenkranz
- Department of Biomedical Sciences, Florida Atlantic University, 777 Glades Road, PO 3091, Boca Raton, FL 33431-0991, USA.
| | | |
Collapse
|
197
|
Abstract
Odors elicit a well-organized pattern of activation in glomeruli across the surface of the olfactory bulb. However, the mechanisms by which this map is transformed into an odor code by the bulb circuitry remain unclear. Recent physiological studies in bulb slices have identified several synaptic processes that could be involved in sharpening odorant signals. Mitral cells within a single odorant receptor-specific network can be synchronized by dendrodendritic excitatory interactions in a glomerulus, whereas mitral cells in different networks engage in long-lasting lateral inhibition mediated by dendrodendritic synapses with interneurons. The emerging picture is one in which groups of mitral cells use a unique set of mechanisms to accomplish computational functions similar to those performed by analogous modular structures in other sensory systems.
Collapse
Affiliation(s)
- Nathan E Schoppa
- Department of Physiology and Biophysics, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, MS3607 Campus Box C-240, Denver, CO 80262, USA.
| | | |
Collapse
|
198
|
Vigers AJ, Böttger B, Baquet ZC, Finger TE, Jones KR. Neurotrophin-3 is expressed in a discrete subset of olfactory receptor neurons in the mouse. J Comp Neurol 2003; 463:221-35. [PMID: 12815759 DOI: 10.1002/cne.10752] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In transgenic neurotrophin-3 lacZ-neo (NT-3(lacZneo)) mice, in which the coding region for NT-3 is replaced by Eschericia coli lacZ, the expression of beta-galactosidase faithfully mimics the expression of NT-3 (Vigers AJ, Baquet ZC, Jones KR [2000], J Comp Neurol 416:398-416). During embryonic and early postnatal development, beta-galactosidase is detected in the olfactory system, beginning at embryonic day 11.5 in the nasal epithelium and at embryonic day 16.5 in the olfactory bulb. Levels of beta-galactosidase rise with age, reaching a peak during the second postnatal week, when beta-galactosidase reactivity is visible in up to 50% of the glomeruli. As the animal matures, the beta-galactosidase levels decline, but staining remains present in axons and cell bodies of a specific subset of olfactory receptor neurons (ORNs) projecting to a limited subset of glomeruli. The heavily labeled ORNs do not follow the typical OR expression zones in the epithelium but appear similar to the "patch" expression pattern of mOR37 receptors. The most heavily reactive glomeruli exhibit a striking reproducible pattern in the ventral olfactory bulb (OB). Some glomeruli of the OB contain calcitonin gene-related peptide (CGRP)-immunoreactive fibers of the trigeminal nerve. However, double-label immunocytochemistry for CGRP and beta-galactosidase rendered no correlation between trigeminal innervation and the degree of innervation by NT-3-expressing ORNs. Thus, the timing and presence of beta-galactosidase in a subset of ORNs suggests that NT-3 plays a role in synaptogenesis and/or synapse function in a specific subset of ORNs within the olfactory bulb.
Collapse
Affiliation(s)
- Alison J Vigers
- Rocky Mountain Taste and Smell Center, Department of Cellular and Structural Biology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
199
|
Anantharaman V, Aravind L. Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics 2003; 4:34. [PMID: 12914674 PMCID: PMC212514 DOI: 10.1186/1471-2164-4-34] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2003] [Accepted: 08/12/2003] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND A great diversity of multi-pass membrane receptors, typically with 7 transmembrane (TM) helices, is observed in the eukaryote crown group. So far, they are relatively rare in the prokaryotes, and are restricted to the well-characterized sensory rhodopsins of various phototropic prokaryotes. RESULTS Utilizing the currently available wealth of prokaryotic genomic sequences, we set up a computational screen to identify putative 7 (TM) and other multi-pass membrane receptors in prokaryotes. As a result of this procedure we were able to recover two widespread families of 7 TM receptors in bacteria that are distantly related to the eukaryotic 7 TM receptors and prokaryotic rhodopsins. Using sequence profile analysis, we were able to establish that the first members of these receptor families contain one of two distinct N-terminal extracellular globular domains, which are predicted to bind ligands such as carbohydrates. In their intracellular portions they contain fusions to a variety of signaling domains, which suggest that they are likely to transduce signals via cyclic AMP, cyclic diguanylate, histidine phosphorylation, dephosphorylation, and through direct interactions with DNA. The second family of bacterial 7 TM receptors possesses an alpha-helical extracellular domain, and is predicted to transduce a signal via an intracellular HD hydrolase domain. Based on comparative analysis of gene neighborhoods, this receptor is predicted to function as a regulator of the diacylglycerol-kinase-dependent glycerolipid pathway. Additionally, our procedure also recovered other types of putative prokaryotic multi-pass membrane associated receptor domains. Of these, we characterized two widespread, evolutionarily mobile multi-TM domains that are fused to a variety of C-terminal intracellular signaling domains. One of these typified by the Gram-positive LytS protein is predicted to be a potential sensor of murein derivatives, whereas the other one typified by the Escherichia coli UhpB protein is predicted to function as sensor of conformational changes occurring in associated membrane proteins CONCLUSIONS We present evidence for considerable variety in the types of uncharacterized surface receptors in bacteria, and reconstruct the evolutionary processes that model their diversity. The identification of novel receptor families in prokaryotes is likely to aid in the experimental analysis of signal transduction and environmental responses of several bacteria, including pathogens such as Leptospira, Treponema, Corynebacterium, Coxiella, Bacillus anthracis and Cytophaga.
Collapse
Affiliation(s)
- Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
200
|
Vander Wall SB. HOW RODENTS SMELL BURIED SEEDS: A MODEL BASED ON THE BEHAVIOR OF PESTICIDES IN SOIL. J Mammal 2003. [DOI: 10.1644/bpr-003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|