151
|
Richter DJ, Fozouni P, Eisen MB, King N. Gene family innovation, conservation and loss on the animal stem lineage. eLife 2018; 7:34226. [PMID: 29848444 PMCID: PMC6040629 DOI: 10.7554/elife.34226] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 05/26/2018] [Indexed: 02/06/2023] Open
Abstract
Choanoflagellates, the closest living relatives of animals, can provide unique insights into the changes in gene content that preceded the origin of animals. However, only two choanoflagellate genomes are currently available, providing poor coverage of their diversity. We sequenced transcriptomes of 19 additional choanoflagellate species to produce a comprehensive reconstruction of the gains and losses that shaped the ancestral animal gene repertoire. We identified ~1944 gene families that originated on the animal stem lineage, of which only 39 are conserved across all animals in our study. In addition, ~372 gene families previously thought to be animal-specific, including Notch, Delta, and homologs of the animal Toll-like receptor genes, instead evolved prior to the animal-choanoflagellate divergence. Our findings contribute to an increasingly detailed portrait of the gene families that defined the biology of the Urmetazoan and that may underpin core features of extant animals. All animals, from sea sponges and reef-building corals to elephants and humans, share a single common ancestor that lived over half a billion years ago. This single-celled predecessor evolved the ability to develop into a creature made up of many cells with specialized jobs. Reconstructing the steps in this evolutionary process has been difficult because the earliest animals were soft-bodied and microscopic and did not leave behind fossils that scientists can study. Though their bodies have since disintegrated, many of the instructions for building the first animals live on in genes that were passed on to life forms that still exist. Scientists are trying to retrace those genes back to the first animal by comparing the genomes of living animals with their closest relatives, the choanoflagellates. Choanoflagellates are single-celled, colony-forming organisms that live in waters around the world. Comparisons with choanoflagellates may help scientists identify which genes were necessary to help animals evolve and diversify into so many different species. So far, 1,000 animal and two choanoflagellate genomes have been sequenced. But the gene repertoires of most species of choanoflagellates have yet to be analyzed. Now, Richter et al. have cataloged the genes of 19 more species of choanoflagellates. This added information allowed them to recreate the likely gene set of the first animal and to identify genetic changes that occurred during animal evolution. The analyses showed that modern animals lost about a quarter of the genes present in their last common ancestor with choanoflagellates and gained an equal number of new genes. Richter et al. identified several dozen core animal genes that were gained and subsequently preserved throughout animal evolution. Many of these are necessary so that an embryo can develop properly, but the precise roles of some core genes remain a mystery. Most other genes that emerged in the first animals have been lost in at least one living animal. The study of Richter et al. also showed that some very important genes in animals, including genes essential for early development and genes that help the immune system detect pathogens, predate animals. These key genes trace back to animals’ last common ancestor with choanoflagellates and may have evolved new roles in animals.
Collapse
Affiliation(s)
- Daniel J Richter
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 7144, Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Parinaz Fozouni
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Medical Scientist Training Program, Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, United States.,Gladstone Institutes, San Francisco, United States
| | - Michael B Eisen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
152
|
Picchio L, Legagneux V, Deschamps S, Renaud Y, Chauveau S, Paillard L, Jagla K. Bruno-3 regulates sarcomere component expression and contributes to muscle phenotypes of myotonic dystrophy type 1. Dis Model Mech 2018; 11:dmm.031849. [PMID: 29716962 PMCID: PMC5992612 DOI: 10.1242/dmm.031849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/18/2018] [Indexed: 01/22/2023] Open
Abstract
Steinert disease, or myotonic dystrophy type 1 (DM1), is a multisystemic disorder caused by toxic noncoding CUG repeat transcripts, leading to altered levels of two RNA binding factors, MBNL1 and CELF1. The contribution of CELF1 to DM1 phenotypes is controversial. Here, we show that the Drosophila CELF1 family member, Bru-3, contributes to pathogenic muscle defects observed in a Drosophila model of DM1. Bru-3 displays predominantly cytoplasmic expression in muscles and its muscle-specific overexpression causes a range of phenotypes also observed in the fly DM1 model, including affected motility, fiber splitting, reduced myofiber length and altered myoblast fusion. Interestingly, comparative genome-wide transcriptomic analyses revealed that Bru-3 negatively regulates levels of mRNAs encoding a set of sarcomere components, including Actn transcripts. Conversely, it acts as a positive regulator of Actn translation. As CELF1 displays predominantly cytoplasmic expression in differentiating C2C12 myotubes and binds to Actn mRNA, we hypothesize that it might exert analogous functions in vertebrate muscles. Altogether, we propose that cytoplasmic Bru-3 contributes to DM1 pathogenesis in a Drosophila model by regulating sarcomeric transcripts and protein levels.
Collapse
Affiliation(s)
- Lucie Picchio
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Vincent Legagneux
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France.,Inserm UMR1085 IRSET, Université de Rennes 1, 35000 Rennes, France.,CNRS-Université de Rennes1-INRIA, UMR6074 IRISA, 35000 Rennes, France
| | - Stephane Deschamps
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France
| | - Yoan Renaud
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Sabine Chauveau
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Luc Paillard
- IGDR (Institut de Génétique et Développement de Rennes), UMR 6290 CNRS, Université de Rennes, 2 Avenue Léon Bernard, 35000 Rennes, France
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development Laboratory), INSERM 1103, CNRS 6293, University of Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
153
|
Anton T, Karg E, Bultmann S. Applications of the CRISPR/Cas system beyond gene editing. Biol Methods Protoc 2018; 3:bpy002. [PMID: 32161796 PMCID: PMC6994046 DOI: 10.1093/biomethods/bpy002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) as a tool for gene editing a plethora of locus-specific as well as genome-wide approaches have been developed that allow efficient and reproducible manipulation of genomic sequences. However, the seemingly unbound potential of CRISPR/Cas does not stop with its utilization as a site-directed nuclease. Mutations in its catalytic centers render Cas9 (dCas9) a universal recruitment platform that can be utilized to control transcription, visualize DNA sequences, investigate in situ proteome compositions and manipulate epigenetic modifications at user-defined genomic loci. In this review, we give a comprehensive introduction and overview of the development, improvement and application of recent dCas9-based approaches.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Elisabeth Karg
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
154
|
Senes-Lopes TF, López JA, do Amaral VS, Brandão-Neto J, de Rezende AA, da Luz JRD, Guterres ZDR, Almeida MDG. Genotoxicity of Turnera subulata and Spondias mombin × Spondias tuberosa Extracts from Brazilian Caatinga Biome. J Med Food 2018; 21:372-379. [DOI: 10.1089/jmf.2017.0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tiago Felipe Senes-Lopes
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jorge Alberto López
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
| | - Viviane Souza do Amaral
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - José Brandão-Neto
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Adriana Augusto de Rezende
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Jefferson Romáryo Duarte da Luz
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Zaira da Rosa Guterres
- Laboratory of Cytogenetics and Mutagenesis, State University of Mato Grosso do Sul (UEMS), Mundo Novo, Matto Grasso do Sul, Brazil
| | - Maria das Graças Almeida
- Program of Postgraduation in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Program of Postgraduation in Industrial Biotechnology, Institute of Technology and Research/Tiradentes University (UNIT), Aracaju, Sergipe, Brazil
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Internal Medicine, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
155
|
Ghartey-Kwansah G, Li Z, Feng R, Wang L, Zhou X, Chen FZ, Xu MM, Jones O, Mu Y, Chen S, Bryant J, Isaacs WB, Ma J, Xu X. Comparative analysis of FKBP family protein: evaluation, structure, and function in mammals and Drosophila melanogaster. BMC DEVELOPMENTAL BIOLOGY 2018; 18:7. [PMID: 29587629 PMCID: PMC5870485 DOI: 10.1186/s12861-018-0167-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022]
Abstract
Background FK506-binding proteins (FKBPs) have become the subject of considerable interest in several fields, leading to the identification of several cellular and molecular pathways in which FKBPs impact prenatal development and pathogenesis of many human diseases. Main body This analysis revealed differences between how mammalian and Drosophila FKBPs mechanisms function in relation to the immunosuppressant drugs, FK506 and rapamycin. Differences that could be used to design insect-specific pesticides. (1) Molecular phylogenetic analysis of FKBP family proteins revealed that the eight known Drosophila FKBPs share homology with the human FKBP12. This indicates a close evolutionary relationship, and possible origination from a common ancestor. (2) The known FKBPs contain FK domains, that is, a prolyl cis/trans isomerase (PPIase) domain that mediates immune suppression through inhibition of calcineurin. The dFKBP59, CG4735/Shutdown, CG1847, and CG5482 have a Tetratricopeptide receptor domain at the C-terminus, which regulates transcription and protein transportation. (3) FKBP51 and FKBP52 (dFKBP59), along with Cyclophilin 40 and protein phosphatase 5, function as Hsp90 immunophilin co-chaperones within steroid receptor-Hsp90 heterocomplexes. These immunophilins are potential drug targets in pathways associated with normal physiology and may be used to treat a variety of steroid-based diseases by targeting exocytic/endocytic cycling and vesicular trafficking. (4) By associating with presinilin, a critical component of the Notch signaling pathway, FKBP14 is a downstream effector of Notch activation at the membrane. Meanwhile, Shutdown associates with transposons in the PIWI-interacting RNA pathway, playing a crucial role in both germ cells and ovarian somas. Mutations in or silencing of dFKBPs lead to early embryonic lethality in Drosophila. Therefore, further understanding the mechanisms of FK506 and rapamycin binding to immunophilin FKBPs in endocrine, cardiovascular, and neurological function in both mammals and Drosophila would provide prospects in generating unique, insect specific therapeutics targeting the above cellular signaling pathways. Conclusion This review will evaluate the functional roles of FKBP family proteins, and systematically summarize the similarities and differences between FKBP proteins in Drosophila and Mammals. Specific therapeutics targeting cellular signaling pathways will also be discussed.
Collapse
Affiliation(s)
- George Ghartey-Kwansah
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Zhongguang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Rui Feng
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Liyang Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China
| | - Xin Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China.,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.,Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Meng Meng Xu
- Department of Pharmacology, Duke University Medical Center, Durham, NC, USA
| | - Odell Jones
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yulian Mu
- State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Joseph Bryant
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Jianjie Ma
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Xuehong Xu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Xi'an, 710062, China. .,Laboratory of Cell Biology, Genetics and Developmental Biology, Shaanxi Normal University College of Life Sciences, Xi'an, 710062, China.
| |
Collapse
|
156
|
Wong A, Tian X, Gehring C, Marondedze C. Discovery of Novel Functional Centers With Rationally Designed Amino Acid Motifs. Comput Struct Biotechnol J 2018; 16:70-76. [PMID: 29977479 PMCID: PMC6026216 DOI: 10.1016/j.csbj.2018.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/23/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Plants are constantly exposed to environmental stresses and in part due to their sessile nature, they have evolved signal perception and adaptive strategies that are distinct from those of other eukaryotes. This is reflected at the cellular level where receptors and signalling molecules cannot be identified using standard homology-based searches querying with proteins from prokaryotes and other eukaryotes. One of the reasons for this is the complex domain architecture of receptor molecules. In order to discover hidden plant signalling molecules, we have developed a motif-based approach designed specifically for the identification of functional centers in plant molecules. This has made possible the discovery of novel components involved in signalling and stimulus-response pathways; the molecules include cyclic nucleotide cyclases, a nitric oxide sensor and a novel target for the hormone abscisic acid. Here, we describe the major steps of the method and illustrate it with recent and experimentally confirmed molecules as examples. We foresee that carefully curated search motifs supported by structural and bioinformatic assessments will uncover many more structural and functional aspects, particularly of signalling molecules.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Xuechen Tian
- Department of Biology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX giugno, 74, 06121 Perugia, Italy
| | - Claudius Marondedze
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CEA/DRF/BIG, INRA UMR1417, CNRS UMR5168, 38054 Grenoble Cedex 9, France
| |
Collapse
|
157
|
Muraille E. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis. Front Microbiol 2018; 9:223. [PMID: 29487592 PMCID: PMC5816788 DOI: 10.3389/fmicb.2018.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/30/2018] [Indexed: 01/02/2023] Open
Abstract
Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG) mechanisms share common functional properties. They (i) contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii) favor robustness and collectivism among populations and (iii) operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size) has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and the intensity of selective pressure. The ubiquity of DGs also suggests that regulated auto-generation of diversity is a fundamental property of life.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
158
|
Lin CY, Lin LY. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins. PLoS One 2018; 13:e0191971. [PMID: 29381770 PMCID: PMC5790263 DOI: 10.1371/journal.pone.0191971] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/15/2018] [Indexed: 11/19/2022] Open
Abstract
Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins.
Collapse
Affiliation(s)
- Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
159
|
Alzheimer's Disease Model System Using Drosophila. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:25-40. [PMID: 29951813 DOI: 10.1007/978-981-13-0529-0_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most epidemic neuronal dysfunctions among elderly people. It is accompanied by neuronal disorders along with learning and memory defects, as well as massive neurodegeneration phenotype. The presence of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques, called senile plaques (SPs), and brain atrophy are typically observed in the brains of AD patients. It has been over 20 years since the discovery that small peptide, called beta-amyloid (Aβ), has pivotal role for the disease formation. Since then, a variety of drugs have been developed to cure AD; however, there is currently no effective drug for the disorder. This therapeutic void reflects lacks of ideal model system, which can evaluate the progression of AD in a short period. Recently, large numbers of AD model system have been established using Drosophila melanogaster by overproducing Aβ molecules in the brain. These systems successfully reflect some of the symptoms along with AD. In this review, we would like to point out "pros and cons" of Drosophila AD models.
Collapse
|
160
|
Strange K. Drug Discovery in Fish, Flies, and Worms. ILAR J 2017; 57:133-143. [PMID: 28053067 DOI: 10.1093/ilar/ilw034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/21/2016] [Indexed: 12/22/2022] Open
Abstract
Nonmammalian model organisms such as the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the zebrafish Danio rerio provide numerous experimental advantages for drug discovery including genetic and molecular tractability, amenability to high-throughput screening methods and reduced experimental costs and increased experimental throughput compared to traditional mammalian models. An interdisciplinary approach that strategically combines the study of nonmammalian and mammalian animal models with diverse experimental tools has and will continue to provide deep molecular and genetic understanding of human disease and will significantly enhance the discovery and application of new therapies to treat those diseases. This review will provide an overview of C. elegans, Drosophila, and zebrafish biology and husbandry and will discuss how these models are being used for phenotype-based drug screening and for identification of drug targets and mechanisms of action. The review will also describe how these and other nonmammalian model organisms are uniquely suited for the discovery of drug-based regenerative medicine therapies.
Collapse
Affiliation(s)
- Kevin Strange
- Kevin Strange, Ph.D., is President and CEO of the MDI Biological Laboratory and CEO of Novo Biosciences, Inc
| |
Collapse
|
161
|
Pir GJ, Choudhary B, Mandelkow E. Caenorhabditis elegans models of tauopathy. FASEB J 2017; 31:5137-5148. [PMID: 29191965 DOI: 10.1096/fj.201701007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
One of the hallmarks of the tauopathies, which include the neurodegenerative disorders, such as Alzheimer disease (AD), corticobasal degeneration, frontotemporal dementia, and progressive supranuclear palsy (PSP), is the abnormal accumulation of post-translationally modified, insoluble tau. The result is a loss of neurons, decreased mental function, and complete dependence of patients on others. Aggregation of tau, which under physiologic conditions is a highly soluble protein, is thought to be central to the pathogenesis of these diseases. Indeed one of the strongest lines of evidence is the MAPT gene polymorphisms that lead to the familial forms of tauopathy. Extensive research in animal models over the years has contributed some of the most important findings regarding the pathogenesis of these diseases. Despite this, the precise molecular mechanisms that lead to abnormal tau folding, accumulation, and spreading remain unknown. Owing to the fact that most of the biochemical pathways are conserved, Caenorhabditis elegans provides an alternative approach to identify cellular mechanisms and druggable genes that operate in such disorders. Many human genes implicated in neurodegenerative diseases have counterparts in C. elegans, making it an excellent model in which to study their pathogenesis. In this article, we review some of the important findings gained from C. elegans tauopathy models.-Pir, G. J., Choudhary, B., Mandelkow, E. Caenorhabditiselegans models of tauopathy.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; .,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany.,Caesar Research Center, Bonn, Germany
| |
Collapse
|
162
|
Abstract
The study of behavior requires manipulation of the controlling neural circuits. The fruit fly, Drosophila melanogaster, is an ideal model for studying behavior because of its relatively small brain and the numerous sophisticated genetic tools that have been developed for this animal. Relatively recent technical advances allow the manipulation of a small subset of neurons with temporal resolution in flies while they are subject to behavior assays. This review briefly describes the most important genetic techniques, reagents, and approaches that are available to study and manipulate the neural circuits involved in Drosophila behavior. We also describe some examples of these genetic tools in the study of the olfactory receptor system.
Collapse
Affiliation(s)
- Fernando Martín
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| | - Esther Alcorta
- a Department of Functional Biology (Genetics) , University of Oviedo , Oviedo , Spain
| |
Collapse
|
163
|
Castillo A, de la Guardia Y. Spineless solutions: The potential of invertebrate animal models for advancing science in the developing world. EMBO Rep 2017; 18:1885-1888. [PMID: 29061874 DOI: 10.15252/embr.201744113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Armando Castillo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá
| | - Yila de la Guardia
- Centro de Biología Molecular y Celular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Ciudad del Saber, Panamá
| |
Collapse
|
164
|
Li S, Breaker RR. Identification of 15 candidate structured noncoding RNA motifs in fungi by comparative genomics. BMC Genomics 2017; 18:785. [PMID: 29029611 PMCID: PMC5640933 DOI: 10.1186/s12864-017-4171-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/05/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND With the development of rapid and inexpensive DNA sequencing, the genome sequences of more than 100 fungal species have been made available. This dataset provides an excellent resource for comparative genomics analyses, which can be used to discover genetic elements, including noncoding RNAs (ncRNAs). Bioinformatics tools similar to those used to uncover novel ncRNAs in bacteria, likewise, should be useful for searching fungal genomic sequences, and the relative ease of genetic experiments with some model fungal species could facilitate experimental validation studies. RESULTS We have adapted a bioinformatics pipeline for discovering bacterial ncRNAs to systematically analyze many fungal genomes. This comparative genomics pipeline integrates information on conserved RNA sequence and structural features with alternative splicing information to reveal fungal RNA motifs that are candidate regulatory domains, or that might have other possible functions. A total of 15 prominent classes of structured ncRNA candidates were identified, including variant HDV self-cleaving ribozyme representatives, atypical snoRNA candidates, and possible structured antisense RNA motifs. Candidate regulatory motifs were also found associated with genes for ribosomal proteins, S-adenosylmethionine decarboxylase (SDC), amidase, and HexA protein involved in Woronin body formation. We experimentally confirm that the variant HDV ribozymes undergo rapid self-cleavage, and we demonstrate that the SDC RNA motif reduces the expression of SAM decarboxylase by translational repression. Furthermore, we provide evidence that several other motifs discovered in this study are likely to be functional ncRNA elements. CONCLUSIONS Systematic screening of fungal genomes using a computational discovery pipeline has revealed the existence of a variety of novel structured ncRNAs. Genome contexts and similarities to known ncRNA motifs provide strong evidence for the biological and biochemical functions of some newly found ncRNA motifs. Although initial examinations of several motifs provide evidence for their likely functions, other motifs will require more in-depth analysis to reveal their functions.
Collapse
Affiliation(s)
- Sanshu Li
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, 668 Jimei Road, Xiamen, 361021 China
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| | - Ronald R. Breaker
- Howard Hughes Medical Institute, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, Box 208103, New Haven, CT 06520-8103 USA
- Department of Molecular Biophysics and Biochemistry, Yale University, Box 208103, New Haven, CT 06520-8103 USA
| |
Collapse
|
165
|
Chauhan V, Srikumar S, Aamer S, Pandareesh MD, Chauhan A. Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101108. [PMID: 28946640 PMCID: PMC5664609 DOI: 10.3390/ijerph14101108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/20/2022]
Abstract
Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster. Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration–dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.
Collapse
Affiliation(s)
- Ved Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Syian Srikumar
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Sarah Aamer
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Mirazkar D Pandareesh
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | - Abha Chauhan
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
166
|
Sharma N, Khurana N, Muthuraman A. Lower vertebrate and invertebrate models of Alzheimer's disease - A review. Eur J Pharmacol 2017; 815:312-323. [PMID: 28943103 DOI: 10.1016/j.ejphar.2017.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/20/2017] [Accepted: 09/13/2017] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease is a common neurodegenerative disorder which is characterized by the presence of beta- amyloid protein and neurofibrillary tangles (NFTs) in the brain. Till now, various higher vertebrate models have been in use to study the pathophysiology of this disease. But, these models possess some limitations like ethical restrictions, high cost, difficult maintenance of large quantity and lesser reproducibility. Besides, various lower chordate animals like Danio rerio, Drosophila melanogaster, Caenorhabditis elegans and Ciona intestinalis have been proved to be an important model for the in vivo determination of targets of drugs with least limitations. In this article, we reviewed different studies conducted on theses models for the better understanding of the pathophysiology of AD and their subsequent application as a potential tool in the preclinical evaluation of new drugs.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Navneet Khurana
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy and Technical Education, Mastuana Sahib, Sangrur, Punjab, India; Department of Pharmacology, JSS College of Pharmacy, Jagadguru Sri Shivarathreeshwara University, Mysuru 570015, Karnataka, India.
| |
Collapse
|
167
|
Srivastava S, Syed SB, Kumar V, Islam A, Ahmad F, Hassan MI. Fas-activated serine/threonine kinase: Structure and function. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
168
|
Sakai K, Tsutsui K, Yamashita T, Iwabe N, Takahashi K, Wada A, Shichida Y. Drosophila melanogaster rhodopsin Rh7 is a UV-to-visible light sensor with an extraordinarily broad absorption spectrum. Sci Rep 2017; 7:7349. [PMID: 28779161 PMCID: PMC5544684 DOI: 10.1038/s41598-017-07461-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/15/2023] Open
Abstract
The genome of Drosophila melanogaster contains seven rhodopsin genes. Rh1-6 proteins are known to have respective absorption spectra and function as visual pigments in ocelli and compound eyes. In contrast, Rh7 protein was recently revealed to function as a circadian photoreceptor in the brain. However, its molecular properties have not been characterized yet. Here we successfully prepared a recombinant protein of Drosophila Rh7 in mammalian cultured cells. Drosophila Rh7 bound both 11-cis-retinal and 11-cis-3-hydroxyretinal to form photo-pigments which can absorb UV light. Irradiation with UV light caused formation of a visible-light absorbing metarhodopsin that activated Gq-type of G protein. This state could be photoconverted back to the original state and, thus Rh7 is a Gq-coupled bistable pigment. Interestingly, Rh7 (lambda max = 350 nm) exhibited an unusual broad spectrum with a longer wavelength tail reaching 500 nm, whose shape is like a composite of spectra of two pigments. In contrast, replacement of lysine at position 90 with glutamic acid caused the formation of a normal-shaped absorption spectrum with maximum at 450 nm. Therefore, Rh7 is a unique photo-sensor that can cover a wide wavelength region by a single pigment to contribute to non-visual photoreception.
Collapse
Affiliation(s)
- Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kei Tsutsui
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Naoyuki Iwabe
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Takahashi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan. .,Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
169
|
Peterson EK, Wilson DT, Possidente B, McDaniel P, Morley EJ, Possidente D, Hollocher KT, Ruden DM, Hirsch HVB. Accumulation, elimination, sequestration, and genetic variation of lead (Pb 2+) loads within and between generations of Drosophila melanogaster. CHEMOSPHERE 2017; 181:368-375. [PMID: 28458212 PMCID: PMC5533183 DOI: 10.1016/j.chemosphere.2017.04.091] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
We examined accumulation, sequestration, elimination, and genetic variation for lead (Pb) loads within and between generations of Drosophila melanogaster. Flies were reared in control or leaded medium at various doses and tested for their Pb loads at different stages of development (larvae, eclosion, newly-eclosed adults, and mature adults). Pb loads were tested using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). We found that D. melanogaster readily accumulated Pb throughout their lifespan and the levels of accumulation increased with Pb exposure in the medium. Wandering third-instar larvae accumulated more Pb than mature adults; this phenomenon may be due to elimination of Pb in the pupal cases during eclosion and/or depuration in adults post-eclosion. The accumulated Pb in mature adults was not transferred to F1 mature adult offspring. Using a set of recombinant inbred strains, we identified a quantitative trait locus for adult Pb loads and found that genetic variation accounted for 34% of the variance in Pb load. We concluded that D. melanogaster is a useful model organism for evaluating changes in Pb loads during development, as well as between generations. Furthermore, we found that genetic factors can influence Pb loads; this provides an essential foundation for evaluating phenotypic variation induced by the toxic effects of Pb.
Collapse
Affiliation(s)
- Elizabeth K Peterson
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA.
| | - Diane T Wilson
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA
| | | | - Phillip McDaniel
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA
| | - Eric J Morley
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA
| | - Debra Possidente
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA
| | - Kurt T Hollocher
- Department of Geology, Union College, Schenectady, NY 12308, USA
| | - Douglas M Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Helmut V B Hirsch
- Department of Biological Sciences, University at Albany-State University of New York, Albany, NY 12222, USA
| |
Collapse
|
170
|
|
171
|
Liu Y, Wei H. Genome-wide identification and evolution of the PIN-FORMED (PIN) gene family in Glycine max. Genome 2017; 60:564-571. [PMID: 28314115 DOI: 10.1139/gen-2016-0141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soybean (Glycine max) is one of the most important crop plants. Wild and cultivated soybean varieties have significant differences worth further investigation, such as plant morphology, seed size, and seed coat development; these characters may be related to auxin biology. The PIN gene family encodes essential transport proteins in cell-to-cell auxin transport, but little research on soybean PIN genes (GmPIN genes) has been done, especially with respect to the evolution and differences between wild and cultivated soybean. In this study, we retrieved 23 GmPIN genes from the latest updated G. max genome database; six GmPIN protein sequences were changed compared with the previous database. Based on the Plant Genome Duplication Database, 18 GmPIN genes have been involved in segment duplication. Three pairs of GmPIN genes arose after the second soybean genome duplication, and six occurred after the first genome duplication. The duplicated GmPIN genes retained similar expression patterns. All the duplicated GmPIN genes experienced purifying selection (Ka/Ks < 1) to prevent accumulation of non-synonymous mutations and thus remained more similar. In addition, we also focused on the artificial selection of the soybean PIN genes. Five artificially selected GmPIN genes were identified by comparing the genome sequence of 17 wild and 14 cultivated soybean varieties. Our research provides useful and comprehensive basic information for understanding GmPIN genes.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Haichao Wei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
172
|
Abstract
BACKGROUND The sleep and cognitive dysfunction are common in major depressive disorders (MDDs). Recently, the 2-pore domain potassium channel twik-related K(+) channel 1 (TREK-1) has been identified to be closely related to the etiology of MDD. However, whether TREK-1 is involved in the regulation of sleep and cognition is still unknown. METHODS The present study tried to dissect the role of outwardly rectifying K+ channel-1 (ORK1) (TREK-1 homolog in Drosophila) in sleep and cognition in Drosophila. The mutant and over-expressed lines of ork1 were generated using Drosophila genetics. Sleep analysis and short-term memory experiments were used to test sleep time and short-term memory of the mutant and over-expressed ORK1 lines, respectively. RESULTS Our results showed that the learning index of ork1 mutant lines was increased compared with the wild type. However, ork1 mutant could obviously decrease sleep time in Drosophila. Contrary to the ork1 mutant lines, we also found that ORK1 over-expression could increase sleep time and decreased learning index in Drosophila. CONCLUSION Results from this study suggest that ORK1 might play an important role in the regulation of sleep time and short-term memory in Drosophila.
Collapse
|
173
|
Bhatt VS, Zeng D, Krieger I, Sacchettini JC, Cho JH. Binding Mechanism of the N-Terminal SH3 Domain of CrkII and Proline-Rich Motifs in cAbl. Biophys J 2017; 110:2630-2641. [PMID: 27332121 DOI: 10.1016/j.bpj.2016.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022] Open
Abstract
The N-terminal Src homology 3 (nSH3) domain of a signaling adaptor protein, CT-10 regulator of kinase II (CrkII), recognizes proline-rich motifs (PRMs) of binding partners, such as cAbl kinase. The interaction between CrkII and cAbl kinase is involved in the regulation of cell spreading, microbial pathogenesis, and cancer metastasis. Here, we report the detailed biophysical characterizations of the interactions between the nSH3 domain of CrkII and PRMs in cAbl. We identified that the nSH3 domain of CrkII binds to three PRMs in cAbl with virtually identical affinities. Structural studies, by using x-ray crystallography and NMR spectroscopy, revealed that the binding modes of all three nSH3:PRM complexes are highly similar to each other. Van 't Hoff analysis revealed that nSH3:PRM interaction is associated with favorable enthalpy and unfavorable entropy change. The combination of experimentally determined thermodynamic parameters, structure-based calculations, and (15)N NMR relaxation analysis highlights the energetic contribution of conformational entropy change upon the complex formation, and water molecules structured in the binding interface of the nSH3:PRM complex. Understanding the molecular basis of nSH3:PRM interaction will provide, to our knowledge, new insights for the rational design of small molecules targeting the interaction between CrkII and cAbl.
Collapse
Affiliation(s)
- Veer S Bhatt
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Danyun Zeng
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Inna Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Jae-Hyun Cho
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas.
| |
Collapse
|
174
|
Ruprecht C, Proost S, Hernandez-Coronado M, Ortiz-Ramirez C, Lang D, Rensing SA, Becker JD, Vandepoele K, Mutwil M. Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:447-465. [PMID: 28161902 DOI: 10.1111/tpj.13502] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Molecular evolutionary studies correlate genomic and phylogenetic information with the emergence of new traits of organisms. These traits are, however, the consequence of dynamic gene networks composed of functional modules, which might not be captured by genomic analyses. Here, we established a method that combines large-scale genomic and phylogenetic data with gene co-expression networks to extensively study the evolutionary make-up of modules in the moss Physcomitrella patens, and in the angiosperms Arabidopsis thaliana and Oryza sativa (rice). We first show that younger genes are less annotated than older genes. By mapping genomic data onto the co-expression networks, we found that genes from the same evolutionary period tend to be connected, whereas old and young genes tend to be disconnected. Consequently, the analysis revealed modules that emerged at a specific time in plant evolution. To uncover the evolutionary relationships of the modules that are conserved across the plant kingdom, we added phylogenetic information that revealed duplication and speciation events on the module level. This combined analysis revealed an independent duplication of cell wall modules in bryophytes and angiosperms, suggesting a parallel evolution of cell wall pathways in land plants. We provide an online tool allowing plant researchers to perform these analyses at http://www.gene2function.de.
Collapse
Affiliation(s)
- Colin Ruprecht
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | | | - Carlos Ortiz-Ramirez
- Instituto Gulbekian De Ciencia, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Daniel Lang
- University of Freiburg, Schänzlestr. 1, D-79104, Freiburg, Germany
| | - Stefan A Rensing
- University of Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Jörg D Becker
- Instituto Gulbekian De Ciencia, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Klaas Vandepoele
- Department of Plant Systems Biology VIB, Department of Plant Biotechnology and Bioinformatics Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
175
|
Siddique YH, Ali F. Protective effect of nordihydroguaiaretic acid (NDGA) on the transgenic Drosophila model of Alzheimer's disease. Chem Biol Interact 2017; 269:59-66. [DOI: 10.1016/j.cbi.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023]
|
176
|
|
177
|
Yan HY, Mita K, Zhao X, Tanaka Y, Moriyama M, Wang H, Iwanaga M, Kawasaki H. The angiotensin-converting enzyme (ACE) gene family of Bombyx mori. Gene 2017; 608:58-65. [DOI: 10.1016/j.gene.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
|
178
|
Germline Proliferation Is Regulated by Somatic Endocytic Genes via JNK and BMP Signaling in Drosophila. Genetics 2017; 206:189-197. [PMID: 28315838 PMCID: PMC5419469 DOI: 10.1534/genetics.116.196535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/06/2017] [Indexed: 12/14/2022] Open
Abstract
Signals derived from the microenvironment contribute greatly to tumorigenesis . The underlying mechanism requires thorough investigation. Here, we use Drosophila testis as a model system to address this question, taking the advantage of the ease to distinguish germline and somatic cells and to track the cell numbers. In an EMS mutagenesis screen, we identified Rab5, a key factor in endocytosis, for its nonautonomous role in germline proliferation. The disruption of Rab5 in somatic cyst cells, which escort the development of germline lineage, induced the overproliferation of underdifferentiated but genetically wild-type germ cells. We demonstrated that this nonautonomous effect was mediated by the transcriptional activation of Dpp [the fly homolog of bone morphogenetic protein (BMP)] by examining the Dpp-reporter expression and knocking down Dpp to block germline overgrowth. Consistently, the protein levels of Bam, the germline prodifferentiation factor normally accumulated in the absence of BMP/Dpp signaling, decreased in the overproliferating germ cells. Further, we discovered that the JNK signaling pathway operated between Rab5 and Dpp, because simultaneously inhibiting the JNK pathway and Rab5 in cyst cells prevented both dpp transcription and germline tumor growth. Additionally, we found that multiple endocytic genes, such as avl, TSG101, Vps25, or Cdc42, were required in the somatic cyst cells to restrict germline amplification. These findings indicate that when the endocytic state of the surrounding cells is impaired, genetically wild-type germ cells overgrow. This nonautonomous model of tumorigenesis provides a simple system to dissect the relation between tumor and its niche.
Collapse
|
179
|
Gao R, Li JJ. Correspondence of D. melanogaster and C. elegans developmental stages revealed by alternative splicing characteristics of conserved exons. BMC Genomics 2017; 18:234. [PMID: 28302059 PMCID: PMC5353869 DOI: 10.1186/s12864-017-3600-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/22/2017] [Indexed: 11/21/2022] Open
Abstract
Background We report a statistical study to find correspondence of D. melanogaster and C. elegans developmental stages based on alternative splicing (AS) characteristics of conserved cassette exons using modENCODE RNA-seq data. We identify “stage-associated exons” to capture the AS characteristics of each stage and use these exons to map pairwise stages within and between the two species by an overlap test. Results Within fly and worm, adjacent developmental stages are mapped to each other, i.e., a strong diagonal pattern is observed as expected, supporting the validity of our approach. Between fly and worm, two parallel mapping patterns are observed between fly early embryos to early larvae and worm life cycle, and between fly late larvae to adults and worm late embryos to adults. We also apply this approach to compare tissues and cells from fly and worm. Findings include the high similarity between fly/worm adults and fly/worm embryos, groupings of fly cell lines, and strong mappings of fly head tissues to worm late embryos and male adults. Gene ontology and KEGG enrichment analyses provide a detailed functional annotation of the identified stage-associated exons, as well as a functional explanation of the observed correspondence map between fly and worm developmental stages. Conclusions Our results suggest that AS dynamics of the exon pairs that share similar DNA sequences are informative for finding transcriptomic similarity of biological samples. Our study is innovative in two aspects. First, to our knowledge, our study is the first comprehensive study of AS events in fly and worm developmental stages, tissues, and cells. AS events provide an alternative perspective of transcriptome dynamics, compared to gene expression events. Second, our results do not entirely rely on the information of orthologous genes. Interesting results are also observed for fly and worm cassette exon pairs with DNA sequence similarity but not in orthologous gene pairs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3600-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruiqi Gao
- Department of Statistics, University of California, Los Angeles, USA
| | - Jingyi Jessica Li
- Department of Statistics, University of California, Los Angeles, USA. .,Department of Human Genetics, University of California, Los Angeles, USA.
| |
Collapse
|
180
|
Peterson EK, Yukilevich R, Kehlbeck J, LaRue KM, Ferraiolo K, Hollocher K, Hirsch HVB, Possidente B. Asymmetrical positive assortative mating induced by developmental lead (Pb 2+) exposure in a model system, Drosophila melanogaster. Curr Zool 2017; 63:195-203. [PMID: 29491977 PMCID: PMC5804169 DOI: 10.1093/cz/zox016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/28/2017] [Indexed: 02/01/2023] Open
Abstract
Anthropogenic pollutants have the potential to disrupt reproductive strategies. Little is known about how lead (Pb2+) exposure disrupts individual-level responses in reproductive behaviors, which are important for fitness. Drosophila melanogaster was used as a model system to determine the effects of: 1) developmental lead exposure on pre-mating reproductive behaviors (i.e., mate preference), and 2) lead exposure and mating preferences on fitness in the F0 parental generation and F1 un-exposed offspring. Wild-type strains of D. melanogaster were reared from egg stage to adulthood in control or leaded medium (250 μM PbAc) and tested for differences in: mate preference, male song performance, sex pheromone expression, fecundity, mortality, and body weight. F0 leaded females preferentially mated with leaded males (i.e., asymmetrical positive assortative mating) in 2-choice tests. This positive assortative mating was mediated by the females (and not the males) and was dependent upon context and developmental exposure to Pb. Neither the courtship song nor the sex pheromone profile expressed by control and leaded males mediated the positive assortative mating in leaded females. Leaded females did not incur a fitness cost in terms of reduced fecundity, increased mortality, or decreased body weight by mating with leaded males. These results suggest that sublethal exposure to lead during development can alter mate preferences in adults, but not fitness measures once lead exposure has been removed. We suggest that changes in mate preference may induce fitness costs, as well as long-term population and multi-generational implications, if pollution is persistent in the environment.
Collapse
Affiliation(s)
- Elizabeth K Peterson
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Roman Yukilevich
- Department of Biology, Union College, Schenectady, NY 12308, USA
| | - Joanne Kehlbeck
- Department of Chemistry, Union College, Schenectady, NY 12308, USA
| | - Kelly M LaRue
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kyle Ferraiolo
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Kurt Hollocher
- Department of Geology, Union College, Schenectady, NY 12308, USA
| | - Helmut V B Hirsch
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Bernard Possidente
- Department of Biology, Skidmore College, Saratoga, Springs, NY 12866, USA
| |
Collapse
|
181
|
Ginn BR. The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:1-21. [PMID: 28185903 DOI: 10.1016/j.pbiomolbio.2017.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/24/2017] [Indexed: 01/04/2023]
Abstract
Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINs), tend to be diploid while haploidy tends to be restricted to relatively simple organisms.
Collapse
Affiliation(s)
- B R Ginn
- University of Georgia, GA 30602, United States.
| |
Collapse
|
182
|
Role of Ectopic Gene Conversion in the Evolution of a Candida krusei Pleiotropic Drug Resistance Transporter Family. Genetics 2017; 205:1619-1639. [PMID: 28159755 PMCID: PMC5378117 DOI: 10.1534/genetics.116.194811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/31/2017] [Indexed: 11/18/2022] Open
Abstract
Gene duplications enable the evolution of novel gene function, but strong positive selection is required to preserve advantageous mutations in a population. This is because frequent ectopic gene conversions (EGCs) between highly similar, tandem-duplicated, sequences, can rapidly remove fate-determining mutations by replacing them with the neighboring parent gene sequences. Unfortunately, the high sequence similarities between tandem-duplicated genes severely hamper empirical studies of this important evolutionary process, because deciphering their correct sequences is challenging. In this study, we employed the eukaryotic model organism Saccharomyces cerevisiae to clone and functionally characterize all 30 alleles of an important pair of tandem-duplicated multidrug efflux pump genes, ABC1 and ABC11, from seven strains of the diploid pathogenic yeast Candida krusei Discovery and functional characterization of their closest ancestor, C. krusei ABC12, helped elucidate the evolutionary history of the entire gene family. Our data support the proposal that the pleiotropic drug resistance (PDR) transporters Abc1p and Abc11p have evolved by concerted evolution for ∼134 MY. While >90% of their sequences remained identical, very strong purifying selection protected six short DNA patches encoding just 18 core amino acid (aa) differences in particular trans membrane span (TMS) regions causing two distinct efflux pump functions. A proline-kink change at the bottom of Abc11p TMS3 was possibly fate determining. Our data also enabled the first empirical estimates for key parameters of eukaryotic gene evolution, they provided rare examples of intron loss, and PDR transporter phylogeny confirmed that C. krusei belongs to a novel, yet unnamed, third major Saccharomycotina lineage.
Collapse
|
183
|
Park A, Ghezzi A, Wijesekera TP, Atkinson NS. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017; 122:22-35. [PMID: 28161376 DOI: 10.1016/j.neuropharm.2017.01.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Drosophila melanogaster has become a significant model organism for alcohol research. In flies, a rich variety of behaviors can be leveraged for identifying genes affecting alcohol responses and adaptations. Furthermore, almost all genes can be easily genetically manipulated. Despite the great evolutionary distance between flies and mammals, many of the same genes have been implicated in strikingly similar alcohol-induced behaviors. A major problem in medical research today is that it is difficult to extrapolate from any single model system to humans. Strong evolutionary conservation of a mechanistic response between distantly related organisms, such as flies and mammals, is a powerful predictor that conservation will continue all the way to humans. This review describes the state of the Drosophila alcohol research field. It describes common alcohol behavioral assays, the independent origins of resistance and tolerance, the results of classical genetic screens and candidate gene analysis, and the outcomes of recent genomics studies employing GWAS, transcriptome, miRNA, and genome-wide histone acetylation surveys. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Annie Park
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Alfredo Ghezzi
- Department of Biology, University of Puerto Rico, Rio Piedras. San Juan, PR, United States
| | - Thilini P Wijesekera
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - Nigel S Atkinson
- Department of Neuroscience and The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
184
|
Mayfield JE, Robinson MR, Cotham VC, Irani S, Matthews WL, Ram A, Gilmour DS, Cannon JR, Zhang YJ, Brodbelt JS. Mapping the Phosphorylation Pattern of Drosophila melanogaster RNA Polymerase II Carboxyl-Terminal Domain Using Ultraviolet Photodissociation Mass Spectrometry. ACS Chem Biol 2017; 12:153-162. [PMID: 28103682 DOI: 10.1021/acschembio.6b00729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Phosphorylation of the C-terminal domain of RNA polymerase II (CTD) plays an essential role in eukaryotic transcription by recruiting transcriptional regulatory factors to the active polymerase. However, the scarcity of basic residues and repetitive nature of the CTD sequence impose a huge challenge for site-specific characterization of phosphorylation, hindering our understanding of this crucial biological process. Herein, we apply LC-UVPD-MS methods to analyze post-translational modification along native sequence CTDs. Application of our method to the Drosophila melanogaster CTD reveals the phosphorylation pattern of this model organism for the first time. The divergent nature of fly CTD allows us to derive rules defining how flanking residues affect phosphorylation choice by CTD kinases. Our data support the use of LC-UVPD-MS to decipher the CTD code and determine rules that program its function.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David S. Gilmour
- Department
of Biochemistry and Molecular Biology, Penn State University, University Park, Pennsylvania 16802, United States
| | | | | | | |
Collapse
|
185
|
Benoit JB, Vigneron A, Broderick NA, Wu Y, Sun JS, Carlson JR, Aksoy S, Weiss BL. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis. eLife 2017; 6:e19535. [PMID: 28079523 PMCID: PMC5231409 DOI: 10.7554/elife.19535] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023] Open
Abstract
Symbiotic bacteria assist in maintaining homeostasis of the animal immune system. However, the molecular mechanisms that underlie symbiont-mediated host immunity are largely unknown. Tsetse flies (Glossina spp.) house maternally transmitted symbionts that regulate the development and function of their host's immune system. Herein we demonstrate that the obligate mutualist, Wigglesworthia, up-regulates expression of odorant binding protein six in the gut of intrauterine tsetse larvae. This process is necessary and sufficient to induce systemic expression of the hematopoietic RUNX transcription factor lozenge and the subsequent production of crystal cells, which actuate the melanotic immune response in adult tsetse. Larval Drosophila's indigenous microbiota, which is acquired from the environment, regulates an orthologous hematopoietic pathway in their host. These findings provide insight into the molecular mechanisms that underlie enteric symbiont-stimulated systemic immune system development, and indicate that these processes are evolutionarily conserved despite the divergent nature of host-symbiont interactions in these model systems.
Collapse
Affiliation(s)
- Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, United States
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Nichole A Broderick
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, United States
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| |
Collapse
|
186
|
Hunt PR. The C. elegans model in toxicity testing. J Appl Toxicol 2017; 37:50-59. [PMID: 27443595 PMCID: PMC5132335 DOI: 10.1002/jat.3357] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022]
Abstract
Caenorhabditis elegans is a small nematode that can be maintained at low cost and handled using standard in vitro techniques. Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide data from a whole animal with intact and metabolically active digestive, reproductive, endocrine, sensory and neuromuscular systems. Toxicity ranking screens in C. elegans have repeatedly been shown to be as predictive of rat LD50 ranking as mouse LD50 ranking. Additionally, many instances of conservation of mode of toxic action have been noted between C. elegans and mammals. These consistent correlations make the case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies, but do not indicate that nematodes alone can replace data from mammals for hazard evaluation. As with cell cultures, good C. elegans culture practice (GCeCP) is essential for reliable results. This article reviews C. elegans use in various toxicity assays, the C. elegans model's strengths and limitations for use in predictive toxicology, and GCeCP. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons Ltd.
Collapse
|
187
|
Abstract
The overarching goal of the Gene Ontology (GO) Consortium is to provide researchers in biology and biomedicine with all current functional information concerning genes and the cellular context under which these occur. When the GO was started in the 1990s surprisingly little attention had been given to how functional information about genes was to be uniformly captured, structured in a computable form, and made accessible to biologists. Because knowledge of gene, protein, ncRNA, and molecular complex roles is continuously accumulating and changing, the GO needed to be a dynamic resource, accurately tracking ongoing research results over time. Here I describe the progress that has been made over the years towards this goal, and the work that still remains to be done, to make of the Gene Ontology (GO) Consortium realize its goal of offering the most comprehensive and up-to-date resource for information on gene function.
Collapse
Affiliation(s)
- Suzanna E Lewis
- Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
188
|
Moulton MJ, Letsou A. Modeling congenital disease and inborn errors of development in Drosophila melanogaster. Dis Model Mech 2016; 9:253-69. [PMID: 26935104 PMCID: PMC4826979 DOI: 10.1242/dmm.023564] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fly models that faithfully recapitulate various aspects of human disease and human health-related biology are being used for research into disease diagnosis and prevention. Established and new genetic strategies in Drosophila have yielded numerous substantial successes in modeling congenital disorders or inborn errors of human development, as well as neurodegenerative disease and cancer. Moreover, although our ability to generate sequence datasets continues to outpace our ability to analyze these datasets, the development of high-throughput analysis platforms in Drosophila has provided access through the bottleneck in the identification of disease gene candidates. In this Review, we describe both the traditional and newer methods that are facilitating the incorporation of Drosophila into the human disease discovery process, with a focus on the models that have enhanced our understanding of human developmental disorders and congenital disease. Enviable features of the Drosophila experimental system, which make it particularly useful in facilitating the much anticipated move from genotype to phenotype (understanding and predicting phenotypes directly from the primary DNA sequence), include its genetic tractability, the low cost for high-throughput discovery, and a genome and underlying biology that are highly evolutionarily conserved. In embracing the fly in the human disease-gene discovery process, we can expect to speed up and reduce the cost of this process, allowing experimental scales that are not feasible and/or would be too costly in higher eukaryotes.
Collapse
Affiliation(s)
- Matthew J Moulton
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| | - Anthea Letsou
- Department of Human Genetics, University of Utah, 15 North 2030 East, Room 5100, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
189
|
Krishnaraju RK, Hart TC, Schleyer TK. Comparative Genomics and Structure Prediction of Dental Matrix Proteins. Adv Dent Res 2016; 17:100-3. [PMID: 15126218 DOI: 10.1177/154407370301700123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Non-collagenous matrix proteins secreted by the ameloblasts (amelogenin) and odontoblasts (osteocalcin) play important roles in the mineralization of enamel and dentin. In this study, comparative genomics approaches were used to identify the functional domains and model the three-dimensional structure of amelogenin and osteocalcin, respectively. Multiple sequence analysis of amelogenin in different species showed a high degree of sequence conservation at the nucleotide and protein levels. At the protein level, motifs (a sequence pattern that occurs repeatedly in a group of related proteins or genes), conserved domains, secondary structural characteristics, and functional sites of amelogenin from lower phyla were similar to those of the higher-level mammals, reflecting the high degree of sequence conservation during vertebrate evolution. Osteocalcin, produced by both odontoblasts and osetoblasts, also showed sequence similarity between species. Three-dimensional structure predictions developed by modeling of conserved domains of osteocalcin supported a role for glutamic acid residues in the calcium mineralization process.
Collapse
Affiliation(s)
- R K Krishnaraju
- Center for Biomedical Informatics, University of Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
190
|
Chin AF, Toptygin D, Elam WA, Schrank TP, Hilser VJ. Phosphorylation Increases Persistence Length and End-to-End Distance of a Segment of Tau Protein. Biophys J 2016; 110:362-371. [PMID: 26789759 DOI: 10.1016/j.bpj.2015.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 12/07/2015] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered regions of proteins, which lack unique tertiary structure under physiological conditions, are enriched in phosphorylation sites and in significant local bias toward the polyproline II conformation. The overrepresented coincidence of this posttranslational regulatory signal and local conformational bias within unstructured regions raises a question: can phosphorylation serve to manipulate the conformational preferences of a disordered protein? In this study, we use time-resolved fluorescence resonance energy transfer and a, to our knowledge, novel data analysis method to directly measure the end-to-end distance distribution of a phosphorylatable peptide derived from the human microtubule associated protein tau. Our results show that phosphorylation at threonine or serine extends the end-to-end distance and increases the effective persistence length of the tested model peptides. Unexpectedly, the extension is independent of salt concentration, suggestive of a nonelectrostatic origin. The phosphorylation extension and stiffening effect provides a peptide-scale physical interpretation for the posttranslational regulation of the highly abundant protein-protein interactions found in disordered proteins, as well as a potential insight into the regulatory mechanism of the tau protein's microtubule binding activity.
Collapse
Affiliation(s)
- Alexander F Chin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Dmitri Toptygin
- Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - W Austin Elam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Travis P Schrank
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland; T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
191
|
Coskun AF, Eser U, Islam S. Cellular identity at the single-cell level. MOLECULAR BIOSYSTEMS 2016; 12:2965-79. [PMID: 27460751 DOI: 10.1039/c6mb00388e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A single cell creates surprising heterogeneity in a multicellular organism. While every organismal cell shares almost an identical genome, molecular interactions in cells alter the use of DNA sequences to modulate the gene of interest for specialization of cellular functions. Each cell gains a unique identity through molecular coding across the DNA, RNA, and protein conversions. On the other hand, loss of cellular identity leads to critical diseases such as cancer. Most cell identity dissection studies are based on bulk molecular assays that mask differences in individual cells. To probe cell-to-cell variability in a population, we discuss single cell approaches to decode the genetic, epigenetic, transcriptional, and translational mechanisms for cell identity formation. In combination with molecular instructions, the physical principles behind cell identity determination are examined. Deciphering and reprogramming cellular types impact biology and medicine.
Collapse
Affiliation(s)
- Ahmet F Coskun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, California, USA.
| | | | | |
Collapse
|
192
|
Uzdensky A, Berezhnaya E, Khaitin A, Kovaleva V, Komandirov M, Neginskaya M, Rudkovskii M, Sharifulina S. Protection of the Crayfish Mechanoreceptor Neuron and Glial Cells from Photooxidative Injury by Modulators of Diverse Signal Transduction Pathways. Mol Neurobiol 2016; 52:811-25. [PMID: 26063591 DOI: 10.1007/s12035-015-9237-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress is the reason of diverse neuropathological processes. Photodynamic therapy (PDT), an effective inducer of oxidative stress, is used for cancer treatment, including brain tumors. We studied the role of various signaling pathways in photodynamic injury and protection of single neurons and satellite glial cells in the isolated crayfish mechanoreceptor. It was photosensitized with alumophthalocyanine Photosens in the presence of inhibitors or activators of various signaling proteins. PDT eliminated neuronal activity and killed neurons and glial cells. Inhibitory analysis showed the involvement of protein kinases Akt, glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinases 1 and 2 (MEK1/2), calmodulin, calmodulin-dependent kinase II (CaMKII), adenylate cyclase, and nuclear factor NF-κB in PDT-induced necrosis of neurons. Nitric oxide (NO) and glial cell-derived neurotrophic factor (GDNF) reduced neuronal necrosis. In glial cells, protein kinases Akt, calmodulin, and CaMKII; protein kinases C and G, adenylate cyclase, and p38; and nuclear transcription factor NF-κB also mediated PDT-induced necrosis. In contrast, NO and neurotrophic factors nerve growth factor (NGF) and GDNF demonstrated anti-necrotic activity. Phospholipase Cγ, protein kinase C, GSK-3β, mTOR, NF-κB, mitochondrial permeability transition pores, and NO synthase mediated PDT-induced apoptosis of glial cells, whereas protein kinase A, tyrosine phosphatases, and neurotrophic factors NGF, GDNF, and neurturin were involved in protecting glial cells from photoinduced apoptosis. Signaling pathways that control cell survival and death differed in neurons and glia. Inhibitors or activators of some signaling pathways may be used as potential protectors of neurons and glia from photooxidative stress and following death.
Collapse
Affiliation(s)
- Anatoly Uzdensky
- Academy of Biology and Biotechnology, Southern Federal University, 194/1 Stachky Ave., Rostov-on-Don, 344090, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
194
|
Shang J, Lu S, Jiang Y, Zhang J. Allosteric modulators of MEK1: drug design and discovery. Chem Biol Drug Des 2016; 88:485-97. [PMID: 27115708 DOI: 10.1111/cbdd.12780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Mitogen-activated protein kinase kinase (MAPKK, MEK) mediates signal transduction, controlling cell proliferation and survival. MEK occupies a key downstream position in the Ras-Raf-MEK-ERK signaling pathway, implying that inhibition of MEK will potently suppress tumor cell growth, with potential applications in cancer therapy. Based on the promising therapeutic effects of MEK modulators, continued efforts have been made in this class. Here, we review the discovery and development of MEK1 allosteric modulators, classifying them into four structural groups. The allosteric mechanisms and recent clinical progress involving these modulators are also reviewed.
Collapse
Affiliation(s)
- Jialin Shang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yongjun Jiang
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. .,Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
195
|
Lelieveld SH, Schütte J, Dijkstra MJJ, Bawono P, Kinston SJ, Göttgens B, Heringa J, Bonzanni N. ConBind: motif-aware cross-species alignment for the identification of functional transcription factor binding sites. Nucleic Acids Res 2016; 44:e72. [PMID: 26721389 PMCID: PMC4856970 DOI: 10.1093/nar/gkv1518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic gene expression is regulated by transcription factors (TFs) binding to promoter as well as distal enhancers. TFs recognize short, but specific binding sites (TFBSs) that are located within the promoter and enhancer regions. Functionally relevant TFBSs are often highly conserved during evolution leaving a strong phylogenetic signal. While multiple sequence alignment (MSA) is a potent tool to detect the phylogenetic signal, the current MSA implementations are optimized to align the maximum number of identical nucleotides. This approach might result in the omission of conserved motifs that contain interchangeable nucleotides such as the ETS motif (IUPAC code: GGAW). Here, we introduce ConBind, a novel method to enhance alignment of short motifs, even if their mutual sequence similarity is only partial. ConBind improves the identification of conserved TFBSs by improving the alignment accuracy of TFBS families within orthologous DNA sequences. Functional validation of the Gfi1b + 13 enhancer reveals that ConBind identifies additional functionally important ETS binding sites that were missed by all other tested alignment tools. In addition to the analysis of known regulatory regions, our web tool is useful for the analysis of TFBSs on so far unknown DNA regions identified through ChIP-sequencing.
Collapse
Affiliation(s)
- Stefan H Lelieveld
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands
| | - Judith Schütte
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK Klinik für Hämatologie, Universitätsklinik Essen 45147, Germany
| | - Maurits J J Dijkstra
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Punto Bawono
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Sarah J Kinston
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust-MRC Cambridge Stem Cell Institute & Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
| | - Jaap Heringa
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Nicola Bonzanni
- Centre for Integrative Bioinformatics VU, VU University Amsterdam, Amsterdam 1081 HV, The Netherlands Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands ENPICOM, Eindhoven 5632 CW, The Netherlands
| |
Collapse
|
196
|
Yang XD, Tan HW, Zhu WM. SpinachDB: A Well-Characterized Genomic Database for Gene Family Classification and SNP Information of Spinach. PLoS One 2016; 11:e0152706. [PMID: 27148975 PMCID: PMC4858205 DOI: 10.1371/journal.pone.0152706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/17/2016] [Indexed: 01/08/2023] Open
Abstract
Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.
Collapse
Affiliation(s)
- Xue-Dong Yang
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hua-Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei-Min Zhu
- The Protected Horticulture Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
197
|
Chauhan V, Chauhan A. Effects of methylmercury and alcohol exposure in Drosophila melanogaster: Potential risks in neurodevelopmental disorders. Int J Dev Neurosci 2016; 51:36-41. [PMID: 27151262 DOI: 10.1016/j.ijdevneu.2016.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/26/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022] Open
Abstract
Extensive evidence suggests the role of oxidative stress in autism and other neurodevelopmental disorders. In this study, we investigated whether methylmercury (MeHg) and/or alcohol exposure has deleterious effects in Drosophila melanogaster (fruit flies). A diet containing different concentrations of MeHg in Drosophila induced free radical generation and increased lipid peroxidation (markers of oxidative stress) in a dose-dependent manner. This effect of MeHg on oxidative stress was enhanced by further exposure to alcohol. It was observed that alcohol alone could also induce free radical generation in flies. After alcohol exposure, MeHg did not affect the immobilization of flies, but it increased the recovery time in a concentration-dependent manner. MeHg significantly inhibited the activity of alcohol dehydrogenase (ADH) in a dose-dependent manner. Linear regression analysis showed a significant negative correlation between ADH activity and recovery time upon alcohol exposure in the flies fed a diet with MeHg. This relationship between ADH activity and recovery time after alcohol exposure was confirmed by adding 4-methyl pyrazole (an inhibitor of ADH) to the diet for the flies. These results suggest that consumption of alcohol by pregnant mothers who are exposed to MeHg may lead to increased oxidative stress and to increased length of time for alcohol clearance, which may have a direct impact on the development of the fetus, thereby increasing the risk of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA.
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| |
Collapse
|
198
|
I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research. Neuropsychopharmacology 2016; 41:1439-46. [PMID: 26576740 PMCID: PMC4832023 DOI: 10.1038/npp.2015.322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023]
Abstract
Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.
Collapse
|
199
|
Bernstein AI, Lin Y, Street RC, Lin L, Dai Q, Yu L, Bao H, Gearing M, Lah JJ, Nelson PT, He C, Levey AI, Mullé JG, Duan R, Jin P. 5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Hum Mol Genet 2016; 25:2437-2450. [PMID: 27060332 DOI: 10.1093/hmg/ddw109] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/03/2016] [Accepted: 04/04/2016] [Indexed: 11/14/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive deterioration of cognitive function. Pathogenesis of AD is incompletely understood; evidence suggests a role for epigenetic regulation, in particular the cytosine modifications 5-methylcytosine and 5-hydroxymethylcytosine (5hmC). 5hmC is enriched in the nervous system and displays neurodevelopment and age-related changes. To determine the role of 5hmC in AD, we performed genome-wide analyses of 5hmC in DNA from prefrontal cortex of post-mortem AD patients, and RNA-Seq to correlate changes in 5hmC with transcriptional changes. We identified 325 genes containing differentially hydroxymethylated loci (DhMLs) in both discovery and replication datasets. These are enriched for pathways involved in neuron projection development and neurogenesis. Of these, 140 showed changes in gene expression. Proteins encoded by these genes form direct protein-protein interactions with AD-associated genes, expanding the network of genes implicated in AD. We identified AD-associated single nucleotide polymorphisms (SNPs) located within or near DhMLs, suggesting these SNPs may identify regions of epigenetic gene regulation that play a role in AD pathogenesis. Finally, using an existing AD fly model, we showed some of these genes modulate AD-associated toxicity. Our data implicate neuronal projection development and neurogenesis pathways as potential targets in AD. By incorporating epigenomic and transcriptomic data with genome-wide association studies data, with verification in the Drosophila model, we can expand the known network of genes involved in disease pathogenesis and identify epigenetic modifiers of Alzheimer's disease.
Collapse
Affiliation(s)
- Alison I Bernstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Yunting Lin
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - R Craig Street
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Li Lin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Qing Dai
- Department of Chemistry.,Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Li Yu
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Han Bao
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Marla Gearing
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - James J Lah
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Peter T Nelson
- Department of Pathology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Chuan He
- Department of Chemistry.,Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jennifer G Mullé
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Ranhui Duan
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
200
|
Siddique YH, Naz F, Jyoti S, Ali F, Fatima A, Khanam S. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson's disease. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:225-231. [PMID: 27026137 DOI: 10.1016/j.etap.2016.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
The role of Geraniol was studied on the transgenic Drosophila model flies expressing normal human alpha synuclein (h-αS) in the neurons. Geraniol at final concentration of 10, 20 and 40μM were mixed in the diet and the flies were allowed to feed on it for 24 days. The effect of geraniol was studied on the climbing ability, activity pattern, lipid peroxidation, protein carbonyl, glutathione, dopamine content, and glutathione-S-transferase activity in the brains of transgenic Drosophila. The exposure of PD model flies to 10, 20 and 40μM of geraniol results in a significant delay in the loss of climbing ability (p<0.05), improved activity pattern reduced the oxidative stress (p<0.05) in the brains of transgenic Drosophila as compared to unexposed PD model flies. The results suggest that geraniol is potent in reducing the PD symptoms in transgenic Drosophila model of Parkinson's disease.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Smita Jyoti
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fahad Ali
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Ambreen Fatima
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Saba Khanam
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|