151
|
Tai F, Broders H, Lian Y, Wang T, Sun R. Cellular activation patterns of the main olfactory bulb and accessory olfactory bulb following exposure to beddings soiled by same- or opposite-sex conspecifics in Mandarin voles (Microtus mandarinus). CAN J ZOOL 2006. [DOI: 10.1139/z06-104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using induction of Fos as an index, we studied cellular activation patterns in the accessory olfactory bulb (AOB) and main olfactory bulb (MOB) of Mandarin voles ( Microtus mandarinus (Milne-Edwards, 1871)) following their exposure to beddings soiled by different sexes. Male and female Mandarin voles that were exposed to beddings soiled by the opposite sex produced significantly more Fos-immunoreactive (Fos-ir) neurons in the anterior portion of the AOB and significantly fewer Fos-ir neurons in the posterior portion of the AOB than voles exposed to beddings soiled by the same sex. Furthermore, male and female Mandarin voles exposed to bedding soiled by different sex produced different numbers of Fos-ir cells in MOB. Mandarin voles exposed to beddings soiled by the opposite sex produced significantly more Fos-ir neurons in MOB than voles exposed to beddings soiled by the same sex. Our results establish that Mandarin voles of each sex showed different cellular activation patterns in AOB and MOB following exposures to sex-specific beddings. We suggest that both AOB and MOB were involved in sexual activities induced by chemosensory signals.
Collapse
Affiliation(s)
- F.D. Tai
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - H.G. Broders
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Y. Lian
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - T.Z. Wang
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - R.Y. Sun
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
- Department of Biology, Saint Mary's University, Halifax, NS B3H 3C3, Canada
- College of Life Science, East China Normal University, Shanghai 200062, China
- College of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
152
|
Abstract
The genes involved in olfactory communication in mammals via the vomeronasal system are summarized, and studies investigating these genes in primates are reviewed. Only five potentially functional vomeronasal receptor genes (V1RL s) have been found in humans, and only one of these (V1RL1) has been studied in other primates. V1RL1 has become a pseudogene repeatedly during primate evolution, but patterns of natural selection on primate V1RL genes demonstrate that this gene family diverged under natural selection throughout at least part of primate evolution. Evolution of the TRP2 gene, which encodes for an ion channel that is important in vomeronasal organ (VNO) signalling, strongly suggests that this signalling function was lost in ancestral Catarrhines. Overall, much work remains to be done to elucidate the repertoire of genes that are involved in pheromonal communication, particularly in Strepsirhines. Such studies promise unique insights into the evolution of this modality.
Collapse
Affiliation(s)
- Nicholas I Mundy
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
153
|
Gelez H, Fabre-Nys C. Role of the olfactory systems and importance of learning in the ewes' response to rams or their odors. ACTA ACUST UNITED AC 2006; 46:401-15. [PMID: 16824449 DOI: 10.1051/rnd:2006021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In sheep, exposure of seasonally anestrous females to the male or its fleece results in activation of luteinizing hormone (LH) secretion and synchronized ovulation. The study of the neural pathways involved in this phenomenon, commonly named "male effect", show that the main olfactory system plays a critical role in the detection and the integration of the male odor. The accessory olfactory system participates in the perception of the ram odor but does not seem necessary for the endocrine response. According to the hypothesis that the neuroanatomical differences between the two olfactory systems could be associated with different functional roles, we investigated the importance of sexual experience and learning processes in the male effect. Our results showed that female responses depend on previous sexual experience. We also demonstrated that the LH response to male odor could result from an associative learning process. The aim of the present report was to summarize our current knowledge concerning the "male effect" and in particular to clarify the role of sexual experience and learning in the processes involved in this effect.
Collapse
Affiliation(s)
- Hélène Gelez
- Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | | |
Collapse
|
154
|
Roppolo D, Ribaud V, Jungo VP, Lüscher C, Rodriguez I. Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur J Neurosci 2006; 23:2887-94. [PMID: 16819977 DOI: 10.1111/j.1460-9568.2006.04818.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, sensory neurons from the main olfactory and vomeronasal systems project their axons to the olfactory bulbs in the brain. We here report that a cluster of neurons, distinct from these two systems, located at the very tip of the mouse nose and called the Grüneberg ganglion expresses the mature olfactory-sensory neuron-specific marker olfactory marker protein (OMP), but is unlikely to express known odorant or pheromone receptors. The ganglion is present at birth and maintained during adult life. Tracing experiments indicate that these neurons target ipsilaterally to a specific set of glomeruli located on the caudal part of the olfactory bulb, and that this connection is necessary for the survival of the ganglion. The glomerular targets are structures previously proposed to be associated with suckling behaviour. These observations strongly suggest that this peculiar olfactory neuronal population plays a sensory role, possibly linked to chemoperception.
Collapse
Affiliation(s)
- Daniele Roppolo
- Department of Zoology and Animal Biology and NCCR Frontiers in Genetics, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
155
|
Olson R, Dulac C, Bjorkman PJ. MHC homologs in the nervous system — they haven’t lost their groove. Curr Opin Neurobiol 2006; 16:351-7. [PMID: 16698261 DOI: 10.1016/j.conb.2006.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/05/2006] [Indexed: 11/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules have been implicated in a number of non-immune roles in the central nervous system, particularly in synaptic development and plasticity. The discovery of M10 (50% sequence identity to classical MHC molecules) proteins expressed in the vomeronasal organ adds to the list of non-traditional roles of MHC homologs. M10 molecules associate with the V2R class of vomeronasal receptors, a family of G-protein coupled receptors thought to function as pheromone receptors. Recent studies showing that classical MHC-binding peptides activate V2R-expressing neurons offer tempting clues that M10s might participate directly in the recognition of pheromone ligands, but M10 proteins do not bind to these peptides with significant affinity. Instead of presenting MHC-binding peptides, M10s might function as molecular chaperones to V2R receptors or more generally as modulators of neuronal function, as demonstrated elsewhere in the brain for classical MHC molecules.
Collapse
Affiliation(s)
- Rich Olson
- Division of Biology, Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
156
|
Muramoto K, Huang GZ, Taniguchi M, Kaba H. Functional synapse formation between cultured rat accessory olfactory bulb neurons and vomeronasal pockets. Neuroscience 2006; 141:475-86. [PMID: 16677769 DOI: 10.1016/j.neuroscience.2006.03.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/08/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
To investigate the interaction between vomeronasal receptor neurons and accessory olfactory bulb neurons during pheromonal signal processing and specific synapse formation, partially dissociated rat vomeronasal receptor neurons were co-cultured with accessory olfactory bulb neurons. Between 7 and 14 days in co-culture, a few bundles of fibers from a spherical structure, termed the vomeronasal pocket, of cultured vomeronasal receptor neurons extended to the accessory olfactory bulb neurons. An optical recording of the intracellular Ca(2+) concentration was used to monitor the synaptic activation of cultured accessory olfactory bulb neurons. Electrical stimulation of the vomeronasal pocket between 7 and 14 days in co-culture had no effects on most of the cultured neurons tested, although it occasionally evoked weak responses in a small number of neurons. In contrast, vomeronasal pocket stimulation after 21 days in co-culture evoked clear calcium transients in a substantial number of cultured accessory olfactory bulb neurons. These responses of accessory olfactory bulb neurons were reversibly suppressed by the application of 6-cyano-7-nitroquinoxaline-2,3-dione; the calcium transients disappeared in most of the neurons and were diminished in the others. The application of d-2-amino-5-phosphonopentanoic acid partially affected the calcium transients, but blocked spontaneous calcium increases, which were observed repeatedly in accessory olfactory bulb-alone cultures. The application of both 6-cyano-7-nitroquinoxaline-2,3-dione and d-2-amino-5-phosphonopentanoic acid completely blocked the evoked calcium transients. These results suggest that functional glutamatergic synapses between vomeronasal receptor neurons and accessory olfactory bulb neurons were formed at around 21 days in co-culture.
Collapse
Affiliation(s)
- K Muramoto
- Department of Integrative Physiology, Kochi Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783-8505, Japan.
| | | | | | | |
Collapse
|
157
|
Hoppe R, Lambert TD, Samollow PB, Breer H, Strotmann J. Evolution of the "OR37" subfamily of olfactory receptors: a cross-species comparison. J Mol Evol 2006; 62:460-72. [PMID: 16547640 DOI: 10.1007/s00239-005-0093-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 11/17/2005] [Indexed: 01/09/2023]
Abstract
Genes encoding the olfactory receptors of the "OR37" subfamily of the mouse are characterized by special features including a clustered expression pattern, assembly in two distinct gene clusters, and highly conserved putative promoter motifs. Mining the rat and dog databases revealed that these two species possess highly conserved clusters of OR37 genes at two syntenic genomic loci. In a prototherian mammal, the platypus (Ornithorhynchus anatinus), none of the characteristic OR37 genes were found. Examination of a metatherian mammal, the gray short-tailed opossum (Monodelphis domestica) revealed seven canonical OR37 genes, all phylogenetically related to cluster II genes and also organized similar to cluster II of eutherian species. In addition, their 5' upstream regions comprised sequence motifs related to the putative regulatory sequences of cluster II genes. Typical cluster I OR37 genes were identified only in the eutherian mammals examined, including the evolutionary ancient anteater, wherein OR37 genes related to both clusters were present. Together, these results reveal novel information concerning the phylogenetic origin and important evolutionary steps of the mammalian-specific OR37 olfactory receptor family.
Collapse
Affiliation(s)
- Reiner Hoppe
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70593, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
158
|
Takami S, Iwai T, Hasegawa R, Nishiyama F. Ultrastructural localization of alpha-galactose-containing glycoconjugates in the rat vomeronasal organ. ACTA ACUST UNITED AC 2006; 34:123-33. [PMID: 16374714 DOI: 10.1007/s11068-005-5052-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Binding sites of Griffonia simplicifolia I-B4 isolectin (GS-I-B4), which recognizes terminal alpha-galactose residues of glycoconjugates, were examined in the juxtaluminal region of the rat vomeronasal sensory epithelium and its associated glands of the vomeronasal organ, using a lectin cytochemical technique. Lowicryl K4M-embedded ultra-thin sections, which were treated successively with biotinylated GS-I-B4 and streptavidin-conjugated 10 nm colloidal gold particles, were observed under a transmission electron microscope. Colloidal gold particles, which reflect the presence of terminal alpha-galactose-containing glycoconjugates, were present in vomeronasal receptor neurons in the sensory epithelium and secretory granules of acinar cells of associated glands of the epithelium. Quantitative analysis demonstrated that the density of colloidal gold particles associated with sensory cell microvilli that projected from dendritic endings of vomeronasal neurons was considerably higher than that of microvilli that projected from neighboring sustentacular cells. The same was true for the apical cytoplasms of these cells just below the microvilli. These results suggest that of the sensory microvilli and dendritic endings contained a much larger amount of the alpha-galactose-containing glycoconjugates, compared with those in sustentacular microvilli. Further, biochemical analyses demonstrated several vomeronasal organ-specific glycoproteins with terminal alpha-galactose.
Collapse
Affiliation(s)
- Shigeru Takami
- Department of Anatomy, School of Health Sciences, Kyorin University, Hachioji, Tokyo 192-8508, Japan.
| | | | | | | |
Collapse
|
159
|
Abstract
The major urinary proteins are a species-specific complex of proteins excreted by male mice that influence the reproductive behavior and the neuroendocrine condition of female mice through the olfactory system. The aim of this work is to determine their influence on ovulation. The major urinary proteins isolated from the urine of adult male mice were voided of bound odorants, dissolved at a physiological concentration in urine of prepubertal mice, and put on the nostril of reproductively cycling female mice housed in groups, the first day of estrus at 1100. The eggs shed in the oviducts were counted under dissection the morning of the second day of estrus. The results showed that 1) a single stimulus of the major urinary proteins increased ovulation nearly as much as the whole urine of male mice, 2) the effect was not elicited by male rat urine which contains different proteins, 3) a peptide with four residues of the amino-terminal sequence of the major urinary proteins stimulated ovulation, and 4) mice that had been isolated or had the vomeronasal organ (VNO) removed did not respond to the major urinary proteins and had a high spontaneous ovulation. The results suggest that the major urinary proteins activate the neuroendocrine system through the VNO and trigger ovulation.
Collapse
Affiliation(s)
- Lorenzo Morè
- Department of Behavioural Pharmacology, Preclinical R & D, Merz Pharmaceuticals GmbH, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany.
| |
Collapse
|
160
|
Portillo W, Díaz NF, Cabrera EA, Fernández-Guasti A, Paredes RG. Comparative analysis of immunoreactive cells for androgen receptors and oestrogen receptor alpha in copulating and non-copulating male rats. J Neuroendocrinol 2006; 18:168-76. [PMID: 16454800 DOI: 10.1111/j.1365-2826.2005.01401.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In some species, including gerbils, guinea pigs, mice, rams and rats, some apparently normal males fail to mate. These kinds of animals have been named 'noncopulating (NC)'. The cause of this behavioural deficit is unknown. The present study aimed to determine whether NC male rats have alterations in the amount of androgen (AR) and oestrogen receptor alpha (ERalpha) in a neuronal circuit important for the control of male sexual behaviour; the vomeronasal projection pathway. We evaluated the number of AR and ERalpha immunoreactive (AR-IR and ERalpha-IR) cells in the accessory olfactory bulb (AOB), the bed nucleus of the stria terminalis (BNST), the anterior-dorsal medial amygdala (MeAD), the posterior dorsal amygdala (MePD) and the medial preoptic area (MPOA). The results demonstrate that the number of AR-IR cells in NC males was significantly higher compared to copulating (C) males in the MePD, but no significant differences were found in any of the other structures analysed. ERalpha-IR cells were more abundant in NC than in C males in the MeAD and the MePD. However, in the MPOA the number of ERalpha-IR cells was significantly reduced in NC males. No significant differences were found in the AOB or in the BNST. A similar pattern of results was observed when regions within these structures that are activated by Fos expression, on mating or exposure to sexually relevant cues were analysed. The differences in the number of AR and ER in particular brain areas could be associated with alterations in sexual behaviour as well as partner and olfactory preference for receptive females seen in NC male rats.
Collapse
Affiliation(s)
- W Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | | | | | | |
Collapse
|
161
|
Bhargava S, Kulkarni GV, Deobagkar DD, Deobagkar DN. Distribution of aminopeptidase P like immunoreactivity in the olfactory system and brain of frog, Microhyla ornate. Neurosci Lett 2006; 396:81-5. [PMID: 16326009 DOI: 10.1016/j.neulet.2005.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 10/28/2005] [Accepted: 11/07/2005] [Indexed: 11/29/2022]
Abstract
The enzyme aminopeptidase P (AP-P) is encountered in diverse vertebrate and invertebrate phyla and is known to act on proteins and peptides by releasing their N-terminal amino acid when the penultimate amino acid is proline. The present study is the first attempt at visualizing distribution of this polypeptide in the brain of a vertebrate species. The distribution of this enzyme was studied immunocytochemically in the forebrain of frog Microhyla ornata using antisera directed against cytosolic aminopeptidase P (DAP-P) of Drosophila melanogaster. Receptor cells in the olfactory epithelium exhibited strong AP-P like immunoreaction (ir). Immunoreactive fibers arising from the olfactory epithelium as well as vomeronasal organ joined the olfactory nerve, entered into the olfactory bulb, or accessory olfactory bulb and terminated in distinct glomerular formations. Some immunoreactive fibers traveled caudally and terminated in discrete areas in the telencephalon or diencephalon. Strong AP-P-ir was also seen in the cells of pars intermedia and pars distalis of the pituitary. The pattern of immunoreactivity suggests a role for AP-P in the processing of olfactory information and in hypophysial regulation.
Collapse
Affiliation(s)
- Shobha Bhargava
- Molecular Biology Research Laboratory, Department of Zoology and Institute of Bioinformatics and Biotechnology, University of Pune, Ganeshkhind Road, Pune 411 007, India
| | | | | | | |
Collapse
|
162
|
Pierman S, Douhard Q, Balthazart J, Baum MJ, Bakker J. Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice. Horm Behav 2006; 49:96-104. [PMID: 15961088 DOI: 10.1016/j.yhbeh.2005.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 04/19/2005] [Accepted: 05/05/2005] [Indexed: 10/25/2022]
Abstract
We previously found that both male and female aromatase knockout (ArKO) mice, which cannot synthesize estrogens due to a targeted mutation of the aromatase gene, showed less investigation of volatile body odors from anesthetized conspecifics of both sexes in Y-maze tests. We now ask whether ArKO mice are in fact capable of discriminating between and/or responding to volatile odors. Using habituation/dishabituation tests, we found that gonadectomized ArKO and wild-type (WT) mice of both sexes, which were tested without any sex hormone replacement, reliably distinguished between undiluted volatile urinary odors of either adult males or estrous females versus deionized water as well as between these two urinary odors themselves. However, ArKO mice of both sexes were less motivated than WT controls to investigate same-sex odors when they were presented last in the sequence of stimuli. In a second experiment, we compared the ability of ArKO and WT mice to respond to decreasing concentrations of either male or female urinary odors. We found a clear-cut sex difference in urinary odor attraction thresholds among WT mice: WT males failed to respond to urine dilutions higher than 1:20 by volume, whereas WT females continued to respond to urine dilutions up to 1:80. Male ArKO mice resembled WT females in their ability to respond to lower concentrations of urinary odors, raising the possibility that the observed sex difference among WT mice in urine attraction thresholds results from the perinatal actions of estrogen in the male nervous system. Female ArKO mice failed to show significant dishabituation responses to two (1:20 and 1:80) dilutions of female urine, perhaps, again, because of a reduced motivation to investigate less salient, same-sex urinary odors. Previously observed deficits in the preference of ArKO male and female mice to approach volatile body odors from conspecifics of either sex cannot be attributed to an inability of ArKO subjects to discriminate these odors according to sex but instead may reflect a deficient motivation to approach same-sex odors, especially when their concentration is low.
Collapse
Affiliation(s)
- Sylvie Pierman
- Center for Cellular and Molecular Neurobiology, University of Liège, Belgium
| | | | | | | | | |
Collapse
|
163
|
Abstract
Primates are usually thought of as "visual" mammals, and several comparative studies have emphasized the role of vision in primate neural and sociocognitive specialization. Here I explore the role of olfactory systems, using phylogenetic analysis of comparative volumetric data. The relative sizes of the main olfactory bulb (MOB) and accessory olfactory bulb (AOB) tend to show different evolutionary patterns in accordance with their different functions. Although there is some evidence of correlated evolution of the two systems, this is apparent in only one clade (the strepsirhines). As predicted, the MOBs correlate predominantly with ecological factors (activity period and diet), while the AOBs correlate with social and mating systems. Related olfactory structures (i.e., the piriform cortex and amygdala) exhibit correlated evolution with the AOBs but not with the MOBs, and the corticobasolateral part of the amygdala exhibits a correlation with social group size in platyrrhines similar to that observed for the AOB. These social system correlations support the idea that there is an olfactory dimension to the concept of the social brain.
Collapse
Affiliation(s)
- Robert A Barton
- Evolutionary Anthropology Research Group, Department of Anthropology, University of Durham, Durham, United Kingdom.
| |
Collapse
|
164
|
Witt M, Hummel T. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception? INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:209-59. [PMID: 16487792 DOI: 10.1016/s0074-7696(06)48004-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vomeronasal organ (VNO) constitutes an accessory olfactory organ that receives chemical stimuli, pheromones, which elicit behavioral, reproductive, or neuroendocrine responses among individuals of the same species. In many macrosmatic animals, the morphological substrate constitutes a separate organ system consisting of a vomeronasal duct (ductus vomeronasalis, VND), equipped with chemosensory cells, and a vomeronasal nerve (nervus vomeronasalis, VNN) conducting information into the accessory olfactory bulb (AOB) in the central nervous system (CNS). Recent data require that the long-accepted dual functionality of a main olfactory system and the VNO be reexamined, since all species without a VNO are nevertheless sexually active, and species possessing a VNO also can sense other than "vomeronasal" stimuli via the vomeronasal epithelium (VNE). The human case constitutes a borderline situation, as its embryonic VNO anlage exerts a developmental track common to most macrosmatics, but later typical structures such as the VNN, AOB, and probably most of the chemoreceptor cells within the still existent VND are lost. This review also presents recent information on the VND including immunohistochemical expression of neuronal markers, intermediate filaments, lectins, integrins, caveolin, CD44, and aquaporins. Further, we will address the issue of human pheromone candidates.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
165
|
Nishida Y, Yoshioka M, St-Amand J. Regulation of hypothalamic gene expression by glucocorticoid: implications for energy homeostasis. Physiol Genomics 2005; 25:96-104. [PMID: 16368873 DOI: 10.1152/physiolgenomics.00232.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the hypothalamic gene expressions regulated by glucocorticoids (GC), key hormones in energy homeostasis. Using the serial analysis of gene expression (SAGE) method, we studied the effects of adrenalectomy (ADX) and GC on the transcriptomes of mouse hypothalamus. Approximately 180,000 SAGE tags, which correspond to 50,000 tag species, were isolated from each group of intact or adrenalectomized mice as well as 1, 3, and 24 h after GC injection. ADX upregulated diazepam binding inhibitor gene expression while downregulating vomeronasal 1 receptor D4, genes involved in mitochondrial phosphorylation (cytochrome-c oxidase 1 and NADH dehydrogenase 3), 3beta-hydroxysteroid dehydrogenase-1, and prostaglandin D2 synthase. GC increased the gene expression levels of dehydrogenase/reductase member 3, prostaglandin D2 synthase, solute carrier family 4 member 4, and five cytoskeletal proteins including myosin light chain phosphorylatable fast and troponin C2 fast. On the other hand, GC reduced the mRNA levels of calmodulin 1 and expressed sequence tag similar to calmodulin 2, ATP synthase F0 subunit 6, and solute carrier family 4 member 3. Moreover, 7 uncharacterized and 43 novel transcripts were modulated by ADX and GC. The present study has identified genes that may regulate hypothalamic systems governing energy balance in response to ADX and GC.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Quebec City, Quebec, Canada
| | | | | |
Collapse
|
166
|
Organization of the Olfactory and Respiratory Skeleton in the Nose of the Gray Short-Tailed Opossum Monodelphis domestica. J MAMM EVOL 2005. [DOI: 10.1007/s10914-005-5731-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
167
|
Abstract
The Grueneberg ganglion is a compact cluster of neurons in the rostral nasal vestibule once thought to be a component of the terminal nerve, a non-sensory nerve that does not innervate the olfactory bulb. Its strong expression of olfactory marker protein, a pan-olfactory marker, in mice led us to re-examine this conclusion. Here, we demonstrate that the Grueneberg ganglion projects axons from the nasal vestibule, along the septum, through the cribriform plate and onto the olfactory necklace domain of the olfactory bulbs where it forms glomeruli. Its expression of olfactory marker protein, combined with its direct wiring to the olfactory bulb, strongly suggest that the Grueneberg ganglion is a component of the olfactory pathway.
Collapse
Affiliation(s)
- David S Koos
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
168
|
Boehm U, Zou Z, Buck LB. Feedback Loops Link Odor and Pheromone Signaling with Reproduction. Cell 2005; 123:683-95. [PMID: 16290036 DOI: 10.1016/j.cell.2005.09.027] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/14/2005] [Accepted: 09/05/2005] [Indexed: 11/22/2022]
Abstract
Pheromones can have profound effects on reproductive physiology and behavior in mammals. To investigate the neural circuits underlying these effects, we used a genetic transneuronal tracer to identify neurons that synapse with GnRH (LHRH) neurons, the key regulators of reproduction. We then asked whether the connected neurons are presynaptic or postsynaptic to GnRH neurons and analyzed their responses to chemosensory cues. Surprisingly, these experiments indicate that GnRH neurons receive pheromone signals from both odor and pheromone relays in the brain and may also receive common odor signals. Moreover, feedback loops are evident whereby GnRH neurons could influence both odor and pheromone processing. Remarkably, approximately 800 GnRH neurons communicate with approximately 50,000 neurons in 53 functionally diverse brain areas, with some connections exhibiting sexual dimorphism. These studies reveal a complex interplay between reproduction and other functions in which GnRH neurons appear to integrate information from multiple sources and modulate a variety of brain functions.
Collapse
Affiliation(s)
- Ulrich Boehm
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
169
|
Abstract
Heterotrimeric G proteins are key players in transmembrane signaling by coupling a huge variety of receptors to channel proteins, enzymes, and other effector molecules. Multiple subforms of G proteins together with receptors, effectors, and various regulatory proteins represent the components of a highly versatile signal transduction system. G protein-mediated signaling is employed by virtually all cells in the mammalian organism and is centrally involved in diverse physiological functions such as perception of sensory information, modulation of synaptic transmission, hormone release and actions, regulation of cell contraction and migration, or cell growth and differentiation. In this review, some of the functions of heterotrimeric G proteins in defined cells and tissues are described.
Collapse
Affiliation(s)
- Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | | |
Collapse
|
170
|
Ishii T, Omura M, Mombaerts P. Protocols for two- and three-color fluorescent RNA in situ hybridization of the main and accessory olfactory epithelia in mouse. ACTA ACUST UNITED AC 2005; 33:657-69. [PMID: 16217621 DOI: 10.1007/s11068-005-3334-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 02/16/2005] [Accepted: 02/28/2005] [Indexed: 10/25/2022]
Abstract
The main and accessory olfactory epithelia of the mouse are composed of many cell populations. Each sensory neuron is thought to express one allele of one of the approximately 1000 odorant or approximately 300 vomeronasal receptor genes. Sensory neurons die and are replaced by new neurons that differentiate from precursor cells throughout the lifetime of the individual. Neuronal replacement is asynchronous, resulting in the co-existence of cells at various stages of differentiation. Receptor gene diversity and ongoing neuronal differentiation produce complex mosaics of gene expression within these epithelia. Accurate description of gene expression patterns will facilitate the understanding of mechanisms of gene choice and differentiation. Here we report a detailed protocol for two- and three-color fluorescent RNA in situ hybridization (ISH) and its combination with immunohistochemistry, or detection of bromodeoxyuridine (BrdU)-incorporated DNA after labeling. The protocol is applied to cryosections of the main and accessory olfactory epithelia in mouse.
Collapse
|
171
|
Hancock JM. Gene factories, microfunctionalization and the evolution of gene families. Trends Genet 2005; 21:591-5. [PMID: 16153739 DOI: 10.1016/j.tig.2005.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/18/2005] [Accepted: 08/17/2005] [Indexed: 11/17/2022]
Abstract
Gene duplication has long been considered an important force in genome evolution. In this article, I consider families of tandemly duplicated genes that show 'microfunctionalization' - genes encoding similar proteins with subtly different functions, such as olfactory receptors. I discuss the genomic processes giving rise to such microfunctionalized gene families and suggest that, like sites of chromosomal rearrangement and breakage, they are associated with relatively high concentrations of repetitive elements. I suggest that microfunctionalized gene families arise within gene factories: genomic regions rich in repetitive elements that undergo increased levels of unequal crossing-over.
Collapse
Affiliation(s)
- John M Hancock
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, UK, OX11 0RD.
| |
Collapse
|
172
|
Ma X, Reyna A, Mani SK, Matzuk MM, Kumar TR. Impaired male sexual behavior in activin receptor type II knockout mice. Biol Reprod 2005; 73:1182-90. [PMID: 16093358 DOI: 10.1095/biolreprod.105.043794] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Integration of multiple hormonal and neuronal signaling pathways in the medial preoptic area (mPOA) is required for elicitation of male sexual behavior in most vertebrates. Perturbation of nitric oxide synthase (NOS) activity in the mPOA causes significant defects in male sexual behavior. Although activins and their signaling components are highly expressed throughout the brain, including the mPOA, their functional significance in the central nervous system (CNS) is unknown. Here, we demonstrate a neurophysiologic role for activin signaling in male reproductive behavior. Adult activin receptor type II null (Acvr2-/-) male mice display multiple reproductive behavioral deficits, including delayed initiation of copulation, reduced mount, and intromission frequencies, and increased mount, intromission, and ejaculation latencies. These behavioral defects in the adult mice are independent of gonadotropin-releasing hormone (GnRH) homeostasis or mating-induced changes in luteinizing hormone (LH) and testosterone levels. The impairment in behavior can be correlated to the nitric oxide content in the CNS because Acvr2-/- males have decreased NOS activity in the mPOA but not the rest of the hypothalamus or cortex. Olfactory acuity tests confirmed that Acvr2-/- mice have no defects in general odor or pheromone recognition. In addition, motor functions are not impaired and the mutants demonstrate normal neuromuscular coordination and balance. Furthermore, the penile histology in mutant mice appears normal, with no significant differences in the expression of penile differentiation marker genes compared with controls, suggesting the observed behavioral phenotypes are not due to structural defects in the penis. Our studies identify a previously unrecognized role of activin signaling in male sexual behavior and suggest that activins and/or related family members are upstream regulators of NOS activity within the mPOA of the forebrain.
Collapse
Affiliation(s)
- Xiaoping Ma
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
173
|
Kiyokawa Y, Kikusui T, Takeuchi Y, Mori Y. Mapping the neural circuit activated by alarm pheromone perception by c-Fos immunohistochemistry. Brain Res 2005; 1043:145-54. [PMID: 15862528 DOI: 10.1016/j.brainres.2005.02.061] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 01/14/2023]
Abstract
We previously reported that the alarm pheromones released from stressed male rats exaggerated both behavioral and autonomic (stress-induced hyperthermia) responses in recipient rats that were introduced into a novel environment. Subsequent experiments provided evidence that these alarm pheromones could be divided into two functionally different categories based on the site specificity and testosterone dependency of their production. However, the neural mechanisms underlying these behavioral and physiological responses remain unknown. In the present study, we examined Fos expression in 26 brain sites of the recipient rat 60 min after the exposure to the pheromone that aggravated stress-induced hyperthermia. The alarm pheromone-exposed rats showed a concurrent increase in Fos expression, in contrast to control odor-exposed rats in the anterior division lateral and medial group of the bed nucleus of the stria terminalis, paraventricular nucleus, dorsomedial hypothalamic nucleus, anterodorsal medial, lateral and basolateral amygdaloid nucleus, ventrolateral periaqueductal gray, laterodorsal tegmental nucleus, and locus coeruleus. These results provide information about the neural mechanisms in response to a non-sexual pheromone, i.e., an alarm pheromone, and suggest that the perception of the alarm pheromone is related to stress-responsive brains structures, including the hypothalamus and brainstem, as well as to the amygdaloid nuclei.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
174
|
Moncho-Bogani J, Martinez-Garcia F, Novejarque A, Lanuza E. Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. Eur J Neurosci 2005; 21:2186-98. [PMID: 15869515 DOI: 10.1111/j.1460-9568.2005.04036.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adult female mice are innately attracted to non-volatile pheromones contained in male-soiled bedding. In contrast, male-derived volatiles become attractive if associated with non-volatile attractive pheromones, which act as unconditioned stimulus in a case of Pavlovian associative learning. In this work, we study the chemoinvestigatory behaviour of female mice towards volatile and non-volatile chemicals contained in male-soiled bedding, in combination with the analysis of c-fos expression induced by such a behaviour to clarify: (i) which chemosensory systems are involved in the detection of the primary attractive non-volatile pheromone and of the secondarily attractive volatiles; (ii) where in the brain male-derived non-volatile and volatile stimuli are associated to induce conditioned attraction for the latter; and (iii) whether investigation of these stimuli activates the cerebral reward system (mesocorticolimbic system including the prefrontal cortex and amygdala), which would support the view that sexual pheromones are reinforcing. The results indicate that non-volatile pheromones stimulate the vomeronasal system, whereas air-borne volatiles activate only the olfactory system. Thus, the acquired preference for male-derived volatiles reveals an olfactory-vomeronasal associative learning. Moreover, the reward system is differentially activated by the primary pheromones and secondarily attractive odorants. Exploring the primary attractive pheromone activates the basolateral amygdala and the shell of nucleus accumbens but neither the ventral tegmental area nor the orbitofrontal cortex. In contrast, exploring the secondarily attractive male-derived odorants involves activation of a circuit that includes the basolateral amygdala, prefrontal cortex and ventral tegmental area. Therefore, the basolateral amygdala stands out as the key centre for vomeronasal-olfactory associative learning.
Collapse
Affiliation(s)
- Jose Moncho-Bogani
- Department of Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C. Dr Moliner, 50, 46100 Burjassot, València, Spain
| | | | | | | |
Collapse
|
175
|
Shi P, Bielawski JP, Yang H, Zhang YP. Adaptive Diversification of Vomeronasal Receptor 1 Genes in Rodents. J Mol Evol 2005; 60:566-76. [PMID: 15983866 DOI: 10.1007/s00239-004-0172-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 11/19/2004] [Indexed: 01/22/2023]
Abstract
The vomeronasal receptor 1 (V1R) are believed to be pheromone receptors in rodents. Here we used computational methods to identify 95 and 62 new putative V1R genes from the draft rat and mouse genome sequence, respectively. The rat V1R repertoire consists of 11 subfamilies, 10 of which are shared with the mouse, while rat appears to lack the H and I subfamilies found in mouse and possesses one unique subfamily (M). The estimations of the relative divergence times suggest that many subfamilies originated after the split of rodents and primates. The analysis also reveals that these clusters underwent an expansion very close to the split of mouse and rat. In addition, maximum likelihood analysis showed that the nonsynonymous and synonymous rate ratio for most of these clusters was much higher than one, suggesting the role of positive selection in the diversification of these duplicated V1R genes. Because V1R are thought to mediate the process of signal transduction in response to pheromone detection, we speculate that the V1R genes have evolved under positive Darwinian selection to maintain the ability to discriminate between large and complex pheromonal mixtures.
Collapse
Affiliation(s)
- Peng Shi
- Laboratory of Molecular Biology of Domestic Animals and Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology Chinese Academy of Sciences
| | | | | | | |
Collapse
|
176
|
Ma J, Lowe G. Action potential backpropagation and multiglomerular signaling in the rat vomeronasal system. J Neurosci 2005; 24:9341-52. [PMID: 15496670 PMCID: PMC6730108 DOI: 10.1523/jneurosci.1782-04.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the accessory olfactory bulb (AOB), sensory neurons expressing a given vomeronasal receptor (VR) gene send divergent projections to many glomeruli, and second-order neurons (mitral cells) link to multiple glomeruli via branched primary dendrites. We used calcium imaging and paired somadendritic patch-clamp recording to track backpropagated action potentials (APs) in rat AOB primary dendrites. In cells loaded with 150 microm Calcium Orange, somatic spikes elicited fluorescence transients over the entire primary dendritic tree, and the relative fluorescence increment DeltaF/F(0) increased along all branches from soma to glomeruli. Backpropagation was reliant on Na+ channels: in 1 microm TTX, somatic AP commands evoked dendritic Ca2+ transients that declined steeply with distance. In paired soma- dendritic whole-cell recordings, backpropagated APs were unattenuated up to approximately 200 microm from the soma, whereas subthreshold voltage transients decayed markedly. Computational modeling indicated that the large distal Ca2+ transients are consistent with active, not passive, backpropagation. Genetic tracing in the AOB has suggested homotypic connectivity with individual mitral cell dendritic arbors projecting only to glomeruli targeted by sensory neurons expressing the same VR gene. Non-decremental, non-dichotomous backpropagation in AOB primary dendrites ensures fast, reliable communication between mitral cells and their homotypic glomeruli, binding them into functional modules in accordance with their VR-coded inputs.
Collapse
Affiliation(s)
- Jie Ma
- Monell Chemical Senses Center, Philadelphia, Pennsylvania 19104-3308, USA
| | | |
Collapse
|
177
|
Grus WE, Shi P, Zhang YP, Zhang J. Dramatic variation of the vomeronasal pheromone receptor gene repertoire among five orders of placental and marsupial mammals. Proc Natl Acad Sci U S A 2005; 102:5767-72. [PMID: 15790682 PMCID: PMC556306 DOI: 10.1073/pnas.0501589102] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2005] [Indexed: 11/18/2022] Open
Abstract
Pheromones are chemicals emitted and sensed by conspecifics to elicit social and sexual responses and are perceived in terrestrial vertebrates primarily by the vomeronasal organ (VNO). Pheromone receptors in the mammalian VNO are encoded by the V1R and V2R gene superfamilies. The V1R superfamily contains 187 and 102 putatively functional genes in the mouse and rat, respectively. To investigate whether this large repertoire size is typical among mammals with functional VNOs, we here describe the V1R repertoires of dog, cow, and opossum based on their draft genome sequences. The dog and cow have only 8 and 32 intact V1R genes, respectively. Thus, the intact V1R repertoire size varies by at least 23-fold among placental mammals with functional VNOs. To our knowledge, this size ratio represents the greatest among-species variation in gene family size of all mammalian gene families. Phylogenetic analysis of placental V1R genes suggests multiple losses of ancestral genes in carnivores and artiodactyls and gains of many new genes by gene duplication in rodents, manifesting massive gene births and deaths. We also identify 49 intact opossum V1R genes and discover independent expansions of the repertoire in placentals and marsupials. We further show a concordance between the V1R repertoire size and the complexity of VNO morphology, suggesting that the latter could indicate the sophistication of pheromone communications within species. In sum, our results demonstrate tremendous diversity and rapid evolution of mammalian V1R gene inventories and caution the generalization of VNO biology from rodents to all mammals.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
178
|
Abstract
Chemosensory cues stimulate male sexual arousal and behavior. The main olfactory system has an important role in attracting males to estrous females, and the vomeronasal receptors are important for activating accessory olfactory pathways that engage mating behavior in a sexually dimorphic manner. The gonadotropin releasing hormone (GnRH) neurons like the vomeronasal organ (VNO) neurons take their origin in the olfactory placode and migrate to the basal forebrain along pathfinder axons that take their origin in the developing VNO. The maturation of both systems is synchronized in time such that the early postnatal testosterone surge masculinizes the VNO neural relay en route to the medio preoptic area (MPOA). Although VNO slices and VNO receptor neurons in culture respond to volatile odors, in vivo electrophysiological recordings at the first relay in the accessory olfactory bulb (AOB) are silent until the male makes active nuzzling investigations of the female. The VNO neurons may therefore respond to volatiles that are transported into the organ on carrier peptides that themselves may play a part in receptor activation. In the context of modern molecular phylogenetic studies, it is becoming less likely that pheromones acting via the VNO have any part to play in human sexual behavior, but the possibility exists for conserved VNO genes influencing human reproduction via fertilization.
Collapse
Affiliation(s)
- E B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge, CB3 8AA, UK.
| |
Collapse
|
179
|
Martinez-Marcos A, Ubeda-Bañon I, Lanuza E, Halpern M. Chemoarchitecture and afferent connections of the "olfactostriatum": a specialized vomeronasal structure within the basal ganglia of snakes. J Chem Neuroanat 2005; 29:49-69. [PMID: 15589701 DOI: 10.1016/j.jchemneu.2004.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 06/22/2004] [Accepted: 09/09/2004] [Indexed: 11/17/2022]
Abstract
The olfactostriatum, a portion of the striatal complex of snakes, is the major tertiary vomeronasal structure in the ophidian brain, receiving substantial afferents from the nucleus sphericus, the primary target of accessory olfactory bulb efferents. In the present study, we have characterized the olfactostriatum of garter snakes (Thamnophis sirtalis) on the basis of chemoarchitecture (distribution of serotonin, neuropeptide Y and tyrosine hydroxylase) and hodology (afferent connections). The olfactostriatum is densely immunoreactive for serotonin and neuropeptide Y and shows moderate-to-weak immunoreactivity for tyrosine hydroxylase. In addition to afferents from the nucleus sphericus, the olfactostriatum receives inputs from the dorsal and lateral cortices, nucleus of the accessory olfactory tract, external and dorsolateral amygdalae, dorsomedial thalamic nucleus, ventral tegmental area and raphe nuclei. Double labeling experiments demonstrated that the distribution of serotonin and neuropeptide Y in this area almost completely overlaps the terminal field of projections from the nucleus sphericus. Also, serotonergic and dopaminergic innervation of the olfactostriatum likely arise, respectively, from the raphe nuclei and the ventral tegmental area, whereas local circuit neurons originate the neuropeptide Y immunoreactivity. These results indicate that the olfactostriatum of snakes could be a portion of the nucleus accumbens, with features characteristic of the accumbens shell, devoted to processing vomeronasal information. Comparative data suggest that a similar structure is present in the ventral striatum of amphibians and mammals.
Collapse
Affiliation(s)
- Alino Martinez-Marcos
- Departamento de Ciencias Médicas, Facultad de Medicina, Centro Regional de Investigación Biomédica, Universidad de Castilla-La Mancha, Avda. Almansa S/N, 02006 Albacete, Spain.
| | | | | | | |
Collapse
|
180
|
GANEM GUILA, GINANE CÉCILE, OSTROWSKI MARIEFRANCE, ORTH ANNIE. Assessment of mate preference in the house mouse with reference to investigations on assortative mating. Biol J Linn Soc Lond 2005. [DOI: 10.1111/j.1095-8312.2005.00447.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
181
|
Abstract
Recently, modern neuroscience has made considerable progress in understanding how the brain perceives, discriminates, and recognizes odorant molecules. This growing knowledge took over when the sense of smell was no longer considered only as a matter for poetry or the perfume industry. Over the last decades, chemical senses captured the attention of scientists who started to investigate the different stages of olfactory pathways. Distinct fields such as genetic, biochemistry, cellular biology, neurophysiology, and behavior have contributed to provide a picture of how odor information is processed in the olfactory system as it moves from the periphery to higher areas of the brain. So far, the combination of these approaches has been most effective at the cellular level, but there are already signs, and even greater hope, that the same is gradually happening at the systems level. This review summarizes the current ideas concerning the cellular mechanisms and organizational strategies used by the olfactory system to process olfactory information. We present findings that exemplified the high degree of olfactory plasticity, with special emphasis on the first central relay of the olfactory system. Recent observations supporting the necessity of such plasticity for adult brain functions are also discussed. Due to space constraints, this review focuses mainly on the olfactory systems of vertebrates, and primarily those of mammals.
Collapse
|
182
|
|
183
|
Green N, Weech M, Walters E. Localization and characterization of glutathione-s-transferase isozymes alpha, mu, and pi within the mouse vomeronasal organ. Neurosci Lett 2005; 375:198-202. [PMID: 15694260 DOI: 10.1016/j.neulet.2004.11.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 11/03/2004] [Accepted: 11/05/2004] [Indexed: 10/26/2022]
Abstract
The nasal cavity of vertebrates contains a variety of xenobiotic metabolizing enzymes that possess a broad range of substrate specificity ranging from metabolism of drugs, carcinogens, and steroid hormones, to dietary components and environmental pollutants. This investigation sought to localize the cellular expression and distribution of glutathione-s-transferase (GST) alpha, mu, and pi detoxifying enzymes, and to study GST activity toward different substrates in the mouse vomeronasal organ (VNO). Immunohistochemistry was used to identify GST alpha, mu and pi in the non-sensory and sensory layer of the VNO. Western blot analysis of cytosolic proteins revealed a qualitatively higher enzyme expression of GST alpha and mu in the main olfactory tissue (OE) in comparison to VNO tissue, whereas the GST pi isozyme was equally expressed in both. Total GST metabolism of 1-chloro-2, 4-dinitrobenzene (CDNB) revealed a higher activity level in the OE when compared to the VNO. In contrast, thin-layer chromatographic analysis of GST conjugation of the odorant, trans-2-hexenal (t-hex) (10 mM) showed more conjugate formed per unit protein in the VNO than the OE. The analysis of GST expression and enzyme activity within the VNO parallels the reported localization of phase I metabolizing enzymes and suggests that GST isozymes play independent roles that characterize multiple processes within VNO chemosensitivity.
Collapse
Affiliation(s)
- Nicole Green
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, Adams Bldg., Room 3430, 520 W Street, NW, WA, DC 20059, USA
| | | | | |
Collapse
|
184
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
185
|
Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R. Pheromone reception in mammals. Rev Physiol Biochem Pharmacol 2005; 154:1-35. [PMID: 15800771 DOI: 10.1007/s10254-004-0038-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pheromonal communication is the most convenient way to transfer information regarding gender and social status in animals of the same species with the holistic goal of sustaining reproduction. This type of information exchange is based on pheromones, molecules often chemically unrelated, that are contained in body fluids like urine, sweat, specialized exocrine glands, and mucous secretions of genitals. So profound is the relevance of pheromones over the evolutionary process that a specific peripheral organ devoted to their recognition, namely the vomeronasal organ of Jacobson, and a related central pathway arose in most vertebrate species. Although the vomeronasal system is well developed in reptiles and amphibians, most mammals strongly rely on pheromonal communication. Humans use pheromones too; evidence on the existence of a specialized organ for their detection, however, is very elusive indeed. In the present review, we will focus our attention on the behavioral, physiological, and molecular aspects of pheromone detection in mammals. We will discuss the responses to pheromonal stimulation in different animal species, emphasizing the complicacy of this type of communication. In the light of the most recent results, we will also discuss the complex organization of the transduction molecules that underlie pheromone detection and signal transmission from vomeronasal neurons to the higher centers of the brain. Communication is a primary feature of living organisms, allowing the coordination of different behavioral paradigms among individuals. Communication has evolved through a variety of different strategies, and each species refined its own preferred communication medium. From a phylogenetic point of view, the most widespread and ancient way of communication is through chemical signals named pheromones: it occurs in all taxa, from prokaryotes to eukaryotes. The release of specific pheromones into the environment is a sensitive and definite way to send messages to other members of the same species. Therefore, the action of an organism can alter the behavior of another organism, thereby increasing the fitness of either or both. Albeit slow in transmission and not easily modulated, pheromones can travel around objects in the dark and over long distances. In addition, they are emitted when necessary and their biosynthesis is usually economic. In essence, they represent the most efficient tool to refine the pattern of social behaviors and reproductive strategies.
Collapse
Affiliation(s)
- A Bigiani
- Università di Modena, Dipartimento di Scienze Biomediche, Modena, Italy
| | | | | | | |
Collapse
|
186
|
Zhang X, Rodriguez I, Mombaerts P, Firestein S. Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics 2004; 83:802-11. [PMID: 15081110 DOI: 10.1016/j.ygeno.2003.10.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 10/23/2003] [Accepted: 10/23/2003] [Indexed: 10/26/2022]
Abstract
Odorant receptors (ORs) and vomeronasal receptors (V1Rs and V2Rs) are large superfamilies of chemosensory receptors. As an extension of previous research using the 2001 Celera mouse genome assembly, we analyzed OR and V1R genes in the 2002 public mouse genome assembly. We identified 1403 OR genes (1068 potentially intact) and 332 V1R genes (164 potentially intact) in this C57BL/6J mouse genome. This expands the mouse OR and V1R superfamilies by adding approximately 100 OR and approximately 40 V1R potentially intact genes. The description of the genomic distribution of OR genes is more complete and accurate, and two major errors in OR gene distribution in the 2001 Celera assembly were corrected. For the first time, the complete genomic distribution of V1R genes was investigated in detail and placed in context with that of OR genes. V1R genes, like OR genes, tend to form clusters of similar genes in the genome. Comparison between the two genome assemblies revealed a high rate of single-nucleotide polymorphisms (SNPs) in both OR and V1R genes. The high ratio of nonsynonymous SNPs over synonymous SNPs in V1R genes suggests positive selection for these genes, possibly favoring species-specific and strain-specific pheromone detection. In addition, detailed analysis of the SNP rate aided in the identification of key residues in ORs.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Biological Sciences, Columbia University, 923 Fairchild, MC2438, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
187
|
Woodley SK, Baum MJ. Differential activation of glomeruli in the ferret's main olfactory bulb by anal scent gland odours from males and females: an early step in mate identification. Eur J Neurosci 2004; 20:1025-32. [PMID: 15305871 PMCID: PMC1237011 DOI: 10.1111/j.1460-9568.2004.03571.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Peripheral anosmia was previously found to disrupt sex discrimination and partner preference in male and female ferrets. Here we show directly that volatile anal scent gland odourants from male and female ferrets activated overlapping but distinguishable clusters of glomeruli located in the ventral-caudal portion of the main olfactory bulb (MOB) of breeding ferrets of both sexes. No glomerular activation was seen in the accessory olfactory bulb (AOB). The profile of MOB glomerular activation induced in oestrous females by male anal scents was very similar to that induced by direct contact with a male during mating, and oestrogen treatment failed to alter the profile of glomerular activation induced in ovo-hysterectomized females by male anal scents. In rodents, 'atypical' MOB glomeruli, which have dense acetylcholinesterase (AChE) activity in the neuropil, may be activated by body odours from conspecifics. No such AChE-staining 'atypical' glomeruli were found in the ferret's MOB, suggesting that in this carnivore they do not constitute a subset of MOB glomeruli that respond to body odourants. In ferrets of both sexes, volatile body odourants that are detected by the main as opposed to the vomeronasal-AOB accessory olfactory system may play a critical role in mate identification.
Collapse
|
188
|
Grus WE, Zhang J. Rapid turnover and species-specificity of vomeronasal pheromone receptor genes in mice and rats. Gene 2004; 340:303-12. [PMID: 15475172 DOI: 10.1016/j.gene.2004.07.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 06/11/2004] [Accepted: 07/29/2004] [Indexed: 11/20/2022]
Abstract
Pheromones are used by individuals of the same species to elicit behavioral or physiological changes, and they are perceived primarily by the vomeronasal organ (VNO) in terrestrial vertebrates. VNO pheromone receptors are encoded by the V1r and V2r gene superfamilies in mammals. A comparison of the V1r and V2r repertoires between closely related species can provide significant insights into the evolutionary genetic mechanisms responsible for species-specific pheromone communications. A total of 137 putatively functional V1r genes of 12 families were previously identified from the mouse genome. We report the identification of 95 putatively functional V1r genes from the draft rat genome sequence. These genes map primarily to four blocks in two chromosomes. The rat V1r genes can be phylogenetically grouped into 10 families, which are shared with mouse, and 2 new families, which are rat-specific. Even in many shared families, gene numbers differ between the two species, apparently due to frequent gene duplication and pseudogenization after the separation of the two species. Molecular dating suggests that most of the rat V1r families emerged before or during the radiation of mammalian orders, but many duplications within families occurred as recently as in the past 10 million years (MY). Our results show that the evolution of the V1r repertoire is characterized by exceptionally fast gene turnover via gains and losses of individual genes, suggesting rapid and substantial changes in pheromone communication between species.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, 3003 Natural Science Building, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
189
|
Mallon AM, Wilming L, Weekes J, Gilbert JGR, Ashurst J, Peyrefitte S, Matthews L, Cadman M, McKeone R, Sellick CA, Arkell R, Botcherby MRM, Strivens MA, Campbell RD, Gregory S, Denny P, Hancock JM, Rogers J, Brown SDM. Organization and evolution of a gene-rich region of the mouse genome: a 12.7-Mb region deleted in the Del(13)Svea36H mouse. Genome Res 2004; 14:1888-901. [PMID: 15364904 PMCID: PMC524412 DOI: 10.1101/gr.2478604] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Del(13)Svea36H (Del36H) is a deletion of approximately 20% of mouse chromosome 13 showing conserved synteny with human chromosome 6p22.1-6p22.3/6p25. The human region is lost in some deletion syndromes and is the site of several disease loci. Heterozygous Del36H mice show numerous phenotypes and may model aspects of human genetic disease. We describe 12.7 Mb of finished, annotated sequence from Del36H. Del36H has a higher gene density than the draft mouse genome, reflecting high local densities of three gene families (vomeronasal receptors, serpins, and prolactins) which are greatly expanded relative to human. Transposable elements are concentrated near these gene families. We therefore suggest that their neighborhoods are gene factories, regions of frequent recombination in which gene duplication is more frequent. The gene families show different proportions of pseudogenes, likely reflecting different strengths of purifying selection and/or gene conversion. They are also associated with relatively low simple sequence concentrations, which vary across the region with a periodicity of approximately 5 Mb. Del36H contains numerous evolutionarily conserved regions (ECRs). Many lie in noncoding regions, are detectable in species as distant as Ciona intestinalis, and therefore are candidate regulatory sequences. This analysis will facilitate functional genomic analysis of Del36H and provides insights into mouse genome evolution.
Collapse
Affiliation(s)
- Ann-Marie Mallon
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Briand L, Trotier D, Pernollet JC. Aphrodisin, an aphrodisiac lipocalin secreted in hamster vaginal secretions. Peptides 2004; 25:1545-52. [PMID: 15374656 DOI: 10.1016/j.peptides.2003.10.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/21/2003] [Indexed: 11/21/2022]
Abstract
Vertebrates communicate through pheromones, which favor biological regulations within each species. Aphrodisin, a protein belonging to the lipocalin superfamily, found in hamster vaginal secretions, is detected by the male accessory olfactory system and induces or facilitates its copulatory behavior. Although much is known about aphrodisin structure, the question of whether aphrodisin bears itself the pheromonal function or is simply a carrier for hydrophobic small pheromones has not been definitely solved. Arguments based on use of recombinant aphrodisin deprived of any natural ligand and its capability to convey hamster pheromonal compounds will be discussed, together with progresses concerning putative natural ligand(s).
Collapse
Affiliation(s)
- Loïc Briand
- Biochimie et Structure des Protéines, INRA, UR 477, F-78352 Jouy-en-Josas, France
| | | | | |
Collapse
|
191
|
Abstract
In most mammals, pheromone perception mediates intraspecies interactions related to reproduction, such as mate recognition, intermale aggressive behaviors, or exchanges between females and their offspring. Recent molecular findings, particularly the identification of two large pheromone receptor gene superfamilies, provide today invaluable tools to better understand the way mammals make sense of pheromonal information.
Collapse
Affiliation(s)
- Ivan Rodriguez
- Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
192
|
Portillo W, Paredes RG. Sexual incentive motivation, olfactory preference, and activation of the vomeronasal projection pathway by sexually relevant cues in non-copulating and naive male rats. Horm Behav 2004; 46:330-40. [PMID: 15325233 DOI: 10.1016/j.yhbeh.2004.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/16/2004] [Accepted: 03/18/2004] [Indexed: 11/21/2022]
Abstract
There are some apparently healthy male rats that fail to mate after repeated testing with receptive females. We have previously shown that these "non-copulator (NC)" males show no partner preference for a receptive female when given the opportunity to physically interact with a sexually receptive female or a sexually active male. We also demonstrated that although NC males prefer odors from estrous females to odors from anestrous females, this preference is significantly reduced in comparison to the preference displayed by copulating (C) males. The aim of the present study was to evaluate in NC males sexual incentive motivation, that is, the approach behavior of male rats to either a sexually receptive female or a sexually active male in a test where the subjects can smell, hear, and see the stimulus animal but prevents their physical interaction. In addition, we determined whether NC rats have alterations in their ability to detect odors from conspecifics or odors related to food. In the detection of odors from conspecifics, we determined if these NC males are sexually attracted toward odors from receptive females or sexually active males. For food-related odors, we quantified the time it took the subjects to locate a hidden a piece of apple. Finally, using the induction of Fos-immunoreactivity (Fos-IR) as an index of neuronal activation, we compared the response of the vomeronasal projection pathway (VN pathway) of C and NC male rats exposed to estrous bedding. Males without sexual experience (WSE) were included in all experiments to determine the importance of previous heterosexual experience in the different behavioral tests and in the activity of the VN pathway. In the sexual incentive motivation test, we found that C and WSE male rats have a clear preference for estrous females over sexually active males, whereas NC male rats showed no preference. In odor tests, our results showed that C males had a clear preference for odors from estrous females as opposed to odors from sexually active males. Although NC and WSE male rats showed a preference for estrous female odors, this preference was significantly reduced compared to that shown by C males. No differences were found between WSE, C, and NC males in the detection of stimuli associated with food-related odors. A significant increase in Fos-IR was observed in the mitral cell layer of the accessory olfactory bulb in all groups when exposed to estrous bedding. However, only the C male rats exposed to estrous female bedding showed an increase Fos-IR in all structures of the VN pathway. An increase in Fos-IR was observed in the medial preoptic area (MPOA) of WSE males exposed to estrous bedding. No increases in Fos-IR were detected along the VN pathway in NC male rats. We proposed that NC male rats do not display sexual behavior due to a reduced sexual motivation that could be caused by alterations in the neuronal activity of the VN pathway during the processing of estrous odors.
Collapse
Affiliation(s)
- Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | | |
Collapse
|
193
|
Kaluza JF, Gussing F, Bohm S, Breer H, Strotmann J. Olfactory receptors in the mouse septal organ. J Neurosci Res 2004; 76:442-52. [PMID: 15114616 DOI: 10.1002/jnr.20083] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we have identified a repertoire of chemosensory receptors expressed in the septal organ (SO). The results suggest that septal organ neurons are specified to express receptor genes belonging to class II olfactory receptors that are also expressed in the main olfactory epithelium. We found no evidence for the expression of members from the vomeronasal receptor gene families. In the SO, no topography analogous to the receptor expression zones of the main olfactory epithelium was evident. The majority of identified receptors corresponds to genes with restricted expression in the medial and lateral zones of the main olfactory epithelium. This coincides with the expression of olfactory cell adhesion molecule (OCAM) throughout the SO, which is considered as a marker for the medial-lateral zones. In contrast, NADPH:quinone oxidoreductase 1 expression, a characteristic marker for the dorsal zone, was lacking in the SO. Most of the receptor types were found to be expressed in rather few SO neurons; as an exception, the receptor mOR244-3 was observed in a very high proportion of cells. Although a very high fraction of SO neurons expressed mOR244-3, we found no evidence for the coexpression of different receptors in individual cells.
Collapse
Affiliation(s)
- Jan F Kaluza
- Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
194
|
Abstract
Genes induced by estrogens in the mammalian forebrain influence a variety of neural functions. Among them, reproductive behavior mechanisms are very well understood. Their functional genomics provide a theoretical paradigm for linking genes to neural circuits to behavior. We propose that estrogen-induced genes are organized in modules: Growth of hypothalamic neurons; Amplification of the estrogen effect by progesterone; Preparative behaviors; Permissive actions on sex behavior circuitry; and Synchronization of mating behavior with ovulation. These modules may represent mechanistic routes for CNS management of successful reproduction. Moreover, new microarray results add estrogen-dependent genes, including some expressed in glia, suggesting possible hormone-dependent neuronal/glial coordination.
Collapse
Affiliation(s)
- J A Mong
- The Laboratory of Neurobiology and Behavior Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
195
|
Gulyás B, Kéri S, O'Sullivan BT, Decety J, Roland PE. The putative pheromone androstadienone activates cortical fields in the human brain related to social cognition. Neurochem Int 2004; 44:595-600. [PMID: 15016474 DOI: 10.1016/j.neuint.2003.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 10/09/2003] [Indexed: 11/26/2022]
Abstract
Using 15O-butanol positron emission tomography (PET), we measured regional cerebral blood flow changes in five healthy young women during exposure to androstadienone, a putative human pheromone, as well as pleasant (gamma-methyl-ionone), unpleasant (methyl-thio-butanoate), and neutral (dipropylene glycol; vehicle compound) odours. Compared with the odorous substances, androstadienone activated a widely distributed neuronal network. Two large cortical fields exhibited consistent activation in each contrast: the anterior part of the inferior lateral prefrontal cortex (PFC) and the posterior part of the superior temporal cortex (STP). Intriguingly, these areas were deactivated by gamma-methyl-ionone and methyl-thio-butanoate. These brain regions can be identified as cortical fields underlying other than olfactory functions, including various aspects of social cognition and attention.
Collapse
Affiliation(s)
- Balázs Gulyás
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
196
|
Lane RP, Young J, Newman T, Trask BJ. Species specificity in rodent pheromone receptor repertoires. Genome Res 2004; 14:603-8. [PMID: 15060001 PMCID: PMC383304 DOI: 10.1101/gr.2117004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mouse V1R putative pheromone receptor gene family consists of at least 137 intact genes clustered at multiple chromosomal locations in the genome. Species-specific pheromone receptor repertoires may partly explain species-specific social behavior. We conducted a genomic analysis of an orthologous pair of mouse and rat V1R gene clusters to test for species specificity in rodent pheromone systems. Mouse and rat have lineage-specific V1R repertoires in each of three major subfamilies at these loci as a result of postspeciation duplications, gene loss, and gene conversions. The onset of this diversification roughly coincides with a wave of Line1 (L1) retrotranspositions into the two loci. We propose that L1 activity has facilitated postspeciation V1R duplications and gene conversions. In addition, we find extensive homology among putative V1R promoter regions in both species. We propose a regulatory model in which promoter homogenization could ensure that V1R genes are equally competitive for a limiting transcriptional structure to account for mutually exclusive V1R expression in vomeronasal neurons.
Collapse
Affiliation(s)
- Robert P Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA.
| | | | | | | |
Collapse
|
197
|
Affiliation(s)
- Peter Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
198
|
Dean DM, Mazzatenta A, Menini A. Voltage-activated current properties of male and female mouse vomeronasal sensory neurons: sexually dichotomous? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:491-9. [PMID: 15052499 DOI: 10.1007/s00359-004-0513-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 02/09/2004] [Accepted: 03/03/2004] [Indexed: 10/26/2022]
Abstract
The vomeronasal organ, the chemosensory organ of the vomeronasal system, is vital in determining sexual and gender-specific behavior in mice. Here, whole-cell voltage-activated currents of individual mouse vomeronasal sensory neurons of two strains (BALB/c and CBA) were measured and correlated to sex in each strain. The average resting membrane potentials, maximal outward current magnitudes, and kinetics of activation and inactivation, were found to be independent of sex. Maximal inward current magnitudes differed significantly across gender in CBA, whereas they did not significantly differ in male and female BALB/c mice: BALB/c males -347+/-45 pA ( n=51), and females -430+/-56 pA ( n=27); CBA males -308+/-36 pA ( n=56) and females -155+/-18 pA ( n=28). These results suggest that some voltage-activated properties may differ slightly according to gender and to strain.
Collapse
Affiliation(s)
- D M Dean
- International School for Advanced Studies, Sector of Neurobiology, SISSA, 34014, Trieste, Italy
| | | | | |
Collapse
|
199
|
Bakker J, Honda S, Harada N, Balthazart J. The aromatase knockout (ArKO) mouse provides new evidence that estrogens are required for the development of the female brain. Ann N Y Acad Sci 2004; 1007:251-62. [PMID: 14993058 DOI: 10.1196/annals.1286.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The classic view of sexual differentiation is that the male brain develops under the influence of testicular secretions, whereas the female brain develops in the absence of any hormonal stimulation. However, several studies have suggested a possible role of estradiol in female neural development, although they did not provide unequivocal evidence that estradiol is indispensable for the development of the female brain and behavior. As a result, the hypothesis subsequently languished because of the lack of a suitable animal model to test estrogen's possible contribution to female differentiation. The recent introduction of the aromatase knockout (ArKO) mouse, which is deficient in aromatase activity because of a targeted mutation in the CYP19 gene and therefore cannot aromatize androgen to estrogen, has provided a new opportunity to reopen the debate of whether estradiol contributes to the development of the female brain. Female ArKO mice showed reduced levels of lordosis behavior after adult treatment with estradiol and progesterone, suggesting that estradiol is required for the development of the neural mechanisms controlling this behavior in female mice. The neural systems affected may include the olfactory systems in that ArKO females also showed impairments in olfactory investigation of odors from conspecifics. Thus, the classic view of sexual differentiation, that is, the female brain develops in the absence of any hormonal secretion, needs to be re-examined.
Collapse
Affiliation(s)
- J Bakker
- Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, University of Liège, B-4020 Liège, Belgium.
| | | | | | | |
Collapse
|
200
|
Gelez H, Archer E, Chesneau D, Magallon T, Fabre-Nys C. Inactivation of the olfactory amygdala prevents the endocrine response to male odour in anoestrus ewes. Eur J Neurosci 2004; 19:1581-90. [PMID: 15066154 DOI: 10.1111/j.1460-9568.2004.03261.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our aim was to study the role of the olfactory amygdala (medial and cortical nuclei) and the ventromedial nucleus of the hypothalamus (VMN) in the ability of the male odour or live males to induce a release of luteinizing hormone in anoestrus ewes. To achieve this, we temporarily blocked the activity of these structures by localized retrodialysis administration of the anaesthetic lidocaine. The effect of ram odour on the secretion of luteinizing hormone was completely blocked by inactivation of the cortical nucleus of the amygdala. In contrast, inactivation of part of the accessory olfactory system (the medial nucleus of the amygdala or the VMN) had no effect. In the presence of the male, lidocaine never impaired the endocrine response of the ewes. These results show that modulation of reproduction by the sexual partner even through pheromonal cues does not occur via the direct circuit of the accessory system. On the contrary, the cortical nucleus of the amygdala is absolutely necessary for the treatment of and/or the response to the male olfactory signal but this structure can be bypassed when other sensory cues are available.
Collapse
Affiliation(s)
- H Gelez
- Station de Physiologie de la Reproduction et des Comportements, UMR 6073, INRA/CNRS/Université de Tours, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|