151
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|
152
|
He C, Han S, Chang Y, Wu M, Zhao Y, Chen C, Chu X. CRISPR screen in cancer: status quo and future perspectives. Am J Cancer Res 2021; 11:1031-1050. [PMID: 33948344 PMCID: PMC8085856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 06/12/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) system offers a powerful platform for genome manipulation, including protein-coding genes, noncoding RNAs and regulatory elements. The development of CRISPR screen enables high-throughput interrogation of gene functions in diverse tumor biologies, such as tumor growth, metastasis, synthetic lethal interactions, therapeutic resistance and immunotherapy response, which are mostly performed in vitro or in transplant models. Recently, direct in vivo CRISPR screens have been developed to identify drivers of tumorigenesis in native microenvironment. Key parameters of CRISPR screen are constantly being optimized to achieve higher targeting efficiency and lower off-target effect. Here, we review the recent advances of CRISPR screen in cancer studies both in vitro and in vivo, with a particular focus on identifying cancer immunotherapy targets, and propose optimizing strategies and future perspectives for CRISPR screen.
Collapse
Affiliation(s)
- Chenglong He
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
| | - Yue Chang
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Meijuan Wu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Yulu Zhao
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing 210002, China
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical UniversityNanjing 210002, China
| |
Collapse
|
153
|
Kamat SM, Mendelsohn AR, Larrick JW. Rejuvenation Through Oxygen, More or Less. Rejuvenation Res 2021; 24:158-163. [PMID: 33784834 DOI: 10.1089/rej.2021.0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modest modulation of oxygen intake, either by inducing mild intermittent hypoxia or hyperoxia appears to induce modest rejuvenative changes in mammals, in part, by activating key regulator hypoxia-induced factor 1a (HIF-1a). Interestingly both lower oxygen and transient higher oxygen levels induce this hypoxia regulator. Hyperbaric oxygen induces HIF-1a by the hyperoxic-hypoxic paradox that results from an overinduction of protective factors under intermittent hyperoxic conditions, leading to a state somewhat similar to that induced by hypoxia. A key difference being that SIRT1 is induced by hyperoxia, whereas it is reduced during hypoxia by the activity of HIF-1a. In a recent report, a small clinical trial employing 60 sessions of intermittent hyperbaric oxygen therapy (HBOT) studying old humans resulted in increased mean telomere length of immune cells including B cells, natural killer cells, T helper, and cytotoxic T lymphocytes. Moreover, there was a reduction in CD28null senescent T helper and cytotoxic T cells. In a parallel report, HBOT has been reported to enhance cognition in older adults, especially attention and information processing speed through increased cerebral blood flow (CBF) in brain regions where CBF tends to decline with age. The durability of these beneficial changes is yet to be determined. These preliminary results require follow-up, including more extensive characterization of changes in aging-associated biomarkers. An interesting avenue of potential work is to elucidate potential connections between hypoxia and epigenetics, especially the induction of the master pluripotent regulatory factors, which when expressed transiently have been reported to ameliorate some aging biomarkers and pathologies.
Collapse
|
154
|
Shi L, Liu L, Li X, Wu Y, Tian X, Shi Y, Wang Z. Phylogeny and evolution of Lasiopodomys in subfamily Arvivolinae based on mitochondrial genomics. PeerJ 2021; 9:e10850. [PMID: 33777513 PMCID: PMC7977381 DOI: 10.7717/peerj.10850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
The species of Lasiopodomys Lataste 1887 with their related genera remains undetermined owing to inconsistent morphological characteristics and molecular phylogeny. To investigate the phylogenetic relationship and speciation among species of the genus Lasiopodomys, we sequenced and annotated the whole mitochondrial genomes of three individual species, namely Lasiopodomys brandtii Radde 1861, L. mandarinus Milne-Edwards 1871, and Neodon (Lasiopodomys) fuscus Büchner 1889. The nucleotide sequences of the circular mitogenomes were identical for each individual species of L. brandtii, L. mandarinus, and N. fuscus. Each species contained 13 protein-coding genes (PCGs), 22 transfer RNAs, and 2 ribosomal RNAs, with mitochondrial genome lengths of 16,557 bp, 16,562 bp, and 16,324 bp, respectively. The mitogenomes and PCGs showed positive AT skew and negative GC skew. Mitogenomic phylogenetic analyses suggested that L. brandtii, L. mandarinus, and L. gregalis Pallas 1779 belong to the genus Lasiopodomys, whereas N. fuscus belongs to the genus Neodon grouped with N. irene. Lasiopodomys showed the closest relationship with Microtus fortis Büchner 1889 and M. kikuchii Kuroda 1920, which are considered as the paraphyletic species of genera Microtus. TMRCA and niche model analysis revealed that Lasiopodomys may have first appeared during the early Pleistocene epoch. Further, L. gregalis separated from others over 1.53 million years ago (Ma) and then diverged into L. brandtii and L. mandarinus 0.76 Ma. The relative contribution of climatic fluctuations to speciation and selection in this group requires further research.
Collapse
Affiliation(s)
- Luye Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Likuan Liu
- School of Life Sciences, Qinghai Normal University, Xining, Qinghai, China
| | - Xiujuan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Tian
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhua Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
155
|
Inak G, Rybak-Wolf A, Lisowski P, Pentimalli TM, Jüttner R, Glažar P, Uppal K, Bottani E, Brunetti D, Secker C, Zink A, Meierhofer D, Henke MT, Dey M, Ciptasari U, Mlody B, Hahn T, Berruezo-Llacuna M, Karaiskos N, Di Virgilio M, Mayr JA, Wortmann SB, Priller J, Gotthardt M, Jones DP, Mayatepek E, Stenzel W, Diecke S, Kühn R, Wanker EE, Rajewsky N, Schuelke M, Prigione A. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun 2021; 12:1929. [PMID: 33771987 PMCID: PMC7997884 DOI: 10.1038/s41467-021-22117-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.
Collapse
Affiliation(s)
- Gizem Inak
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - Pawel Lisowski
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, n/Warsaw, Magdalenka, Poland
| | - Tancredi M Pentimalli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - René Jüttner
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Petar Glažar
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Christopher Secker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Annika Zink
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
| | | | - Marie-Thérèse Henke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany
| | - Monishita Dey
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ummi Ciptasari
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Josef Priller
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Werner Stenzel
- Charité - Universitätsmedizin, Department of Neuropathology, Berlin, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany.
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany.
- NeuroCure Clinical Research Center, Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
156
|
Wiggs JL. DNAJC30 biallelic mutations extend mitochondrial complex I-deficient phenotypes to include recessive Leber's hereditary optic neuropathy. J Clin Invest 2021; 131:147734. [PMID: 33720041 DOI: 10.1172/jci147734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is the most common mitochondrial disease and in most cases is caused by mutations in mitochondrial DNA-encoded (mtDNA-encoded) respiratory complex I subunit ND1, ND4, or ND6. In this issue of the JCI, Stenton et al. describe biallelic mutations in a nuclear DNA-encoded gene, DNAJC30, establishing recessively inherited LHON (arLHON). Functional studies suggest that DNAJC30 is a protein chaperone required for exchange of damaged complex I subunits. Hallmark mtDNA LHON features were also found in arLHON, including incomplete penetrance, male predominance, and positive response to idebenone therapy. These results extend complex I-deficient phenotypes to include recessively inherited optic neuropathy, with important clinical implications for genetic counseling and therapeutic considerations.
Collapse
|
157
|
Vessel flow void sign and hyperintense vessel sign on FLAIR images distinguish between MELAS and AIS. Mitochondrion 2021; 58:131-134. [PMID: 33713868 DOI: 10.1016/j.mito.2021.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to evaluate the sensitivity and specificity of the vessel signs, including the Vessel Flow Void Sign (VFVS) and the Hyperintense Vessel Sign (HVS) in Fluid Attenuated Inversion Recovery (FLAIR) images during the differentiation of Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS) in Acute Ischemic Stroke (AIS). METHODS Magnetic Resonance Imaging (MRI) scans of 13 MELAS and 20 AIS patients were obtained during the acute stage of the diseases (median time to scan <1 day from symptom onset). To evaluate VFVS and HVS on the FLAIR images, Logistic Regression was used to analyze their correlation with MELAS. Then, a new scale of scoring, involving two aspects (VFVS and HVS) on FLAIR images was established. Receiver operating characteristic (ROC) curves were used to evaluate the efficacy of the developed criterion. RESULTS FLAIR images from 12 of the 13 MELAS patients exhibited VFVS while none exhibited HVS. Moreover, FLAIR images from 3 of the 20 AIS patients exhibited VFVS while 17 exhibited HVS. Logistic Regression showed that VFVS and the absence of HVS (NoHVS) were independent MELAS predictors. If there were VFVS, the patient scored 2 points, while there were NoHVS, the patient scored 1 point. Patients with >1.5 scores were prone to be MELAS, while patients with <1.5 scores were prone to be AIS. Sensitivity was found to be 92.3%, specificity was 85%, with an AUC of 0.94. CONCLUSION We have established a new scoring criterion, with a high sensitivity and specificity, for differentiating between MELAS and AIS in patients during the acute stage.
Collapse
|
158
|
Ishii K, Kobayashi H, Taguchi K, Guan N, Li A, Tong C, Davidoff O, Tran PV, Sharma M, Chandel NS, Kapp ME, Fogo AB, Brooks CR, Haase VH. Kidney epithelial targeted mitochondrial transcription factor A deficiency results in progressive mitochondrial depletion associated with severe cystic disease. Kidney Int 2021; 99:657-670. [PMID: 33159962 PMCID: PMC8209657 DOI: 10.1016/j.kint.2020.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/07/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Abnormal mitochondrial function is a well-recognized feature of acute and chronic kidney diseases. To gain insight into the role of mitochondria in kidney homeostasis and pathogenesis, we targeted mitochondrial transcription factor A (TFAM), a protein required for mitochondrial DNA replication and transcription that plays a critical part in the maintenance of mitochondrial mass and function. To examine the consequences of disrupted mitochondrial function in kidney epithelial cells, we inactivated TFAM in sine oculis-related homeobox 2-expressing kidney progenitor cells. TFAM deficiency resulted in significantly decreased mitochondrial gene expression, mitochondrial depletion, inhibition of nephron maturation and the development of severe postnatal cystic disease, which resulted in premature death. This was associated with abnormal mitochondrial morphology, a reduction in oxygen consumption and increased glycolytic flux. Furthermore, we found that TFAM expression was reduced in murine and human polycystic kidneys, which was accompanied by mitochondrial depletion. Thus, our data suggest that dysregulation of TFAM expression and mitochondrial depletion are molecular features of kidney cystic disease that may contribute to its pathogenesis.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Hanako Kobayashi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Kensei Taguchi
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nan Guan
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andraia Li
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Carmen Tong
- Department Pediatric Urology, Monroe Carell Jr. Children's Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navdeep S Chandel
- Department of Medicine, Feinberg School of Medicine, Northwestern University Chicago, Illinois, USA
| | - Meghan E Kapp
- Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Agnes B Fogo
- The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Pathology, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Craig R Brooks
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Volker H Haase
- Department of Medicine, Vanderbilt University Medical Center and Vanderbilt University School of Medicine, Nashville, Tennessee, USA; The Vanderbilt O'Brien Kidney Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA; Department of Molecular Physiology and Biophysics, and Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
159
|
Tinker RJ, Lim AZ, Stefanetti RJ, McFarland R. Current and Emerging Clinical Treatment in Mitochondrial Disease. Mol Diagn Ther 2021; 25:181-206. [PMID: 33646563 PMCID: PMC7919238 DOI: 10.1007/s40291-020-00510-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial disease (PMD) is a group of complex genetic disorders that arise due to pathogenic variants in nuclear or mitochondrial genomes. Although PMD is one of the most prevalent inborn errors of metabolism, it often exhibits marked phenotypic variation and can therefore be difficult to recognise. Current treatment for PMD revolves around supportive and preventive approaches, with few disease-specific therapies available. However, over the last decade there has been considerable progress in our understanding of both the genetics and pathophysiology of PMD. This has resulted in the development of a plethora of new pharmacological and non-pharmacological therapies at varying stages of development. Many of these therapies are currently undergoing clinical trials. This review summarises the latest emerging therapies that may become mainstream treatment in the coming years. It is distinct from other recent reviews in the field by comprehensively addressing both pharmacological non-pharmacological therapy from both a bench and a bedside perspective. We highlight the current and developing therapeutic landscape in novel pharmacological treatment, dietary supplementation, exercise training, device use, mitochondrial donation, tissue replacement gene therapy, hypoxic therapy and mitochondrial base editing.
Collapse
Affiliation(s)
- Rory J Tinker
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Albert Z Lim
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Renae J Stefanetti
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- NHS Highly Specialised Service for Rare Mitochondrial Disorders for Adults and Children, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
160
|
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 2021; 599:863-888. [PMID: 32358865 PMCID: PMC8439166 DOI: 10.1113/jp278930] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, NS B2G 2W5, Antigonish, Canada
| | | | - Matthew L. Goodwin
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wayne T. Willis
- College of Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724-5099, USA
| | - L. Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL 36849-5323, USA
| |
Collapse
|
161
|
Terburgh K, Coetzer J, Lindeque JZ, van der Westhuizen FH, Louw R. Aberrant BCAA and glutamate metabolism linked to regional neurodegeneration in a mouse model of Leigh syndrome. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166082. [PMID: 33486097 DOI: 10.1016/j.bbadis.2021.166082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children - a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60-80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Janeé Coetzer
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Jeremy Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), South Africa.
| |
Collapse
|
162
|
Daniloski Z, Jordan TX, Wessels HH, Hoagland DA, Kasela S, Legut M, Maniatis S, Mimitou EP, Lu L, Geller E, Danziger O, Rosenberg BR, Phatnani H, Smibert P, Lappalainen T, tenOever BR, Sanjana NE. Identification of Required Host Factors for SARS-CoV-2 Infection in Human Cells. Cell 2021; 184:92-105.e16. [PMID: 33147445 PMCID: PMC7584921 DOI: 10.1016/j.cell.2020.10.030] [Citation(s) in RCA: 419] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.
Collapse
Affiliation(s)
- Zharko Daniloski
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Tristan X Jordan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hans-Hermann Wessels
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Daisy A Hoagland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mateusz Legut
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | | | - Eleni P Mimitou
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Lu Lu
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Evan Geller
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter Smibert
- Technology Innovation Lab, New York Genome Center, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA; Department of Systems Biology, Columbia University, New York, NY, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Neville E Sanjana
- New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
163
|
Affiliation(s)
- Divakar S Mithal
- Department of Neurology, Ann and Robert H. Lurie Children's Hospital, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S Chandel
- Department of Medicine, Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
164
|
Grillo AS, Bitto A, Kaeberlein M. The NDUFS4 Knockout Mouse: A Dual Threat Model of Childhood Mitochondrial Disease and Normative Aging. Methods Mol Biol 2021; 2277:143-155. [PMID: 34080150 DOI: 10.1007/978-1-0716-1270-5_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mice missing the Complex I subunit NADH:Ubiquinone Oxidoreductase Fe-S Protein 4 (NDUFS4) of the electron transport chain are a leading model of the severe mitochondrial disease Leigh syndrome. These mice have enabled a better understanding of mitochondrial dysfunction in human disease, as well as in the discovery of interventions that can potentially suppress mitochondrial disease manifestations. In addition, increasing evidence suggests significant overlap between interventions that increase survival in NDUFS4 knockout mice and that extend life span during normative aging. This chapter discusses the practical aspects of handling and studying these mice, which can be challenging due to their severe disease phenotype. Common procedures such as breeding, genotyping, weaning, or treating these transgenic mice are also discussed.
Collapse
Affiliation(s)
- Anthony S Grillo
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alessandro Bitto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
165
|
Miller HC, Louw R, Mereis M, Venter G, Boshoff JD, Mienie L, van Reenen M, Venter M, Lindeque JZ, Domínguez-Martínez A, Quintana A, van der Westhuizen FH. Metallothionein 1 Overexpression Does Not Protect Against Mitochondrial Disease Pathology in Ndufs4 Knockout Mice. Mol Neurobiol 2021; 58:243-262. [PMID: 32918239 DOI: 10.1007/s12035-020-02121-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/05/2020] [Indexed: 01/24/2023]
Abstract
Mitochondrial diseases (MD), such as Leigh syndrome (LS), present with severe neurological and muscular phenotypes in patients, but have no known cure and limited treatment options. Based on their neuroprotective effects against other neurodegenerative diseases in vivo and their positive impact as an antioxidant against complex I deficiency in vitro, we investigated the potential protective effect of metallothioneins (MTs) in an Ndufs4 knockout mouse model (with a very similar phenotype to LS) crossed with an Mt1 overexpressing mouse model (TgMt1). Despite subtle reductions in the expression of neuroinflammatory markers GFAP and IBA1 in the vestibular nucleus and hippocampus, we found no improvement in survival, growth, locomotor activity, balance, or motor coordination in the Mt1 overexpressing Ndufs4-/- mice. Furthermore, at a cellular level, no differences were detected in the metabolomics profile or gene expression of selected one-carbon metabolism and oxidative stress genes, performed in the brain and quadriceps, nor in the ROS levels of macrophages derived from these mice. Considering these outcomes, we conclude that MT1, in general, does not protect against the impaired motor activity or improve survival in these complex I-deficient mice. The unexpected absence of increased oxidative stress and metabolic redox imbalance in this MD model may explain these observations. However, tissue-specific observations such as the mildly reduced inflammation in the hippocampus and vestibular nucleus, as well as differential MT1 expression in these tissues, may yet reveal a tissue- or cell-specific role for MTs in these mice.
Collapse
Affiliation(s)
- Hayley Christy Miller
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Michelle Mereis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Gerda Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - John-Drew Boshoff
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Liesel Mienie
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Marianne Venter
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Adán Domínguez-Martínez
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Albert Quintana
- Institut de Neurociències i Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francois Hendrikus van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
166
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
167
|
Shivaraju M, Chitta UK, Grange RMH, Jain IH, Capen D, Liao L, Xu J, Ichinose F, Zapol WM, Mootha VK, Rajagopal J. Airway stem cells sense hypoxia and differentiate into protective solitary neuroendocrine cells. Science 2021; 371:52-57. [PMID: 33384370 PMCID: PMC8312065 DOI: 10.1126/science.aba0629] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Neuroendocrine (NE) cells are epithelial cells that possess many of the characteristics of neurons, including the presence of secretory vesicles and the ability to sense environmental stimuli. The normal physiologic functions of solitary airway NE cells remain a mystery. We show that mouse and human airway basal stem cells sense hypoxia. Hypoxia triggers the direct differentiation of these stem cells into solitary NE cells. Ablation of these solitary NE cells during hypoxia results in increased epithelial injury, whereas the administration of the NE cell peptide CGRP rescues this excess damage. Thus, we identify stem cells that directly sense hypoxia and respond by differentiating into solitary NE cells that secrete a protective peptide that mitigates hypoxic injury.
Collapse
Affiliation(s)
- Manjunatha Shivaraju
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Udbhav K Chitta
- Northeastern University, 360 Huntington Ave., Boston, MA 02115, USA
| | - Robert M H Grange
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Isha H Jain
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Present address: Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Diane Capen
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lan Liao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fumito Ichinose
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Warren M Zapol
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Division, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
168
|
Ishikawa K, Nakada K. Attempts to understand the mechanisms of mitochondrial diseases: The reverse genetics of mouse models for mitochondrial disease. Biochim Biophys Acta Gen Subj 2020; 1865:129835. [PMID: 33358867 DOI: 10.1016/j.bbagen.2020.129835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/25/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA). SCOPE OF REVIEW This paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function. MAJOR CONCLUSIONS Several mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well. GENERAL SIGNIFICANCE Mouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.
Collapse
Affiliation(s)
- Kaori Ishikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuto Nakada
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
169
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
170
|
Li C, Kasinski AL. InVivo Cancer-Based Functional Genomics. Trends Cancer 2020; 6:1002-1017. [PMID: 32828714 DOI: 10.1016/j.trecan.2020.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Pinpointing the underlying mechanisms that drive tumorigenesis in human patients is a prerequisite for identifying suitable therapeutic targets for precision medicine. In contrast to cell culture systems, mouse models are highly favored for evaluating tumor progression and therapeutic response in a more realistic in vivo context. The past decade has witnessed a dramatic increase in the number of functional genomic studies using diverse mouse models, including in vivo clustered regularly interspaced short palindromic repeats (CRISPR) and RNA interference (RNAi) screens, and these have provided a wealth of knowledge addressing multiple essential questions in translational cancer research. We compare the multiple mouse systems and genomic tools that are commonly used for in vivo screens to illustrate their strengths and limitations. Crucial components of screen design and data analysis are also discussed.
Collapse
Affiliation(s)
- Chennan Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Bindley Biosciences Center, Purdue University, West Lafayette, IN 47907, USA; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
171
|
Ren C, Han R, Hu J, Li H, Li S, Liu Y, Cheng Z, Ji X, Ding Y. Hypoxia post-conditioning promoted glycolysis in mice cerebral ischemic model. Brain Res 2020; 1748:147044. [DOI: 10.1016/j.brainres.2020.147044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023]
|
172
|
Saragovi A, Abramovich I, Omar I, Arbib E, Toker O, Gottlieb E, Berger M. Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. eLife 2020; 9:56612. [PMID: 33226340 PMCID: PMC7728436 DOI: 10.7554/elife.56612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/21/2020] [Indexed: 11/30/2022] Open
Abstract
Systemic oxygen restriction (SOR) is prevalent in numerous clinical conditions, including chronic obstructive pulmonary disease (COPD), and is associated with increased susceptibility to viral infections. However, the influence of SOR on T cell immunity remains uncharacterized. Here we show the detrimental effect of hypoxia on mitochondrial-biogenesis in activated mouse CD8+ T cells. We find that low oxygen level diminishes CD8+ T cell anti-viral response in vivo. We reveal that respiratory restriction inhibits ATP-dependent matrix processes that are critical for mitochondrial-biogenesis. This respiratory restriction-mediated effect could be rescued by TCA cycle re-stimulation, which yielded increased mitochondrial matrix-localized ATP via substrate-level phosphorylation. Finally, we demonstrate that the hypoxia-arrested CD8+ T cell anti-viral response could be rescued in vivo through brief exposure to atmospheric oxygen pressure. Overall, these findings elucidate the detrimental effect of hypoxia on mitochondrial-biogenesis in activated CD8+ T cells, and suggest a new approach for reducing viral infections in COPD.
Collapse
Affiliation(s)
- Amijai Saragovi
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Jerusalem, Israel
| | - Ibrahim Omar
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Eliran Arbib
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem; The Allergy and Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Jerusalem, Israel
| | - Michael Berger
- The Lautenberg center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
173
|
Abstract
BACKGROUND General anesthetics influence mitochondrial homeostasis, placing individuals with mitochondrial disorders and possibly carriers of recessive mitochondrial mutations at increased risk of perioperative complications. In Drosophila, mutations in the ND23 subunit of complex I of the mitochondrial electron transport chain-analogous to mammalian NDUFS8-replicate key characteristics of Leigh syndrome, an inherited mitochondrial disorder. The authors used the ND23 mutant for testing the hypothesis that anesthetics have toxic potential in carriers of mitochondrial mutations. METHODS The authors exposed wild-type flies and ND23 mutant flies to behaviorally equivalent doses of isoflurane or sevoflurane in 5%, 21%, or 75% oxygen. The authors used percent mortality (mean ± SD, n ≥ 3) at 24 h after exposure as a readout of toxicity and changes in gene expression to investigate toxicity mechanisms. RESULTS Exposure of 10- to 13-day-old male ND23 flies to isoflurane in 5%, 21%, or 75% oxygen resulted in 16.0 ± 14.9% (n = 10), 48.2 ± 16.1% (n = 9), and 99.2 ± 2.0% (n = 10) mortality, respectively. Comparable mortality was observed in females. In contrast, under the same conditions, mortality was less than 5% for all male and female groups exposed to sevoflurane, except 10- to 13-day-old male ND23 flies with 9.6 ± 8.9% (n = 16) mortality. The mortality of 10- to 13-day-old ND23 flies exposed to isoflurane was rescued by neuron- or glia-specific expression of wild-type ND23. Isoflurane and sevoflurane differentially affected expression of antioxidant genes in 10- to 13-day-old ND23 flies. ND23 flies had elevated mortality from paraquat-induced oxidative stress compared with wild-type flies. The mortality of heterozygous ND23 flies exposed to isoflurane in 75% oxygen increased with age, resulting in 54.0 ± 19.6% (n = 4) mortality at 33 to 39 days old, and the percent mortality varied in different genetic backgrounds. CONCLUSIONS Mutations in the mitochondrial complex I subunit ND23 increase susceptibility to isoflurane-induced toxicity and to oxidative stress in Drosophila. Asymptomatic flies that carry ND23 mutations are sensitized to hyperoxic isoflurane toxicity by age and genetic background. EDITOR’S PERSPECTIVE
Collapse
|
174
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
175
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020; 59:23198-23205. [PMID: 32852145 DOI: 10.1002/anie.202008732] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The innate hypoxic microenvironment of most solid tumors has a major influence on tumor growth, invasiveness, and distant metastasis. Here, a hypoxia-activated self-immolative prodrug of paclitaxel (PTX2 -Azo) was synthesized and encapsulated by a peptide copolymer decorated with the photosensitizer chlorin e6 (Ce6) to prepare light-boosted PTX nanoparticle (Ce6/PTX2 -Azo NP). In this nanoparticle, PTX2 -Azo prevents premature drug leakage and realizes specific release in hypoxic tumor microenvironment and the photosensitizer Ce6 not only efficiently generates singlet oxygen under light irradiation but also acts as a positive amplifier to promote the release of PTX. The combination of photodynamic therapy (PDT) and chemotherapy results in excellent antitumor efficacy, demonstrating the great potential for synergistic cancer therapy.
Collapse
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| |
Collapse
|
176
|
Zhou S, Hu X, Xia R, Liu S, Pei Q, Chen G, Xie Z, Jing X. A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shiyu Zhou
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Guang Chen
- Department of Thyroid Surgery The First Hospital of Jilin University Changchun Jilin 130021 China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
177
|
The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine. Pharmacol Res 2020; 163:105248. [PMID: 33065283 DOI: 10.1016/j.phrs.2020.105248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
The ubiquitin-proteasome system constitutes a major pathway for protein degradation in the cell. Therefore the crosstalk of this pathway with mitochondria is a major topic with direct relevance to many mitochondrial diseases. Proteasome dysfunction triggers not only protein toxicity, but also mitochondrial dysfunction. The involvement of proteasomes in the regulation of protein transport into mitochondria contributes to an increase in mitochondrial function defects. On the other hand, mitochondrial impairment stimulates reactive oxygen species production, which increases protein damage, and protein misfolding and aggregation leading to proteasome overload. Concurrently, mitochondrial dysfunction compromises cellular ATP production leading to reduced protein ubiquitination and proteasome activity. In this review we discuss the complex relationship and interdependence of the ubiquitin-proteasome system and mitochondria. Furthermore, we describe pharmacological inhibition of proteasome activity as a novel strategy to treat a group of mitochondrial diseases.
Collapse
|
178
|
Cobley JN. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants (Basel) 2020; 9:E933. [PMID: 33003362 PMCID: PMC7599503 DOI: 10.3390/antiox9100933] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The consensus that assisted reproduction technologies (ART), like in vitro fertilization, to induce oxidative stress (i.e., the known) belies how oocyte/zygote mitochondria-a major presumptive oxidative stressor-produce reactive oxygen species (ROS) with ART being unknown. Unravelling how oocyte/zygote mitochondria produce ROS is important for disambiguating the molecular basis of ART-induced oxidative stress and, therefore, to rationally target it (e.g., using site-specific mitochondria-targeted antioxidants). I review the known mechanisms of ROS production in somatic mitochondria to critique how oocyte/zygote mitochondria may produce ROS (i.e., the unknown). Several plausible site- and mode-defined mitochondrial ROS production mechanisms in ART are proposed. For example, complex I catalyzed reverse electron transfer-mediated ROS production is conceivable when oocytes are initially extracted due to at least a 10% increase in molecular dioxygen exposure (i.e., the intriguing). To address the term oxidative stress being used without recourse to the underlying chemistry, I use the species-specific spectrum of biologically feasible reactions to define plausible oxidative stress mechanisms in ART. Intriguingly, mitochondrial ROS-derived redox signals could regulate embryonic development (i.e., their production could be beneficial). Their potential beneficial role raises the clinical challenge of attenuating oxidative damage while simultaneously preserving redox signaling. This discourse sets the stage to unravel how mitochondria produce ROS in ART, and their biological roles from oxidative damage to redox signaling.
Collapse
Affiliation(s)
- James N Cobley
- Redox Biology Group, Institute for Health Sciences, University of the Highlands and Islands, Old Perth Road, Inverness IV2 3JH, UK
| |
Collapse
|
179
|
Saldana-Caboverde A, Nissanka N, Garcia S, Lombès A, Diaz F. Hypoxia Promotes Mitochondrial Complex I Abundance via HIF-1α in Complex III and Complex IV Eficient Cells. Cells 2020; 9:cells9102197. [PMID: 33003371 PMCID: PMC7599499 DOI: 10.3390/cells9102197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022] Open
Abstract
Murine fibroblasts deficient in mitochondria respiratory complexes III (CIII) and IV (CIV) produced by either the ablation of Uqcrfs1 (encoding for Rieske iron sulfur protein, RISP) or Cox10 (encoding for protoheme IX farnesyltransferase, COX10) genes, respectively, showed a pleiotropic effect in complex I (CI). Exposure to 1-5% oxygen increased the levels of CI in both RISP and COX10 KO fibroblasts. De novo assembly of the respiratory complexes occurred at a faster rate and to higher levels in 1% oxygen compared to normoxia in both RISP and COX10 KO fibroblasts. Hypoxia did not affect the levels of assembly of CIII in the COX10 KO fibroblasts nor abrogated the genetic defect impairing CIV assembly. Mitochondrial signaling involving reactive oxygen species (ROS) has been implicated as necessary for HIF-1α stabilization in hypoxia. We did not observe increased ROS production in hypoxia. Exposure to low oxygen levels stabilized HIF-1α and increased CI levels in RISP and COX10 KO fibroblasts. Knockdown of HIF-1α during hypoxic conditions abrogated the beneficial effect of hypoxia on the stability/assembly of CI. These findings demonstrate that oxygen and HIF-1α regulate the assembly of respiratory complexes.
Collapse
Affiliation(s)
- Amy Saldana-Caboverde
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.S.-C.); (N.N.); (S.G.)
| | - Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.S.-C.); (N.N.); (S.G.)
| | - Sofia Garcia
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.S.-C.); (N.N.); (S.G.)
| | - Anne Lombès
- Institut Cochin, Unité U1016, INSERM, UMR 8104, CNRS, Université Paris 5, F-75014 Paris, France;
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (A.S.-C.); (N.N.); (S.G.)
- Correspondence: ; Tel.: +1-305-243-7489
| |
Collapse
|
180
|
Boardman NT, Migally B, Pileggi C, Parmar GS, Xuan JY, Menzies K, Harper ME. Glutaredoxin-2 and Sirtuin-3 deficiencies impair cardiac mitochondrial energetics but their effects are not additive. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165982. [PMID: 33002579 DOI: 10.1016/j.bbadis.2020.165982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Altered redox biology and oxidative stress have been implicated in the progression of heart failure. Glutaredoxin-2 (GRX2) is a glutathione-dependent oxidoreductase and catalyzes the reversible deglutathionylation of mitochondrial proteins. Sirtuin-3 (SIRT3) is a class III histone deacetylase and regulates lysine acetylation in mitochondria. Both GRX2 and SIRT3 are considered as key in the protection against oxidative damage in the myocardium. Knockout of either contributes to adverse heart pathologies including hypertrophy, hypertension, and cardiac dysfunction. Here, we created and characterized a GRX2 and SIRT3 double-knockout mouse model, hypothesizing that their deletions would have an additive effect on oxidative stress, and exacerbate mitochondrial function and myocardial structural remodeling. Wildtype, single-gene knockout (Sirt3-/-, Grx2-/-), and double-knockout mice (Grx2-/-/Sirt3-/-) were compared in heart weight, histology, mitochondrial respiration and H2O2 production. Overall, the hearts from Grx2-/-/Sirt3-/- mice displayed increased fibrosis and hypertrophy versus wildtype. In the Grx2-/- and the Sirt3-/- we observed changes in mitochondrial oxidative capacity, however this was associated with elevated H2O2 emission only in the Sirt3-/-. Similar changes were observed but not worsened in hearts from Grx2-/-/Sirt3-/- mice, suggesting that these changes were not additive. In human myocardium, using genetic and histopathological data from the human Genotype-Tissue Expression consortium, we confirmed that SIRT3 expression correlates inversely with heart pathology. Altogether, GRX2 and SIRT3 are important in the control of cardiac mitochondrial redox and oxidative processes, but their combined absence does not exacerbate effects, consistent with the overall conclusion that they function together in the complex redox and antioxidant systems in the heart.
Collapse
Affiliation(s)
- Neoma T Boardman
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Baher Migally
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Pileggi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Gaganvir S Parmar
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jian Ying Xuan
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Keir Menzies
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
181
|
Uittenbogaard M, Chiaramello A. Maternally inherited mitochondrial respiratory disorders: from pathogenetic principles to therapeutic implications. Mol Genet Metab 2020; 131:38-52. [PMID: 32624334 PMCID: PMC7749081 DOI: 10.1016/j.ymgme.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA.
| |
Collapse
|
182
|
Almannai M, El-Hattab AW, Ali M, Soler-Alfonso C, Scaglia F. Clinical trials in mitochondrial disorders, an update. Mol Genet Metab 2020; 131:1-13. [PMID: 33129691 PMCID: PMC7537630 DOI: 10.1016/j.ymgme.2020.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial disorders comprise a molecular and clinically diverse group of diseases that are associated with mitochondrial dysfunction leading to multi-organ disease. With recent advances in molecular technologies, the understanding of the pathomechanisms of a growing list of mitochondrial disorders has been greatly expanded. However, the therapeutic approaches for mitochondrial disorders have lagged behind with treatment options limited mainly to symptom specific therapies and supportive measures. There is an increasing number of clinical trials in mitochondrial disorders aiming for more specific and effective therapies. This review will cover different treatment modalities currently used in mitochondrial disorders, focusing on recent and ongoing clinical trials.
Collapse
Affiliation(s)
- Mohammed Almannai
- Section of Medical Genetics, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ayman W El-Hattab
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - May Ali
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong.
| |
Collapse
|
183
|
Bennett NK, Nguyen MK, Darch MA, Nakaoka HJ, Cousineau D, Ten Hoeve J, Graeber TG, Schuelke M, Maltepe E, Kampmann M, Mendelsohn BA, Nakamura JL, Nakamura K. Defining the ATPome reveals cross-optimization of metabolic pathways. Nat Commun 2020; 11:4319. [PMID: 32859923 PMCID: PMC7455733 DOI: 10.1038/s41467-020-18084-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
Disrupted energy metabolism drives cell dysfunction and disease, but approaches to increase or preserve ATP are lacking. To generate a comprehensive metabolic map of genes and pathways that regulate cellular ATP-the ATPome-we conducted a genome-wide CRISPR interference/activation screen integrated with an ATP biosensor. We show that ATP level is modulated by distinct mechanisms that promote energy production or inhibit consumption. In our system HK2 is the greatest ATP consumer, indicating energy failure may not be a general deficiency in producing ATP, but rather failure to recoup the ATP cost of glycolysis and diversion of glucose metabolites to the pentose phosphate pathway. We identify systems-level reciprocal inhibition between the HIF1 pathway and mitochondria; glycolysis-promoting enzymes inhibit respiration even when there is no glycolytic ATP production, and vice versa. Consequently, suppressing alternative metabolism modes paradoxically increases energy levels under substrate restriction. This work reveals mechanisms of metabolic control, and identifies therapeutic targets to correct energy failure.
Collapse
Affiliation(s)
- Neal K Bennett
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Mai K Nguyen
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Maxwell A Darch
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Hiroki J Nakaoka
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Derek Cousineau
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- UCLA Metabolomics Center, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Markus Schuelke
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Martin Kampmann
- Department of Biochemistry and Biophysics and Institute for Neurodegenerative Diseases, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Bryce A Mendelsohn
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA
| | - Jean L Nakamura
- Department of Radiation Oncology, University of California, San Francisco, CA, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, San Francisco, CA, 94158, USA.
- Department of Neurology, University of California, San Francisco, CA, 94158, USA.
- Graduate Program in Biomedical Sciences, University of California, San Francisco, CA, USA.
- Graduate Program in Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
184
|
Lee JY, Kennedy BK, Liao CY. Mechanistic target of rapamycin signaling in mouse models of accelerated aging. J Gerontol A Biol Sci Med Sci 2020; 75:64-72. [PMID: 30900725 DOI: 10.1093/gerona/glz059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.
Collapse
Affiliation(s)
- Jin Young Lee
- Buck Institute for Research on Aging, Novato, California
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California
- Department of Biochemistry and Physiology, National University of Singapore, Singapore
- Centre for Healthy Ageing, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California
| |
Collapse
|
185
|
McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS. NAD+ Regeneration Rescues Lifespan, but Not Ataxia, in a Mouse Model of Brain Mitochondrial Complex I Dysfunction. Cell Metab 2020; 32:301-308.e6. [PMID: 32574562 PMCID: PMC7415718 DOI: 10.1016/j.cmet.2020.06.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/19/2020] [Accepted: 06/02/2020] [Indexed: 01/07/2023]
Abstract
Mitochondrial complex I regenerates NAD+ and proton pumps for TCA cycle function and ATP production, respectively. Mitochondrial complex I dysfunction has been implicated in many brain pathologies including Leigh syndrome and Parkinson's disease. We sought to determine whether NAD+ regeneration or proton pumping, i.e., bioenergetics, is the dominant function of mitochondrial complex I in protection from brain pathology. We generated a mouse that conditionally expresses the yeast NADH dehydrogenase (NDI1), a single enzyme that can replace the NAD+ regeneration capability of the 45-subunit mammalian mitochondrial complex I without proton pumping. NDI1 expression was sufficient to dramatically prolong lifespan without significantly improving motor function in a mouse model of Leigh syndrome driven by the loss of NDUFS4, a subunit of mitochondrial complex I. Therefore, mitochondrial complex I activity in the brain supports organismal survival through its NAD+ regeneration capacity, while optimal motor control requires the bioenergetic function of mitochondrial complex I.
Collapse
Affiliation(s)
- Gregory S McElroy
- Northwestern University Feinberg School of Medicine, Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
| | - Colleen R Reczek
- Northwestern University Feinberg School of Medicine, Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
| | - Paul A Reyfman
- Northwestern University Feinberg School of Medicine, Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA
| | - Divakar S Mithal
- Ann and Robert H. Lurie Children's Hospital of Chicago, Pediatric Neurology, Chicago, IL 60611, USA; Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL 60611, USA
| | - Craig M Horbinski
- Northwestern University Feinberg School of Medicine, Department of Pathology, Chicago, IL 60611, USA; Northwestern University Feinberg School of Medicine, Department of Neurological Surgery, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Northwestern University Feinberg School of Medicine, Department of Medicine Division of Pulmonary and Critical Care Medicine, Chicago, IL 60611, USA; Northwestern University Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL 60611, USA.
| |
Collapse
|
186
|
Mnatsakanyan N, Jonas EA. The new role of F 1F o ATP synthase in mitochondria-mediated neurodegeneration and neuroprotection. Exp Neurol 2020; 332:113400. [PMID: 32653453 DOI: 10.1016/j.expneurol.2020.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/23/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023]
Abstract
The mitochondrial F1Fo ATP synthase is one of the most abundant proteins of the mitochondrial inner membrane, which catalyzes the final step of oxidative phosphorylation to synthesize ATP from ADP and Pi. ATP synthase uses the electrochemical gradient of protons (ΔμH+) across the mitochondrial inner membrane to synthesize ATP. Under certain pathophysiological conditions, ATP synthase can run in reverse to hydrolyze ATP and build the necessary ΔμH+ across the mitochondrial inner membrane. Tight coupling between these two processes, proton translocation and ATP synthesis, is achieved by the unique rotational mechanism of ATP synthase and is necessary for efficient cellular metabolism and cell survival. The uncoupling of these processes, dissipation of mitochondrial inner membrane potential, elevated levels of ROS, low matrix content of ATP in combination with other cellular malfunction trigger the opening of the mitochondrial permeability transition pore in the mitochondrial inner membrane. In this review we will discuss the new role of ATP synthase beyond oxidative phosphorylation. We will highlight its function as a unique regulator of cell life and death and as a key target in mitochondria-mediated neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Nelli Mnatsakanyan
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA.
| | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
187
|
Maffezzini C, Calvo-Garrido J, Wredenberg A, Freyer C. Metabolic regulation of neurodifferentiation in the adult brain. Cell Mol Life Sci 2020; 77:2483-2496. [PMID: 31912194 PMCID: PMC7320050 DOI: 10.1007/s00018-019-03430-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
Understanding the mechanisms behind neurodifferentiation in adults will be an important milestone in our quest to identify treatment strategies for cognitive disorders observed during our natural ageing or disease. It is now clear that the maturation of neural stem cells to neurones, fully integrated into neuronal circuits requires a complete remodelling of cellular metabolism, including switching the cellular energy source. Mitochondria are central for this transition and are increasingly seen as the regulatory hub in defining neural stem cell fate and neurodevelopment. This review explores our current knowledge of metabolism during adult neurodifferentiation.
Collapse
Affiliation(s)
- Camilla Maffezzini
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| | - Christoph Freyer
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
188
|
Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, Tang H, Gupta A, Lynn H, Gupta G, Rischard F, Sammani S, Kempf CL, Moreno-Vinasco L, Ahmed M, Camp SM, Wang J, Desai AA, Yuan JXJ, Garcia JGN. Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. Am J Respir Cell Mol Biol 2020; 63:92-103. [PMID: 32142369 PMCID: PMC7328254 DOI: 10.1165/rcmb.2019-0164oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
We previously demonstrated involvement of NAMPT (nicotinamide phosphoribosyltransferase) in pulmonary arterial hypertension (PAH) and now examine NAMPT regulation and extracellular NAMPT's (eNAMPT's) role in PAH vascular remodeling. NAMPT transcription and protein expression in human lung endothelial cells were assessed in response to PAH-relevant stimuli (PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor], TGF-β1 [transforming growth factor-β1], and hypoxia). Endothelial-to-mesenchymal transition was detected by SNAI1 (snail family transcriptional repressor 1) and PECAM1 (platelet endothelial cell adhesion molecule 1) immunofluorescence. An eNAMPT-neutralizing polyclonal antibody was tested in a PAH model of monocrotaline challenge in rats. Plasma eNAMPT concentrations, significantly increased in patients with idiopathic pulmonary arterial hypertension, were highly correlated with indices of PAH severity. eNAMPT increased endothelial-to-mesenchymal transition, and each PAH stimulus significantly increased endothelial cell NAMPT promoter activity involving transcription factors STAT5 (signal transducer and activator of transcription 5), SOX18 (SRY-box transcription factor 18), and SOX17 (SRY-box transcription factor 17), a PAH candidate gene newly defined by genome-wide association study. The hypoxia-induced transcription factor HIF-2α (hypoxia-inducible factor-2α) also potently regulated NAMPT promoter activity, and HIF-2α binding sites were identified between -628 bp and -328 bp. The PHD2 (prolyl hydroxylase domain-containing protein 2) inhibitor FG-4592 significantly increased NAMPT promoter activity and protein expression in an HIF-2α-dependent manner. Finally, the eNAMPT-neutralizing polyclonal antibody significantly reduced monocrotaline-induced vascular remodeling, PAH hemodynamic alterations, and NF-κB activation. eNAMPT is a novel and attractive therapeutic target essential to PAH vascular remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohamed Ahmed
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, Arizona
| | | | | | | | | | | |
Collapse
|
189
|
Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YHH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020; 583:122-126. [PMID: 32461692 PMCID: PMC7536642 DOI: 10.1038/s41586-020-2337-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/11/2020] [Indexed: 01/21/2023]
Abstract
The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.
Collapse
Affiliation(s)
- Russell P Goodman
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Hardik Shah
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Rohit Sharma
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Owen S Skinner
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Amy Deik
- Broad Institute, Cambridge, MA, USA
| | - Anupam Patgiri
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Yu-Han H Hsu
- Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Ricard Masia
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sujin Suk
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Joel N Hirschhorn
- Broad Institute, Cambridge, MA, USA
- Departments of Pediatrics and Genetics, Harvard Medical School, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Gary Yellen
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
190
|
Baik AH, Jain IH. Turning the Oxygen Dial: Balancing the Highs and Lows. Trends Cell Biol 2020; 30:516-536. [PMID: 32386878 PMCID: PMC7391449 DOI: 10.1016/j.tcb.2020.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Oxygen is both vital and toxic to life. Molecular oxygen is the most used substrate in the human body and is required for several hundred diverse biochemical reactions. The discovery of the PHD-HIF-pVHL system revolutionized our fundamental understanding of oxygen sensing and cellular adaptations to hypoxia. It deepened our knowledge of the biochemical underpinnings of numerous diseases, ranging from anemia to cancer. Cellular dysfunction and tissue pathology can result from a mismatch of oxygen supply and demand. Recent work has shown that mitochondrial disease models display tissue hyperoxia and that disease pathology can be reversed by normalization of excess oxygen, suggesting that certain disease states can potentially be treated by modulating oxygen levels. In this review, we describe cellular and organismal mechanisms of oxygen sensing and adaptation. We provide a revitalized framework for understanding pathologies of too little or too much oxygen.
Collapse
Affiliation(s)
- Alan H Baik
- Department of Physiology, University of California, San Francisco, CA 94158, USA; Department of Medicine, Division of Cardiology, University of California, San Francisco, CA 94143, USA.
| | - Isha H Jain
- Department of Physiology, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
191
|
Liu Y, Wang J, Chen D, Kam WR, Sullivan DA. The Role of Hypoxia-Inducible Factor 1α in the Regulation of Human Meibomian Gland Epithelial Cells. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32150252 PMCID: PMC7401459 DOI: 10.1167/iovs.61.3.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose We recently discovered that a hypoxic environment is beneficial for meibomian gland (MG) function. The mechanisms underlying this effect are unknown, but we hypothesize that it is due to an increase in the levels of hypoxia-inducible factor 1α (HIF1α). In other tissues, HIF1α is the primary regulator of cellular responses to hypoxia, and HIF1α expression can be induced by multiple stimuli, including hypoxia and hypoxia-mimetic agents. The objective of this study was to test our hypothesis. Methods Human eyelid tissues were stained for HIF1α. Immortalized human MG epithelial cells (IHMGECs) were cultured for varying time periods under normoxic (21% O2) or hypoxic (1% O2) conditions, in the presence or absence of the hypoxia-mimetic agent roxadustat (Roxa). IHMGECs were then processed for the analysis of cell number, HIF1α expression, lipid-containing vesicles, neutral and polar lipid content, DNase II activity, and intracellular pH. Results Our results show that HIF1α protein is present in human MG acinar epithelial cells in vivo. Our findings also demonstrate that exposure to 1% O2 or to Roxa increases the expression of HIF1α, the number of lipid-containing vesicles, the content of neutral lipids, and the activity of DNase II and decreases the pH in IHMGECs in vitro. Conclusions Our data support our hypothesis that the beneficial effect of hypoxia on the MG is mediated through an increased expression of HIF1α.
Collapse
|
192
|
Viscomi C, Zeviani M. Strategies for fighting mitochondrial diseases. J Intern Med 2020; 287:665-684. [PMID: 32100338 DOI: 10.1111/joim.13046] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/10/2019] [Accepted: 01/24/2020] [Indexed: 12/19/2022]
Abstract
Mitochondrial diseases are extremely heterogeneous genetic conditions characterized by faulty oxidative phosphorylation (OXPHOS). OXPHOS deficiency can be the result of mutation in mtDNA genes, encoding either proteins (13 subunits of the mitochondrial complexes I, III, IV and V) or the tRNA and rRNA components of the in situ mtDNA translation. The remaining mitochondrial disease genes are in the nucleus, encoding proteins with a huge variety of functions, from structural subunits of the mitochondrial complexes, to factors involved in their formation and regulation, components of the mtDNA replication and expression machinery, biosynthetic enzymes for the biosynthesis or incorporation of prosthetic groups, components of the mitochondrial quality control and proteostasis, enzymes involved in the clearance of toxic compounds, factors involved in the formation of the lipid milieu, etc. These different functions represent potential targets for 'general' therapeutic interventions, as they may be adapted to a number of different mitochondrial conditions. This is in contrast with 'tailored', personalized therapeutic approaches, such as gene therapy, cell therapy and organ replacement, that can be useful only for individual conditions. This review will present the most recent concepts emerged from preclinical work and the attempts to translate them into the clinics. The common notion that mitochondrial disorders have no cure is currently challenged by a massive effort of scientists and clinicians, and we do expect that thanks to this intensive investigation work and tangible results for the development of strategies amenable to the treatment of patients with these tremendously difficult conditions are not so far away.
Collapse
Affiliation(s)
- C Viscomi
- From the, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - M Zeviani
- Department of Neurosciences, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
193
|
Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165743. [PMID: 32105823 PMCID: PMC9252426 DOI: 10.1016/j.bbadis.2020.165743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease mainly affecting retinal ganglion cells (RGCs). The pathogenesis of LHON remains ill-characterized due to a historic lack of effective disease models. Promising models have recently begun to emerge; however, less effective models remain popular. Many such models represent LHON using non-neuronal cells or assume that mutant mtDNA alone is sufficient to model the disease. This is problematic because context-specific factors play a significant role in LHON pathogenesis, as the mtDNA mutation itself is necessary but not sufficient to cause LHON. Effective models of LHON should be capable of demonstrating processes that distinguish healthy carrier cells from diseased cells. In light of these considerations, we review the pathophysiology of LHON as it relates to old, new and future models. We further discuss treatments for LHON and unanswered questions that might be explored using these new model systems.
Collapse
Affiliation(s)
- Tyler Bahr
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. First Author
| | - Kyle Welburn
- University of the Incarnate Word School of Medicine 7615 Kennedy Hill Drive, San Antonio, Texas 78235 Contributing Author
| | - Jonathan Donnelly
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. Contributing author
| | - Yidong Bai
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229
| |
Collapse
|
194
|
Balsa E, Perry EA, Bennett CF, Jedrychowski M, Gygi SP, Doench JG, Puigserver P. Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nat Commun 2020; 11:2714. [PMID: 32483148 PMCID: PMC7264245 DOI: 10.1038/s41467-020-16423-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 05/01/2020] [Indexed: 12/14/2022] Open
Abstract
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.
Collapse
Affiliation(s)
- Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Cell Biology, Harvard Medical School, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
195
|
Johnson SC, Kayser EB, Bornstein R, Stokes J, Bitto A, Park KY, Pan A, Sun G, Raftery D, Kaeberlein M, Sedensky MM, Morgan PG. Regional metabolic signatures in the Ndufs4(KO) mouse brain implicate defective glutamate/α-ketoglutarate metabolism in mitochondrial disease. Mol Genet Metab 2020; 130:118-132. [PMID: 32331968 PMCID: PMC7272141 DOI: 10.1016/j.ymgme.2020.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
Leigh Syndrome (LS) is a mitochondrial disorder defined by progressive focal neurodegenerative lesions in specific regions of the brain. Defects in NDUFS4, a subunit of complex I of the mitochondrial electron transport chain, cause LS in humans; the Ndufs4 knockout mouse (Ndufs4(KO)) closely resembles the human disease. Here, we probed brain region-specific molecular signatures in pre-symptomatic Ndufs4(KO) to identify factors which underlie focal neurodegeneration. Metabolomics revealed that free amino acid concentrations are broadly different by region, and glucose metabolites are increased in a manner dependent on both region and genotype. We then tested the impact of the mTOR inhibitor rapamycin, which dramatically attenuates LS in Ndufs4(KO), on region specific metabolism. Our data revealed that loss of Ndufs4 drives pathogenic changes to CNS glutamine/glutamate/α-ketoglutarate metabolism which are rescued by mTOR inhibition Finally, restriction of the Ndufs4 deletion to pre-synaptic glutamatergic neurons recapitulated the whole-body knockout. Together, our findings are consistent with mTOR inhibition alleviating disease by increasing availability of α-ketoglutarate, which is both an efficient mitochondrial complex I substrate in Ndufs4(KO) and an important metabolite related to neurotransmitter metabolism in glutamatergic neurons.
Collapse
Affiliation(s)
- Simon C Johnson
- Department of Neurology, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Rebecca Bornstein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Julia Stokes
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA
| | - Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Kyung Yeon Park
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Amanda Pan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Grace Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daniel Raftery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Department of Chemistry, University of Washington, Seattle, WA 98109, United States
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Philip G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98105, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
196
|
Mi X, Li Z, Yan J, Li Y, Zheng J, Zhuang Z, Yang W, Gong L, Shi J. Activation of HIF-1 signaling ameliorates liver steatosis in zebrafish atp7b deficiency (Wilson's disease) models. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165842. [PMID: 32446740 DOI: 10.1016/j.bbadis.2020.165842] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Wilson's disease is an autosomal recessive disease characterized by excess copper accumulated in the liver and brain. It is caused by mutations in the copper transporter gene ATP7B. However, based on the poor understanding of the transcriptional program involved in the pathogenesis of Wilson's disease and the lack of more safe and efficient therapies, the identification of novel pathways and the establishment of complementary model systems of Wilson's disease are urgently needed. Herein, we generated two zebrafish atp7b-mutant lines using the CRISPR/Cas9 editing system, and the mutants developed hepatic and behavioral deficits similar to those observed in humans with Wilson's disease. Interestingly, we found that atp7b-deficient zebrafish embryos developed liver steatosis under low-dose Cu exposure, and behavioral deficits appeared under high-dose Cu exposure. Analyses of publicly available transcriptomic data from ATP7B-knockout HepG2 cells demonstrated that the HIF-1 signaling pathway is downregulated in ATP7B-knockout HepG2 cells compared with wildtype cells following Cu exposure. The HIF-1 signaling pathway was also downregulated in our atp7b-deficient zebrafish mutants following Cu exposure. Furthermore, we demonstrate that activation of the HIF-1 signaling pathway with the chemical compound FG-4592 or DMOG ameliorates liver steatosis and reduces accumulated Cu levels in zebrafish atp7b deficiency models. These findings introduce a novel prospect that modulation of the HIF-1 signaling pathway should be explored as a novel strategy to reduce copper toxicity in Wilson's disease patients.
Collapse
Affiliation(s)
- Xiaoxiao Mi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Li
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jian Yan
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yingniang Li
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Zheng
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling Gong
- Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Infectious Disease, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
197
|
Reynaud-Dulaurier R, Benegiamo G, Marrocco E, Al-Tannir R, Surace EM, Auwerx J, Decressac M. Gene replacement therapy provides benefit in an adult mouse model of Leigh syndrome. Brain 2020; 143:1686-1696. [DOI: 10.1093/brain/awaa105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/24/2020] [Accepted: 02/12/2020] [Indexed: 01/10/2023] Open
Abstract
Abstract
Mutations in nuclear-encoded mitochondrial genes are responsible for a broad spectrum of disorders among which Leigh syndrome is the most common in infancy. No effective therapies are available for this severe disease mainly because of the limited capabilities of the standard adeno-associated viral (AAV) vectors to transduce both peripheral organs and the CNS when injected systemically in adults. Here, we used the brain-penetrating AAV-PHP.B vector to reinstate gene expression in the Ndufs4 knockout mouse model of Leigh syndrome. Intravenous delivery of an AAV.PHP.B-Ndufs4 vector in 1-month-old knockout mice restored mitochondrial complex I activity in several organs including the CNS. This gene replacement strategy extended lifespan, rescued metabolic parameters, provided behavioural improvement, and corrected the pathological phenotype in the brain, retina, and heart of Ndufs4 knockout mice. These results provide a robust proof that gene therapy strategies targeting multiple organs can rescue fatal neurometabolic disorders with CNS involvement.
Collapse
Affiliation(s)
- Robin Reynaud-Dulaurier
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Giorgia Benegiamo
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Racha Al-Tannir
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
| | - Enrico Maria Surace
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
- Medical Genetics, Department of Translational Medicine, Federico II University, 80131 Naples, Italy
| | - Johan Auwerx
- Laboratory for Integrative and Systems Physiology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael Decressac
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, 38000 Grenoble, France
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| |
Collapse
|
198
|
VHL-1 inactivation and mitochondrial antioxidants rescue C. elegans dopaminergic neurodegeneration. Protein Cell 2020; 10:610-614. [PMID: 30945137 PMCID: PMC6626599 DOI: 10.1007/s13238-019-0621-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
199
|
Yamamoto A, Kurata M, Onishi I, Sugita K, Matsumura M, Ishibashi S, Ikeda M, Yamamoto K, Kitagawa M. CRISPR screening identifies M1AP as a new MYC regulator with a promoter-reporter system. PeerJ 2020; 8:e9046. [PMID: 32411526 PMCID: PMC7210806 DOI: 10.7717/peerj.9046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/02/2020] [Indexed: 12/26/2022] Open
Abstract
Background MYC is one of the proto-oncogenes contributing to tumorigenesis in many human cancers. Although the mechanism of MYC regulation is still not fully understood, learning about the comprehensive mechanism controlling the transcriptional activity of MYC will lead to therapeutic targets. The CRISPR/Cas9 library system is a simple and powerful screening technique. This study aims to identify new transcriptional upstream activators of MYC using the CRISPR activation library with new promoter-reporter systems. Methods and Results The MYC promoter-reporter system was developed with a photoconvertible fluorescent protein, Dendra2, and named “pMYC-promoter-Dendra2.” This MYC promoter-reporter system was designed to harbor a proximal MYC promoter at (3.1 kb). Both the CRISPR activation library and pMYC-promoter-Dendra2 were induced to HEK 293T cells, and Dendra2-positive cells, that are supposed that MYC should be upregulated, were collected individually by a cell sorter. Among the 169 cells collected, 12 clones were successfully established. Then, pMYC-promoter-Dendra2 was transfected again into these 12 clones, and two of 12 clones showed Dendra2 positivity. In this procedure, the cells with non-specific autofluorescence were correctly distinguished by utilizing the photoswitchable character of Dendra2. Using extracted genomic DNA of these two Dendra2 positive clones, polymerase chain reaction (PCR) was performed to amplify the guide RNA (gRNA) containing region, which was introduced by the CRISPR activation library. Eventually, PLEKHO2, MICU, MBTPS1, and M1AP were identified, and these gRNAs were transfected individually into HEK 293T cells again using the CRISPR activation system. Only M1AP gRNA transfected cells showed Dendra2-positive fluorescence. Then, the overexpression vector for M1AP with a doxycycline-inducible vector confirmed that M1AP induced high MYC expression by real-time quantitative PCR and western blot. Furthermore, the dual-luciferase assay showed a significant increase of promoter activity, and MYC mRNA was higher in M1AP- overexpressing cells. M1AP is highly expressed in several cancers, though, a positive correlation between M1AP and MYC was observed only in human acute myeloid leukemia. Conclusion The present study confirmed that the experimental method using the CRISPR library technology functions effectively for the identification of molecules that activate endogenous MYC. This method will help elucidate the regulatory mechanism of MYC expression, as well as supporting further drug research against malignant tumors.
Collapse
Affiliation(s)
- Akiko Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Morito Kurata
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Iichiroh Onishi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keisuke Sugita
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miwa Matsumura
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Ishibashi
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masumi Ikeda
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masanobu Kitagawa
- Department of Comprehensive Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
200
|
Chronic mild hypoxia accelerates recovery from preexisting EAE by enhancing vascular integrity and apoptosis of infiltrated monocytes. Proc Natl Acad Sci U S A 2020; 117:11126-11135. [PMID: 32371484 DOI: 10.1073/pnas.1920935117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While several studies have shown that hypoxic preconditioning suppresses development of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), no one has yet examined the important clinically relevant question of whether mild hypoxia can impact the progression of preexisting disease. Using a relapsing-remitting model of EAE, here we demonstrate that when applied to preexisting disease, chronic mild hypoxia (CMH, 10% O2) markedly accelerates clinical recovery, leading to long-term stable reductions in clinical score. At the histological level, CMH led to significant reductions in vascular disruption, leukocyte accumulation, and demyelination. Spinal cord blood vessels of CMH-treated mice showed reduced expression of the endothelial activation molecule VCAM-1 but increased expression of the endothelial tight junction proteins ZO-1 and occludin, key mechanisms underlying vascular integrity. Interestingly, while equal numbers of inflammatory leukocytes were present in the spinal cord at peak disease (day 14 postimmunization; i.e., 3 d after CMH started), apoptotic removal of infiltrated leukocytes during the remission phase was markedly accelerated in CMH-treated mice, as determined by increased numbers of monocytes positive for TUNEL and cleaved caspase-3. The enhanced monocyte apoptosis in CMH-treated mice was paralleled by increased numbers of HIF-1α+ monocytes, suggesting that CMH enhances monocyte removal by amplifying the hypoxic stress manifest within monocytes in acute inflammatory lesions. These data demonstrate that mild hypoxia promotes recovery from preexisting inflammatory demyelinating disease and suggest that this protection is primarily the result of enhanced vascular integrity and accelerated apoptosis of infiltrated monocytes.
Collapse
|