151
|
Coimbra JLP, Campolina-Silva G, Lair DF, Guimarães-Ervilha LO, Souza ACF, Oliveira CA, Costa GMJ, Machado-Neves M. Subchronic intake of arsenic at environmentally relevant concentrations causes histological lesions and oxidative stress in the prostate of adult Wistar rats. Reprod Toxicol 2024; 128:108647. [PMID: 38909693 DOI: 10.1016/j.reprotox.2024.108647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/30/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
The prostate gland is one of the main sites of hyperplasia and cancer in elderly men. Numerous factors have been demonstrated to disrupt prostate homeostasis, including exposure to environmental pollutants. Arsenic is a metalloid found ubiquitously in soil, air, and water, which favors human poisoning through the involuntary intake of contaminated drinking water and food and has harmful effects by increasing the oxidative stress response. This study aimed to investigate the effects of prolonged exposure to arsenic at environmentally relevant concentrations on the prostate biology of adult Wistar rats. Thirty 80-day-old male rats were divided into three experimental groups. Rats from the control group received filtered water, whereas animals from the arsenic groups ingested 1 mg L-1 and 10 mg L-1 of arsenic, in the form of sodium arsenite, daily. The arsenic solutions were provided ad libitum in the drinking water for eight weeks. Our results showed that 1 mg L-1 and 10 mg L-1 of arsenic made the prostate susceptible to evolving benign and premalignant histopathological changes. While the ingestion of 1 mg L-1 of arsenic reduced SOD activity only, 10 mg L-1 diminished SOD and CAT activity in the prostate tissue, culminating in high MDA production. These doses, however, did not affect the intraprostatic levels of DHT and estradiol. In conclusion, exposure to arsenic at environmentally relevant concentrations through drinking water induces histological and oxidative stress-related changes in the prostate of adult rats, strengthening the between arsenic exposure and prostate disorders.
Collapse
Affiliation(s)
- John L P Coimbra
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of General Biology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Gabriel Campolina-Silva
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Québec, QC, Canada; CHU de Quebec Research Center, Université Laval, Québec, QC, Canada
| | - Daniel F Lair
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Ana C F Souza
- Department of Animal Biology, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cleida A Oliveira
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme M J Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
152
|
Zhao D. Arsenic Bioaccessibility in Rice and Its Application to Derive Health-Based Limits in China. Foods 2024; 13:2741. [PMID: 39272506 PMCID: PMC11394563 DOI: 10.3390/foods13172741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Arsenic (As) contamination in rice is a global public health concern, particularly in Asian countries where rice is the staple food. Current health-based limits for As in rice are typically derived from total As concentrations, resulting in overly stringent values. This study aimed to determine As bioaccessibility in rice, estimate dietary intakes of inorganic As (iAs) at different consumption rates, evaluate the cancer and non-cancer risks associated with iAs exposure through rice consumption, and assess the feasibility of deriving more accurate health-based limits for As in rice after incorporating rice As bioaccessibility. Bioaccessibility of As ranged from 60.7% to 104.5% in rice samples. Estimated iAs intake varied from 0.04 to 1.40 μg/kg BW/day at rice consumption rates of 100-300 g/day. Incorporating rice As bioaccessibility resulted in lower iAs intake estimates of 0.03-1.18 μg/kg BW/day. The non-cancer and cancer risks associated with iAs exposure are concerning for populations with higher rice consumption rates and elevated rice iAs concentrations. Health-based limits for iAs in rice for different regions across China are discussed after incorporating rice As bioaccessibility. This study contributes to the development of regional or national safety limits for As in rice, based on As bioaccessibility in rice.
Collapse
Affiliation(s)
- Di Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
153
|
Huang X, Wu M, Huang R, Yang G. How Doping Regulates As(III) Adsorption at TiO 2 Surfaces: A DFT + U Study. Molecules 2024; 29:3991. [PMID: 39274841 PMCID: PMC11396678 DOI: 10.3390/molecules29173991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024] Open
Abstract
The efficient adsorption and removal of As(III), which is highly toxic, remains difficult. TiO2 shows promise in this field, though the process needs improvement. Herein, how doping regulates As(OH)3 adsorption over TiO2 surfaces is comprehensively investigated by means of the DFT + D3 approach. Doping creates the bidentate mononuclear (Ce doping at the Ti5c site), tridentate (N, S doping at the O2c site), and other new adsorption structures. The extent of structural perturbation correlates with the atomic radius when doping the Ti site (Ce >> Fe, Mn, V >> B), while it correlates with the likelihood of forming more bonds when doping the O site (N > S > F). Doping the O2c, O3c rather than the Ti5c site is more effective in enhancing As(OH)3 adsorption and also causes more structural perturbation and diversity. Similar to the scenario of pristine surfaces, the bidentate binuclear complexes with two Ti-OAs bonds are often the most preferred, except for B doping at the Ti5c site, S doping at the O2c site, and B doping at the O3c site of rutile (110) and Ce, B doping at the Ti5c site, N, S doping at the O2c site, and N, S, B doping at the O3c site of anatase (101). Doping significantly regulates the As(OH)3 adsorption efficacy, and the adsorption energies reach -4.17, -4.13, and -4.67 eV for Mn doping at the Ti5c site and N doping at the O2c and O3c sites of rutile (110) and -1.99, -2.29, and -2.24 eV for Ce doping at the Ti5c site and N doping at the O2c and O3c sites of anatase (101), respectively. As(OH)3 adsorption and removal are crystal-dependent and become apparently more efficient for rutile vs. anatase, whether doped at the Ti5c, O2c, or O3c site. The auto-oxidation of As(III) occurs when the As centers interact directly with the TiO2 surface, and this occurs more frequently for rutile rather than anatase. The multidentate adsorption of As(OH)3 causes electron back-donation and As(V) re-reduction to As(IV). The regulatory effects of doping during As(III) adsorption and the critical roles played by crystal control are further unraveled at the molecular level. Significant insights are provided for As(III) pollution management via the adsorption and rational design of efficient scavengers.
Collapse
Affiliation(s)
- Xiaoxiao Huang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Mengru Wu
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongying Huang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Gang Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| |
Collapse
|
154
|
Chang M, Sun P, Zhang L, Liu Y, Chen L, Ren H, Wu B. Changes in characteristics and risk of freshwater microplastics under global warming. WATER RESEARCH 2024; 260:121960. [PMID: 38908311 DOI: 10.1016/j.watres.2024.121960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Microplastics present a significant threat to freshwater ecosystems. However, the impact of global warming on their characteristics and associated risks remains uncertain. This study collected 2793 sample sites from literature and datasets to create a new risk assessment and rank methodology, known as the Multi-characteristics Potential Ecological Risk Index (MPERI), which incorporates various microplastic characteristics, such as concentration, size distribution, color, shape, and polymer diversity. Using regression random forest models (RRF), this study predicted that a 10 °C increase would raise microplastic concentration from 12,465.34 ± 68,603.87 to 13,387.17 ± 60,692.96 particles/m3. The percentage of small-size microplastics initially decreased (from 69.10 % to 68.72 %) and then increased (from 68.72 % to 68.78 %), while the diversity of color, shape, and polymer decreased by 0.29 %, 3.24 %, and 0.17 %, respectively. Furthermore, global warming could increase the rank of microplastic risks from high (405.25 ± 528.9) to dangerous (535.37 ± 582.03) based on the MPERI method. Most countries would experience an increase in risk values, with Indonesia and Vietnam transitioning from low to medium risk, and China and Malaysia transitioning from high to dangerous risk. The feature importance assessment of the RRF model indicated that concentration was the most influential variable in determining the change in risk values. While other microplastic characteristics had a lesser impact compared to concentration, they still influenced the risk ranking. This study highlights the role of global warming in shaping microplastic risks.
Collapse
Affiliation(s)
- Mengjie Chang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peipei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Linyu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
155
|
Xu R, Zhang L, Huang FY, Zhu YG, Zhao Y, Guo H. Geogenic high arsenic elevates the groundwater antibiotic resistomes: A blind spot of resistance in Anthropocene. WATER RESEARCH 2024; 260:121957. [PMID: 38941868 DOI: 10.1016/j.watres.2024.121957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Metals/metalloids, being ubiquitous in the environment, can function as a co-selective pressure on antibiotic resistance genes (ARGs) threatening human health. However, the effect of geogenic arsenic (As) on groundwater antibiotic resistomes and their health risks remain largely unknown. Here, we systematically analyzed bacterial communities, pathogenic bacteria, antibiotic resistomes, and in-situ multidrug-resistant isolates with the assessment of the health risk of ARGs and the pathogenicity of their hosts in high As groundwater from the Hetao basin, Northwestern China. We found that long-term geogenic As exposure shifted the assembly of resistomes and resulted in a high abundance and diversity of ARGs in groundwater. Significantly positive associations among As, As cycling genes, ARGs, and mobile genetic elements (MGEs) revealed by network and pathway analyses, together with genetic evidence of As-tolerant multidrug-resistant isolates by whole genomic sequencing, robustly indicate the geogenic As-induced co-selection for antibiotic resistance in groundwater. Variance partitioning analysis further confirmed the determinative role of geogenic As in groundwater resistomes, with As species and As cycling genes as the core abiotic and biotic drivers, respectively. More seriously, geogenic As accelerated the prevalence of high-risk ARGs and multidrug-resistant bacteria. Our findings highlight the significance of geogenic As-induced co-selection for antibiotic resistance in groundwater and the hidden role of geogenic metals/metalloids in increasing antibiotic resistance. This study provides a basis for groundwater management of both high As and ARGs for human health.
Collapse
Affiliation(s)
- Rui Xu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Lingzhi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China; Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
156
|
Donselaar ME, Khanam S, Ghosh AK, Corroto C, Ghosh D. Machine-Learning Approach for Identifying Arsenic-Contamination Hot Spots: The Search for the Needle in the Haystack. ACS ES&T WATER 2024; 4:3110-3114. [PMID: 39144680 PMCID: PMC11320562 DOI: 10.1021/acsestwater.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Marinus E. Donselaar
- Department
of Geoscience and Engineering, Delft University
of Technology, 2628 CN Delft, The
Netherlands
| | - Sufia Khanam
- Environment
and Population Research Center (EPRC), Mohakhali, Dhaka 1000, Bangladesh
| | - Ashok K. Ghosh
- Mahavir
Cancer Sansthan and Research Centre, Patna 801505, India
| | - Cynthia Corroto
- Centro
de Estudios Transdisciplinarios del Agua (CETA), Universidad de Buenos Aires, C1053ABH Buenos Aires, Argentina
| | - Devanita Ghosh
- Department
of Water Management, Delft University of
Technology, 2628 CN Delft, The Netherlands
| |
Collapse
|
157
|
Van Buren E, Azzara D, Rangel-Moreno J, Garcia-Hernandez MDLL, Murphy SP, Cohen ED, Lewis E, Lin X, Park HR. Single-cell RNA sequencing reveals placental response under environmental stress. Nat Commun 2024; 15:6549. [PMID: 39095385 PMCID: PMC11297347 DOI: 10.1038/s41467-024-50914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
The placenta is crucial for fetal development, yet the impact of environmental stressors such as arsenic exposure remains poorly understood. We apply single-cell RNA sequencing to analyze the response of the mouse placenta to arsenic, revealing cell-type-specific gene expression, function, and pathological changes. Notably, the Prap1 gene, which encodes proline-rich acidic protein 1 (PRAP1), is significantly upregulated in 26 placental cell types including various trophoblast cells. Our study shows a female-biased increase in PRAP1 in response to arsenic and localizes it in the placenta. In vitro and ex vivo experiments confirm PRAP1 upregulation following arsenic treatment and demonstrate that recombinant PRAP1 protein reduces arsenic-induced cytotoxicity and downregulates cell cycle pathways in human trophoblast cells. Moreover, PRAP1 knockdown differentially affects cell cycle processes, proliferation, and cell death depending on the presence of arsenic. Our findings provide insights into the placental response to environmental stress, offering potential preventative and therapeutic approaches for environment-related adverse outcomes in mothers and children.
Collapse
Affiliation(s)
- Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - David Azzara
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester, Rochester, NY, USA
| | | | - Shawn P Murphy
- Department of Obstetrics and Gynecology, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan D Cohen
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Ethan Lewis
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
158
|
Vesković J, Bulatović S, Ražić S, Lučić M, Miletić A, Nastasović A, Onjia A. Arsenic-contaminated groundwater of the Western Banat (Pannonian basin): Hydrogeochemical appraisal, pollution source apportionment, and Monte Carlo simulation of source-specific health risks. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11087. [PMID: 39091038 DOI: 10.1002/wer.11087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
Due to rapid urbanization and industrial growth, groundwater globally is continuously deteriorating, posing significant health risks to humans. This study employed a comprehensive methodology to analyze groundwater in the Western Banat Plain (Serbia). Using Piper and Gibbs plots, hydrogeochemistry was assessed, while the entropy-weighted water quality index (EWQI) was used to evaluate groundwater quality. Pollution sources were identified using positive matrix factorization (PMF) accompanied by Pearson correlation and hierarchical cluster analysis, while Monte Carlo simulation assessed health risks associated with groundwater consumption. Results showed that groundwater, mainly Ca-Mg-HCO3 type, is mostly suitable for drinking. Geogenic pollution, agricultural activities, and sewage were major pollution sources. Consumption of contaminated groundwater poses serious non-carcinogenic and carcinogenic health risks. Additionally, arsenic from geogenic source was found to be the main health risks contributor, considering its worryingly elevated concentration, ranging up to 364 μg/L. These findings will be valuable for decision-makers and researchers in managing groundwater vulnerability. PRACTITIONER POINTS: Groundwater is severely contaminated with As in the northern part of the study area. The predominant hydrochemical type of groundwater in the area is Ca-Mg-HCO3. The PMF method apportioned three groundwater pollution sources. Monte Carlo identified rock dissolution as the primary health risk contributor. Health risks and mortality in the study area are positively correlated.
Collapse
Grants
- 451-03-66/2024-03/200161 Ministry of Education, Science, and Technological Development, Republic of Serbia
- 451-03-65/2024-03/200135 Ministry of Education, Science, and Technological Development, Republic of Serbia
- 451-03-66/2024-03/200026 Ministry of Education, Science, and Technological Development, Republic of Serbia
- 451-03-66/2024-03/200287 Ministry of Education, Science, and Technological Development, Republic of Serbia
Collapse
Affiliation(s)
- Jelena Vesković
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Sandra Bulatović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Slavica Ražić
- Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Milica Lučić
- Innovation Center of the Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Andrijana Miletić
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Nastasović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
159
|
Cao W, Zhang Z, Fu Y, Zhao L, Ren Y, Nan T, Guo H. Prediction of arsenic and fluoride in groundwater of the North China Plain using enhanced stacking ensemble learning. WATER RESEARCH 2024; 259:121848. [PMID: 38824797 DOI: 10.1016/j.watres.2024.121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Chronic exposure to elevated geogenic arsenic (As) and fluoride (F-) concentrations in groundwater poses a significant global health risk. In regions around the world where regular groundwater quality assessments are limited, the presence of harmful levels of As and F- in shallow groundwater extracted from specific wells remains uncertain. This study utilized an enhanced stacking ensemble learning model to predict the distributions of As and F- in shallow groundwater based on 4,393 available datasets of observed concentrations and forty relevant environmental factors. The enhanced model was obtained by fusing well-suited Extreme Gradient Boosting, Random Forest, and Support Vector Machine as the base learners and a structurally simple Linear Discriminant Analysis as the meta-learner. The model precisely captured the patchy distributions of groundwater As and F- with an AUC value of 0.836 and 0.853, respectively. The findings revealed that 9.0% of the study area was characterized by a high As risk in shallow groundwater, while 21.2% was at high F- risk identified as having a high risk of fluoride contamination. About 0.2% of the study area shows elevated levels of both of them. The affected populations are estimated at approximately 7.61 million, 34.1 million, and 0.2 million, respectively. Furthermore, sedimentary environment exerted the greatest influence on distribution of groundwater As, with human activities and climate following closely behind at 29.5%, 28.1%, and 21.9%, respectively. Likewise, sedimentary environment was the primary factor affecting groundwater F- distribution, followed by hydrogeology and soil physicochemical properties, contributing 27.8%, 24.0%, and 23.3%, respectively. This study contributed to the identification of health risks associated with shallow groundwater As and F-, and provided insights into evaluating health risks in regions with limited samples.
Collapse
Affiliation(s)
- Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Zhuo Zhang
- Tianjin Center (North China Center for Geoscience Innovation), China Geological Survey, Tianjin 300170, China.
| | - Yu Fu
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Lihua Zhao
- Hebei Provincial academy of water resources, Shijiazhuang 050057, China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Tian Nan
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang 050061, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
160
|
Singh P, Nagababu P, Das MR, Mondal P, Bhowmick S. Unraveling the interplay of common groundwater ions in arsenic removal by sulfide-modified nanoscale zerovalent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51222-51236. [PMID: 39103586 DOI: 10.1007/s11356-024-34596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Sulphidation of nZVI (S-nZVI) has shown to significantly improve the arsenic removal capacity of nZVI, concurrently modifying the sequestration mechanism. However, to better apply S-nZVI for groundwater arsenic remediation, the impact of groundwater coexisting ions on the efficacy of arsenic uptake by S-nZVI needs to be investigated. This present study evaluates the potential of S-nZVI to remove arsenic in the presence of typical groundwater coexisting ions such as Cl-, HA, HCO3-, PO43- and SO42- through batch adsorption experiments. Individually, PO43- and HA had a dominant inhibition effect, while SO42- promoted As(III) removal by S-nZVI. Conversely, for As(V) removal, HCO3- and SO42- impeded the removal process. X-ray spectroscopic investigation suggests that the coexisting ions can either compete with arsenic for the adsorption sites, influence the S-nZVI corrosion rates and/or generate distinct corrosion products, thereby interfering with arsenic removal by S-nZVI. To investigate the cumulative effects of these ions, a 25-1 Fractional Factorial Design of experiments was employed, wherein the concentration of all the ions were varied simultaneously in an optimized manner, and their impact on arsenic removal by S-nZVI was observed. Our results shows that when these ions are present concurrently, PO43-, SO42- and HA still exerted a dominant influence on As(III) removal, whereas HCO3- was the main ions affecting As(V) removal, although the combined influence of the ions was not merely a summation of their individual effects. Overall, the finding of our study might provide valuable insight for predicting the actual performance of S-nZVI in field-scale applications for the remediation of arsenic-contaminated groundwater.
Collapse
Affiliation(s)
- Payel Singh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal, 700107, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Penumaka Nagababu
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Mondal
- Membrane and Separation Technology Division, CSIR-Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal, 700107, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
161
|
Cho YL, Tzou YM, Assakinah A, Than NAT, Yoon HS, Park SI, Wang CC, Lee YC, Hsu LC, Huang PY, Liu SL, Liu YT. Accumulation and bio-oxidation of arsenite mediated by thermoacidophilic Cyanidiales: innate potential biomaterials toward arsenic remediation. BIORESOURCE TECHNOLOGY 2024; 406:130912. [PMID: 38821424 DOI: 10.1016/j.biortech.2024.130912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Addressing geogenic and anthropogenic arsenic (As) pollution is critical for environmental health. This study explored arsenite [As(III)] removal using Cyanidiales, particularly Cyanidium caldarium (Cc) and Galdieria partita (Gp), under acidic to neutral pH, and determined As(III) detoxification mechanisms in relation to As speciation and protein secondary structure in Cyanidiales. Regarding As(III) sorption amounts, Cc outperformed Gp, reaching 83.2 mg g-1 of removal at pH 5.0. Wherein, 23.5 % of sorbed As on Cc presented as arsenate [As(V)] complexation with polysaccharides, alongside other predominant species including As(III)-cysteine (41.2 %) and As(III)-polysaccharides (35.3 %) complexes. This suggested that As(III) was directly transported into cells, rather than As(V). Coupled with the formation of As(III)-cysteine complexes within cells, these mechanisms may be key to efficiently accumulating As(III) in Cyanidiales during the 6-h incubation. These results highlight the potential of Cyanidiales for sustainable As(III) remediation and provide new insights into managing As(III) toxicity.
Collapse
Affiliation(s)
- Yen-Lin Cho
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.); Department of Environmental Science and Engineering, Tunghai University, Taichung 407224, Taiwan (R.O.C.)
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.); Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.)
| | - Afifah Assakinah
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.)
| | - Nhu Anh Thi Than
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.)
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seung In Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (R.O.C.)
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (R.O.C.)
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.)
| | - Pei-Yu Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (R.O.C.)
| | - Shao-Lun Liu
- Department of Life Science, Tunghai University, Taichung 40704, Taiwan (R.O.C.)
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.); Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan (R.O.C.).
| |
Collapse
|
162
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
163
|
Liu Q, Li P, Ma J, Zhang J, Li W, Liu Y, Liu L, Liang S, He M. Arsenic exposure at environmentally relevant levels induced metabolic toxicity in development mice: Mechanistic insights from integrated transcriptome and metabolome. ENVIRONMENT INTERNATIONAL 2024; 190:108819. [PMID: 38906090 DOI: 10.1016/j.envint.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
Emerging evidence has linked arsenic exposure and metabolic homeostasis, but the mechanism is incompletely understood, especially at relatively low concentrations. In this study, we used a mouse model to evaluate the health impacts and metabolic toxicity of arsenic exposure in drinking water at environmentally relevant levels (0.25 and 1.0 ppm). Our results indicated that arsenic damaged intestinal barrier and induced arsenic accumulation, oxidative stress, and pathological changes in the liver and illum. Interestingly, arsenic increased the hepatic triglyceride (TG) and total cholesterol (TC), while reduced serum TG and TC levels. The liver transcriptome found that arsenic exposure caused transcriptome perturbation and promoted hepatic lipid accumulation by regulating the exogenous fatty acids degradation and apolipoproteins related genes. The serum metabolomics identified 74 and 88 differential metabolites in 0.25 and 1.0 ppm, respectively. The KEGG disease and subcellular location analysis indicated that arsenic induced liver and intestinal diseases, and the mitochondrion might be the target organelle for arsenic-induced toxicity. Co-enrichment of transcriptome and metabolome identified 24 metabolites and 9 genes as metabolic toxicity biomarkers. Moreover, 40 male (20 nonalcoholic fatty liver disease (NAFLD) cases and 20 healthy controls) was further selected to validate our findings. Importantly, the significantly changed L-palmitoylcarnitine, 3-hydroxybutyric acid, 2-hydroxycaproic acid and 6 genes of Hadha, Acadl, Aldh3a2, Cpt1a, Cpt2, and Acox1 were found in the NAFLD cases. The results from integrated multi-omics and chemical-protein network analysis indicated that L-palmitoylcarnitine played a critical role in metabolic toxicity by regulating mitochondrial fatty acids β-oxidation genes (Cpt1a, Cpt2). In conclusion, these findings provided new clues for the metabolic toxicity of arsenic exposure at environmentally relevant levels, which involved in the late-life NAFLD development. Our results also contribute to understanding the human responses and phenotypic changes to this hazardous material exposure in the environment.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jinglan Ma
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sen Liang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
164
|
Wang D, He R, Song Q, Diao H, Jin Y, Zhang A. Calcitriol Inhibits NaAsO 2 Triggered Hepatic Stellate Cells Activation and Extracellular Matrix Oversecretion by Activating Nrf2 Signaling Pathway Through Vitamin D Receptor. Biol Trace Elem Res 2024; 202:3601-3613. [PMID: 37968493 DOI: 10.1007/s12011-023-03957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Previous studies, including our own, have demonstrated that arsenic exposure can induce liver fibrosis, while the underlying mechanism remains unclear and there is currently no effective pharmacological intervention available. Recent research has demonstrated that vitamin D supplementation can ameliorate liver fibrosis caused by various etiologies, potentially through modulation of the Nrf2 signaling pathways. However, it remains unclear whether vitamin D intervention can mitigate arsenic-caused liver fibrosis. As is known hepatic stellate cells (HSCs) activation and extracellular matrix (ECM) deposition are pivotal in the pathogenesis of liver fibrosis. In this study, we investigated the intervention effect of calcitriol (a form of active vitamin D) on arsenite-triggered Lx-2 cells (a human hepatic stellate cell line) activation and ECM oversecretion. Additionally, we also elucidated the role and mechanism of Nrf2 antioxidant signaling pathway. Our results demonstrated that calcitriol intervention significantly inhibits Lx-2 cell activation and ECM oversecretion induced by arsenite exposure. Additionally, calcitriol activates Nrf2 and its downstream antioxidant enzyme expression in Lx-2 cells, thereby reducing ROS overproduction caused by arsenite exposure. Further investigation reveals that calcitriol activates the Nrf2 signaling pathway and inhibits arsenite-triggered Lx-2 cell activation and ECM oversecretion by targeting vitamin D receptor (VDR). In conclusion, this study has demonstrated that vitamin D intervention can effectively inhibit HSC activation and ECM oversecretion triggered by arsenite exposure through its antioxidant activity. This provides a novel strategy for targeted nutritional intervention in the treatment of arsenic-induced liver fibrosis.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| |
Collapse
|
165
|
K N, Shetty AN, Trivedi DR. Colorimetric differentiation of arsenite and arsenate anions using a bithiophene sensor with two binding sites: DFT studies and application in food and water samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4960-4970. [PMID: 38973603 DOI: 10.1039/d4ay00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chemosensor N7R1 with two acidic binding sites was synthesized, and the ability of the sensor to differentiate arsenite and arsenate in the organo-aqueous medium was evaluated using colorimetric sensing methods. N7R1 distinguished arsenite with a peacock blue color and arsenate with a pale green color in a DMSO/H2O (9 : 1, v/v) solvent mixture. The specific selectivity for arsenite was achieved in DMSO/H2O (7 : 3, v/v). The sensor demonstrated stability over a pH range of 5 to 12. The computed high binding constant of 9.3176 × 1011 M-2 and a lower detection limit of 11.48 ppb for arsenite exposed the chemosensor's higher potential for arsenite detection. The binding mechanism with a 1 : 2 binding process is confirmed using UV-Vis and 1H NMR titrations, electrochemical studies, mass spectral analysis and DFT calculations. Practical applications were demonstrated by utilizing test strips and molecular logic gates. Chemosensor N7R1 successfully detected arsenite in real water samples, as well as honey and milk samples.
Collapse
Affiliation(s)
- Nagaraj K
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| | - A Nityananda Shetty
- Department of Chemistry, Material Science Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India
| | - Darshak R Trivedi
- Department of Chemistry, Supramolecular Chemistry Laboratory, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar 575 025, Karnataka, India.
| |
Collapse
|
166
|
Sadiq M, Eqani SAMAS, Podgorski J, Ilyas S, Abbas SS, Shafqat MN, Nawaz I, Berg M. Geochemical insights of arsenic mobilization into the aquifers of Punjab, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173452. [PMID: 38782276 DOI: 10.1016/j.scitotenv.2024.173452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
It is well known that groundwater arsenic (As) contamination affects million(s) of people throughout the Indus flood plain, Pakistan. In this study, groundwater (n = 96) and drilled borehole samples (n = 87 sediments of 12 boreholes) were collected to investigate geochemical proxy-indicators for As release into groundwater across floodplains of the Indus Basin. The mean dissolved (μg/L) and sedimentary As concentrations (mg/kg) showed significant association in all studied areas viz.; lower reaches of Indus flood plain area (71 and 12.7), upper flood plain areas (33.7 and 7.2), and Thal desert areas (5.3 and 4.7) and are indicative of Basin-scale geogenic As contamination. As contamination in aquifer sediments is dependent on various geochemical factors including particle size (3-4-fold higher As levels in fine clay particles than in fine-coarse sand), sediment types (3-fold higher As in Holocene sediments of floodplain areas vs Pleistocene/Quaternary sediments in the Thal desert) with varying proportion of Al-Fe-Mn oxides/hydroxides. The total organic carbon (TOC) of cored aquifer sediments yielded low TOC content (mean = 0.13 %), which indicates that organic carbon is not a major driver (with a few exceptions) of As mobilization in the Indus Basin. Alkaline pH, high dissolved sulfate and other water quality parameters indicate pH-induced As leaching and the dominance of oxidizing conditions in the aquifers of upper flood plain areas of Punjab, Pakistan while at the lower reaches of the Indus flood plain and alluvial pockets along the rivers with elevated flood-driven dissolved organic carbon (exhibiting high dissolved Mn and Fe and a wide range of redox conditions). Furthermore, we also identified that paired dissolved AsMn values (instead of AsFe) may serve as a geochemical marker of a range of redox conditions throughout Indus flood plains.
Collapse
Affiliation(s)
- Muhammad Sadiq
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan; Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Shazia Ilyas
- Department of Environmental Sciences, Forman Christian College (A Chartered University), 54600 Lahore, Pakistan
| | - Syed Sayyam Abbas
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | | | - Ismat Nawaz
- Department of Biosciences, COMSATS University, Park Road, 44000 Islamabad, Pakistan
| | - Michael Berg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
167
|
Zhang J, Li W, Liu Y, He Y, Cheng Z, Li X, Chen Y, Zhang A, Peng Y, Zheng J. Arsenite-Induced Drug-Drug Interactions in Rats. Drug Metab Dispos 2024; 52:911-918. [PMID: 38849209 DOI: 10.1124/dmd.124.001772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
Arsenite is an important heavy metal. Some Chinese traditional medicines contain significant amounts of arsenite. The aim of this study was to investigate subacute exposure of arsenite on activities of cytochrome P450 enzymes and pharmacokinetic behaviors of drugs in rats. Midazolam, tolbutamide, metoprolol, omeprazole, caffeine, and chlorzoxazone, the probe substrates for cytochrome P450 (CYP) s3A, 2C6, 2D, 2C11, 1A, and 2E, were selected as probe drugs for the pharmacokinetic study. Significant decreases in areas under the curves of probe substrates were observed in rats after consecutive 30-day exposure to As at 12 mg/kg. Microsomal incubation study showed that the subacute exposure to arsenite resulted in little change in effects on the activities of P450 enzymes examined. However, everted gut sac study demonstrated that such exposure induced significant decreases in intestinal absorption of these drugs by both passive diffusion and carrier-mediated transport. In addition, in vivo study showed that the arsenite exposure decreased the rate of peristaltic propulsion. The decreases in intestinal permeability of the probe drugs and peristaltic propulsion rate most likely resulted in the observed decreases in the internal exposure of the probe drugs. Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. SIGNIFICANCE STATEMENT: Exposure to arsenite may lead to the reduction of the efficiencies of pharmaceutical agents coadministered resulting from the observed drug-drug interactions. The present study, we found that P450 enzyme probe drug exposure was reduced in arsenic-exposed animals (areas under the curve) and the intestinal absorption of the drug was reduced in the animals. Subacute arsenic exposure tends to cause damage to intestinal function, which leads to reduced drug absorption.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yan He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Zihao Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ximei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Yu Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Aihua Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Ying Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), School of Pharmacy (J.Z., W.L., Y.L., Y.H., Z.C., X.L., Y.C., A.Z., J.Z.), Guizhou Medical University, Guiyang, Guizhou, P. R. China; State Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, P. R. China (A.Z.); and Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China (Y.P., J.Z.)
| |
Collapse
|
168
|
Wang C, Tan W, Feng X. Iron (hydr)oxides-induced activation of sulfite for contaminants degradation: The critical role of structural Fe(III). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135144. [PMID: 39018598 DOI: 10.1016/j.jhazmat.2024.135144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Iron-based sulfite (S(IV)) activation has emerged as a novel strategy to generate sulfate radicals (SO4•-) for contaminants degradation. However, numerous studies focused on dissolved iron-induced homogeneous activation processes while the potential of structural Fe(III) remains unclear. In this study, five iron (hydr)oxide soil minerals (FeOx) including ferrihydrite, schwertmannite, lepidocrocite, goethite and hematite, were successfully employed as sources of structural Fe(III) for S(IV) activation. Results showed that the catalytical ability of structural Fe(III) primarily depended on the crystallinity of FeOx instead of their specific surface area and particle size, with ferrihydrite and schwertmannite being the most active. Furthermore, in-situ ATR-FTIR spectroscopy and 2D-COS analysis revealed that HSO3- was initially adsorbed on FeO6 octahedrons of FeOx via monodentate inner-sphere complexation, ultimately oxidized into SO42- which was then re-adsorbed via outer-sphere complexation. During this process, strong oxidizing SO4•- and •OH were formed for pollutants degradation, confirmed by radical quenching experiments and electron spin resonance. Moreover, FeOx/S(IV) system exhibited superior applicability with respect to recycling test, real waters and twenty-six pollutants degradation. Eventually, plausible degradation pathways of three typical pollutants were proposed. This study highlights the feasibility of structural Fe(III)-containing soil minerals for S(IV) activation in wastewater treatment.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
169
|
Gao Z, Zhang R, Zhang Z, Zhao B, Chen D, Kersten M, Guo H. Groundwater irrigation induced variations in DOM fluorescence and arsenic mobility. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135229. [PMID: 39024759 DOI: 10.1016/j.jhazmat.2024.135229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Dissolved organic matter (DOM) plays a predominant role in groundwater arsenic (As) mobility. However, the temporal-spatial variations in DOM fluorescent characteristics and their effects on As mobility induced by groundwater irrigation remain unclear. To address these issues, groundwater from multilevel and irrigation wells in Zones I and II (with low- and high-As groundwater irrigation, respectively) from the Hetao Basin, China, were monitored in both non-irrigation (NIG) and irrigation (IG) seasons. Upon irrigation, the irrigation return increased the relative abundance of protein- and humic-like DOM in shallow groundwater from Zone I with Ca-type groundwater and Zone II with Na-type groundwater irrigation, respectively. The introduced dissolved oxygen by irrigation return decreased As concentrations by 22 % and 6 % on average in shallow groundwater from Zones I and II, respectively. However, the pumping-induced lateral recharge of lower- and higher-As groundwater led to an average 17 % decrease and 38 % increase in As concentrations in deeper groundwater from the two zones, respectively. The increased degradation of protein-like DOM may also contribute to the elevated As concentrations in deep groundwater from Zone II. The study provides insights into the dependence of irrigation-induced variations in DOM fluorescence and As concentrations on geochemicals of irrigation groundwater and aquifer hydrogeological conditions.
Collapse
Affiliation(s)
- Zhipeng Gao
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China
| | - Rongshe Zhang
- Zhejiang Industry Polytechnic College, Shaoxing 312000, China
| | - Zhuo Zhang
- Tianjin Center of Geological Survey, China Geological Survey, Tianjin 300170, China
| | - Bo Zhao
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Dou Chen
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Michael Kersten
- Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099, Germany
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
170
|
Sun J, Sun Y, Prommer H, Bostick BC, Liu Q, Ma M, Li Z, Liu S, Siade AJ, Li C, Han S, Zheng Y. Sustaining Irrigation Supplies through Immobilization of Groundwater Arsenic In Situ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12653-12663. [PMID: 38916402 PMCID: PMC11251839 DOI: 10.1021/acs.est.4c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Geogenic arsenic (As) in groundwater is widespread, affecting drinking water and irrigation supplies globally, with food security and safety concerns on the rise. Here, we present push-pull tests that demonstrate field-scale As immobilization through the injection of small amounts of ferrous iron (Fe) and nitrate, two readily available agricultural fertilizers. Such injections into an aquifer with As-rich (200 ± 52 μg/L) reducing groundwater led to the formation of a regenerable As reactive filter in situ, producing 15 m3 of groundwater meeting the irrigation water quality standard of 50 μg/L. Concurrently, sediment magnetic properties were markedly enhanced around the well screen, pointing to neo-formed magnetite-like minerals. A reactive transport modeling approach was used to quantitatively evaluate the experimental observations and assess potential strategies for larger-scale implementation. The modeling results demonstrate that As removal was primarily achieved by adsorption onto neo-formed minerals and that an increased adsorption site density coincides with the finer-grained textures of the target aquifer. Up-scaled model simulations with 80-fold more Fe-nitrate reactants suggest that enough As-safe water can be produced to irrigate 1000 m2 of arid land for one season of water-intense rice cultivation at a low cost without causing undue contamination in surface soils that threatens agricultural sustainability.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Yuqin Sun
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing 100035, China
| | - Henning Prommer
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Benjamin C Bostick
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, United States
| | - Qingsong Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Ma
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Zengyi Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songlin Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Adam J Siade
- CSIRO Environment, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chao Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuangbao Han
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Hydrogeology and Environmental Geology, China Geological Survey, Baoding 071051, China
| | - Yan Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
171
|
Wang X, Dong Z, Zhao Q, Li C, Fan WH. Alleviative effects of C 60 fullerene nanoparticles on arsenate transformation and toxicity to Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174765. [PMID: 39004362 DOI: 10.1016/j.scitotenv.2024.174765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/19/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Widely-used C60 fullerene nanoparticles (C60) result in their release into the aquatic environment, which may affect the distribution and toxicity of pollutants such as arsenic (As), to aquatic organism. In this study, arsenate (As(V)) accumulation, speciation and subcellular distribution was determined in Danio rerio (zebrafish) intestine, head and muscle tissues in the presence of C60. Meanwhile we compared how single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO) and graphene (GN) nanoparticles alter the behaviors of As(V). Results showed that C60 significantly inhibited As accumulation and toxicity in D. rerio, due to a decrease in total As and monomethylarsonic acid (MMA) and As(V) species concentrations, a lower relative distribution in the metal-sensitive fraction (MSF). It was attributed that C60 may coat As(V) ion channels and consequently, affect the secretion of digestive enzymes in the gut, favoring As excretion and inhibiting As methylation. Similarly, MWCNTs reduced the species concentration of MMA and As(V) in the intestines, low GSH (glutathione) contents in the intestine. Due to the disparity of other carbon-based nanomaterial morphologies, SWCNTs, GO and GN exhibited the various effects on the toxicity of As(V). In addition, the possible pathway of arsenobetaine (AsB) biosynthesis included migration from the intestine to muscle in D. rerio, with the precursor of AsB likely to be 2-dimethylarsinylacetic acid (DMAA). The results of this study suggest that C60 is beneficial for controlling As(V) pollution and reducing the impact of As(V) biogeochemical cycles throughout the ecosystem.
Collapse
Affiliation(s)
- Xiaoyan Wang
- College of Environment and Economy, Henan Finance University, Zhengzhou 450046, PR China; School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Chengwei Li
- College of Environment and Economy, Henan Finance University, Zhengzhou 450046, PR China
| | - Wen-Hong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China.
| |
Collapse
|
172
|
Shi YL, Chen WQ, Zhu YG. Direct, Embedded, and Embodied Trade of Arsenic: 1990-2019. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12008-12017. [PMID: 38920967 DOI: 10.1021/acs.est.4c04715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
International arsenic trade, physical and virtual, has resulted in considerable transfer of arsenic pollution across regions. However, no study has systematically captured, estimated, and compared physical and virtual arsenic trade and its relevant impacts. This study combines material flow analysis and embodied emission factors to estimate embedded (including direct and indirect trade) and embodied arsenic trade during 1990-2019, encompassing 18 arsenic-containing products among 244 countries. Global embedded arsenic trade increased considerably from 47 ± 7.3 to 450 ± 68 kilotonnes (kt) during this time and was dominated by indirect arsenic trade, contributing 94 and 90% to global arsenic trade in 1990 and 2019, respectively. Since the 1990s, global arsenic trade centers and the main flows have shifted from European and American markets to developing countries. The mass of arsenic involved in embodied trade increased from 87.5 ± 26 kt in 1990 to 800 ± 236 kt in 2019. Direct trade and indirect trade aggravate arsenic environmental emissions in major importing countries, like China, while embodied trade aggravates arsenic environmental emissions in major exporting countries, like Peru and Chile. The trade-related arsenic pollution transfer calls for a rational arsenic emission responsibility-sharing mechanism and corresponding policy recommendations for different trading countries.
Collapse
Affiliation(s)
- Ya-Lan Shi
- College of Tourism, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China
| | - Wei-Qiang Chen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, People's Republic of China
| |
Collapse
|
173
|
Wang Q, Zhu K, Zhang A. SIRT1-mediated tunnelling nanotubes may be a potential intervention target for arsenic-induced hepatocyte senescence and liver damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174502. [PMID: 38971248 DOI: 10.1016/j.scitotenv.2024.174502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Arsenic, a widespread environmental poison, can cause significant liver damage upon exposure. Mitochondria are the most sensitive organelles to external factors. Dysfunctional mitochondria play a crucial role in cellular senescence and liver damage. Tunnelling nanotubes (TNTs), membrane structures formed between cells, with fibrous actin (F-actin) serving as the scaffold, facilitate mitochondrial transfer between cells. Notably, TNTs mediate the delivery of healthy mitochondria to damaged cells, thereby mitigating cellular damage. Although limited studies have suggested that F-actin may be modulated by the longevity gene SIRT1, the association between arsenic-induced liver damage and this mechanism remains unexplored. The findings of the current study indicate that arsenic suppresses SIRT1 and F-actin in the rat liver and MIHA cells, impeding the formation of TNTs and mitochondrial transfer between MIHA cells, thereby playing a pivotal role in mitochondrial dysfunction, cellular senescence and liver damage induced by arsenic. Notably, increasing SIRT1 levels effectively mitigated liver mitochondrial dysfunction and cellular senescence triggered by arsenic, highlighting SIRT1's crucial regulatory function. This research provides novel insights into the mechanisms underlying arsenic-induced liver damage, paving the way for the development of targeted preventive and therapeutic drugs to address arsenic-induced liver damage.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases, Co-Constructed by the Province and Ministry, Guizhou Medical University, Guiyang 561113, Guizhou, People's Republic of China.
| |
Collapse
|
174
|
Sadee BA, Galali Y, Zebari SMS. Recent developments in speciation and determination of arsenic in marine organisms using different analytical techniques. A review. RSC Adv 2024; 14:21563-21589. [PMID: 38979458 PMCID: PMC11228943 DOI: 10.1039/d4ra03000a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
Marine organisms play a vital role as the main providers of essential and functional food. Yet they also constitute the primary pathway through which humans are exposed to total arsenic (As) in their diets. Since it is well known that the toxicity of this metalloid ultimately depends on its chemical forms, speciation in As is an important issue. Most relevant articles about arsenic speciation have been investigated. This extended not only from general knowledge about As but also the toxicity and health related issues resulting from exposure to these As species from the food ecosystem. There can be enormous side effects originating from exposure to As species that must be measured quantitatively. Therefore, various convenient approaches have been developed to identify different species of As in marine samples. Different extraction strategies have been utilized based on the As species of interest including water, methanol and mixtures of both, and many other extraction agents have been explained in this article. Furthermore, details of hyphenated techniques which are available for detecting these As species have been documented, especially the most versatile and applied technique including inductively coupled plasma mass spectrometry.
Collapse
Affiliation(s)
- Bashdar Abuzed Sadee
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Yaseen Galali
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| | - Salih M S Zebari
- Department of Animal Resource, College of Agricultural Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
- Department of Nutrition and Dietetics, Cihan University-Erbil Erbil Iraq
| |
Collapse
|
175
|
Kong T, Sun X, Gu Z, Yang N, Huang Y, Lan L, Gao P, Liu H, Wang Y, Jiang F, Li B, Sun W. Differential Mechanisms of Microbial As(III) and Sb(III) Oxidation and Their Contribution to Tailings Reclamation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11447-11458. [PMID: 38899977 DOI: 10.1021/acs.est.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mine tailings are extremely oligotrophic environments frequently contaminated with elevated As and Sb, making As(III) and Sb(III) oxidation potentially important energy sources for the tailing microbiome. Although they have been proposed to share similar metabolic pathways, a systemic comparison of the As(III) and Sb(III) oxidation mechanisms and energy utilization efficiencies requires further elucidation. In this study, we employed a combination of physicochemical, molecular, and bioinformatic analyses to compare the kinetic and genetic mechanisms of As(III) and Sb(III) oxidation as well as their respective energy efficiencies for fueling the key nutrient acquisition metabolisms. Thiobacillus and Rhizobium spp. were identified as functional populations for both As(III) and Sb(III) oxidation in mine tailings by DNA-stable isotope probing. However, these microorganisms mediated As(III) and Sb(III) oxidation via different metabolic pathways, resulting in preferential oxidation of Sb(III) over As(III). Notably, both As(III) and Sb(III) oxidation can facilitate nitrogen fixation and phosphate solubilization in mine tailings, with Sb(III) oxidation being more efficient in powering these processes. Thus, this study provided novel insights into the microbial As(III) and Sb(III) oxidation mechanisms and their respective nutrient acquisition efficiencies, which may be critical for the reclamation of mine tailings.
Collapse
Affiliation(s)
- Tianle Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhibin Gu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nie Yang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuqing Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Lan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Feng Jiang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
176
|
Zhong Y, Zhang W, Xiao H, Kong Y, Huang W, Bai D, Yu S, Gao J, Wang X. Customizable Zr-MOF nanoantidote-based multieffective arsenic detoxification and its extended low-toxic therapy. Acta Biomater 2024; 182:228-244. [PMID: 38761962 DOI: 10.1016/j.actbio.2024.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/22/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Arsenic (As) poisoning has become a global public problem threatening human health. Chelation therapy (CT) is the preferred treatment for arsenic poisoning. Nevertheless, efficient and safe arsenic removal in vivo remains a daunting challenge due to the limitations of chelators, including weak affinity, poor cell membrane penetration, and short half-life. Herein, a mercapto-functionalized and size-tunable hierarchical porous Zr-MOF (UiO-66-TC-SH) is developed, which possesses abundant arsenic chemisorption sites, effective cell uptake ability, and long half-life, thereby efficiently removing toxic arsenic in vivo. Moreover, the strong binding affinity of UiO-66-TC-SH for arsenic reduces systemic toxicity caused by off-target effects. In animal trials, UiO-66-TC-SH decreases the blood arsenic levels of acute arsenic poisoning mice to a normal value within 48 h, and the efficacy is superior to clinical drugs 2,3-dimercaptopropanesulfonic acid sodium salt (DMPS). Meanwhile, UiO-66-TC-SH also significantly mitigates the arsenic accumulation in the metabolic organs of chronic arsenic poisoning mice. Surprisingly, UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates the side effects of arsenic drugs antitumor therapy. STATEMENT OF SIGNIFICANCE: Arsenic (As) contamination has become a global problem threatening public health. The present clinical chelation therapy (CT) still has some limitations, including the weak affinity, poor cell membrane permeability and short half-life of hydrophilic chelators. Herein, a metal-organic framework (MOF)-based multieffective arsenic removal strategy in vivo is proposed for the first time. Mercapto-functionalized and size-tunable hierarchical porous Zr-MOF nanoantidote (denoted as UiO-66-TC-SH) is accordingly designed and synthesized. After injection, UiO-66-TC-SH can form Zr-O-As bonds and As-S bonds with arsenic, thus enhancing arsenic adsorption capacity, cycling stability and systemic safety simultaneously. The acute arsenic poisoning model results indicate that UiO-66-TC-SH shows superior efficacy to the clinical drug sodium dimercaptopropanesulfonate (DMPS). More meaningfully, we find that UiO-66-TC-SH also accelerates the metabolism of arsenic in organs of tumor-bearing mice and alleviates side effects of arsenic drugs anti-tumor therapy.
Collapse
Affiliation(s)
- Yanhua Zhong
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China
| | - Wei Zhang
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China; Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Hong Xiao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Yijie Kong
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Wenjing Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Danmeng Bai
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Simin Yu
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China
| | - Jie Gao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
| | - Xiaolei Wang
- School of Chemistry and Chemical Engineering of Nanchang University, Nanchang 330088, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China.
| |
Collapse
|
177
|
Khatun MF, Reza AHMS, Sattar GS, Khan AS, Khan MIA. Prediction of arsenic concentration in groundwater of Chapainawabganj, Bangladesh: machine learning-based approach to spatial modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46023-46037. [PMID: 38980486 DOI: 10.1007/s11356-024-34148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
Groundwater in northwestern parts of Bangladesh, mainly in the Chapainawabganj District, has been contaminated by arsenic. This research documents the geographical distribution of arsenic concentrations utilizing machine learning techniques. The study aims to enhance the accuracy of model predictions by precisely identifying occurrences of groundwater arsenic, enabling effective mitigation actions and yielding more beneficial results. The reductive dissolution of arsenic-rich iron oxides/hydroxides is identified as the primary mechanism responsible for the release of arsenic from sediment into groundwater. The study reveals that in the research region, alongside elevated arsenic concentrations, significant levels of sodium (Na), iron (Fe), manganese (Mn), and calcium (Ca) were present. Statistical analysis was employed for feature selection, identifying pH, electrical conductivity (EC), sulfate (SO4), nitrate (NO3), Fe, Mn, Na, K, Ca, Mg, bicarbonate (HCO3), phosphate (PO4), and As as features closely associated with arsenic mobilization. Subsequently, various machine learning models, including Naïve Bayes, Random Forest, Support Vector Machine, Decision Tree, and logistic regression, were employed. The models utilized normalized arsenic concentrations categorized as high concentration (HC) or low concentration (LC), along with physiochemical properties as features, to predict arsenic occurrences. Among all machine learning models, the logistic regression and support vector machine models demonstrated high performance based on accuracy and confusion matrix analysis. In this study, a spatial distribution prediction map was generated to identify arsenic-prone areas. The prediction map also displays that Baroghoria Union and Rajarampur region under Chapainawabganj municipality are high-risk areas and Maharajpur Union and Baliadanga Union are comparatively low-risk areas of the research area. This map will facilitate researchers and legislators in implementing mitigation strategies. Logistic regression (LR) and support vector machine (SVM) models will be utilized to monitor arsenic concentration values continuously.
Collapse
Affiliation(s)
- Mst Fatima Khatun
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh
| | - A H M Selim Reza
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh.
| | - Golam Sabbir Sattar
- Department of Geology and Mining, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md Iqbal Aziz Khan
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
178
|
Padilla-Reyes DA, Dueñas-Moreno J, Mahlknecht J, Mora A, Kumar M, Ornelas-Soto N, Mejía-Avendaño S, Navarro-Gómez CJ, Bhattacharya P. Arsenic and fluoride in groundwater triggering a high risk: Probabilistic results using Monte Carlo simulation and species sensitivity distribution. CHEMOSPHERE 2024; 359:142305. [PMID: 38740338 DOI: 10.1016/j.chemosphere.2024.142305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/01/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
The widespread presence of arsenic (As) and fluoride (F-) in groundwater poses substantial risks to human health on a global scale. These elements have been identified as the most prevalent geogenic contaminants in groundwater in northern Mexico. Consequently, this study aimed to evaluate the human health and ecological risks associated with the content of As and F- in the Meoqui-Delicias aquifer, which is in one of Mexico's most emblematic irrigation districts. Concentrations of As and F- were measured in 38 groundwater samples using ICP-MS and ion chromatography, respectively. Overall, these elements showed a similar trend across the aquifer, revealing a positive correlation between them and pH. The concentration of As and F- in the groundwater ranged from 5.3 μg/L to 303 μg/L and from 0.5 mg/L to 8.8 mg/L, respectively. Additionally, the levels of As and F- surpassed the established national standards for safe drinking water in 92% and 97% of samples, respectively. Given that groundwater is used for both agricultural purposes and human activities, this study also assessed the associated human health and ecological risks posed by these elements using Monte Carlo simulation and Species Sensitivity Distribution. The findings disclosed a significant noncarcinogenic health risk associated with exposure to As and F-, as well as an unacceptable carcinogenic health risk to As through water consumption for both adults and children. Furthermore, a high ecological risk to aquatic species was identified for F- and high to medium risks for As in the sampling sites. Therefore, the findings in this study provide valuable information for Mexican authorities and international organizations (e.g., WHO) about the adverse effects that any exposure without treatment to groundwater from this region represents for human health.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jaime Dueñas-Moreno
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico.
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Manish Kumar
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico; Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand, 248007, India
| | - Nancy Ornelas-Soto
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Sandra Mejía-Avendaño
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Carmen J Navarro-Gómez
- Faculty of Engineering, Autonomous University of Chihuahua, Circuito Universitario, 31109, Campus Uach II, Chihuahua, Chih, C.P. 31125, Mexico
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-114 28, Stockholm, Sweden
| |
Collapse
|
179
|
He YQ, McDonough LK, Zainab SM, Guo ZF, Chen C, Xu YY. Microplastic accumulation in groundwater: Data-scaled insights and future research. WATER RESEARCH 2024; 258:121808. [PMID: 38796912 DOI: 10.1016/j.watres.2024.121808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Given that microplastics (MPs) in groundwater have been concerned for risks to humans and ecosystems with increased publications, a Contrasting Analysis of Scales (CAS) approach is developed by this study to synthesize all existing data into a hierarchical understanding of MP accumulation in groundwater. Within the full data of 386 compiled samples, the median abundance of MPs in Open Groundwater (OG) and Closed Groundwater (CG) were 4.4 and 2.5 items/L respectively, with OG exhibiting a greater diversity of MP colors and larger particle sizes. The different pathways of MP entry (i.e., surface runoff and rock interstices) into OG and CG led to this difference. At the regional scale, median MP abundance in nature reserves and landfills were 17.5 and 13.4 items/L, respectively, all the sampling points showed high pollution load risk. MPs in agricultural areas exhibited a high coefficient of variation (716.7%), and a median abundance of 1.0 items/L. Anthropogenic activities at the regional scale are the drivers behind the differentiation in the morphological characteristics of MPs, where groundwater in residential areas with highly toxic polymers (e.g., polyvinylchloride) deserves prolonged attention. At the local scale, the transport of MPs is controlled by groundwater flow paths, with a higher abundance of MP particles downstream than upstream, and MPs with regular surfaces and lower resistance (e.g., pellets) are more likely to be transported over long distances. From the data-scaled insight this study provides on the accumulation of MPs, future research should be directed towards network-based observation for groundwater-rich regions covered with landfills, residences, and agricultural land.
Collapse
Affiliation(s)
- Yu-Qin He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liza K McDonough
- Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Syeda Maria Zainab
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Cai Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
180
|
Lerma-Treviño C, Hernández-Cadena L, Acosta-Montes JO, Hernández-Montes G, Alvarado-Cruz I, Romieu I, Barraza-Villarreal A. Prenatal Arsenic Exposure on DNA Methylation of C18ORF8 and ADAMTS9 Genes of Newborns from the POSGRAD Birth Cohort Study. TOXICS 2024; 12:476. [PMID: 39058128 PMCID: PMC11280544 DOI: 10.3390/toxics12070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Exposure to arsenic (As) is a public health problem associated with cancer (skin and colon) and it has been reported that epigenetic changes may be a potential mechanism of As carcinogenesis. It is pertinent to evaluate this process in genes that have been associated with cancer, such as ADAMTS9 and C18ORF8. Gestation and delivery data were obtained from the POSGRAD study. Exposure to As was measured in urine during pregnancy. Gene methylation was performed by sodium bisulfite sequencing; 26 CpG sites for the C18ORF8 gene and 21 for ADAMTS9 were analyzed. These sites are located on the CpG islands near the start of transcription. Sociodemographic characteristics were obtained by a questionnaire. The statistical analysis was performed using multiple linear regression models adjusted for potential confounders. Newborns with an As exposure above 49.4 μg g-1 showed a decrease of 0.21% on the methylation rate in the sites CpG15, CpG19, and CpG21 of the C18ORF8 gene (adjusted ß = -0.21, p-value = 0.02). No statistically significant association was found between prenatal exposure to As and methylation of the ADAMTS9 gene. Prenatal exposure to As was associated with decreased DNA methylation at the CpG15, CpG19, and CpG21 sites of the C18ORF8 gene. These sites can provide information to elucidate epigenetic mechanisms associated with prenatal exposure to As and cancer.
Collapse
Affiliation(s)
- Carolina Lerma-Treviño
- Centro de Investigación en Nutrición y Salud, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Leticia Hernández-Cadena
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| | | | - Georgina Hernández-Montes
- CIC-UNAM-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Isabel Alvarado-Cruz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| | - Isabelle Romieu
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| | - Albino Barraza-Villarreal
- Dirección de Salud Ambiental, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (L.H.-C.); (I.R.)
| |
Collapse
|
181
|
Liu ZT, Ma RA, Zhu D, Konstantinidis KT, Zhu YG, Zhang SY. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nat Commun 2024; 15:5168. [PMID: 38886447 PMCID: PMC11183072 DOI: 10.1038/s41467-024-49165-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) coexist in organic fertilized agroecosystems based on their correlations in abundance, yet evidence for the genetic linkage of ARG-MRGs co-selected by organic fertilization remains elusive. Here, an analysis of 511 global agricultural soil metagenomes reveals that organic fertilization correlates with a threefold increase in the number of diverse types of ARG-MRG-carrying contigs (AMCCs) in the microbiome (63 types) compared to non-organic fertilized soils (22 types). Metatranscriptomic data indicates increased expression of AMCCs under higher arsenic stress, with co-regulation of the ARG-MRG pairs. Organic fertilization heightens the coexistence of ARG-MRG in genomic elements through impacting soil properties and ARG and MRG abundances. Accordingly, a comprehensive global map was constructed to delineate the distribution of coexistent ARG-MRGs with virulence factors and mobile genes in metagenome-assembled genomes from agricultural lands. The map unveils a heightened relative abundance and potential pathogenicity risks (range of 4-6) for the spread of coexistent ARG-MRGs in Central North America, Eastern Europe, Western Asia, and Northeast China compared to other regions, which acquire a risk range of 1-3. Our findings highlight that organic fertilization co-selects genetically linked ARGs and MRGs in the global soil microbiome, and underscore the need to mitigate the spread of these co-resistant genes to safeguard public health.
Collapse
Affiliation(s)
- Zi-Teng Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui-Ao Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Konstantinos T Konstantinidis
- School of Civil & Environmental Engineering and School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Si-Yu Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
182
|
Zhang XY, Zhang YH, Guo YY, Luo Y, Xu SS, Lu X, Liang NN, Wu HY, Huang YC, Xu DX. Arsenic exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124060. [PMID: 38685555 DOI: 10.1016/j.envpol.2024.124060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Arsenic (As) is a notorious environmental toxicant widely present in various natural environments. As exposure has been correlated with the decline in sperm motility. Yet, the mechanism has not been fully elucidated. Adult male C57 mice were given 0, 1, or 15 mg/L NaAsO2 for 10 weeks. The mature seminiferous tubules and sperm count were decreased in As-exposed mice. Sperm motility and several sperm motility parameters, including average path velocity (VAP), straight-line velocity (VSL), curvilinear velocity (VCL), beat-cross frequency (BCF), linearity (LIN), straightness (STR), and amplitude of lateral head displacement (ALH), were declined in As-exposed mice. RNA sequencing and transcriptomics analyses revealed that differentially expressed genes (DEGs) were mainly enriched in metabolic pathways. Untargeted metabolomics analyses indicated that energy metabolism was disrupted in As-exposed mouse testes. Gene set enrichment analysis showed that glycolysis and oxidative phosphorylation were disturbed in As-exposed mouse testes. As-induced disruption of testicular glucose metabolism and oxidative phosphorylation was further validated by RT-PCR and Western blotting. In conclusion, As exposure causes decline in sperm motility accompanied by energy metabolism disorders in mouse testes.
Collapse
Affiliation(s)
- Xiao-Yi Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Hao Zhang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Yue-Yue Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Shan-Shan Xu
- Department of Public Health and General Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xue Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Nan-Nan Liang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Hong-Yan Wu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yi-Chao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China.
| |
Collapse
|
183
|
Qiu T, Hou K, Zhang J, Wang N, Yao X, Yang G, Jiang L, Dong J, Miao M, Bai J, Sun X. Sodium arsenite induces hepatic stellate cells activation by m 6A modification of TGF-β1 during liver fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116435. [PMID: 38714084 DOI: 10.1016/j.ecoenv.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
The compound known as Sodium arsenite (NaAsO2), which is a prevalent type of inorganic arsenic found in the environment, has been strongly associated with liver fibrosis (LF), a key characteristic of nonalcoholic fatty liver disease (NAFLD), which has been demonstrated in our previous study. Our previous research has shown that exposure to NaAsO2 triggers the activation of hepatic stellate cells (HSCs), a crucial event in the development of LF. However, the molecular mechanism is still unknown. N6-methyladenosine (m6A) modification is the most crucial post-transcriptional modification in liver disease. Nevertheless, the precise function of m6A alteration in triggering HSCs and initiating LF caused by NaAsO2 remains unknown. Here, we found that NaAsO2 induced LF and HSCs activation through TGF-β/Smad signaling, which could be reversed by TGF-β1 knockdown. Furthermore, NaAsO2 treatment enhanced the m6A modification level both in vivo and in vitro. Significantly, NaAsO2 promoted the specific interaction of METTL14 and IGF2BP2 with TGF-β1 and enhanced the TGF-β1 mRNA stability. Notably, NaAsO2-induced TGF-β/Smad pathway and HSC-t6 cells activation might be avoided by limiting METTL14/IGF2BP2-mediated m6A modification. Our findings showed that the NaAsO2-induced activation of HSCs and LF is made possible by the METTL14/IGF2BP2-mediated m6A methylation of TGF-β1, which may open up new therapeutic options for LF brought on by environmental hazards.
Collapse
Affiliation(s)
- Tianming Qiu
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Kun Hou
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jingyuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Ningning Wang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Guang Yang
- Department of Nutrition and Food Safety, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jikun Dong
- The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Menglong Miao
- The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Jie Bai
- Preventive Medicine Laboratory, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China.
| | - Xiance Sun
- Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
184
|
Xu Y, Liu D, Yuan X, Yang Y, Li T, Deng Y, Wang Y. Deciphering the spatial heterogeneity of groundwater arsenic in Quaternary aquifers of the Central Yangtze River Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172405. [PMID: 38626822 DOI: 10.1016/j.scitotenv.2024.172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Significant spatial variability of groundwater arsenic (As) concentrations in South/Southeast Asia is closely associated with sedimentogenesis and biogeochemical cycling processes. However, the role of fine-scale differences in biogeochemical processes under similar sedimentological environments in controlling the spatial heterogeneity of groundwater As concentrations is poorly understood. Within the central Yangtze Basin, dissolved organic matter (DOM) and microbial functional communities in the groundwater and solid-phase As-Fe speciation in Jianghan Plain (JHP) and Jiangbei Plain (JBP) were compared to reveal mechanisms related to the spatial heterogeneity of groundwater As concentration. The optical signatures of DOM showed that low molecular terrestrial fulvic-like with highly humified was predominant in the groundwater of JHP, while terrestrial humic-like and microbial humic-like with high molecular weight were predominant in the groundwater of JBP. The inorganic carbon isotope, microbial functional communities, and solid-phase As-Fe speciation suggest that the primary process controlling As accumulation in JHP groundwater system is the degradation of highly humified OM by methanogens, which drive the reductive dissolution of amorphous iron oxides. While in JBP groundwater systems, anaerobic methane-oxidizing microorganisms (AOM) coupled with fermentative bacteria, iron reduction bacteria (IRB), and sulfate reduction bacteria (SRB) utilize low molecular weight DOM degradation to drive biotic/abiotic reduction of Fe oxides, further facilitating the formation of carbonate associated Fe and crystalline Fe oxides, resulting in As release into groundwater. Different biogeochemical cycling processes determine the evolution of As-enriched aquifer systems, and the coupling of multiple processes involving organic matter transformation‑iron cycling‑sulfur cycling-methane cycling leads to heterogeneity in the spatial distribution of As concentrations in groundwater. These findings provide new perspectives to decipher the spatial variability of As concentrations in groundwater.
Collapse
Affiliation(s)
- Yuxiao Xu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Di Liu
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xiaofang Yuan
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yijun Yang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Tian Li
- Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China.
| | - Yanxin Wang
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
185
|
Ning X, Long S, Liu Z, Dong Y, He L, Wang S. Vertical distribution of arsenic and bacterial communities in calcareous farmland amending by organic fertilizer and iron-oxidizing bacteria: Field experiment on concomitant remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134415. [PMID: 38677113 DOI: 10.1016/j.jhazmat.2024.134415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
The migration and transformation mechanisms of arsenic (As) in soil environments necessitate an understanding of its influencing processes. Here, we investigate the subsurface biogeochemical transformation of As and iron (Fe) through amended in the top 20 cm with iron oxidizing bacteria (FeOB) and organic fertilizer (OF). Our comprehensive 400-day field study, conducted in a calcareous soil profile sectioned into 20 cm increments, involved analysis by sequential extraction and assessment of microbial properties. The results reveal that the introduction of additional OF increased the release ratio of As/Fe from the non-specific adsorption fraction (136.47 %) at the subsoil depth (40-60 cm), underscoring the importance of sampling at various depths and time points to accurately elucidate the form, instability, and migration of As within the profile. Examination of bacterial interaction networks indicated a disrupted initial niche in the bottom layer, resulting in a novel cooperative symbiosis. While the addition of FeOB did not lead to the dominance of specific bacterial species, it did enhance the relative abundance of As-tolerant Acidobacteria and Gemmatimonadetes in both surface (39.2 % and 38.76 %) and deeper soils (44.29 % and 23.73 %) compared to the control. Consequently, the amendment of FeOB in conjunction with OF facilitated the formation of poorly amorphous Fe (hydr)oxides in the soil, achieved through abiotic and biotic sequestration processes. Throughout the long-term remediation process, the migration coefficient of bioavailable As within the soil profile decreased, indicating that these practices did not exacerbate As mobilization. This study carries significant implications for enhancing biogeochemical cycling in As-contaminated Sierozem soils and exploring potential bioremediation strategies. ENVIRONMENTAL IMPLICATION: The long-term exposure of sewage irrigation has potential adverse effects on the local ecosystem, causing serious environmental problems. Microorganisms play a vital role in the migration and transformation of arsenic in calcareous soil in arid areas, which highlights the necessity of understanding its dynamics. The vertical distribution, microbial community and fate of arsenic in calcareous farmland soil profile in northwest China were studied through field experiments. The results of this work have certain significance for the remediation of arsenic-contaminated soil in arid areas, and provide new insights for the migration, transformation and remediation of arsenic in this kind of soil.
Collapse
Affiliation(s)
- Xiang Ning
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China.
| | - Song Long
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Zitong Liu
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Yinwen Dong
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Liang He
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China
| | - Shengli Wang
- Technoloy Research Center for Pollution Control and Remediation of Northwest Soil and Groundwater, College of Earth and Environmental Sciences, Lanzhou University, China.
| |
Collapse
|
186
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
187
|
Rostami MS, Khodaei MM. Recent advances in chitosan-based nanocomposites for adsorption and removal of heavy metal ions. Int J Biol Macromol 2024; 270:132386. [PMID: 38754671 DOI: 10.1016/j.ijbiomac.2024.132386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Due to the high concentration of various toxic and dangerous pollutants, industrial effluents have imposed increasing threats. Among the various processes for wastewater treatment, adsorption is widely used due to its simplicity, good treatment efficiency, availability of a wide range of adsorbents, and cost-effectiveness. Chitosan (CS) has received great attention as a pollutant adsorbent due to its low cost and many -OH and -NH2 functional groups that can bind heavy metal ions. However, weaknesses such as sensitivity to pH, low thermal stability and low mechanical strength, limit the application of CS in wastewater treatment. The modification of these functional groups can improve its performance via cross-linking and grafting agents. The porosity and specific surface area of CS in powder form are not ideal, so physical modification of CS via integration with other materials (e.g., metal oxide, zeolite, clay, etc.) leads to the creation of composite materials with improved absorption performance. This review provides reports on the application of CS and its nanocomposites (NCs) for the removal of various heavy metal ions. Synthesis strategy, adsorption mechanism and influencing factors on sorbents for heavy metals are discussed in detail.
Collapse
Affiliation(s)
| | - Mohammad Mehdi Khodaei
- Department of Organic Chemistry, Razi University, 67149-67346 Kermanshah, Iran; Nanoscience and Nanotechnology Research Center, Razi University, 67149-67346 Kermanshah, Iran.
| |
Collapse
|
188
|
Xie D, Wang P, Chen W, Lin J, Wu M, Wang Y, Xia H, Cheng C, Ye F, Syed BM, Liu Q. Urea cycle promotion via ammonia-upregulated CPS1 is involved in arsenite-induced pulmonary fibrosis through enhancing collagen synthesis. Chem Biol Interact 2024; 396:111029. [PMID: 38703806 DOI: 10.1016/j.cbi.2024.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Arsenic exposure is connected with lung toxicity and is related to lung fibrotic changes. Idiopathic pulmonary fibrosis (IPF) is characterized by extracellular matrix (ECM) deposition. Various genetic mechanisms and environmental factors induce or exacerbate pulmonary fibrosis. Collagen synthesis induced by sodium arsenite (NaAsO2) is closely associated with IPF. Fibroblasts tend to fine-tune their metabolic networks to support their synthetic requirements in response to environmental stimuli. Alterations in metabolism have an influential role in the pathogenesis of IPF. However, it is unclear how arsenic affects the metabolism in IPF. The urea cycle (UC) is needed for collagen formation, which provides adequate levels of proline (Pro) for biosynthesis of collagen. Carbamoyl phosphate synthetase 1 (CPS1) converts the ammonia to carbamoyl phosphate, which controls the first reaction of the UC. We show that, in arsenite-exposed mice, high amounts of ammonia in the lung microenvironment promotes the expression levels of CPS1 and the Pro metabolism. Reduction of ammonia and CPS1 ablation inhibit collagen synthesis and ameliorate IPF phenotypes induced by arsenite. This work takes advantage of multi-omics data to enhance understanding of the underlying pathogenic mechanisms, the key molecules and the complicated cellular responses to this pollutant, which provide a target for the prevention of pulmonary fibrosis caused by arsenic.
Collapse
Affiliation(s)
- Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Weiyong Chen
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Meng Wu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing, 210096, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
189
|
Hu K, Islam MA, Parvez F, Bhattacharya P, Khan KM. Chronic exposure of arsenic among children in Asia: A current opinion based on epidemiological evidence. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2024; 39:100558. [PMID: 40125474 PMCID: PMC11928148 DOI: 10.1016/j.coesh.2024.100558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The health effects of arsenic (As) exposure are a major global environmental issue affecting millions of people around the globe. Although adult epidemiological studies on As-induced health consequences have been extensively reviewed, but not much comprehensive review has been done targeting children. In this epidemiological review, 64 human subject studies on children were identified after applying exclusion criteria, which addressed an array of health effects of As exposure in early life stages in South and Southeast (S-SE) Asian countries, where a great variability in As exposures has been reported. The present review identified neurocognitive impairment linked to As exposure in early life stages. In utero and childhood As exposures were also associated with genetic and metabolic alteration, elevated pneumonia risk, and skin lesions in several populations in S-SE Asia. Significant associations of As with epigenetic changes, DNA damages, abnormal birth outcomes, and elevated mortality were also reported in epidemiological studies. The findings of this review article may help public health policymakers and clinicians develop early-life intervention strategies to reduce the burden of diseases in As-exposed populations.
Collapse
Affiliation(s)
- Kelsey Hu
- College of Osteopathic Medicine, Sam Houston State University, 925 City Central Ave, Conroe, TX 77304, USA
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden
| | - Khalid M Khan
- Department of Public Health, College of Health Sciences, Sam Houston State University, 1901 Ave I, CHSS Suite 432, Huntsville, TX 77340, USA
| |
Collapse
|
190
|
Nan K, He M, Chen B, Hu B. Histidine tag modified magnetic beads for analysis of arsenic binding proteins. Anal Chim Acta 2024; 1304:342554. [PMID: 38637038 DOI: 10.1016/j.aca.2024.342554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Many proteins with thiol groups can bind with trivalent arsenic which are termed as arsenic binding proteins, thus change their physiological functions. Therefore, it is vital to analyze the arsenic binding proteins in cells. The Pull-Down strategy based on biotinylated phenylarsenic acid (Bio-PAO(III)) probes is an effective way for analysis of arsenic binding proteins. In this strategy, streptavidin magnetic beads (SA-MBs) was applied to capture the arsenic binding proteins conjugating with Bio-PAO(III) probe. However, strong interaction between SA and biotin makes the elution of arsenic binding proteins not easy. RESULTS We developed a novel affinity separation strategy to address the challenge of eluting arsenic binding proteins, a key issue with the existing Bio-PAO(III) Pull-Down method. By employing magnetic beads modified with Nα-Bis(carboxymethyl)-l-lysine (NTA-Lys), polyhistidine-tag (His6-Tag), and SA (MB-NTA(Ni)-His6-SA), we established a more efficient purification process. This innovative approach enables selective capture of arsenic binding proteins in HepG2 cells labeled by Bio-PAO(III) probes, facilitating gentle digestion by trypsin for precise identification through capillary high performance liquid chromatography (Cap HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS). What is more, the magnetic beads can be regenerated by using imidazole as the eluent, and the obtained MB-NTA(Ni) can be reloaded with His6-SA for next use. Our method successfully identified 41 arsenic binding proteins, including those involved in cytoskeletal structure, heat shock response, transcriptional regulation, DNA damage repair, redox state regulation, mitochondrial dehydrogenase function, and protein synthesis and structure. SIGNIFICANCE This work contributes to a more comprehensive understanding of the toxic mechanisms of arsenic, potentially providing valuable insights for the prevention or treatment of arsenic-related diseases.
Collapse
Affiliation(s)
- Kai Nan
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| |
Collapse
|
191
|
Cao H, Xie X, Xiao Z, Liu W. Transferability of Machine Learning Models for Geogenic Contaminated Groundwaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8783-8791. [PMID: 38718173 DOI: 10.1021/acs.est.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Machine learning models show promise in identifying geogenic contaminated groundwaters. Modeling in regions with no or limited samples is challenging due to the need for large training sets. One potential solution is transferring existing models to such regions. This study explores the transferability of high fluoride groundwater models between basins in the Shanxi Rift System, considering six factors, including modeling methods, predictor types, data size, sample/predictor ratio (SPR), predictor range, and data informing. Results show that transferability is achieved only when model predictors are based on hydrochemical parameters rather than surface parameters. Data informing, i.e., adding samples from challenging regions to the training set, further enhances the transferability. Stepwise regression shows that hydrochemical predictors and data informing significantly improve transferability, while data size, SPR, and predictor range have no significant effects. Additionally, despite their stronger nonlinear capabilities, random forests and artificial neural networks do not necessarily surpass logistic regression in transferability. Lastly, we utilize the t-SNE algorithm to generate low-dimensional representations of data from different basins and compare these representations to elucidate the critical role of predictor types in transferability.
Collapse
Affiliation(s)
- Hailong Cao
- College of Resources and Environment, Yangtze University, Wuhan 430100, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Ziyi Xiao
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Wenjing Liu
- School of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
192
|
Li Y, Guo H, Zhao B, Gao Z, Yu C, Zhang C, Wu X. High biodegradability of microbially-derived dissolved organic matter facilitates arsenic enrichment in groundwater: Evidence from molecular compositions and structures. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134133. [PMID: 38574655 DOI: 10.1016/j.jhazmat.2024.134133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Although biodegradation of organic matter is well-known to trigger enrichment of arsenic (As) in groundwater, the effects of DOM sources and biodegradability on As enrichment remain elusive. In this study, groundwater samples were collected from the Hetao basin to identify DOM source and evaluate biodegradability by using spectral and molecular techniques. Results showed that in the alluvial fan, DOM was mainly sourced from terrestrially derived OM, while DOM in the flat plain was more originated from microbially derived OM. Compared to terrestrially derived DOMs, microbially derived DOMs in groundwater, which had relatively higher H/Cwa ratios, NOSC values and more biodegradable molecules, exhibited higher biodegradability. In the flat plain, microbially derived DOMs with higher biodegradability encountered stronger biodegradation, facilitating the reductive dissolution of Fe(III)/Mn oxides and As enrichment in groundwater. Moreover, the enrichment of As depended on the biodegradable molecules that was preferentially utilized for primary biodegradation. Our study highlights that the enrichment of dissolved As in the aquifers was closely associated with microbially derived DOM with high biodegradability and high ability for primary biodegradation.
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China.
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| | - Zhipeng Gao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| | - Chen Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| | - Chaoran Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083 Beijing, China; MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| | - Xiong Wu
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution & School of Water Resources and Environment, China University of Geosciences (Beijing), 100083 Beijing, China
| |
Collapse
|
193
|
Li M, Boisson-Dernier A, Bertoldi D, Ardini F, Larcher R, Grotti M, Varotto C. Elucidation of arsenic detoxification mechanism in Marchantia polymorpha: The role of ACR3. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134088. [PMID: 38555672 DOI: 10.1016/j.jhazmat.2024.134088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
The arsenic-specific ACR3 transporter plays pivotal roles in As detoxification in yeast and a group of ancient tracheophytes, the ferns. Despite putative ACR3 genes being present in the genomes of bryophytes, whether they have the same relevance also in this lineage is currently unknown. In this study, we characterized the MpACR3 gene from the bryophyte Marchantia polymorpha L. through a multiplicity of functional approaches ranging from phylogenetic reconstruction, expression analysis, loss- and gain-of-function as well as genetic complementation with an MpACR3 gene tagged with a fluorescent protein. Genetic complementation demonstrates that MpACR3 plays a pivotal role in As tolerance in M. polymorpha, with loss-of-function Mpacr3 mutants being hypersensitive and MpACR3 overexpressors more tolerant to As. Additionally, MpACR3 activity regulates intracellular As concentration, affects its speciation and controls the levels of intracellular oxidative stress. The MpACR3::3xCitrine appears to localize at the plasma membrane and possibly in other endomembrane systems. Taken together, these results demonstrate the pivotal function of ACR3 detoxification in both sister lineages of land plants, indicating that it was present in the common ancestor to all embryophytes. We propose that Mpacr3 mutants could be used in developing countries as low-cost and low-technology visual bioindicators to detect As pollution in water.
Collapse
Affiliation(s)
- Mingai Li
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Aurélien Boisson-Dernier
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, 400 Route des Chappes, BP167, 06903 Sophia Antipolis Cedex, France
| | - Daniela Bertoldi
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Francisco Ardini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Roberto Larcher
- Department of Food and Transformation, Technology Transfer Centre of Fondazione Edmund Mach, E. Mach 1, San Michele all'Adige, 38098 TN, Italy
| | - Marco Grotti
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, Italy
| | - Claudio Varotto
- Biodiversity, Ecology and Environment Area, Research and Innovation Centre, Fondazione Edmund Mach, via Mach 1, San Michele all'Adige, 38098 Trento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
194
|
Yang W, Ye L, Wu Y, Wang X, Ye S, Deng Y, Huang K, Luo H, Zhang J, Zheng C. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134038. [PMID: 38552392 DOI: 10.1016/j.jhazmat.2024.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
Abstract
Millions of people worldwide are affected by naturally occurring arsenic in groundwater. The development of a low-cost, highly sensitive, portable assay for rapid field detection of arsenic in water is important to identify areas for safe wells and to help prioritize testing. Herein, a novel paper-based fluorescence assay was developed for the on-site analysis of arsenic, which was constructed by the solid-phase fluorescence filter effect (SPFFE) of AsH3-induced the generation of silver nanoparticles (AgNPs) toward carbon dots. The proposed SPFFE-based assay achieves a low arsenic detection limit of 0.36 μg/L due to the efficient reduction of Ag+ by AsH3 and the high molar extinction coefficient of AgNPs. In conjunction with a smartphone and an integrated sample processing and sensing platform, field-sensitive detection of arsenic could be achieved. The accuracy of the portable assay was validated by successfully analyzing surface and groundwater samples, with no significant difference from the results obtained through mass spectrometry. Compared to other methods for arsenic analysis, this developed system offers excellent sensitivity, portability, and low cost. It holds promising potential for on-site analysis of arsenic in groundwater to identify safe well locations and quickly obtain output from the global map of groundwater arsenic.
Collapse
Affiliation(s)
- Wenhui Yang
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liqing Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China; Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuke Wu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Wang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Simin Ye
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China
| | - Yurong Deng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ke Huang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hong Luo
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610068, China.
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
195
|
Si D, Wu S, Wu H, Wang D, Fu QL, Wang Y, Wang P, Zhao FJ, Zhou D. Activated Carbon Application Simultaneously Alleviates Paddy Soil Arsenic Mobilization and Carbon Emission by Decreasing Porewater Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7880-7890. [PMID: 38670926 DOI: 10.1021/acs.est.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Flooding of paddy fields during the rice growing season enhances arsenic (As) mobilization and greenhouse gas (e.g., methane) emissions. In this study, an adsorbent for dissolved organic matter (DOM), namely, activated carbon (AC), was applied to an arsenic-contaminated paddy soil. The capacity for simultaneously alleviating soil carbon emissions and As accumulation in rice grains was explored. Soil microcosm incubations and 2-year pot experimental results indicated that AC amendment significantly decreased porewater DOM, Fe(III) reduction/Fe2+ release, and As release. More importantly, soil carbon dioxide and methane emissions were mitigated in anoxic microcosm incubations. Porewater DOM of pot experiments mainly consisted of humic-like fluorophores with a molecular structure of lignins and tannins, which could mediate microbial reduction of Fe(III) (oxyhydr)oxides. Soil microcosm incubation experiments cospiking with a carbon source and AC further consolidated that DOM electron shuttling and microbial carbon source functions were crucial for soil Fe(III) reduction, thus driving paddy soil As release and carbon emission. Additionally, the application of AC alleviated rice grain dimethylarsenate accumulation over 2 years. Our results highlight the importance of microbial extracellular electron transfer in driving paddy soil anaerobic respiration and decreasing porewater DOM in simultaneously remediating As contamination and mitigating methane emission in paddy fields.
Collapse
Affiliation(s)
- Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
196
|
Li W, Wang C, Che G, Su M, Zhang Z, Liu W, Lin Z, Zhang J. Enhanced extraction of heavy metals from gypsum-based hazardous waste by nanoscale sulfuric acid film at ambient conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134027. [PMID: 38508110 DOI: 10.1016/j.jhazmat.2024.134027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Low-cost, low-energy extraction of heavy metal(loid)s (HMs) from hazardous gypsum cake is the goal of the metallurgical industry to mitigate environmental risks and carbon emissions. However, current extracting routes of hydrometallurgy often suffer from great energy inputs and substantial chemical inputs. Here, we report a novel solid-like approach with low energy consumption and chemical input to extract HMs by thin films under ambient conditions. Through constructing a nanoscale sulfuric acid film (NSF) of ∼50 nm thickness on the surface of arsenic-bearing gypsum (ABG), 99.6% of arsenic can be removed, surpassing the 50.3% removal in bulk solution. In-situ X-ray diffraction, infrared spectral, and ab initio molecular dynamics (AIMD) simulations demonstrate that NSF plays a dual role in promoting the phase transformation from gypsum to anhydrite and in changing the ionic species to prevent re-doping in anhydrite, which is not occurred in bulk solutions. The potential of the NSF is further validated in extracting other heavy metal(loid)s (e.g., Cu, Zn, and Cr) from synthetic and actual gypsum cake. With energy consumption and costs at 1/200 and 1/10 of traditional hydrometallurgy separately, this method offers an efficient and economical pathway for extracting HMs from heavy metal-bearing waste and recycling industrial solid waste.
Collapse
Affiliation(s)
- Wenjing Li
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China
| | - Chunli Wang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China.
| | - Guiquan Che
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Min Su
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Zhihao Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Weizhen Liu
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China; School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Jing Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, PR China; Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong 256606, PR China.
| |
Collapse
|
197
|
Zhu Y, Yang Q, Gu J, Chen Z, Jing N, Jin T, Lin J, Wang X, Hu J, Ji G, An Y. 'Environmental standard limit concentration' arsenic exposure is associated with anxiety, depression, and autism-like changes in early-life stage zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133953. [PMID: 38461670 DOI: 10.1016/j.jhazmat.2024.133953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Arsenic is a worldwide environmental pollutant that can impair human health. Previous studies have identified mental disorders induced by arsenic, but the environmental exposure concentrations in the early life stages associated with these disorders are poorly understood. In the present study, early-life stage zebrafish were used to explore the effects on mental disorders under 'environmental standard limit concentrations' arsenic exposures of 5, 10, 50, 150, and 500 μg/L. The results showed that arsenic exposure at these concentrations changed the locomotor behavior in larval zebrafish and was further associated with anxiety, depression, and autism-like behavior in both larval and juvenile zebrafish. Changes were noted at benchmark dose limit (BMDL) concentrations as low as 0.81 μg/L. Transcriptomics showed that immediate early genes (IEGs) fosab, egr1, egr2a, ier2b, egr3, and jund were decreased after arsenic exposure in larval and juvenile zebrafish. Nervous system impairment and anxiety, depression, and autism-like behaviors in early-life stage zebrafish at 'environmental standard limit concentrations' may be attributed to the downregulation of IEGs. These findings in zebrafish provided new experimental support for an arsenic toxicity threshold for mental disorders, and they suggest that low levels of environmental chemicals may be causative developmental factors for mental disorders.
Collapse
Affiliation(s)
- Yuanhui Zhu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qianlei Yang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Zhicheng Chen
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Nan Jing
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Tingxu Jin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China; School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jiayuan Lin
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xin Wang
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingwen Hu
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| | - Yan An
- Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
198
|
Roy S, Hazarika K, Sen A, Dasgupta S, Bhattacharya S. Understanding phloem's role in long-distance transport and accumulation of arsenic (As) in rice: toward low-As-accumulating grain development. PLANTA 2024; 259:141. [PMID: 38695915 DOI: 10.1007/s00425-024-04422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION This review highlights the roles of phloem in the long-distance transport and accumulation of As in rice plants, facilitating the formulation of new strategies to reduce the grain As content. Rice is a staple diet for a significant proportion of the global population. As toxicity is a major issue affecting the rice productivity and quality worldwide. Phloem tissues of rice plants play vital roles in As speciation, long-distance transport, and unloading, thereby controlling the As accumulation in rice grains. Phloem transport accounts for a significant proportion of As transport to grains, ranging from 54 to 100% depending on the species [inorganic arsenate (As(V)), arsenite (As(III)), or organic dimethylarsinic acid (DMA(V)]. However, the specific mechanism of As transport through phloem leading to its accumulation in grains remains unknown. Therefore, understanding the molecular mechanism of phloem-mediated As transport is necessary to determine the roles of phloem in long-distance As transport and subsequently reduce the grain As content via biotechnological interventions. This review discusses the roles of phloem tissues in the long-distance transport and accumulation of As in rice grains. This review also highlights the biotechnological approaches using critical genetic factors involved in nodal accumulation, vacuolar sequestration, and cellular efflux of As in phloem- or phloem-associated tissues. Furthermore, the limitations of existing transgenic techniques are outlined to facilitate the formulation of novel strategies for the development of rice with reduced grain As content.
Collapse
Affiliation(s)
- Sanket Roy
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Kabyashree Hazarika
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | - Anuska Sen
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India
| | | | - Surajit Bhattacharya
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 and 38, Major Arterial Road, Action Area II, Kadampukur Village, Rajarhat, Newtown, Kolkata, West Bengal, 700135, India.
| |
Collapse
|
199
|
Li D, Zhang H, Chang F, Duan L, Zhang Y. Environmental arsenic (As) and its potential relationship with endemic disease in southwestern China. J Environ Sci (China) 2024; 139:46-59. [PMID: 38105068 DOI: 10.1016/j.jes.2023.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 12/19/2023]
Abstract
Many cases of an unknown disease exhibiting the clinical features of limb gangrene, blisters, ulceration, and exfoliation have been reported in Daping village (DV) in southwestern China. However, the pathogenesis is unknown and has puzzled doctors for many years. A preliminary study on heavy metals and symptoms indicated that arsenic might pose the greatest threat to the health of local residents. Here, to explore the sources of and factors influencing arsenic enrichment in DV, whose residents exhibit signs of arsenic poisoning, the As contents in soil, water, and plants were systematically measured. The results indicated high As contents in plant and soil samples obtained from the area, and the source of As may be linked to the weathering of black shale rock. Ingestion of soil and consumption of plants were the two main As exposure pathways among children and adults, respectively, and children exhibited a higher health risk than adults. We presume and emphasize that when extreme drought events occur, humans might face unusual risks resulting from exposure to toxic elements and the direct consumption of highly polluted water. Our study provides a new perspective and sheds light on the environmental geochemistry and health links of this disease.
Collapse
Affiliation(s)
- Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Southwest United Graduate School, Kunming 650500, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| |
Collapse
|
200
|
Anand V, Pandey A. Unlocking the potential of SiO 2 and CeO 2 nanoparticles for arsenic mitigation in Vigna mungo L. Hepper (Blackgram). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34473-34491. [PMID: 38704781 DOI: 10.1007/s11356-024-33531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
In this study, the interaction effects of NaAsO2 (1 and 5 μM), SiO2 NPs (10 and 100 mg/L) and CeO2 NPs (10 and 100 mg/L) were assessed in Vigna mungo (Blackgram). The treatment of NaAsO2, SiO2, CeO2-NPs and combinations of NPs & As were applied to blackgram plants under hydroponic conditions. After its application, the morpho-physiological, antioxidant activity, and phytochemical study were evaluated. At 10 and 100 mg/L of SiO2 and CeO2-NPs, there was an increase in antioxidative enzymatic activity (p < 0.05) and reactive oxygen species (ROS). However, substantial ROS accumulation was observed at 1 and 5 μM NaAsO2 and 100 mg/L SiO2 NPs (p < 0.05). Additionally, at such concentrations, there is a substantial reduction in photosynthetic pigments, nitrogen fixation, chlorosis, and plant development when compared to controls (p < 0.05). The combination of SiO2 and CeO2 NPs (10 and 100 mg/L) with NaAsO2 decreased superoxide radical and hydrogen peroxide and improved SOD, CAT, APX, GR, and chlorophyll pigments (p < 0.05). Further FTIR results were evaluated for documenting elemental and phytochemical analysis.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|